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Abstract

Geographic techniques promise highly scalable any-to-
any routing in wireless sensor networks. In one thread of re-
search on geographic routing, researchers have explored ro-
bust, distributed graph planarization. Arguing that such pla-
narization techniques have high overhead, researchers have
more recently pursued a thread in which they propose pre-
computation of routing structures (e.g., hull trees and grids)
to achieve low-overhead geographic routing.

In this paper we introduce a third approach, LCR, that
does not involve any precomputation of distributed routing
structures, nor full a priori planarization. Instead, LCR re-
moves non-planarities lazily only when they interfere with
correct geographic routing. Lazy removal of link crossings
results in an order of magnitude or more lower overhead than
any previously proposed approach.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Net-
work Protocols - Routing Protocols

General Terms
Algorithms, Design, Reliability

Keywords

Planarization, Cross-Link Detection, Geographic Routing

1 Introduction

The search for scalable point-to-point routing in sensor-
nets and other wireless networks has largely revolved around
geographic routing, in which packets are addressed to geo-
graphic locations, not node identifiers. Geographic routing
typically consists of two phases: greedy routing (in which
packets are sent to a neighboring node which is closer to the
destination) and face walking (which is invoked when the
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greedy routing hits a dead-end). Face walking involves fol-
lowing a right-hand rule, and is guaranteed to reach a node
closer to the destination if the underlying network graph is
planar. However, if the graph is non-planar then face walks
can loop even when a route to the destination exists.

Thus, much of the research on geographic routing has
been devoted to finding techniques for planarizing graphs.
Early work in the area proposed planarization techniques
that were provably correct for unit-disk graphs. More re-
cently, Kim et al. [13] proposed CLDP, a distributed graph
planarization technique that they proved correct on arbitrary
graphs.

While the strong correctness of CLDP is attractive, its
message complexity, hereafter referred to as overhead, is
not. Motivated by CLDP’s high overhead, Leong et al. [21]
have examined an alternative to face routing, which involves
creating and maintaining hull trees to guide packets around
dead-ends. Their simulations have shown that this technique,
GDSTR, incurs significantly lower overhead than CLDP.

In this paper, we revisit face routing and significantly im-
prove its message efficiency by reducing the overhead of pla-
narization. In our approach, we dispense with the require-
ment that the graph must first be planarized entirely. Instead,
we initially employ a previously known approximate pla-
narization, the mutual witness procedure [9, 10, 25], which
is highly message-efficient and eliminates most, but not all,
edge crossings in the graph. Thereafter, we planarize por-
tions of the graph where any few crossings remain, but only
when necessary.

We term this new approach incorporating the two above
techniques Lazy Cross-Link Removal (LCR). LCR detects
when a face walk returns to its starting point, or loops. As
shown in [13], such a loop indicates the presence of crossing
edges in the graph along the face where the loop occurred.!
When LCR detects a looped face walk, it probes the links on
the offending face for crossings, in a manner similar to that
in [13]; these probes search for crossings and remove them
until greedy progress can once again be made. LCR incurs
low overhead because it only roots out non-planarities when
necessary, and does so using methods that incur traffic local
to the area in question.

LCR’s probes are infrequently invoked for two reasons.

I'A loop may also occur when no node is present at the destina-
tion location; we fully consider this case in Section 4.3.



First, many non-planarities are masked because greedy rout-
ing does not encounter a dead-end in their vicinity; such
non-planarities never cause routing failures, and need not be
eliminated. Second, as shown in [13], one need only elimi-
nate all cross-links that induce looping face walks to ensure
planarity; we will call these loop-inducing cross-links (LI-
CLs). Thus, for the correctness of face routing, it suffices to
remove one link from each LICL. However, very few cross-
links actually induce such packet loops, as we demonstrate
empirically, and explain using a partial characterization of
LICLs. This paper makes two important contributions:

e We extend the current understanding of the behavior
of geographic routing on non-planar graphs. Before
this writing, the state of understanding of face routing
was that only “essential” cross-links—those that can-
not be eliminated by CLDP [13]—pose no threat to cor-
rect face routing, and that all other cross-links are pre-
sumed to represent a threat to correct face routing. We
demonstrate in this work that the class of cross-links
that causes failure of face routing is in fact far narrower:
on many topologies, a pair of cross-links can only cause
face routing to fail when removal of both cross-links
would partition the network graph. It is because such
structures are rare that LCR is highly efficient.

e We show the practical implications of the rarity of LI-
CLs for reducing the overhead of planarization in sup-
port of face routing. By only probing for cross-links
upon encountering LICLs, LCR incurs significantly
lower overhead than CLDP and GDSTR, while still
offering comparable stretch performance. We demon-
strate in simulation that LCR achieves these desirable
properties on radio graphs with obstacles and localiza-
tion errors. We also demonstrate that on a sensornet
testbed of more than 50 nodes, LCR incurs very low
overhead.

LCR differs from other geographic routing protocols in
one important respect: while it efficiently supports routing
to nodes, it does not efficiently support routing to arbitrary
locations (in such cases, LCR’s overhead is comparable to
that of CLDP). Thus, LCR (coupled with a location service)
is highly efficient for dynamic any-to-any routing, but not for
Geographic Hash Tables [24].

2 Preliminaries and Related Work

We now review prior work in geographic routing proto-
cols and describe the essentials of geographic routing for
context.

