
Repeatable and Realistic Wireless Experimentation through Physical Emulation

Glenn Judd and Peter Steenkiste
Carnegie Mellon University

Pittsburgh, PA, USA
glennj@cs.cmu.edu prs@cs.cmu.edu

Abstract

In wireless networking research, there has long existed
a fundamental tension between experimental realism on one
hand, and control and repeatability on the other hand.
Hardware-based experimentation provides realism, but is
tightly coupled to the physical environment and circumstances
under which experiments are carried out. To overcome this,
researchers have understandably embraced simulation as a
means of evaluation. Unfortunately, wireless simulation is
plagued with inherent inaccuracies. To overcome the stark
tradeoff between the realism of hardware-based experimen-
tation and the repeatability of simulation-based experimenta-
tion, we are developing a wireless emulator that enables both
realistic and repeatable experimentation. Unlike previous em-
ulators, our approach simultaneously achieves both a high de-
gree of realism and fine-grained repeatability by leveraging
physical layer emulation.

1 Introduction
As wireless network deployment and use become ubiqui-

tous, it is increasingly important to make efficient use of the
finite bandwidth provided. Unfortunately, research aimed at
evaluating and improving wireless network protocols is hin-
dered by the inability to perform repeatable and realistic ex-
periments.

Techniques that have proven successful for analyzing
wired networks are inadequate for analyzing wireless net-
works since they are fundamentally different. While the phys-
ical layer can frequently be ignored in wired networks, in
wireless networks the physical layer fundamentally affects op-
eration at all layers of the protocol stack in complex ways.
Links are no longer constant, reliable, and physically isolated
from each other, but are variable, error-prone, and share a sin-
gle medium with each other and with external uncontrolled
sources. As a result, traditional methods of experimentation
have difficulty satisfying the needs of wireless researchers.

An ideal method of wireless experimentation would pos-
sess the following properties: repeatability and experimental
control, layer 1-4 realism, the ability to run real applications,
configurability, the ability to modify wireless device behav-
ior, automation and remote management, support for a large
number of nodes, isolation from production networks, and in-
tegration with wired networks and testbeds. We now discuss
how alternative methods of experimentation fare with respect
to this list of desirable properties.

The most direct method of addressing realism is to con-

duct experiments using real hardware and software in various
real world environments. Unfortunately, this approach faces
serious repeatability issues since the behavior of the physi-
cal layer is tightly coupled to the physical environment and
precise conditions under which an experiment is conducted.
The mobility of uncontrolled radio sources, physical objects,
and people makes these conditions nearly impossible to re-
produce. It is also difficult to avoid affecting colocated pro-
duction networks. Moreover, configurability and management
of even a small number of mobile nodes distributed in three
dimensions is cumbersome; this lack of manageability also
makes integration with external networks problematic.

For these reasons, many researchers have understandably
embraced simulation as a means of evaluation. This approach
solves the problem of repeatability, configurability, manage-
ability, modifiability, and (potentially) integration with exter-
nal networks, but faces formidable obstacles in terms of real-
ism. Wireless simulators are confronted with the difficult task
of recreating the operation of a system at all layers of the net-
work protocol stack as well as the interaction of the system
in the physical environment. To make the problem tractable,
simplifications are typically made throughout the implemen-
tation of the simulator. Even fundamental tasks such as decid-
ing what a received frame looks like [1] diverge greatly from
the operation of real hardware. In addition, while wireless
technology is undergoing rapid advances, wireless simulators,
in particular open source wireless simulators, have lagged sig-
nificantly behind these advances as discussed in Section 5.

The aforementioned issues with simulators, and a desire
to avoid long simulation times, have caused some researchers
to adopt emulation as a means of evaluation. Emulation re-
tains simulation’s advantages of repeatability and manageabil-
ity, while potentially mitigating the issue of realism. Unfor-
tunately, as discussed in Section 5, with the exception of a
few very small-scale emulators, and emulators hardwired to
a particular physical location, these emulators have typically
adopted extremely simplified MAC and physical layers. As
the operation of these layers is fundamental to the operation
of a wireless network, it is unclear that these emulators gain
any realism over existing simulators.

