
Outdoor Experimental Comparison of
Four Ad Hoc Routing Algorithms

Robert S. Grayb

robert.s.gray@dartmouth.edu
David Kotza

dfk@cs.dartmouth.edu
Calvin Newporta

Calvin.Newport@alum.dartmouth.org

Nikita Dubrovskya

Nikita.Dubrovsky@alum.dartmouth.org
Aaron Fiskea

Aaron.Fiske@alum.dartmouth.org
Jason Liuc

jasonliu@mines.edu

Christopher Masoneb

Christopher.Masone@dartmouth.edu
Susan McGrathb

smcgrath@ists.dartmouth.edu
Yougu Yuana

yuanyg@cs.dartmouth.edu

(a) Dept. of Computer Science
Dartmouth College

Hanover, NH 03755, USA

(b) Thayer School of
Engineering

Dartmouth College
Hanover, NH 03755, USA

(c) Dept. of Mathematical and
Computer Sciences

Colorado School of Mines
Golden, CO 80401, USA

ABSTRACT
Most comparisons of wireless ad hoc routing algorithms involve
simulated orindoor trial runs, or outdoor runs with only a small
number of nodes, potentially leading to an incorrect picture of algo-
rithm performance. In this paper, we report on an outdoor compar-
ison of four different routing algorithms, APRL, AODV, ODMRP,
and STARA, running on top of thirty-three 802.11-enabled laptops
moving randomly through an athletic field. This comparison pro-
vides insight into the behavior of ad hoc routing algorithms at larger
real-world scales than have been considered so far. In addition, we
compare the outdoor results with both indoor (“tabletop”) and sim-
ulation results for the same algorithms, examining the differences
between the indoor results and the outdoor reality. Finally, we de-
scribe the software infrastructure that allowed us to implement the
ad hoc routing algorithms in a comparable way, and use thesame
codebase for indoor, outdoor, and simulated trial runs.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.2.2 [Network Protocols]: Routing protocols

General Terms
Experimentation
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1. INTRODUCTION
Ad hoc wireless networks can provide connectivity in a vari-

ety of environments in which traditional communication infrastruc-
tures are absent. One notable environment is the modern battle-
field [4]. Although some urban locations may have cell phone or
other communication networks, these systems may be destroyed,
non-operational or inaccessible under battle conditions. Therefore,
warfighters must rely on communication mechanisms that they can
carry with them, and the military is actively pursuing ad hoc net-
works for data communications. In the US Army’s vision of the
Future Force Warrior,1 for example, soldiers will have transmis-
sion equipment that will make each person a node in an ad hoc
network.2 The application of ad hoc networks between vehicles is
also possible, and, in fact, the United States military currently is
using this technology in Iraq.3 Similarly, ad hoc networks can be
used to expedite response in civil emergencies, as in our own work
on remote triage for casualties [28]. Other applications for ad hoc
networks include urban rooftop networks and land- or ocean-based
sensor networks.

In this paper, we focus on routing algorithms foroutdoor, mo-
bile ad hoc networks. Unfortunately, although there have been a
few outdoor tests with a large number of stationary sensors, there
have been few, if any, outdoor tests with a large number of mobile
devices. Most outdoor tests have involved only a few nodes, and
results obtained from these tests or from simulation do not neces-
sarily generalize to a large number of real nodes, potentially leading
to an incorrect view of routing-algorithm performance.

This paper partially addresses this gap by analyzing the results
of an outdoor trial run of four different routing algorithms, APRL,
AODV, ODMRP, and STARA, running on top of thirty-three 802.11-
enabled laptops moving randomly through an athletic field. The
laptops generated random, pairwise data traffic, and ran each rout-
ing algorithm for a fifteen-minute period over the course of the
one-hour trial run. This 33-laptop experiment is one of the largest

1http://www.natick.army.mil/soldier/WSIT/
2http://www.mit-kmi.com/archivearticle.cfm?DocID=14
3http://lists.personaltelco.net/pipermail/general/2003q2/012362.html

220

mailto:robert.s.gray AT dartmouth.edu
mailto:dfk AT cs.dartmouth.edu
mailto:Calvin.Newport AT @alum.dartmouth.org
mailto:Nikita.Dubrovsky AT @alum.dartmouth.org
mailto:Aaron.Fiske AT @alum.dartmouth.org
mailto:jasonliu AT mines.edu
mailto:Christopher.Masone AT dartmouth.edu
mailto:smcgrath AT ists.dartmouth.edu
mailto:yuanyg AT cs.dartmouth.edu


outdoor tests of ad hoc routing algorithms, possibly the largest out-
door test for which results are publicly available. In addition, we
compare the outdoor results with both indoor (“single shelf”) and
simulation results for the same algorithms. Finally, we describe
the software infrastructure that allowed us to implement the ad hoc
routing algorithms in a comparable way, and use thesamecodebase
for indoor, outdoor, and simulation trial runs.

The paper accomplishes three goals. First, three of the routing al-
gorithms each come from a different algorithmic class, and the out-
door experiment therefore provides insight into how these classes
of algorithms behave at larger real-world scales than have been con-
sidered so far. Second, the comparison with indoor and simulated
results confirms again that real-world performance is difficult to
predict without real-world experiments, but also confirms that it
is possible to model radio and other behaviors accurately enough
for simulated results to be meaningful. Finally, the implemented
software infrastructure provides an effective starting point for fur-
ther large-scale, outdoor routing experiments, either with one of
our four implemented algorithms or with another algorithm.

2. ROUTING ALGORITHMS
The experiments involved four routing algorithms, Any Path Rout-

ing without Loops (APRL) [10], Ad hoc On-demand Distance Vec-
tor (AODV) [21], On-Demand Multicast Routing Protocol (ODMRP)
[16], and System- and Traffic-dependent Adaptive Routing Algo-
rithm (STARA) [6, 5]. APRL and STARA were developed at Har-
vard and the University of Illinois as part of a Dartmouth-led Multi-
disciplinary University Research Initiative (MURI) on field com-
munications for military personnel, while AODV and ODMRP are
algorithms that are extensively used as comparison baselines for
other routing algorithms (and that have seen some use in mili-
tary applications). Although APRL and STARA are not standard
choices, we feel that our selection is representative of an important
subsection of the ad hoc routing space, simple (APRL) and com-
plex (STARA) pro-active routing protocols, and two related reac-
tive protocols (AODV and ODMRP).