Geographic Face Routing. There is a very broad literature
on geographic routing: from initial sketches suggesting rout-
ing using position information [4, 15]; to the first detailed
proposals, including GFG [1], GPSR [11], and the GOAFR+
family of algorithms [17]; to refinements of these propos-
als for efficiency [7], robustness under real network condi-
tions [18,25], and even routing geographically when node
location information is unavailable [22,23].

We now describe the shared characteristics of the GFG,
GPSR, and GOAFR+ algorithms, and hereafter refer to this

family of algorithms simply as geographic routing. We note
that there exist other routing algorithms that make use of
position information, such as LAR [16], but we restrict the
scope of our work to the family of face-routing algorithms in
which a node forwards to a single neighbor on the basis of
geographic information.

Geographic routing schemes use greedy routing where
possible. In greedy routing, packets are stamped with the po-
sitions of their destinations; all nodes know their own posi-
tions; and a node forwards a packet to its neighbor that is ge-
ographically closest to the destination, so long as that neigh-
bor is closer to the destination. Local maxima may exist
where no neighbor is closer to the destination. In such cases,
greedy forwarding fails, and another strategy must be used
to continue making progress toward the destination. In par-
ticular, the packet must only find its way to a node closer to
the destination than the local maximum; at that point, greedy
routing may once again make progress.

Geographic routing schemes recover from local maxima
by using face routing. All geographic routing research to
date has assumed that for face routing to work, the underly-
ing network graph must be made planar by selecting a sub-
set of the graph’s edges. Note that a planar graph consists of
faces, enclosed polygonal regions bounded by edges. Geo-
graphic routing uses two primitives to traverse planar graphs:
the right-hand rule, and face changes. The right-hand rule
tours a face endlessly in a cycle, and can thus be used to
walk a face. Figure 1 shows an example of the right-hand
rule, which dictates that upon receiving a packet on a link,
the receiving node forwards that packet on the first link it
finds after sweeping counter-clockwise about itself from the
ingress link.

Consider the planar graph in Figure 2, in which the source
node S and destination node D are indicated. Observe that
the line segment SD must cut a series of faces in the pla-
nar graph”; these faces are numbered and bordered in bold.
Geographic routing algorithms exploit this property by suc-
cessively walking the faces cut by this line. That is, they
use the right-hand rule to tour a face. While walking a face,
upon encountering an edge that crosses the line segment SD
at a point closer to D than the point at which the current
face was entered, geographic routing algorithms perform a
face change: they begin walking the bordering face that is
next along the line segment SD. (Other face-change rules are
possible, including changing faces at the edge whose cross-
ing of SD is the closest such crossing to D on the current
face). The numbering of faces in Figure 2 shows the order in
which faces are traversed from S to D on that planar graph.
Should a face be toured in its entirety without discovering
an edge that crosses line segment SD at a point closer to D
than the point at which the current face was entered, face
routing fails. We call such failures loops because the packet
returns to where it started without having made progress. On
a planar graph, such a loop on a face only occurs when the
destination is disconnected.

2We ignore, for now, the case where the line segment traverses
the edge of a face. These cases are easily handled by tie-breaking
mechanisms that we don’t discuss here.



Figure 1. Right-hand rule. Figure 2.
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Figure 4. Definitions of the GG and RNG. A wit-
ness must fall within the shaded circle (GG) or lune

(RNG) for edge (A,B) to be eliminated in the planar
graph.

Note that if the graph is not planar, face routing may fail.
Figure 3 shows an example graph on which this pathology
occurs. In this example, D is located physically in the inte-
rior of a face, but is only connected to the rest of the network
graph by an edge that crosses this enclosing face. Face rout-
ing walks successive faces cut by the line from S to D, un-
til it reaches the face enclosing D, whose first edge crosses
line segment SD at point p. The right-hand rule then tours
this face in its entirety (the packet loops), but fails to find an
edge that crosses line segment SD at a point closer to D than
p. Thus, face routing fails.

Planarization. Wireless networks’ connectivity graphs typ-
ically contain many crossing edges. Prior research has ex-
plored planarization techniques that are implementable with
an asynchronous distributed algorithm. Early work focused
on two planar graph constructs: the Relative Neighborhood
Graph (RNG) [26] and the Gabriel Graph (GG) [6]. The
RNG and GG give rules for how to connect vertices placed
in a plane with edges based purely on the positions of each
vertex’s single-hop neighbors. Both the RNG and GG prov-
ably yield a connected, planar graph so long as the connec-
tivity between nodes obeys the unit graph assumption: for
any two vertices A and B, those two vertices must be con-
nected by an edge if they are less or equal to some threshold
distance r apart, but must not be connected by an edge if they
are greater than r apart. We shall refer to r as the nominal ra-
dio range in a wireless network; the notion is that all nodes
have perfectly circular radio ranges of radius r, centered at
their own positions.

We briefly state the definitions of the GG and RNG for
context. The planarization process runs on a full graph,
which includes all links in the radio network, and produces
a planar subgraph of the full graph. We assume that each
node in the network knows its single-hop neighbors’ posi-
tions; such neighbor information is trivially obtained if each
node periodically transmits broadcast packets containing its
own position. Consider an edge in the full graph between two
nodes A and B. Both A and B must decide whether to keep
the edge between them in the planar graph, or eliminate it in

The faces progressively
closer from S to D along line segment
SD, numbered in the order visited.
Faces cut by SD are bordered in bold.

i
avi

Figure 3. Eg(ample of face routing
failure on non-planar graphs. There
is no point closer to D than p on the
face enclosing D.