We are developing a wireless emulator that enables both re-
alistic and repeatable wireless experimentation by accurately
emulating wireless signal propagation in a physical space.
Unlike previous approaches, this emulator provides a real
MAC layer and a realistic physical layer while avoiding adopt-
ing an uncontrollable or locale-specific architecture. The key
technique we use to accomplish this is digital emulation of

signal propagation using an FPGA.
This emulator provides an attractive middle ground be-

tween pure simulation and wireless testbeds. To a large de-
gree, this emulator should be able to maintain the repeatabil-
ity, configurability, isolation from production networks, and
manageability of simulation while obtaining much of the re-
alism of hardware testbeds, and in many cases, this emulator
should provide a superior platform for wireless experimenta-
tion. This emulator is not, however, a complete replacement
for simulation and real world evaluation. Simulation is still
useful in cases where a very large-scale experiment is needed
or in certain cases where functionality not available in hard-
ware is required (for example, changing the MAC hardware
currently can only be simulated, while introducing directional
antennas can be emulated). Real world evaluation is still use-
ful for verifying the operation of the emulator in real settings
or for settings with physical environments that are not cur-
rently reproduced in the emulator.

Our discussion proceeds as follows: Section 2 describes
the architecture of the emulator we are developing; Section 3
discusses our current emulator prototype; Section 4 presents
several experiments that illustrate several aspects of our pro-
totype’s functionality; Section 5 discusses related work; and
Section 6 concludes our discussion.

Signal
Conversion FPGA Based

DSP Engine

Emulation Controller

Signal
Conversion

Signal
Conversion

Signal
Conversion

LO

Clock

Figure 1. Emulator Architecture

2 Emulator Architecture

The architecture of the proposed emulator is shown in Fig-
ure 1. A number of “RF nodes” (e.g. laptops, access points, or
anywireless device in the supported frequency range) are con-
nected to the emulator through a cable attached to the antenna
port of their wireless line cards (each RF node corresponds
to a single antenna, so a single device can be represented by
multiple RF nodes). For each RF node, the RF signal trans-
mitted by its line card is mixed with the local oscillator (LO)
signal down to baseband and is then digitized. The digitized
signals are fed into a DSP engine that is built around one or
more FPGAs. The DSP engine models the effects of signal
propagation (e.g. large-scale attenuation and small-scale fad-
ing) on each signal path between each RF node. Finally, for
each RF node, the DSP combines the appropriately processed
input signals from all the other RF nodes. This signal is then
sent out to the wireless line card through the antenna port.
Given the current state of technology, a DSP engine based on
a single FPGA might support as many as 50 RF nodes. Using
multiple FPGAs, even larger systems can be built.

The operation of the emulator is managed by the Emulation
Controller, which coordinates the movement of RF nodes (and

possibly physical objects) in the emulated physical space. The
Emulation Controller uses location information (and other
factors as dictated by the signal propagation model in use)
to control the emulation of signal propagation within this em-
ulated environment. In addition, the Emulation Controller co-
ordinates node (and object) movement in physical space with
the sending of data and the operation of applications on the
RF nodes. Each RF node runs a small daemon that allows
the Emulation Controller to control its operation via a wired
network. RF nodes that are not capable of running code may
require a proxy to run the daemon on their behalf.

Connecting the Emulation Controller to an external net-
work allows remote management of the emulator. In addition,
individual nodes in the emulator may be connected to external
networks in order to allow emulator nodes access to the Inter-
net at large or to allow the emulator to be used in conjunction
with testbeds such as PlanetLab [2] or Emulab [3].

In the next section we discuss a proof-of-concept imple-
mentation of the emulator architecture just presented. We then
present several experiments that demonstrate how this proto-
type can support a wide range of experiments.