APRL and STARA. APRL and STARA are both pro-active rout-
ing algorithms. APRL is quite simple in that it only tries to discover
a fixed number of routes, not necessarily shortest, from one node
to another, while STARA is quite complex in that it uses dynamic
latency measurements to select the best route among many.

With APRL [10], each node broadcasts routing beacons at a fixed
frequency, and each such beacon contains a complete copy of the
node’s current routing table. Neighboring nodes use the beacon
and its embedded routing information to update their own routing
table, and then propagate the updated information further as part
of their own beacons. Eventually every node in the network will
learn about a route to every other node, the exact amount of time
depending on the diameter of the network and the beaconing inter-
val. Nodes use whatever route they learn about first, without regard
to the route’s length or quality, but routes will time out if they are
not refreshed by a beacon within a specific time interval. In addi-
tion, APRL will record a configurable number of alternate routes to
each destination, and will switch to an alternate route as soon as a
primary route times out.

Since APRL only records and considers the next hop when estab-
lishing a route to a destination, the beaconing approach described
so far can lead to loops in the routing topology. To address this
problem, APRL does not use a route as soon as it learns about it
from a beacon, but instead sends a probe packet along the route.
The destination node, if the packet makes it that far, sends the probe
packet back to the sender along the reverse route. The sender will
start using the route only if the probe packet successfully reaches

the destination and returns. If a node has an alternate route, the
node will switch to the alternate route when the primary fails, but
will send a probe packet to confirm the alternate route.

With STARA [6, 5], each node maintains a list of neighbors that
are in immediate transmission range of a particular node, updat-
ing that list through the periodic broadcast of Neighborhood Probe
(NP) packets and Neighborhood Probe Acknowledgment Packets
(NP ACK). When sending a packet to a non-neighbor, STARA
probabilistically chooses a neighbor through which to route the
packet. Initially, the probability distribution is uniform, but STARA
will adjust the probabilities according to its observations of end-
to-end latency. Specifically, STARA attaches current timestamps
to both Data Packets (DPs) and Data Acknowledgment Packets
(DP ACKs). Once the DPACK has returned to the original node,
the route delay is calculated simply as the difference between the
two timestamps. STARA does not require the clocks on the nodes
to be synchronized, since thedifferencebetween delays to the same
destination is independent of clock skew. As STARA receives de-
lay information, it adjusts the probability distribution to be propor-
tional to the observed delays, and distributes traffic along available
routes that have approximately the same minimal delay (to reduce
packet re-sequencing requirements). If a DPACK is lost, STARA
keeps the existing probability distribution, and will try to update it
again on the next DP sent to the same destination.

One problem with STARA is that routes with large delays are
seldom (if ever) used, which means that their delay estimates are
updated infrequently or not at all. Thus, an improvement in the
delay of a formerly slow path may go unnoticed. To avoid this,
STARA periodically sends a Dummy Data Packet (DDP) along
those routes for which a large time has elapsed since the last up-
date of their delay estimates. The developer of STARA presents a
simple version of DDPs in [6], which sends every DDP as a sepa-
rate network packet, and a more complex version in [5], which con-
denses multiple dummy data packets into a single network packet.
We implemented the simpler version, and as we will see, the sim-
pler version overloads our real network. The more complex version
could be expected to have significantly better performance since it
reduces control traffic by an order of magnitude or more. Thus, our
STARA results shouldnot be taken as an overall view of STARA’s
performance, but instead should serve as another demonstration of
how a single detail in control-packet handling can undo the per-
formance gains expected from a more complex algorithm. To em-
phasize this point, we will refer to our STARA implementation as
STARA-SIMPLE or STARA-S in the rest of this paper.

AODV and ODMRP. AODV and ODMRP are closely related
re-active routing algorithms, differing mainly in ODMRP’s support
for multicast traffic and its inclusion of data packets inside route-
discovery packets.

With AODV [21], when a node needs a route to a destination for
which it does not have a route (or for which the route has expired),
the node broadcasts a Route Request (RREQ) message.4 All nodes
that receive the RREQ message, but do not have a route to the re-
quested destination, rebroadcast the RREQ, while at the same time
establishing a reverse route to the source node. When the RREQ
reaches an intermediate node that has a sufficiently recent route
to the destination (as determined by sequence numbers associated
with routing entries) or reaches the destination node itself, the in-
termediate or destination node sends a Route Response (RREP)
message back to the source node along the reverse route.5 Once

4As an optimization, AODV can use an expanding ring search
method for broadcasting RREQs, but we do not implement this ca-
pability in our version.
5An intermediate host also will send an RREP packet to the des-
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the original host receives the RREP message, it records and begins
using the new route. In addition to RREP and RREQ messages,
all nodes keep track of their neighbors through regularly broadcast
HELLO messages, and will broadcast a Route Error (RERR) mes-
sage if a next-hop node in one or more routes is no longer avail-
able. Nodes that receive an RERR message will invalidate their
own routes as needed, and broadcast their own RERR messages.

ODMRP is a multicast ad hoc routing protocol that, unlike many
other multicast protocols, does not require a separate underlying
unicast protocol. ODMRP establishes and maintains routes in much
the same manner as AODV. When a node has a data packet that it
needs to send, but has no route to the destination, ODMRP broad-
casts a JoinQuery packet. In contrast to AODV, however, ODMRP
embeds the data packet inside the JoinQuery, so that the data packet
reaches the destination as soon as the JoinQuery does. A node that
receives a new JoinQuery rebroadcasts it, and if the node wants
to receive packets on the multicast IP address of the JoinQuery, it
sends a JoinReply packet back to the source using the reverse route.
Intermediate hosts receiving the JoinReply set a forwarding flag for
the corresponding multicast group in a “forwarding group” table,
indicating that they are on the path between the source and one
or more of the destinations and thus should rebroadcast any future
data packets. A forwarding group has a preset expiration timeout,
and ODMRP refreshes the group at regular intervals by resending
JoinQuery packets. ODMRP only resends JoinQuerys so long as
there still are data packets that need to be sent, however.

In our experiments, all data traffic is sent to only a single desti-
nation, reducing ODMRP to the unicast case and leaving the inclu-
sion of the data packet in the JoinQuery as the primary difference
between ODMRP and AODV.