Figure 5. The RNG partitions a non-unit graph; edge
(A, B) is eliminated.

the planar graph. Without loss of generality, consider node
A. Both for the GG and RNG, node A searches its single-hop
neighbor list for any witness node W that lies within a par-
ticular geometric region. If one or more witnesses are found,
the edge (A, B) is eliminated in the planar graph. If no wit-
nesses are found, the edge (A, B) is kept in the planar graph.
For the GG, the region where a witness must exist to elim-
inate the edge is the circle whose diameter is line segment
AB. For the RNG, this region is the lune defined by the in-
tersection of the two circles centered at A and B, each with
radius |[AB|. We show these two regions in Figure 4.

Note that if the network graph violates the unit graph as-
sumption, the RNG and GG can fail in several ways; they can
produce a partitioned planarized graph [9], one that contains
unidirectional links, and even one that is not planar. Each of
these planarization failures can result in a routing failure. An
example of a partitioning for the RNG appears in Figure 5.
Here, there is no link between A and V, and none between B
and W, though these links are shorter than the nominal radio
range. Nodes A and B see witnesses W and V, respectively,
though neither witness provides transitive connectivity. Both
A and B conclude they should remove edge (A, B) in the pla-
narized graph, and a partition results. Similar cases are pos-
sible in the GG.

Geographic Routing on Radio Graphs. Since violations
of the unit-graph assumption can lead to planarization fail-
ures, which in turn can lead to routing failures, the question
of whether radio graphs conform to the unit-graph assump-
tion is of great importance. Kim et al. [14] have explored
in detail the many reasons real radios violate the unit graph
assumption, and give detailed examples of the pathologies
these violations create in the GG and RNG. They have also
shown that a previously proposed fix to the GG’s and RNG’s
tendency to partition graphs when radio ranges are irregu-
lar does not ensure the overall correctness of face routing.
The fix in question is the mutual witness (MW) extension
to GPSR [9, 10, 25]. When node A considers whether to
keep link (A, B) from the full graph in the RNG or GG pla-
nar graph, mutual witness dictates that A only eliminate link



(A, B) if there exists at least one witness in the RNG or GG
region that is visible both to A and B. This fact may be di-
rectly verified with local communication: if all nodes broad-
cast their neighbor lists (only a single hop), then all nodes
may verify whether a particular neighbor shares a particular
other neighbor. The intuition for mutual witness is that it
preserves connectivity: links are only eliminated in the pla-
nar graph if a transitive path through a witness is explicitly
verified, rather than relying on the location of the witness
to assure such a transitive path’s existence. Unfortunately,
while MW ensures connectivity it does not always produce a
planar graph. On some non-unit graphs the use of MW with
either the GG or RNG will leave crossing links [14].

Kuhn et al. have investigated the robustness of the GG
planarization for “quasi” unit-disk graphs [18]. More re-
cently, Kim et al. [13] have described a qualitatively different
planarization technique that pro-actively probes faces to re-
move link-crossings. Their CLDP protocol ensures the cor-
rectness of face routing in arbitrary graphs, but incurs sub-
stantial probing overhead. LCR builds upon CLDP, but is a
significant step in the geographic routing literature, demon-
strating that full, a priori planarization is not necessary for
correct geographic routing.

Alternative Approaches. Motivated by the failure of the
GG and RNG to route correctly in non-unit graphs, and by
the unavailability of node locations in some settings, several
techniques have been proposed to assign virtual coordinates
to nodes such that greedily routing on those coordinates en-
sures routing success [2,3,5]. These schemes fix node co-
ordinates with reference to special nodes (beacons or land-
marks) or topological features (the medial axis of the sensor
field). While attractive, they can incur high setup cost; by
contrast, LCR (as we shall show) exhibits near-zero over-
head on real wireless topologies.

Motivated by the overhead imposed by CLDP, recent
work has designed proactively computed routing structures
used for recovering from local maxima when routing greed-
ily on physical coordinates. RRP [12] assumes unit-disk con-
nectivity and logically partitions a sensor field into a grid.
The grid is then used when greedy routing encounters a lo-
cal maximum. In contrast, GDSTR [21] does not assume
unit-disk connectivity and builds a Aull tree: the root of each
subtree maintains the convex hull of the locations of all de-
scendants, as well as the convex hull of all children. In addi-
tion, each node maintains the list of hulls that intersect with
its own. When greedy routing encounters a local maximum,
packets are forwarded up the hull tree until they reach a node
whose hull tree encloses the destination. At that point, the
packet is forwarded down the tree. In this paper, we show
that LCR incurs significantly lower overhead than GDSTR,
yet offers comparable stretch on real wireless topologies.

3 Characterizing Loop-Inducing Cross-Links
In this section, we first state and prove a theorem about
crossing links in wireless graphs. This theorem establishes
the correctness of LCR’s approach and provides context for
our informal arguments about the frequency of LICLs in
wireless graphs. We then present empirical results that il-
lustrate why LCR incurs low overhead in wireless graphs.
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Figure 6. Path containing only one crossing.