Laptop
A/D

D/A

FPGALaptop
A/D

D/A

Laptop
A/D

D/A

LO

Figure 2. Prototype Hardware Architecture

3 Proof-of-Concept Prototype

3.1 Description

Hardware. To demonstrate the feasibility of the wire-
less emulator, we have constructed a small prototype designed
to validate the emulator’s primary functionality by emulating
signal propagation between three laptops on a single 802.11b
“non-overlapping channel”. This prototype was constructed
using discrete components for approximately $1,000 exclud-
ing the cost of RF nodes and external support equipment; we
expect future versions - with integrated components - to cost
on the order of several hundred dollars per RF node supported.
The results obtained so far show that the approach that we ad-
vocate is capable of providing powerful wireless emulation
capabilities. We first discuss our prototype’s hardware imple-
mentation followed by a discussion of the control software.

Figure 2 shows the hardware architecture of the prototype.
Each laptop operates on 802.11b Channel 11 which is cen-
tered at 2.462 GHz and contains its main spectral elements
from 2.451 GHz to 2.473 GHz. The outgoing signal from each
laptop is first attenuated and then mixed with a 2.449 GHz LO
signal. The resulting output from the mixers (ignoring the sig-
nal image) is a signal ranging from 2 to 24 MHz. This signal
is then fed into an A/D board for sampling. Each A/D board

Card Output
(mixed down)
EVM: 4.8%

ADC-DAC

EVM: 6%

Emulator
Prototype

EVM: 7.7%

a) b) c)

Figure 3. Physical Layer Fidelity
generates 12-bit digital samples of the incoming signal at 52
Msps, and sends them to the FPGA for processing.

FPGA-Based DSP.Inside the FPGA, the signals are pro-
cessed to emulate a physical environment. Each outgoing
signal is then sent to a D/A board for reconstruction. It is
then mixed up and attenuated before arriving at the destina-
tion wireless card’s antenna port.

Between the three laptops in our prototype, there exist a
total of six point-to-point signal channels. For each of these
channels, the Emulation Controller is capable of dynamically
adjusting the attenuation from the source to the destination by
dynamically setting the scaling factors mentioned previously.
Hence, for each of the six signal paths, the emulator can recre-
ate effects such as large-scale path loss and small-scale fading
(we currently only employ large scale path loss). Our emula-
tor’s noise floor is either generated by replacing an RF node
with a noise generator, or by using the noise floor naturally
present in our emulator.

The use of an FPGA-based DSP gives our prototype the
ability to support more complex signal modeling than we
have yet implemented. Moreover, the FPGA’s “program” can
be customized for each individual experiment. For instance,
while our current FPGA configuration does not support ge-
ometric models of signal propagation, these could be added
by configuring the FPGA with multiple signal paths between
each source and destination, and adding a programmable de-
lay to each path. Also, one ore more noise generators could
be programmed into the FPGA to provide precise control over
the noise floor.

Emulation Controller. The Emulation Controller is
driven by scripts that specify each node’s movement and com-
munication. As the RF nodes move about in the emulated
physical space, the Emulation Controller continuously com-
putes attenuation of each signal path and the scaling factors
required to emulate this attenuation (a simple path loss model
based on measurements in CMU’s business school is used).
After computation, these scaling factors are sent to the FPGA-
based DSP. The Emulation Controller also generates a visual
display of node location in the emulated physical environ-
ment.

Under direction of the Emulation Controller, we can gener-
ate network traffic between any pair of nodes. The Emulation
Controller is able to synchronize this traffic with node move-
ment. If desired, however, nodes can be made to generate
traffic manually. This is most useful for scenarios in which
nodes are stationary.

3.2 Validation

We now present a simple validation of the operation of our
emulator by examining two key properties: fidelity and iso-

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10121416182022242628
SNR (dB at antenna port)

Th
ro

ug
hp

ut
 (M

bp
s)

Variable Attenuator

Emulator

Figure 4. Transport Layer Fidelity

lation. We then briefly discuss how this validation will be
applied to future versions of our emulator.