3. EXPERIMENTAL SETUP
We conducted outdoor, indoor, and simulation experiments for

the four routing algorithms described above. The outdoor and in-
door experiments used thesame hardware, all three experiments
used thesamerouting software, and the indoor and simulation ex-
periments used the position traces from the outdoor experiment to
duplicate the outdoor movement patterns. For the indoor experi-
ment, the movement patterns were duplicated by having a laptop
ignore any traffic from a laptop that was too far away at the corre-
sponding time in the outdoor experiment. This approach to simu-
lating movement does not address the fact that the wireless channel
behaves differently when all the laptops are on the same tabletop,
and we will see below that there are significant performance differ-
ences when the four algorithms are run indoors rather than outdoors
(and in simulation rather than with real hardware).

3.1 Hardware Platform
The routing experiments ran on top of a set of 41 Gateway Solo

9300 laptops, each with a 10GB disk, 128MB of main memory,
and a 500MHz Intel Pentium III CPU with 256KB of cache. We
used one laptop to control each experiment, leaving 40 laptops to
actually run the ad hoc routing algorithms. Each laptop ran Linux
kernel version 2.2.19 with PCMCIA card manager version 3.2.4
and had a Lucent (Orinoco) Wavelan Turbo Gold 802.11b wireless
card. Although these cards can transmit at different bit rates, can
auto-adjust this bit rate depending on the observed signal-to-noise
ratio, and can auto-adjust the channel to arrive at a consistent chan-
nel for all the nodes in the ad hoc network, we used an ad hoc mode
in which the transmission rate was fixed at 2 Mb/s, and in which the

tination of the RREQ to make sure that the destination still has a
route to the source.
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Figure 1: A schematic of the tunnel device and the path of an
outgoing data packet.

channel could be chosen manually but was fixed thereafter. Specif-
ically, we used Lucent (Orinoco) firmware version 4.32 and the
proprietary ad hoc “demo” mode originally developed by Lucent.
Although the demo mode has been deprecated in favor of the IEEE-
defined IBSS, we used the demo mode to ensure consistency with
a series of ad hoc routing experiments of which this outdoor ex-
periment was a culminating event.6 The fixed rate also made it
much easier to analyze the routing results, since we did not need
to account for automatic changes in each card’s transmission rate.
On the other hand, we would expect to see variation in the routing
results if we had used IBSS instead, both due to its multi-rate ca-
pabilities and its general improvements over the demo mode. The
routing results remain representative, however, since demo mode
provides sufficient functionality to serve as a reasonable data-link
layer. Finally, each laptop had a Garmin eTrex GPS unit attached
via the serial port. These GPS units did not have differential GPS
capabilities, but were accurate to within thirty feet during the ex-
periment.

3.2 Software Infrastructure
To allow as accurate a comparison as possible, we needed the im-

plementations of the four algorithms to be as similar as possible. If
one algorithm operated in kernel space and another operated in user
space, for example, it would not be possible to attribute any differ-
ence in packet latencies solely to the way in which an algorithm
finds and uses its routes. For this reason, although we used existing
source code as a guide in all four cases, we implemented each algo-
rithm from scratch so that we could minimize any implementation
differences. There are four key features that the implementations
have in common.

Key Feature 1. All four algorithms are implemented as user-
level applications through the use of a tunnel device. The tunnel
device, which we ported from FreeBSD, provides a network inter-
face on one end and a file interface, specifically a /dev entry, on
the other end. Each node is assigned two IP addresses, one asso-
ciated with the physical network device, and one associated with
the tunnel or virtual network device. Applications use the virtual
IP address, routing algorithms use the physical IP address, and the
standard Linux routing tables route all virtual IP addresses to the
virtual network interface. Any application-level packets, therefore,
are directed through the tunnel, and the routing algorithms read
those packets from the file end of the tunnel. Figure1 shows the
tunnel device and the path of anoutgoingdata packet.

The tunnel allowed us to avoid any implementation work at the
kernel or driver level, and also to switch from one routing algorithm
to another (during experiments) simply by stopping one user-level

6Our series of experiments began before IBSS was available in
standard 802.11b wireless cards, and time and personnel con-
straints prevented both demo-mode and IBSS-mode experiments.

222



process and starting another. The drawback of our approach is the
additional overhead associated with moving packets between ker-
nel and user space. Our laptops, however, had more than enough
capacity for our experiments, and thus we chose implementation
simplicity over maximum performance.

Key Feature 2.All four algorithms use UDP for traffic destined
for a specific neighbor and multicast IP for traffic that should reach
everyneighbor. Multicast IP, as opposed to broadcast IP, allows us
to run multiple routing algorithms at the same time without adding
filtering code to every algorithm, a useful feature in some of our
earlier experiments. Each algorithm simply subscribes to its own
multicast address.

Key Feature 3.All four algorithms use an event loop that in-
vokes algorithm-specific handlers in response to (1) incoming UDP
or multicast IP network traffic or (2) the expiration of route or other
timeouts. As with user-level routing, the event-loop approach leads
to additional overhead, but allows more straightforward implemen-
tations.

Key Feature 4.All four algorithms are implemented in C++ and
share a core set of classes. These classes include the event loop, as
well as unicast and multicast, routing, and logging support.

With these four key features, algorithm-specific code is confined
to the packet handler classes that process incoming control and data
packets, the timer handler classes that process timed actions (such
as route expiration), the logging classes that log algorithm events,
and utility classes that serialize and unserialize control packets.
Minimizing the algorithm-specific code simplified implementation
and debugging, and should make the routing results as independent
of a particular implementation choice as possible.

The routing algorithms themselves are not enough for an ex-
periment, of course. Atraffic generatorruns on each laptop, and
sends a sequence of packet streams to randomly selected destina-
tion laptops. Each stream contains a random number of packets of
a random size. Two Gaussian distributions determine the packet
numbers and sizes, two exponential distributions determine the de-
lay between streams and packets, and a uniform distribution deter-
mines the destination laptops. AGPS servicealso runs on each
laptop, reading and recording the current laptop position from the
attached GPS unit, and broadcasting beacons that contain the lap-
top’s position (as well as sequence-numbered positions that it has
received from other laptops). We thus are flooding the GPS bea-
cons through the network, an appropriate choice in our application
domain where soldiers and first responders need to see a contin-
uous view of each other’s positions. In addition, broadcasting the
beacons allows us to build a connectivity graph, independent of any
particular routing algorithm, as to which laptops actually canhear
which other laptops. Finally, we use a set of Tcl scripts to setup
and run the experiments.

