Robust Positioning Algorithms for Distrib uted Ad-Hoc Wir elessSensorNetworks

ChrisSavarese JanRabag
Berkeley WirelessResearclCenter
{savarese, j an}@ecs. ber kel ey. edu

KoenLangendoen
Faculty of InformationTechnologyandSystems
Delft Universityof TechnologyThe Netherlands
koen@ds.tw . tudel ft.nl

Abstract

A distributedalgorithm for determiningthe positionsof
nodesin an ad-hoc, wirelesssensornetworkis explained
in detail. Details regarding the implementationof sud
an algorithm are also discussed.In a 400 node network
in which the nodesare randomlyplacedwithin a 100x100
squake, thealgorithmis shownto achieve average position
errors of lessthan 33% of a nodes radio range in the
presencef 5% range measuementerror whenat least5%
of the nodesare andchor nodes(with knownposition) and
the averge connectivityof a nodeis greaterthan 7 nodes.
It is shownthat the algorithm performswell in networksin
which nodesare connectedo at least7 one-hopneighbos
on averge and whee average range errors are lessthan
40%.

1. Intr oduction

Ad-hocwirelesssensonetworksarebeingdevelopedor
usein monitoring a host of ervironmentalcharacteristics
acrossthe areaof deployment, suchaslight, temperature,
sound, and mary others. Most of thesedata have the
commoncharacteristi¢hat they areusefulonly whencon-
sideredn thecontext of wherethedatawastakenfrom, and
somostsensodatawill be stampedwith positioninforma-
tion. As thesearead-hocnetworks, however, acquiringthis
positiondatacanbe quite challenging.

Ad-hocsystemsstrive to incorporateasfew assumptions
as possible for characteristicssuch as the composition
of the network, the relative positioningof nodes,or the
ervironmentin which the network operates.This calls for
robust algorithmsthat are capableof handling the wide

setof possiblescenariodeft openby so mary degreesof
freedom. Specifically we only assumethat all the nodes
beingconsideredn aninstanceof a positioningalgorithm
arewithin the sameconnectecetwork, andthattherewill
exist within this network a minimumof four anchomodes.
Here,a connectecdhetwork is a network in which a viable
routeexiststo eachnodein thenetwork, andananchor node
is anodethatis givena priori knowledgeof its positionwith
respecto someglobal coordinatesystem.

A consequencef the ad-hocnatureof thesenetworks
is the lack of infrastructureinherentto them. With very
few exceptions,all nodesare consideredequal, makingit
difficult to rely oncentralizeccomputatiorto solve network
wide problems suchaspositioning.Thus,we considerdis-
tributedalgorithmsthatachieve robustnesshroughiterative
propagatiorof informationthroughanetwork via multi-hop
routing.

The positioning algorithm being consideredrelies on
range measurementgo estimate the distance between
neighboringnodes.Sereraltechniquesanbe usedto gen-
eratethesemeasurementsncluding time of arrival, angle
of arrival, phasemeasurementseceved signal strength,
andothers.This algorithmis indifferentto which methodis
used exceptthatdifferentmethodsoffer differenttradeofs
betweenaccurag, compleity, cost, and power require-
ments. Someof thesemethodsgeneraterange measure-
mentswith errorsas large as £50% of the measurement,
which canresultin uselesgositioninformationif careis
not taken. This formsthe first of two major challengesn
positioningwithin anad-hocspaceandwill betermedthe
range error problemthroughouthis paper

The secondmajor challengebehindad-hocpositioning
algorithms henceforthreferredto asthesparseanchor node
problem comesfrom the needfor at leastfour reference
points with known location in a three-dimensionaspace



in order to uniquely predict the location of an unknown
object. Too few referencepointsresultsin ambiguitiesthat
lead to underdeterminedystemsof equations. Recalling
the assumptionsnadeabove, only the anchornodeswill
have positioninginformationatthestartof thesealgorithms,
andtheseanchomodeswill belocatedrandomlythroughout
an arbitrarily large network. Given limited radio ranges,
it is thereforehighly unlikely that any randomly selected
nodein the network will bein directcommunicationwith
a sufficient numberof referencepointsto derive its own
positionestimate.