While our current prototype is simple, signal propagation
fidelity is reasonably accurate. This can be quantified by mea-
suring error vector magnitude (EVM) which is the relative
difference between ideal signal constellation points and ob-
served constellation points. Figure 3 compares the modula-
tion fidelity of an 802.11 signal passing through our emula-
tor (c) with the direct output of an 802.11 card (a). For each
case, this figure shows the measured constellation, and EVM.
Qualitatively this figure shows that our emulator adds a small
amount of error to the modulation. This is quantified by an
EVM difference of about 2.9%. Figure 3(b) shows the same
measurement for a digitized signal that bypasses our FPGA-
based DSP engine. The degradation seen in (c) relative to (b)
implies that a good deal of the undesired noise in our emulator
is being introduced in digital transmission to or from the DSP
engine. By eliminating this noise, we expect to match the per-
formance shown in (b) (future enhancements should actually
allow us to surpass this performance).

Figure 4 shows that our prototype’s physical layer fidelity
translates into transport level fidelity; this figure compares
TCP throughput for two laptops connected via a variable at-
tenuator versus two laptops connected via our emulator pro-
totype. Each data point is an average of 20 trials. Confidence
intervals are omitted since they are very tight. Clearly high
end performance is quite close with performance diverging at
low SNR values. The refinements discussed previously should
greatly narrow this gap.

An important benefit of our prototype is the ability to con-
duct experiments in isolation from external sources of inter-
ference. While our prototype is not yet specifically shielded
against external interference, we performed simple measure-
ments to determine the degree of isolation that our prototype
obtained. Using a laptop external to our emulator, we gen-
erated a broadcast ping flood at 2 Mbps. With this external
node placed at various distances from our emulator, we then
measured the TCP throughput between two nodes internal to
our emulator. When TCP throughput was unaffected by the
ping flood, we inferred that the internal emulator nodes were
no longer able to sense the carrier of the external interfering
node. Our tests indicate that our emulator is isolated from
external nodes that are approximately 18 meters or further
away in our environment. We expect to significantly reduce

Orchid HermesNice
50 m 30 m

Figure 5. Hidden Terminal Topology

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No RTS No RTS No RTS RTS RTS

No Interference Interference Interference Interference No Interference

Not Hidden Hidden

Figure 6. Hidden Terminal Results
this distance when we explicitly address this issue. Neverthe-
less, compared to a wireless testbed, our current prototype has
greatly reduced the possible locations of interfering sources to
a relatively small geometric space.

By altering this isolation test to measure internal isolation,
we were able to verify that nodes attached to the emulator
are effectively isolated against undesired transmission to each
other despite their close proximity. In addition, we verified
that the signal propagation between laptops in our emulator is
unaffected by the movement of nearby people or objects.

We plan to validate the fidelity of future versions of our
emulator via a variety of tests: EVM tests of multiple modula-
tions, multi-tone intermodulation tests to demonstrate robust-
ness against intermodulation products, noise floor measure-
ments, packet error rate vs. SNR, and precise measurements
of isolation. Where appropriate, we will compare results from
these tests with coaxial cable-based tests or open air tests.

4 Sample Experiments
We now present a series of experiments that provide a small

sampling of our wireless emulator’s capabilities. For each of
the experiments presented, obtaining repeatable and realistic
results using traditional methods would be difficult. In each
experiment, three RF nodes were connected to our prototype:
“Orchid”, “Hermes”, and an interferer (“Nice” or a Bluetooth
source).

4.1 Hidden Terminal

We first use our prototype to analyze how the “hidden ter-
minal” problem affects 802.11 networks. Evaluating the hid-
den terminal problem in a real world environment is trouble-
some since it is difficult to determine if nodes are in carrier
sensing range of each other. Moreover, carrier sensing range
constantly fluctuates in the real world. This experiment high-
lights our prototype’s ability to overcome these difficulties by
providing precise, independent control over the signal paths
between all nodes. This allows us to evaluate the hidden ter-
minal problem by simply commanding the emulator to “dis-
connect” the desired nodes while leaving the communication
between other nodes unaffected.