In the theoretical arguments presented below, we assume
that full graphs have no degeneracies: no vertices are coinci-
dent, and no pairs of edges at a single node have the same in-
cident bearing. Furthermore, for simplicity, we assume links
are symmetric. We do not make these assumptions in our
simulations.

We use the following notation. The set of edges of a graph
is denoted by E, and individual directed edges are denoted
by e;, with e_; denoting an edge in the opposite direction.
Since we have assumed symmetrical links, ¢; € E = e_; €
E. The set of vertices is denoted by V, the starting point of
an edge is given by s(e;) € V, and the finishing point of an
edge is given by f(e;) € V. A path is a sequence of edges,
e1,ez,... such that s(e;y1) = f(e;). For each graph define
a (perhaps empty) set of crossings C; each element of C is
a pair of edges that intersect in the plane. We start with a
general observation about crossings in connected graphs. A
statement of this theorem appears in [13].

THEOREM 1. Ifa connected graph G has at least one cross-
ing, then there is at least one face that has a crossing.

Sketch of Proof: Consider a connected graph G that has
at least one crossing; i.e., C is nonempty. Then there is some
pair of crossed edges, call them eq,e;, and a path between
these crossed edges that we denote by ej,es,...e;. If there
are any pairs of edges on this path that are in C, then we
can choose that crossing instead (using the subset of the path
between these two crossed edges). Repeating this, we find
a crossing and a path such that the path contains no other
crossings. We then have a situation as in Figure 6.

The portion of the path between the crossing point and
around the series of edges back to the crossing point has a
well-defined interior and exterior. Among all such configu-
rations like that in Figure 6, we pick the one with the minimal
area in the interior.

We now start a face walk at edge e; (we can assume, with-
out loss of generality, that the right-hand rule from e points
towards the interior of the path; if not, we start the walk at
ex). We know the face walk must eventually return to s(ey).
Thus, the face walk must eventually cross the path, because
the point s(e;) is exterior to the path and the face walk is
oriented inwards (so any deviations from the path point in-
wards). If the face walk passes through edge ey, or crosses
itself, we are done. If the face walk does not pass through



Figure 7. Not all cross-links induce loops.

e and does not cross itself then it must (a) leave the path
at some point, call it v, and (b) cross the path somewhere
other than at e; (and farther along the path than v). Let ¢;
denote the link that crosses the path, and e, be the link that
it crosses. Then we have a new crossing pair, ej, e, with a
path that is comprised of the old path from v to e, and the
face walk from v to e;. This path outlines a strict subset of
the area outlined by the previous path. This contradicts our
minimality assumption. Thus, the face walk for this minimal
area path must cross itself. QED.

The above theorem can be equivalently stated as:

THEOREM 2. Every connected nonplanar graph has at
least one LICL.

Thus, if all LICLs have been removed from the graph then
the graph is planar. CLDP [13] starts by recursively remov-
ing all such LICLs (the recursive aspect is necessary because
the elimination of one LICL can produce another). Thus, the
above theorems (stated but not proved in [13]) establish the
correctness of CLDP. In addition, they also prove the cor-
rectness of LCR, since it uses CLDP’s probing procedure to
lazily detect and remove cross-links.

LCR waits until a face walk loops before removing cross-
links. If such LICLs are common, then this approach may
not save much overhead, but if they are rare then it makes
little sense to search the entire graph for such crossings even
when no routing failure has been encountered.

To understand why lazy cross-link removal can be effec-
tive, we first show by example that not all cross-links induce
packet loops. Consider the diagram on the left of Figure 7. In
this diagram, the links (L,K) and (J,M) induce a loop when
a packet is sent from S to D. However, no such packet loop
exists in the diagram on the right, which merely adds a link
from J to L!

To get some intuition for the kinds of link-crossings that
will cause loops, observe that in the diagram on the left, re-
moving (L,K) and (J,M) partitions the graph; the same is
not true for the diagram on the right. This intuition can be
formalized for a certain class of LICLs, as we now show. We
define simple loop-inducing cross-links (SLICL) as a single
pair of crossed links traversed during a walk of a single face.

We then have:

Figure 8. SLICL example and LCR example topology.

THEOREM 3. Consider a SLICL and its associated face
walk. Removing the SLICL (the pair of crossed links) and all
other links that cross the associated face walk disconnects
the graph.

Proof: Consider, as depicted in Figure 8, a SLICL. When
removing both links in the SLICL the two halves of the loop
are disconnected. For the right-hand rule to produce this face
walk, there can be no incident edges on the inside of one half
and none on the outside of the other half. Thus, any path
that connects these two halves must cross some link in the
path (either one of the crossed links, or some other link).
However, all such crossing links have been removed. QED.