3.3 Outdoor Experiment
The same software infrastructure is used for the outdoor, indoor

and simulation experiments, but we will describe most of the spe-
cific parameters (timeout values, beacon intervals, etc.) in this sec-
tion. We use the same parameter values for the indoor and simula-
tion experiments, since we seek to compare all three sets of results.

The outdoor routing experiment took place on a rectangular ath-
letic field measuring approximately 225 (north-south) by 365 (east-
west) meters. This field can be roughly divided into four flat, equal-
sized sections, three of which are at the same altitude, and one of
which (at the southeast corner) is approximately four to six me-
ters lower. There was a short, steep slope between the upper and
lower sections. We chose this particular athletic field because it
was physically distant from campus and the campus wireless net-

work, reducing potential interference. In addition, we configured
the 802.11 cards to use wireless channel 9 for maximum separation
from the standard channels of 1, 6 and 11, further reducing poten-
tial interference. We used 41 laptops, 40 as application laptops, and
one as a control laptop.

The GPS service on each laptop recorded the current position
(latitude, longitude and altitude) once per second, and synchronized
the laptop clock with the GPS clock to provide sub-second, albeit
not millisecond, time synchronization. Every three seconds, the
GPS service broadcast a beacon containing its own position and
any other positions about which it knew. Three seconds is shorter
than strictly necessary for displaying accurate positions to soldiers
or first responders, but was necessary to build a reasonably accu-
rate connectivity trace. Each beacon contained at most 41 position
records of 21 bytes each, and had a maximum payload of 861 bytes.

The traffic generator on each laptop generated packet streams
with a mean packet size of 1200 bytes (including UDP, IP and Eth-
ernet headers), a mean of approximately 5.5 packets per stream,
a mean delay between streams of 15 seconds, and a mean delay
between packets of approximately 3 seconds. These parameters
produced approximately 423 bytes of data traffic (including UDP,
IP and Ethernet headers) per laptop per second, a relatively mod-
est traffic volume, but corresponding to the traffic volume observed
during trial runs of one of our prototype military applications [4].

Each of the routing algorithms, APRL, AODV, ODMRP and
STARA, ran for fifteen minutes with a two-minute period between
successive routing algorithms to handle setup and cleanup chores.
Fifteen minutes per algorithm leads to an overall experiment time
of approximately an hour and a half (given the time needed for
initial boot and experiment startup), corresponding to the maxi-
mum reliable lifetime of our laptop batteries. The traffic generator
ran for thirteen minutes of each fifteen-minute period, starting one
minute after the routing algorithm to allow the pro-active routing
algorithms to reach a stable state.

The best parameters for the four routing algorithms could not be
determined precisely beforehand, since there are no experiments of
this size for which data is available. Instead, we used values that
gave effective results in published simulation studies or that were
set as default values in the sample source code obtained from the
developers. We did adjust some values to achieve some degree of
consistency between the algorithms, however.

Summarizing the major parameters, APRL recorded up to seven
routes per destination, one primary and six alternates, broadcast
its beacons every 6 seconds, and expired any route that had not
been refreshed by a beacon within the last 12 seconds. STARA
broadcast a neighborhood probe every 2 seconds, sent a DDP if a
path had gone unexplored for 6 seconds, removed a neighbor from
a node’s neighborhood set if two successive neighborhood probes
passed without an acknowledgment, and weighed delay estimates
by 0.9 on each update to exponentially forget old delay informa-
tion as new information became available. AODV broadcast each
RREQ twice, expired a route if it had not been used in 12 sec-
onds, sent a HELLO every 6 seconds, and removed a neighbor
from a node’s neighborhood set if it did not receive two succes-
sive HELLOs. ODMRP refreshed an in-use route every 6 seconds,
and expired a route (forwarding group) if it had not been used for
12 seconds.

As can be seen, these parameters reduce to 6 seconds between
beacons, HELLO messages or route refreshes for APRL, AODV
and ODMRP, and 12 seconds for a route to time out for APRL,
AODV and ODMRP, either by direct timeout or by failure to re-
ceive two successive HELLOs. Using equivalent values for STARA,
however, led to unacceptably slow convergence of the delay es-
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timates, particularly given the fifteen-minute window available to
us for each algorithm. Reducing the parameters improved conver-
gence, but at the expense of even more control overhead, an effect
that we consider below.

The laptops moved continuously during the experiment. At the
start of the experiment, the participants were divided into equal-
sized groups of ten, each participant given a laptop, and each group
instructed to randomly disburse in one of the four sections of the
field (three upper and one lower). The participants then walked
continuously, always picking a section different than the one in
which they were currently located, picking a random position within
that section, walking to that position in a straight line, and then re-
peating. This approach was chosen since it was simple, but still pro-
vided continuous movement to which the routing algorithms could
react, as well as a similar spatial distribution across each algorithm.

Finally, during the experiment, seven laptops generated no net-
work traffic due to hardware and configuration issues, and an eighth
laptop generated the position beacons only for the first half of the
experiment. The seven complete failures left thirty-three laptops
actually participating in the ad hoc routing.

3.4 Indoor and Simulation Experiments
The indoor and simulation experiments used the recorded GPS

information from the outdoor experiment to simulate the outdoor
network connectivity. Specifically, if a node didnot receive two
successive GPS beacons from another node, the two nodes were as-
sumed to be out of range of each other (disconnected). Otherwise
the two nodes were assumed to be in range of each other (con-
nected). In addition, we used the same routing-algorithm parame-
ters as in the outdoor experiment and the same codebase (through
the use of a direct-execution technique [18] in the simulation case),
and were careful to take into account the seven failed laptops. For
example, the seven failed laptops were left in or configured to the
same failed state that had occurred outdoors, and the traffic genera-
tors were allowed to generate traffic destined for one of those failed
laptops. Finally, we averaged the results from multiple runs, each
with a different traffic generation pattern to get the final indoor and
simulation results. The overall goal of this approach is to leave the
behavior of the wireless channel as the primary difference between
the outdoor, indoor, and simulation experiments.