As illustrated in Figure 5 we arranged our three nodes in
a line with all nodes in range of each other. (For simplicity

we will speak of spatial relationships in our virtual physical
environment as if they were based in a real physical environ-
ment). We then measured TCP throughput from Hermes to
Orchid while Nice was used to generate interfering traffic us-
ing a unicast ping flood directed at Orchid.

As shown in the Figure 6 “No RTS, No Interference” test,
throughput between Orchid and Hermes is excellent when
there is no interference (each value is an average of 25 tri-
als with 95% confidence intervals shown). In the “No RTS,
Interference, Not Hidden” test, we see that when Nice begins
interfering, throughput is still quite good (ping packets are
much smaller than the TCP packets).

We then created a hidden terminal situation by artificially
“severing” the link between Hermes and Nice while leaving
the other communication paths unaffected. (The ability to cre-
ate a hidden terminal situation without “moving” the nodes
allows us to directly compare results between the hidden and
non-hidden tests.) The “No RTS, Interference, Hidden” test
shows that throughput between Orchid and Hermes drops dra-
matically in this case.

We next analyzed the efficacy of 802.11’s RTS/CTS mech-
anism at overcoming the hidden terminal problem by repeat-
ing the previous tests with Hermes set to always use RTS/CTS
for frames over 200 bytes. The “RTS, Interference, Hidden”
test shows that RTS/CTS is able to double throughput; never-
theless throughput is still much lower than when the interferer
was not hidden. Comparing the final “RTS, No Interference”
test with the “No RTS, No Interference” case shows that the
overhead of RTS/CTS alone is roughly 1 Mbps. Further in-
vestigation (and coaxial-based verification) revealed that the
cause of this underwhelming improvement was the failure of
RTS/CTS to prevent rate fallback. The ability to analyze this
type of subtle behavior in a controlled environment is a key
advantage of our emulator.

4.2 Directional Antennas

Orchid

Hermes

Bluetooth-like
Source

50 m

50 m

50 m

18 dBi Yagi antenna
radiation pattern

Figure 7. Directional Antenna Topology

Complete control over signal propagation also allows our
prototype to emulate arbitrary types of antennas. In this ex-
periment, we analyzed the ability of directional antennas to
improve range and spatial reuse by minimizing the effects of
interfering Bluetooth-like traffic. As shown in Figure 7, each
node was positioned 50 meters from the other two nodes.

Figure 8 shows the results of communication between Her-
mes and Orchid for four scenarios (each value is an average
of 25 trials with 95% confidence intervals shown). In the

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Isotropic Isotropic Yagi Yagi

No Interference Interference No Interference Interference

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 8. Directional Antenna Results
“Isotropic, No Interference” test, Hermes and Orchid com-
municate with omnidirectional antennas with no interference
(using a TCP benchmark with traffic from Orchid to Hermes).
Communication is only around 1.25 Mbps due to the distance
between the nodes.

In the “Isotropic, Interference” test, Hermes and Orchid
communicate as before, but the Bluetooth source is config-
ured to broadcast a constant 15 dBm signal with Bluetooth
modulation. TCP throughput between Orchid and Hermes is
not possible in this case.

The “Yagi” tests then repeat the “Isotropic” tests, but with
18 dBi Yagi antennas [4] attached to Orchid and Hermes.
These antennas are aimed directly at each other. Figure 7
shows the radiation pattern for this antenna. Note that for
Orchid and Hermes, the Bluetooth source lies along a side
lobe with approximately 22 dB and 18 dB respectively less
gain than the main lobe. The results of these tests show that
the directional antennas successfully increase communication
range and also mitigate the effects of interference.

4.3 Mobility

The mobility experiment illustrates our prototype’s ability
to easily emulate movement in a physical space, and to coor-
dinate this movement with the transmission of data in a con-
trolled and repeatable manner. Figure 9 contains two screen
captures gathered during the operation of this scenario (with
some additional explanatory text and illustrations superim-
posed on the screen captures). The “World Viewer” window
on the left is a two-dimensional projection of the emulated
physical environment. The window on the right is the Orinoco
Link Test utility which performs a link layer ping and reports
signal and noise measurements.