Intuitively, then, not all cross-links cause packet delivery
failure. Indeed, a very special condition must hold in or-
der for a cross-link to cause a loop: removal of both cross-
ing links must partition the graph. Note that while we have
proved this condition only for SLICLs, we have observed
this condition to hold for many non-simple LICLs in our
simulations as well. Taken together, these observations sug-
gest that removing cross-links only when a packet loop is
encountered, as LCR does, can reduce overhead. Two other
observations suggest why LCR can be expected to incur
low overhead. First, previously proposed planarization tech-
niques such as the GG and RNG, when combined with the
MW extension, can remove many, but not all, of the cross-
links in real radio graphs. Moreover, these methods are low
overhead—they do not require face traversal. Thus, lazily re-
moving cross-links in graphs to which one of these planariza-
tion methods has been applied, as LCR does, can be expected
to incur low overhead. (As we argue in Section 4.2, apply-
ing these planarization methods can also reduce path stretch.)
Furthermore, many geographic routing protocols use greedy
forwarding, which can mask the existence of cross-links. In
Figure 9, face routing from S to D without greedy forward-
ing would result in a loop because of cross-links (M,J) and
(K,L). GPSR, however, would route from S to D success-
fully; node M finds a neighbor N closer to D than § (the
node at which perimeter mode was entered), and switches to
greedy mode. Because greedy forwarding avoids the loops
such cross-links would otherwise cause, and LCR lazily re-
moves cross links only when a loop is actually encountered,
one further expects LCR to incur low overhead.



------- » Greedy mode

Figure 9. Greedy-mode forwarding in, for example,
GPSR can hide cross-links.

We can quantify how often packet loops are encountered
when GPSR is used on wireless graphs to which GG/MW
or RNG/MW has been applied. Consider Figure 10, which
shows the number of LICLs found in 1360 synthetic graphs
of varying sizes, for varying numbers of obstacles. In this
table, the notation “N/2 obstacles” means that a synthetic
graph has been produced by randomly placing N /2 radio-
opaque obstacles among N nodes, according to a placement
model described in Section 5. With the GG planarization
and a large number of obstacles, only 70 LICL instances are
found! RNG planarization results in fewer LICLs, and less
obstructed graphs also exhibit proportionally fewer LICLs.
These findings empirically motivate LCR, whose design we
present in the next section.

Type and number of graphs GG/MW | RNG/MW
1360 graphs with N /2 obstacles | 70 40

1360 graphs with N /4 obstacles | 20 14

1360 graphs with N /8 obstacles | 13 7

Figure 10. LICLs in obstructed wireless graphs

4 Lazy Cross-Link Removal (LCR)

Since LICLs are relatively infrequent, lazily removing
them when a packet loops can significantly reduce overhead.
In this section, we describe LCR, a mechanism for lazily re-
moving LICLs.

4.1 The Basics

Instead of proactively removing cross-links by planariza-
tion, LCR removes a LICL when a data packet loop is de-
tected. To explain how LCR works, consider Figure 8. In this
figure, we assume that packets are forwarded using GPSR (as
described in Section 2); other face traversal strategies such as
GOAFR [19] could also be used to lazily remove cross-links
(see Section 5). When source S sends a packet to destina-
tion D, the packet enters perimeter mode (see Section 2) at
S, then returns to S using the tour shown. The packet con-
tains the identity of S, the node at which it entered perimeter
mode last. Using this field in the packet, S detects that the
packet has looped, and thereby infers the existence of at least
one LICL in the graph.

——» Perimeter mode

Figure 11. CLDP example topology.

For now, we assume that this LICL is on the looped face;
later we will consider the alternative case. In our example,
the links (L,K) and (J,M) define the LICL. In order to re-
move one of these cross-links, LCR triggers a CLDP [13]
probe on all the links on the walked face. In the simplest
implementation (we describe LCR in more detail below), S
sends a control message forwarded on the walked face using
the right-hand rule. This control message causes each vis-
ited node to trigger a CLDP probe on the link traversed by
the message, in both directions.

For completeness, we briefly review the CLDP probe pro-
cedure (we omit many of its details, for which we refer the
reader to [13]). A CLDP probe on a link is a check to see
if the link is crossed (in a geographic sense) by one or more
other links. A probe initially contains the locations of the
endpoints of the link being probed, and traverses the graph
using the right-hand rule starting at the link. In Figure 11,
consider a probe originated by node K for the link (K,L).
It contains the geographic coordinates for K and L, and tra-
verses the graph using the right-hand rule, as shown by the
dashed arrows. When the probe is about to walk the edge
(M,J), node M detects the crossing of (K,L). M then records
this crossing in the probe so that when the probe returns to
K, K “deletes” either the (K, L) link or the (M,J) link (af-
ter a message exchange with M or with J). By symmetry,
the cross-links would have been detected and removed by a
probe of (L,K) originated by L or a probe of (M,J) origi-
nated either by M or J.

Probing all the links on a looped face is guaranteed to find
the LICL (if it is on the looped face, as we have assumed for
now) and remove one of the cross-links. CLDP’s locking
mechanism [13] ensures that concurrent probes do not re-
move more than one of the cross-links; we have omitted the
details of CLDP locking for brevity. Once the LICL is re-
moved by marking one of the cross-links (say, (J,M) in our
example of Figure 8) as unusable (or non-routable in the ter-
minology of [13]), subsequent packets from S to D will be
correctly delivered.

We now make two observations about LCR. First, LCR
incurs overhead precisely when necessary—when a packet
loop is detected between two nodes that wish to communi-
cate. In practical settings, LICLs are rare and LCR can ex-
hibit extremely low overhead, as we show in Section 5.



Figure 12. Leaving ‘“‘safe” cross-links in the graph can inflate paths.

Second, a single LICL may induce a packet loop between
more than one source-destination pair. In Figure 8, a packet
from J to D also loops. Removal of one of the cross-links
when a packet loop is detected between S and D benefits
traffic from J to D as well.

4.2 The Details

Our description of the basics of LCR omits some details.
We now discuss these.