4. ANALYSIS
We evaluate the relative performance of the four algorithms with

four metrics: message delivery ratio, communication efficiency,
hop count, andend-to-end latency.Before examining these met-
rics, we define three important terms. First, amessageis a group of
dummy bytes produced by a node’s traffic generator for intended
transportation to a randomly-selected destination. All of our gener-
ated messages were small enough to fit into a single data packet.7

Second, adata packetis any transmitted packet containing message
data. A message requires a least one data packet to reach its desti-
nation, but can generate significantly more data packets depending
on the length of the route or the delivery strategy of the algorithm,
or might generateno data packets if the sending node itself has no
route. Finally, acontrol packetis any transmitted packet that does
not contain message data.

4.1 Outdoor Results
Message Delivery Ratio. The message delivery ratio, shown

in Table 1, is the total number of messages received at their in-
tended destination divided by the total number of generated mes-

7The mean message size was 1200 bytes, including all headers.

Message
Delivery Data Packets Control Packets

Ratio Per Message Per Message
AODV 0.50 1.32 6.18
APRL 0.20 0.90 32.40

ODMRP 0.77 22.79 22.80
STARA-S 0.08 0.20 150.47

Average
Hop Count Message

Total Packets (successful Latency
Per Message messages) (seconds)

AODV 7.50 1.61 0.37
APRL 33.30 2.11 0.49

ODMRP 45.59 2.47 1.62
STARA-S 150.67 1.18 2.98

Table 1: The key outdoor statistics for each algorithm

sages (over the lifetime of the algorithm’s run). A striking result
is the dominance of ODMRP, best explained by ODMRP’s aggres-
sive approach to route discovery. Instead of discovering a route and
thensending the desired message, ODMRP embeds the message
inside the route-discovery control packets. This greatly increases
the chance that a message will reach its intended destination, since
we need only to get one packet from source to destination. If
route discovery is a separate process, we must get three packets
from source to destination (or back), the route-discovery control
packet, the route-response control packet, and the application-level
data packet. AODV performs better than APRL for a similar rea-
son. APRL pro-actively finds routes before they are needed, but the
timeout values allow a relatively large time window during which a
route physically might no longer be viable but still appear in most
of the routing tables. Messages generated during this time will be
lost, and will count against the message delivery ratio. If our net-
work topology had been more static, or if the physical environment
had otherwise provided less opportunity for route breakage, we
would see much less of a gap between the AODV and APRL deliv-
ery ratios. Different timeout values or minimal message-buffering
capabilities also might help APRL.

The message delivery ratio of STARA-S is the worst of the four
algorithms, simply because STARA-S overwhelms the wireless net-
work and the individual nodes with the dummy data packets used
to re-explore previously high-latency routes. Gupta proposes con-
densing multiple control packets arriving at a node into a single
control packet before rebroadcast [5], but neither he nor we imple-
mented this solution. STARA-S confirms that inefficient handling
of a single control-packet type can undo any potential benefits of a
more complex algorithm.

Communication Efficiency. Table 1 also shows the average
number of data packets, control packets, and total packets trans-
mitted for each generated message. The first two are calculated by
dividing the total number of data or control packets by the total
number of generated messages, and the third is simply the sum of
the other two.

ODMRP dominates on data-packet overhead since it embeds many
data packets inside flooded control packets. If the size of the trans-
mitted messages were large, the effect of this data packet load on
available bandwidth would be dramatic. In our experiment, how-
ever, the generated traffic was relatively modest, and ODMRP did
not create excessive congestion. In addition, if the traffic were
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concentrated on fewer destinations, or if the network were more
static, we would observe fewer data packets since ODMRP would
not need to flood the network as often. AODV transmitted 1.32
data packets per message while APRL transmitted only 0.90. This
difference, although small in magnitude, is quite significant since
APRL used longer routes on average than AODV, suggesting that
the data-packet count should be higher. APRL often had no route
at all from a source to a destination, however, leading to many mes-
sages that producedno data packets. Finally, STARA-S transmit-
ted the fewest data packets, simply because the overload conditions
prevented most data packets from making it onto the network (and
prevented STARA-S from accurately discovering routes). Note that
we count dummy data packets as control packets, rather than data
packets.

Indeed, STARA-S produced the most control traffic, generating,
on average, 150 control packets for each message due to its ex-
cessive transmission of dummy data packets. APRL generated 32
control packets for each message, while AODV, the best for this
metric, generated only 6 control packets for each message. In our
scenario of modest traffic and dynamic connectivity, AODV’s reac-
tive discovery clearly required less control overhead than APRL’s
pro-active discovery.

Finally, if we consider the total number of dataandcontrol pack-
ets versus the total number of messages, we see that ODMRP sur-
prisingly does not fare much worse than APRL. One might assume
that ODMRP’s aggressive network flooding would lead to a more
significant increase in traffic costs as compared to APRL’s periodic
route advertisements, but ODMRP’s 45.59 packets per message is
not overwhelmingly larger than APRL’s 33.30. It should, however,
be noted that if the traffic volume increased, APRL could gain a
noticeable lead over ODMRP, particularly in terms of transmitted
bytes. The majority of APRL’s traffic is in the form of streamlined
control packets8 sent at fixed intervals, whereas ODMRP includes
copies of its data packets with much of its route-discovery traffic.
Considering that AODV and ODMRP are both reactive algorithms
that flood the network to discover routes, it also was surprising at
first glance to note how many fewer packets per message are re-
quired by AODV. AODV, however, is a unicast protocol, and can
halt the route-discovery process at any intermediate node that con-
tains a valid route to the destination. ODMRP must always fully
flood the route-discovery packets so that new nodes have the op-
portunity to join the multicast group.

Generally, APRL’s volume of control traffic depends on its bea-
coning interval (time-based), and AODV’s and ODMRP’s volume
depends on the rate at which sources send data traffic to new des-
tinations (traffic-based). If the traffic pattern changes significantly,
APRL therefore may gain a significant advantage over reactive al-
gorithms in general.

Hop Count. The next column of Table1 shows the average
number of hops that successful messages traveled to reach their
destination. For ODMRP, we use the hop count for the first copy of
each message to reach the intended destination.