As illustrated in the World Viewer window, Orchid and
Nice were stationary during this experiment while Hermes
moved in a counterclockwise circuit around them. Figure 10
shows the signal strength from Hermes measured by Orchid’s
wireless card at one second intervals over four circuits, and
illustrates our prototype’s ability to emulate the effects of mo-
bility at the physical layer in a repeatable fashion. This test
also demonstrated our prototype’s ability to create an “out of
range” situation as demonstrated by the gaps in the measure-
ments recorded by the Orinoco Link Test program when Her-
mes was most distant from Orchid (Region C).

At two points in this circuit, Orchid measured TCP per-
formance by sending a large amount of data to Hermes. The
emulation controller ensured that these measurements were
synchronized with node movement and occurred at the same

Region B

Region
A

100 meters

Noise

Signal

Region C

Figure 9. Mobility Scenario Overview

-95

-90

-85

-80

-75

1 21 41 61 81 101 121 141 161
Sample Number

(1 second sample interval, out of range omitted)
S

ig
na

l S
tre

ng
th

 (d
B

m
)

Figure 10. Signal Modeling Repeatability
location each time. The first transmission was initiated when
Hermes was near Orchid and the signal strength between the
two nodes was strong (Region A). The second test was ini-
tiated far away where the signal was weak (Region B). Ta-
ble 1 shows the results of these tests averaged over 20 cir-
cuits. The small standard deviation of the Region A through-
put demonstrates that our prototype’s control over the phys-
ical layer can translate into repeatable TCP performance de-
spite the inherent variability from sources such as the operat-
ing system. As the signal strength becomes weaker, however,
these higher level factors can produce some variation in re-
sults as evidenced by the higher standard deviation seen in
Region B. Importantly, the statistical properties of the results
are constant.

Location Average Std. Dev.
Region A 4.64 0.0343
Region B 1.80 0.225

Table 1. Regional TCP Throughput (Mbps)
5 Related Work

Wireless Simulators. For several years now, ns-2 [5] has
been the de facto standard means of experimental evaluation
for the wireless networking community. Yet ns-2’s wireless
support has not kept pace with current technology, and is tar-
geted towards the original 802.11 standard developed in 1997.
Even this support, however, is inexact as ns-2 does not support
automatic rate selection, uses a non-standard preamble, and
contains an incorrect value for 802.11 ACK timeout value. In
addition, ns-2’s physical layer is particularly simple [1]. As a
result, some researchers are opting to use commercial simula-
tors such as QualNet [6] and OpNet [7] since they claim better

support for current standards. Despite these claims, however,
it is unclear how well these simulators reflect actual hardware.

Wireless Emulators.Emulation has proven to be a useful
technique in wired networking research [3, 8, 9], and it has an
even larger potential in the wireless domain.

A common approach that has been taken for wireless emu-
lation [10, 11, 12] is to capture the behavior of a wireless net-
work in terms of parameters such as capacity and error rates
and then use a wired network to emulate this behavior. This
has the advantage of allowing the use of real endpoints run-
ning real applications in real time. The wireless MAC and
physical layers, however, are only very crudely simulated. For
this reason, it is unclear whether or not this approach can ob-
tain more realistic results than pure simulation.

More recently efforts have been made to develop RF emu-
lators that accurately emulate down to the physical layer. RA-
MON [13] uses three programmable attenuators to allow em-
ulation of the signals between a single mobile node and two
base stations. While useful for the intended application of mo-
bile IP roaming investigation, the inability to independently
control all signal paths and the cost of programmable attenu-
ators severely limits this approach.

[14] proposes extending Emulab into the wireless domain
using either fixed wireless nodes scattered in a building or pas-
sive carriers to carry wireless nodes. Clearly this approach can
achieve a high degree of realism, but has serious obstacles in
terms of control and repeatability (since this is essentially a
wireless testbed). As there can be significant uncontrolled in-
terference, this approach can only hope to achieve what the
authors term “coarse repeatability”. In contrast, our approach
allows for far greater control and repeatability.