First, removing LICLs from an arbitrary graph ensures the
correctness of face routing, but the performance of face rout-
ing may suffer significantly as a result of the “safe” cross-
links left in the graph. Intuitively, these cross-links inflate the
path between source and destination by forcing the packet on
longer tours than necessary. For example, in Figure 12, the
graph on the left contains a safe cross-link. The path be-
tween the source and destination is 10 hops. Removing this
cross-link (as in the graph on the right) cuts the path length
between source and destination in half.

In order to reduce stretch and eliminate as many LICLs as
possible at low message cost, LCR uses the Gabriel Graph
and Mutual Witness (GG/MW) techniques to proactively re-
move cross-links (safe or unsafe) wherever possible. As
mentioned in Section 2, GG/MW is known to leave cross-
links in the graph [13] when radio connectivity does not con-
form to the unit disk assumption. However, we have found
that using GG/MW eliminates almost all LICLs in simulated
and real wireless topologies. In addition, GG/MW does not
add appreciable overhead. Information required for the GG
can be obtained from neighbor beacon messages that are nec-
essary for LCR to discover neighbors. The only additional
overhead comes from MW; for MW to work correctly, each
neighbor must include its neighbor list in the beacon.

Second, our description of LCR must be modified slightly
to account for network dynamics. Consider Figure 8, and
suppose that after the removal of (J,M), the link (L, K) fails
(for example, it is obstructed). This change leaves the net-
work partitioned. LCR deals with deleted links as follows.
When a node detects that a link to a neighbor has failed,
the node takes no action if the failed link was not in the
planar subgraph. Otherwise, the node initiates a special
probe on the face containing the failed link. Mechanisti-
cally, this process involves sending a packet along the first

counter-clockwise link from the failed link, and forwarding
the packet using the right-hand rule. At every node visited
during this traversal, the probe message “awakens” (adds to
the planar sub-graph) all attached links that were previously
removed by GG/MW or LCR, and then runs CLDP on each
link to eliminate cross-links. Thus, in our example, when
K notices that the link (L,K) has failed, it sends a probe
message towards J which awakens the link (J,M), thereby
restoring connectivity.

Third, and perhaps most important, to remove a LICL it
might be necessary to probe not just the links on the looped
face, but also links on adjacent faces. Consider the topology
shown in Figure 13. When S sends a packet to D, the packet
loops the face shown and returns to S. Notice that this looped
walk does not contain any cross-links; thus, the LICL is not
detected by this walk. Now, it is easy to determine whether
or not the looped walk contains a cross-link. A looped walk
without cross-links would traverse the inside or outside face
of a simple polygon. LCR data packets accumulate the num-
ber n of links traversed during a walk, and the sum of the
angles o turned between successive links in the walk. If the
looped walk traverses the face of a simple polygon, then « is
equal to (n—2)m or (n+2).

When LCR detects that a looped walk does not contain
a cross-link, it does not initiate CLDP probes on the face’s
links. Rather, LCR initiates a recursive search on the adja-
cent faces for the cross-link. The recursive search procedure
works as follows. Each data packet carries, in addition to a
destination location, a level indicator.

o Initially, this level indicator is set to zero. Suppose that
a packet sent from a source to a destination loops, and
that this loop traverses a simple polygon (and so does
not contain a cross-link). In Figure 13, when S sends
a packet to D, the packet walks the face as shown by
the solid arrows, and S can detect that this face does
not contain a cross-link using the technique described
above.

e Next, the source increases the level indicator to 1, and
re-sends the packet to the destination. When a node re-
ceives a packet on link x with a non-zero level indicator,
it forwards the packet as usual using the right-hand rule
along (say) link y, but also forwards a copy of the packet



Figure 13. Extended topology in which LCR must probe
nearly every face.

on every outgoing link except x and y after decrement-
ing the level indicator. The dotted arrows in Figure 13
show the additional copies of packets sent by each of
the nodes S, A, B, and C (for simplicity, the figure does
not show the complete walks taken by those packets).

e In turn, each packet might loop around a simple poly-
gon, or encounter a link crossing, or reach the destina-
tion. If the packet loops around a simple polygon, LCR
recursively applies this procedure. If a packet encoun-
ters a crossing, LCR removes that cross-link, and then
notifies the source. If the packet reaches the destination,
the destination wakes up all links on the face containing
the incoming link, detecting and removing one or more
cross links (as is the case in our example in Figure 13).
The destination then notifies the source.

e After a liberal timeout, if the source does not get any
response, it increments the level indicator and sends an-
other packet to the destination.

This recursive search procedure can, in the worst-case,
incur overhead comparable to CLDP [13]. However, no-
tice that our example in Figure 13 shows a very contrived
topology. In our simulations on real-world wireless topolo-
gies, heavily obstructed wireless graphs, those with signif-
icant location error, and even on random graphs, we have
never found the need to recurse more than one level to make
progress towards the destination.

4.3 Routing to Arbitrary Locations

Geographic routing protocols that rely on graph pla-
narization have an important property. Consider a face walk
using GPSR on a graph planarized by CLDP. If this face
walk loops, two facts can be inferred: first, that the desti-
nation is not a node in the graph; second, that the node at
which perimeter mode was invoked is closest to the destina-
tion. Many of the data-centric storage schemes described in
the literature use this property [24].