STARA-S has the lowest average hop count for successfully re-
ceived packets, but this result is due to the excessive control traf-
fic that made successful packet transmission difficult. Only data
packets whose final destination was an immediate neighbor of the
original sender had a good chance of successful receipt. AODV
required the next fewest hops for successful packets, since AODV
tries to select for the shortest path, whereas APRL and ODMRP do
not consider path length. In fact, ODMRP has the largest average
hop-count value, since many of its messages follow a semi-random

8APRL includes only a simple binary indication of whether a route
exists in its routing beacons.

path to the destination during the undirected route discovery phase.
On the other hand, if traffic was concentrated on a few destina-
tions, ODMRP’s hop count would drop significantly, since most
data traffic could be sent over an already discovered route (rather
than included in a flooded route-discovery packet).

One interesting result, not shown in the table, is that STARA-S
dropped or lost nearly 88% of the generated messages before those
messages left the source node (zero-hop), and APRL dropped or
lost nearly 63%. For STARA-S, which averaged nearly 150 pack-
ets per message, interference caused the large number of zero-hop
failures, with most such failures involving the transmission of a
packet that was never received. For APRL, most zero-hop failures
occurred when APRL explicitly dropped the packet due to a lack of
a valid route to the destination node, indicating that APRL’s peri-
odic route advertising scheme was unable to consistently maintain
adequate routing information in our experiment. While there were
many cases in our experiment where a route physically did not ex-
ist between two nodes, AODV had a zero-hop failure rate of only
25%, indicating a more serious problem with APRL’s performance.

End-to-End Latency. The main obstacle to calculating end-to-
end message latencies is a lack of synchronization between the in-
dividual node clocks, creating a situation in which a comparison
of receiver and sender timestamps is not sufficient for generating
accurate latency values. Although NTP was a possibility, we made
the decision to avoid the extra bandwidth usage during the exper-
iments. Instead, we relied on the GPS units to provide accurate
timestamps through our periodic synchronization of the node clock
with the GPS clock. We found, however, that our node clocks still
drifted from each other on the order of tens to a few hundreds of
milliseconds, partially due to delays in reading the time from the
GPS unit and invoking the kernel system-time calls.

Though relatively small, this clock drift is the same order of mag-
nitude as the packet latencies. To overcome this, we paired the log
entries corresponding to transmission and reception of the same
beacons, and then used the paired timestamps to calculate the av-
erage clock skew between laptop pairs over non-overlapping time
windows. The skew value for the appropriate window then was
used to “correct” the apparent latency of a transmitted data packet.
We recognize that this approach is only approximate for several
reasons: (1) it is unrealistic to assume that a node will timestamp
and log an incoming beacon the moment that it is received at the
physical network interface; (2) the sender and receiver of a data
packet might be too far apart to have exchanged beacons during the
most recent time window; and (3) the average skew over a given
window is not necessarily as accurate as always searching out the
closest single time synchronization event. Accordingly, we do not
present our end-to-end latency values as precise measurements. We
do, however, maintain that our corrected values are more accurate
indications of transit time than relying on uncorrected timestamps.

The last column of Table1 shows the average corrected end-
to-end latency value for successful messages. We find the expected
relationship between end-to-end latency and hop count. For AODV,
APRL, and ODMRP, the average end-to-end latency value increases
as the hop count increases (although not strictly proportionally).
For STARA-S, the hop count is low, but the end-to-end latency is
high. This abnormality arises due to the large volume of control
traffic, which significantly increases the time needed to receive and
forward any data packet.

Conclusions. Any conclusions that we draw from this outdoor
experiment must be qualified by the conditions of our particular
testing environment. A markedly different scenario would produce
markedly different results. For example, our nodes were mobile,
our terrain was obstruction-free but non-uniform, and our partici-
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pants carried the laptops tucked under their arms (thus potentially
placing their bodies between the 802.11 card and the intended des-
tination laptop). The dynamic environment penalizes an algorithm
like APRL that does not seek routes on demand, while the modest
traffic load helps an aggressive flooding algorithm like ODMRP.
The way in which the laptops were carried changes the connectiv-
ity characteristics, and, in particular, may prevent successful trans-
mission along routes that would have been fine with head-mounted
antennas. Other important factors include the random pair-wise
communication between nodes and our human-driven approxima-
tion of the random-waypoint mobility model. With such qualifica-
tions in mind, we can present three conclusions, which track with
other results in the literature.

AODV is efficient, but far from effective in all scenarios.Though
its message delivery ratio was not as high as ODMRP, AODV deliv-
ered messages significantly better than APRL and STARA-S. More
importantly, on all measures of communication efficiency, AODV
generated by far the least amount of traffic per message. In addi-
tion, AODV was successful in consistently finding short paths, giv-
ing it the additional advantage of having the lowest average end-to-
end latency. In an environment with limited bandwidth or energy
resources, AODV is a good choice. In an environment with ex-
tremely high mobility, however, AODV may not be able to keep up
with topology changes.

ODMRP is highly effective for some scenarios, but very bad for
others.ODMRP generates significant network overhead. Its flood-
ing is bandwidth-intensive, and if data packets are large, ODMRP
could suffer significant performance penalties. At the same time,
however, it had the highest message delivery ratio of all four algo-
rithms, and will handle high mobility better than AODV through
its packet flooding. If bandwidth and energy resources are plenti-
ful, data packets are small, and communication reliability is crucial,
ODMRP is a good choice.

Reactive is better than proactive in dynamic environments.The
poor performance of APRL and STARA-S, as compared to the rel-
ative success of AODV and ODMRP, highlights the general advan-
tage of a reactive routing approach. Our analysis of APRL shows
an unnecessarily large number of messages dropped before leav-
ing their source node, and STARA-S crippled itself with excessive
proactive discovery. Although control traffic in STARA-S can be
reduced significantly through additional engineering, it still would
face the same lack of quality routing information as APRL. Sim-
ilarly, if we increased APRL’s beaconing interval to increase the
timeliness of its routing information, it would suffer from an ex-
cess amount of control traffic like STARA-S. This observation un-
derscores the perhaps unresolvable tension between control traffic
and message delivery success for proactive algorithms operating
in dynamic environments: if you make your algorithm efficient,
its reliability drops; if you make your algorithm reliable, its effi-
ciency drops. Reactive approaches clearly are preferable for many
dynamic scenarios.

Overall, this outdoor experiment should serve as a useful data
point for future work, demonstrating the relative performance of
four common (types of) routing algorithms in a (relatively) large-
scale, real-world experiment.