Channel Emulators / Fading Simulators.The most func-
tionally similar approach to the wireless emulator that we
are developing is provided by commercial channel emula-
tors [15, 16]. The goal of these emulators, however, is quite
different. Rather than supporting emulation of all channels
in a wireless network, commercial channel emulators are de-
signed to support very fine-grained emulation of the wireless
channel between either a pair of devices or between a small
number of base stations and a small number of mobile de-
vices (with the total of both typically being less than 8). This
makes these emulators useful for equipment vendors evalu-
ating a new device. The limited scale, lack of support for
complete interaction between all nodes, and high cost make
commercial channel emulators an unattractive option.

6 Conclusion

Understanding and improving wireless network perfor-
mance is increasingly important. Unfortunately, repeatable
experimentation with real wireless nodes operating in a real
environment is not feasible. For this reason, most wireless re-
search has relied on evaluation via simulation. Wireless sim-
ulators do not, however, completely duplicate real hardware
in an operational environment, and the correctness of wireless
simulation is difficult to validate.

We propose overcoming these obstacles by developing an
emulator capable of providing real-time modeling of the wire-

less communication channel between all pairs of nodes at-
tached to this emulator. This approach maintains much of the
realism of wireless testbeds without sacrificing the repeata-
bility of simulation. We have developed a proof-of-concept
prototype, and have used this prototype to show that physi-
cal layer wireless emulation is a powerful means of enabling
realistic and repeatable wireless experimentation.

References

[1] M. Takai and J. Martin. Effects of Wireless Physical
Layer Modeling in Mobile Ad Hoc Networks.Proc. of
MobiHoc 2001, Oct. 2001.

[2] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet.Proc. of HotNets-I, Oct. 2002.

[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed sys-
tems and networks.Proc. of OSDI 2002, Dec. 2002.

[4] SmartAnt Telecomm Ltd. Yagi antennas,
http://www.smartant.com/Products/
ISM/2.4G/FYW24-01518BFL.pdf .

[5] S. McCanne and S. Floyd. UCB/LBNL/VINT Network
Simulator - ns (version 2), Apr. 1999,http://www.
isi.edu/nsnam/ns/ .

[6] Scalable Network Tech. Qualnet,http://www.
scalable-networks.com/ .

[7] OPNET Tech. Opnet,http://www.opnet.com .
[8] K. Fall. Network emulation in the vint/ns simulator.

Proc. of The Fourth IEEE Symposium on Computers and
Communications, Jul. 1999.

[9] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-
tic, J. Chase, and D. Becker. ”scalability and accuracy
in a large-scale network emulator”.Proc. of OSDI 2002,
Dec. 2002.

[10] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz.
Trace-based mobile network emulation.Proc. of SIG-
COMM 1997, Sep. 1997.

[11] P. Mahadevan, K. Yocum, and A. Vahdat. Emulating
large-scale wireless networks using modelnet.Poster
and Abstract Mobicom 2002, Sep. 2002.

[12] T. Lin, S. Midkiff, and J. Park. A dynamic topology
switch for the emulation of wireless mobile ad hoc net-
works. Proc. of the 27th Annual IEEE Conference on
Local Computer Networks (LCN’02), Nov. 2002.

[13] E. Hernandez and S. Helal. ”ramon: Rapid mobility net-
work emulator”. Proc. of the 27th IEEE Conference on
Local Computer Networks (LCN’02), Nov. 2002.

[14] B. White, J. Lepreau, and S. Guruprasad. Lowering the
barrier to wireless and mobile experimentation.Proc. of
HotNets-I, Oct. 2002.

[15] PROPSim. Propsim c8 wideband multichannel simula-
tor, http://www.propsim.net/ .

[16] Spirent Communications. Tas4500 flex5
rf channel emulator, http://www.
spirent-communications.com/ .