LCR does not preserve this property. Intuitively, LCR
uses packet loops to detect link crossings and therefore can-
not disambiguate between a cross-link and a destination not
in the graph. Even though it is efficient to detect whether
a looped walk contains a cross-link using a CLDP probe, it
can be more costly to determine whether this looped walk
was caused by a cross-link or a destination not in the graph,
as the example in Figure 13 illustrates.

Thus, LCR is not efficient for data centric storage, but
does provide highly scalable, low overhead any-to-any rout-
ing. Furthermore, LCR inherits CLDP’s robustness proper-
ties, since it does not rely on the unit disk assumption for
correctness.

When used for any-to-any routing, LCR must be comple-
mented with a location service. In static networks, a robust
location service can be easily implemented by using a small
number of directory nodes in the network to periodically ad-
vertise their locations and collect and maintain node loca-
tions and mappings. Nodes would query the nearest direc-
tory node to resolve node locations. More scalable schemes
are also, of course, possible. In dynamic networks, a loca-
tion scheme such as GLS [20] would work well. In such
networks, LCR would need to be amended slightly to ensure
that a packet loop is not caused by a stale destination address;
a node that detects a packet loop must first ensure that it has
an up-to-date destination address before invoking cross-link
removal.

S Performance Evaluation
In this section, we compare the performance of LCR
with that of other alternatives in simulation on both synthet-
ically generated and real-world, empirically measured wire-
less topologies. We also measure LCR’s performance in de-
ployment on a real wireless sensornet testbed.
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Figure 14. LCR implementation on TinyOS.

5.1 Methodology and Metrics

We compare LCR against two other alternatives,
CLDP [13] and GDSTR [21]. We have described the for-
mer in Section 4, and the latter in Section 2. We have im-
plemented LCR in TinyOS [8], the event-driven operating
system used on the Mica-Z and TelosB motes.



Figure 14 is a schematic describing the structure of our
full-fledged nesC implementation of LCR. Our LCR code
also runs on TOSSIM, which we use for our simulation re-
sults. We also use our TinyOS CLDP implementation for
our simulations. Both LCR and CLDP use GOAFR [19]
for greedy routing and face routing, since this protocol is
known to exhibit lower average- and worst-case path length
than other face routing schemes proposed in the literature.
Of course, both LCR and CLDP work unmodified with
other face routing techniques such as GPSR. Finally, we use
the simulator from [21] for evaluating the performance of
GDSTR.

In our baseline simulations, we use a 400-node topology
in which nodes are randomly positioned on a fixed-size two-
dimensional surface. =~ We scale the area of the surface in
order to vary node density; for the highest density we use
an area of 1500 x 1500 units, while for the lowest, we use
an area of 3000 x 3000 units. Our measure of density is the
average number of neighbors of a node.

We also examine the effect of network size by considering
topologies ranging in size from 100 nodes to 1000 nodes. All
data points are averaged over 40 experiments.

We simulate two types of networks. First, we generate
wireless topologies using an idealized radio model with cir-
cular radio ranges (of 200 units) but with varying numbers
of obstacles; we have generated graphs with N/2, N/4 and
N/8 obstacles, where N is the number of nodes. Each ob-
stacle is of fixed length (40 units) in each of our simulations.
The midpoint of the obstacle is randomly positioned on the
two-dimensional surface, and the orientation of the obstacle
is equally likely to be either vertical or horizontal. While our
radio model deviates from reality, the rather large number
of obstacles we use generates graphs that arguably approxi-
mate highly obstructed environments. Our obstacle graphs
have densities varying from 4.9 to 15.8. Second, we gener-
ate wireless topologies by perturbing node coordinates ran-
domly by up to 30% of the radio range. In this case, we
obtain location error graphs whose densities vary from 5.2
to 19.8.

We use two measures of performance. Overhead mea-
sures the average number of control messages sent or for-
warded by a node. Average stretch measures the average of
path stretch for all sender/receiver pairs. The stretch of a path
is the ratio of the number of hops using the routing scheme
in question to the number of hops in the shortest path.

We do not simulate packet losses due to interference or
buffer overrun in either phase. Thus, our measurement of
overhead is idealized, but since the GDSTR simulator does
not simulate packet drops, this methodology provides a fair
comparison.

For each simulation we first generate a network topology.
We then ensure that the topology is connected. For GDSTR,
we feed the topology into the simulator and use the results
generated thereby. For CLDP, we do the same, extract the
resulting planarized graph, and compute the stretch metric
off-line using a standalone program in order to reduce simu-
lation running time. We use a similar optimization for sim-
ulating LCR. Since LCR is triggered by data traffic, and be-
cause running pairwise probes between all pairs of nodes in a
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Figure 16. Overhead for 30% location error, 400 nodes.

large topology is time-consuming, we perform the following
actions in a standalone program we developed:

e Run GG/MW on the topology.

e Between each pair of nodes, compute the path that face
routing would have taken. If a packet loops, mark that
pair.

At the end of this step, we invoke TOSSIM, and send traf-
fic between these marked pairs alone, thus triggering LCR’s
lazy cross-link removal. We compute stretch statistics for the
resulting topology offline, as for CLDP.