4.2 Comparison with Indoor Results
During the indoor experiment, we placed the laptops on two

shelving units, which were ten feet part from each other with twenty
and twenty-one laptops per shelf respectively. We used the same
hardware and codebase except that (1) we configured the GPS ser-
vice to read the position information from the outdoor mobility
trace, rather than from the GPS unit; and (2) we derived a connec-
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Figure 2: The message delivery ratios for the indoor and in-
door experiments. ODMRP delivers far more message out-
doors, while AODV delivers far more messages indoors.

tivity trace from the outdoor beacon logs, and configured each rout-
ing algorithm to ignore traffic from laptops that were actually un-
reachable during the outdoor experiment. We used three different
(randomly generated) traffic patterns, and averaged the indoor rout-
ing results for three separate runs to ensure that we were comparing
the outdoor results with a meaningful view of indoor results.9 The
primary difference between the outdoor and indoor experiment then
is that every indoor laptop can hear every packet due to the physical
proximity of the nodes, a situation in which the 802.11b protocol
theoretically can significantly reduce collisions through its standard
CSMA/CA10 protocol. We would expect, therefore, that the rout-
ing algorithms would behave differently indoors even though we
use the outdoor connectivity information.

What was surprising in our case, however, was the magnitude of
the change in the message delivery ratios when we moved indoors.
Figure 2 shows the indoor and outdoor message delivery ratios,
respectively, for APRL, AODV and ODMRP; we omit STARA-
S since the control-packet overload led to the same minimal per-
formance as in the outdoor experiment. Although the hop counts
(not shown) were roughly the same in the outdoor and indoor ex-
periments, the message delivery ratios for AODV and ODMRP
changed dramatically, with AODV much better than ODMRP. Even
if the outdoor traffic pattern somehow represents an outlier in the
traffic space, the switch in relative performance remains significant.
The largest standard deviation for any indoor message-delivery value
was 7.732% for an ODMRP run, and the outdoor results are more
than three standard deviations away from the indoor average for all
three algorithms.

The reason for this performance switch is clear in hindsight.
ODMRP includes the data packet in the flooded route-discovery
packets, leading to route discovery packets an order of magnitude
larger than those of AODV (for our payload sizes). In addition, ev-
ery node must rebroadcast the route-discovery packet, since ODMRP
is a multicast protocol that allows nodes to dynamically join mul-
ticast groups. During the indoor test, every laptop is in range of
every other laptop, and the CSMA/CA protocol cannot overcome
the higher collision rate caused by ODMRP’s flood of large route
discovery packets. Outdoors, each packet in the flood can be heard

9Future software enhancements will allow us to replay the outdoor
traffic pattern exactly.

10Carrier Sense Multiple Access with Collision Avoidance
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by only a fraction of the laptops, significantly reducing the colli-
sion potential. At the same time, AODV generates a much smaller
number of much smaller packets, leading to relatively few colli-
sions even indoors. Moreover, these packets will not suffer the
environmental effects that can occur outdoors. In other words, in
the absenceof collisions, each packet has a much greater chance
of successful reception indoors than outdoors. These two factors,
increased collisions for ODMRP and greater chance of successful
reception for AODV, lead to the performance switch.

These indoor results confirm again that indoor experiments with
real hardware will not necessarily lead to a correct view of algo-
rithm performance, no matter the scale of the ad hoc network. In
this case, indoor experiments would have led us to select the wrong
algorithm for outdoor use, leading to a 33% drop in outdoor perfor-
mance.

4.3 Comparison with Simulation Results
Given the failure of indoor experiments to accurately represent

outdoor results, we need to consider simulation. As described in
an earlier paper [18], we configured a wireless network simula-
tor to mimic our outdoor experimental conditions. We then con-
ducted a simulation experiment with three different commonly used
physical-layer models under a variety of traffic loads, considering
in each case whether the simulation provided results comparable to
those observed outdoors.

Simulator. SWAN is a simulator for wireless ad hoc networks
that provides an integrated, configurable, and flexible environment
for evaluating ad hoc routing protocols, especially for large-scale
network scenarios. SWAN contains a detailed model of the IEEE
802.11 wireless LAN protocol and a stochastic radio channel model,
both of which we used in this study. In addition, we used SWAN’s
direct-execution simulation techniques to execute thesamerout-
ing code that was used in the indoor and outdoor experiments [?].
We modified the real routing code only slightly to allow multiple
instances of a routing protocol, the traffic generator, and the GPS
service to run simultaneously in SWAN’s single address space. We
also extended the simulator to read the position traces generated
by the outdoor experiment. We included the seven failed nodes,
and ran the GPS service program so that we would generate just as
much network traffic as in the outdoor and indoor experiments.

Experiments. We examined three radio propagation models: a
free-space model, a two-ray ground reflection model, and a generic
propagation model. The simulator delivered each transmitted packet
to all neighbor stations that could receive the packet with an average
signal power beyond a minimum threshold, and we used the prop-
agation models to calculate the signal power and signal-to-noise
ratio at the receiver. We combined the three models with the con-
nectivity trace derived from the beacon logs, leading to six different
radio propagation models in simulation: three that used the connec-
tivity traces and three that did not. In the first three cases, the model
used the connectivity trace to determine whether a packet from one
node could reach another node, and then used the radio propaga-
tion models to determine the receiving power for the interference
calculation. Using a connectivity trace is not ideal, since we would
instead prefer a model thatpredictsconnectivity, but here we are
interested in comparison between the two options.

Simulation Results. Figure3 shows the message delivery ratio
from the outdoor experiment and the simulation runs with the six
radio propagation models. Each simulation result is an average of
five runs, and the standard deviation is insignificant. We used typi-
cal parameters, 2.8 as the path-loss exponent and 6 dB as the stan-
dard deviation for shadow fading [23]. Several observations can be
made about these results, with more details appearing in [18].
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Figure 3: Comparison of the message delivery ratio from the
outdoor experiment with the message delivery ratio under dif-
ferent simulation strategies (“with connectivity” means we used
the connectivity trace. The two faint labels are “generic model
with connectivity” and “generic model no connectivity”.)