5.2 Simulation Results

In this section, we discuss simulation results obtained
from running LCR using TOSSIM’s support for packet-level
simulation. We first measure the overhead of the three pro-
tocols, starting from a static network (we consider dynamics
below). Recall that our definition of overhead is the aver-
age number of protocol control messages transmitted or for-
warded by a node. For CLDP, overhead measures the mes-
saging cost of planarization, and for GDSTR, the messaging
cost of computing hull trees. For LCR, the overhead is the
control messaging cost incurred during removal of all the LI-
CLs in the graph; we detect LICLs by sending data packets
between all pairs of nodes, but we do not count the cost of
the data messages.

Figure 15 shows the overhead of the three protocols as a
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function of network density. The y-axis is on a logarithmic
scale. LCR exhibits 2, sometimes 3, orders of magnitude
lower overhead than GDSTR, and 3-4 orders of magnitude
lower overhead than CLDP. (This overhead does not count
the messaging cost of neighbor beacons; all protocols incur
this cost). This difference is remarkable, and is consistent
with our earlier claims: lazy-removal of cross-links can dra-
matically reduce messaging overhead. Even in highly ob-
structed scenarios, the messaging overhead required for en-
suring loop-free geographic routing can be as low as 0.001
messages per node. This overhead is particularly important
in domains where messaging cost is a significant issue, such
as in sensor networks. Finally, the apparent variation in the
plot for LCR overhead is an artifact of the logarithmic scale
on the y-axis; each data point is an average over 40 different
topologies.

The overhead disparity between LCR and the other proto-
cols widens in location error graphs, as shown in Figure 16.
In these graphs, at high enough density, LCR incurs zero
overhead. Even across many network sizes, this disparity
persists. Figure 17 plots the overhead as a function of net-
work size on graphs with N/2 obstacles. Messaging over-
head per node is relatively insensitive to network size, and
LCR still incurs 2 orders of magnitude less overhead than
GDSTR, and 3 less than CLDP.
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Finally, LCR’s overhead decreases in less heavily ob-
structed graphs. As Figure 18 demonstrates, LCR exhibits
almost negligible overhead in graphs with N/8 obstacles.
(In this figure, we have omitted the curves for CLDP and
GDSTR for clarity; we have verified that those curves are
qualitatively similar to those in Figure 15.)

However, perhaps a fairer overhead comparison for all
protocols is the overhead incurred during network dynam-
ics. To evaluate the protocols by this metric, we simulated
a 400-node topology to which we added 80 nodes, one at
a time. After each addition, we measured the overhead in-
curred by the corresponding protocol (for LCR, after each
node addition, we sent data packets pairwise between nodes
to determine LICL removal overhead). We then removed
80 nodes, one at a time, repeating the same steps as above
after each node deletion. We show the overhead measure-
ments from these experiments in Figure 19, wherein each
data point represents an average over 30 topologies. Again,
LCR’s overhead is nearly 3 orders of magnitude less than
that of GDSTR, and 4 orders less than that of CLDP.

This dramatic overhead improvement is somewhat offset
by a well-known shortcoming of geographic face routing—
longer stretch at low densities. As Figure 20 shows, both
LCR and CLDP exhibit high stretch in a highly obstructed
environment, at densities below 8. A qualitatively similar
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behavior is found in graphs with location errors, as shown
in Figure 21. By contrast, GDSTR shows low path stretch
throughout; its hull trees are able to route packets efficiently,
even when greedy routing fails often. This high average
stretch is exhibited by all face routing techniques (not just
LCR) since these techniques route packets entirely based on
local information. By contrast, GDSTR builds global routing
structures (hulls) that are able to route around voids more ef-
ficiently. Localized routing can result in some face walks
traversing the outer perimeter of the network and thereby
incurring high stretch. Figure 22 shows the distribution of
stretch values at different densities. For example, at a den-
sity of 6.9, nearly 80% of node pairs incur a stretch of less
than 2, but a few node pairs incur a stretch of up to 100.

5.3 Real-world Performance

Finally, we evaluate the performance of LCR and CLDP
on a large sensor network testbed running TelosB motes and
deployed above the false ceiling of an office floor. In our
experiments, we statically configured nodes with their loca-
tions.

We ran these two protocols on three sets of nodes: set
A contains 49 nodes, set B contains a different group of 49
nodes, and set C contains 56 nodes. In each set we obtained
two topologies, one by setting the node transmit power to 3,
and the other to 5. In each topology, our protocols discarded
links with packet loss rates of more than 80%.

Figure 23 shows the overhead and stretch for LCR and
CLDP. For comparison, we also include the corresponding
numbers for GDSTR; these numbers were derived by simu-
lating GDSTR on the corresponding topologies. Notice that
in real-world networks, LCR exhibits low stretch (less than
1.7) and zero overhead for most of the graphs. There is one
graph for which, interestingly enough, LCR exhibits over-
head comparable to GDSTR! This graph has an incredibly
pathological packet loop that triggers many probes, as shown
in Figure 24. Our LCR implementation is robust enough to
detect this pathology and correct it. We should also add that
this graph is the only real-world graph we have found that
exhibits even one LICL (we have experimented with many
tens of graphs, but do not include these qualitatively similar
results here).

6 Conclusions

In this paper, we have described the design of LCR, a
mechanism for lazy cross-link removal for geographic rout-
ing in wireless and sensor networks. LCR exhibits two to
three orders of magnitude lower overhead than alternative
geographic routing mechanisms and works correctly even in
highly obstructed environments, making it highly suitable
for any-to-any routing in dense wireless sensor networks.
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