First, the simple generic propagation model (with standard path-
loss and fading parameters) offered an acceptable prediction of the
outdoor performance of the routing algorithms. Second, different
propagation models predicted vastly different protocol behaviors.
The difference is significant enough in some cases to lead to in-
correct conclusions, such as when comparing the performance of
AODV and ODMRP. Moreover, the inaccuracy introduced by the
propagation model is non-uniform and can undermine a perfor-
mance comparison study of different protocols. The free-space and
two-ray ground models were particularly susceptible to underesti-
mation or overestimation of the delivery ratio as exaggerated trans-
mission ranges led to shorter paths but more contention than had ac-
tually occurred outdoors. The STARA-S results also are influenced
by potential inaccuracies in the derived connectivity trace, as many
GPS beacons were not received due to the extreme network con-
tention. Finally, and not surprisingly, the propagation models that
used the connectivity trace generally lowered the message deliv-
ery ratio, when compared with the propagation models that did not
use the connectivity trace. The connectivity trace, to some degree,
represents the peculiar radio propagation scenario of the outdoor
environment. In our experiment, there were significant elevation
changes in the test field that led to the obstruction of radio signals
between laptops that were close by in distance. Without connectiv-
ity traces, the propagation model assumes an omni-directional path
loss dependent only on the distance, which resulted in a more con-
nected network (fewer hops) and therefore a better delivery ratio.

With these simulation results and those in [15], a companion pa-
per that examines common assumptions made in wireless simula-
tions, it is clear that more detailed estimation of path-loss charac-
teristics or more complex channel models might be needed. On the
other hand, if the objective is to compare protocols, knowledge that
the generic propagation model is good lets us compare protocols
using a range of path-loss values. While this does notquantifybe-
havior, it may allow us to makequalitativeconclusions about the
protocols over a range of environments.

5. RELATED WORK
There have been a limited number of evaluations of ad hoc rout-

ing algorithms on top of real hardware. For example, De Couto et

227



al. evaluate the performance of a modified version of DSDV in a
static, 29-node indoor testbed, discovering that a path-throughput
metric for route selection can improve total network throughput for
many traffic scenarios [2]; He et al. use a static, 70-node indoor
sensor network to evaluate a distributed spanning-tree approach to
route formation [7]; and Fang et al. do a preliminary evaluation of
their DAM data-routing and aggregation protocol on top of a static,
25-node indoor testbed [3]. Most relevantly, Lundgren et al. used
their Ad Hoc Protocol Evaluation testbed (APE) to evaluate the per-
formance of AODV and OLSR with up to 37 nodes moving along
indoor hallways [19]. Other researchers have done real-world tests
of other services in ad hoc networks, including navigation, localiza-
tion and tracking services [17, 24, 29], lightweight security mecha-
nisms [22], and MAC protocols [30]. Our work complements these
and similar efforts in that we compare four ad hoc routing algo-
rithms under outdoor conditions with a significant number of mov-
ing nodes. To our knowledge, our work represents the largestout-
door andmobilerouting experiment for which results are publicly
available.

Several researchers have developed general software infrastruc-
tures that can be used to implement (and evaluate) ad hoc routing
or other protocols. For example, Kawadia et al. have developed
an Ad hoc Support Library (ASL) that provides the low-level rout-
ing services needed in many ad-hoc routing protocols [11]; Zhang
and Li have developed an emulation-based testbed for evaluating
ad-hoc routing implementations indoors [31]; Lundgren et al. have
developed the APE testbed mentioned above [19, 27]; Kohler et al.
have developed the Click modular router for rapidly composingel-
ementsto create arbitrary routing functionality [13]; and Neufeld
et al. have developed thensclickextension that allows the direct
execution of Click modules inside ns simulations [20]. The soft-
ware infrastructure that we developed for our experiments can be
viewed as a user-space version of the ASL, and has similar goals
as the Click modular router and the nsclick extension (although is
more specific to ad hoc routing). In addition, our experimental in-
frastructure operates in much the same way as the Zhang and Li
testbed and the APE testbed, including the use of a tunnel device
or modified driver to allow user-level routing.

Many researchers are working on improved simulation techniques
that have the potential to provide a closer (or simpler) match be-
tween outdoor, indoor and simulated performance. For example,
there has been work on interference modeling [9], mobility model-
ing [8, 25], and channel modeling [32, 12, 14]. In addition, Takai
et al. explored the effects of different physical-channel models on
simulation results, observing similar changes in relative algorithm
ranking as when we re-ran our experiment indoors [26]. All of this
work will help to make future simulations accurate enough to pre-
dict outdoor behavior under much wider ranges of conditions.

Finally, most researchers use simulation to evaluate new ad hoc
routing algorithms or other protocols. We hope that our work can
help to provide guidance on whether these simulation results accu-
rately predict outdoor performance, and that our data corpus can be
used to fine-tune the simulations for further evaluation. One simu-
lation study of note is Broch’s comparison of DSDV, TORA, DSR
and AODV [1]. Our own study parallels this study in many ways,
but we compare our algorithms via outdoor trial runs rather than
simulation.

6. CONCLUSION
Generally, reactive algorithms performed better for our (rela-

tively) large number of nodes and our modest traffic load, with
ODMRP outperforming AODV due its inclusion of the original
message in the flooded route-discovery packets. Interestingly, how-

ever, the performance of ODMRP dropped precipitously (and the
performance of AODV improved by a similar amount) when the
nodes were indoors and could all hear each other, in both cases
due to the different levels of contention and packet loss. Indoor
experiments on real hardware clearly cannot predict the outdoor
performance of common routing algorithms. On the other hand,
the indoor performance does suggest that contention may play a
larger role outdoors than might be expected, with results changing
dramatically depending on the “clustering” of the network. Finally,
the simulation results indicate that simulation, with an appropriate
choice of models, can accurately predict outdoor performance. A
non-experimental methodology for selecting the simulation param-
eters, however, remains unclear.

The most immediate area of future work must be the develop-
ment of a community-wide corpus of outdoor ad hoc routing re-
sults, conducted under some standardized set of conditions to allow
meaningful comparison of results taken at different times and by
different organizations. Unfortunately, such an effort is beyond the
capabilities of any single organization (with the possible exception
of the government). Whether the corpus is small or big, another
critical area of future work is to improve and develop procedures
by which a simulation can be calibrated to match observed outdoor
behavior. A large part of any such effort must be to reach a point
where we can argue model completeness, so that we assure our-
selves of simulation accuracy without running even more outdoor
experiments as confirmation.
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