In responséo thesewo primaryobstacleswe presenan
algorithmsplit into two phasesthe start-upphaseandthe
refinemenphase. The start-upphaseaddressethe sparse
anchomodeproblemby cooperatiely spreadingwareness
of the anchor nodes’ positions throughoutthe network,
allowing all nodesto arrive at initial position estimates.
Theseinitial estimategrenot expectedo beveryaccurate,
but are useful as rough approximations. The refinement
phaseof the algorithmthenusesthe resultsof the start-up
algorithmto improve upontheseinitial positionestimates.
It is herethattherangeerrorproblemis addressed.

This paperpresentsour algorithmsin detail, and dis-
cussesseveral network designguidelinesthat should be
takeninto considerationvhendeploying asystemwith such
an algorithm. Section2 will discussrelatedwork in this
field. Section3 will go into much greaterdetail about
the two-phasealgorithm approachgxploring in depththe
start-upandrefinementphasef our solution. Section4
will discussthe finer points of the algorithmthat become
factorsat the implementationstage. Section5 reportson
the experimentgerformedto characterizéhe performance
of our algorithm. Finally, Section6 is a discussionof
designguidelinesandalgorithmlimitations, and Section7
concludeghe paper

2. Relatedwork

The recent surwey and taxonomy by Hightower and
Borriello providesa generabverview of the state-of-the-art
in locationsystemg7]. However, few systemdor locating
sensomodesin anad-hocnetwork are describedbecause
of therangeerrorandsparseanchomodeproblemshatare
difficult to handle.Many systemarebasedntheattractve
option of usingthe RF radio for measuringthe rangebe-
tweennodesfor example, by observinghesignalstrength.
Experiencehas shavn, however, that RSSI yields very
inaccuratedistanceq8]. Much betterresultsare obtained
by time-of-flight measurementgarticularlywhenacoustic
and RF signalsare combined[6, 12]; accuracief a few
percentof the transmissiorrangeare reported. Acoustic
signals,however, aretemperaturelependenandrequirean
unobstructedine-of-sight. Furthermoreeven small errors

do accumulatevhenpropagatinglistancanformationover
multiple hops.

A drasticapproachthat avoids the rangeerror problem
altogetheris to only useconnectvity betweennodes. The
GPS-lesssystemby Bulusu et al. [3] employs a grid of
beaconnodeswith known locations; eachunknovn node
setsits positionto the centroidof the beaconlocationsit is
connectedo. The positionaccuray is aboutone-thirdof
the separatiordistancebetweenbeaconsjmplying a high
beacordensityfor practicalpurposesDohertyetal. usethe
connectvity betweemodesto formulatea setof geometric
constraintaandsolve it usingcorvex optimization[5]. The
resultingaccuray depend®nthefractionof anchomodes,
for example,with 10%anchorghe accurag for unknavns
is on the order of the radio range. A seriousdravback,
which is currently being addressedis that cornvex opti-
mizationis performedby a single, centralizednode. The
“DV-hop” approachby Niculescuand Nath, in contrast,
is completelyad-hocand achieres an accurag of about
one-third of the radio rangefor densenetworks [10]. In
a first phaseanchorsflood their location to all nodesin
the network. Each unknonvn node recordsthe position
and (minimum) numberof hopsto at leastthreeanchors.
Whenerer an anchor a; infers the position of another
anchoras it computeshe distancebetweenthem, divides
that by the numberof hops, and floods this averagehop
distanceinto the network. Eachunknowvn usesthe average
hop distanceto corvert hop countsto distancesandthen
performsatriangulationto threeor moredistantanchorgo
estimateits own position. “DV-hop” works well in dense
andregulartopologies but for sparseor irregularnetworks
theaccurag degradego theradiorange.

More accuratepositionscan be obtainedby using the
rangemeasurementbetweenindividual nodes(when the
errorsaresmall). Whenthefractionof anchomodess high
the“iterative multilateration”"methodby Savvidesetal. can
beused[12]. Nodesthatareconnectedo at leastthreean-
chorscomputetheir positionandupgradeto anchorstatus,
allowing additionalunknovnsto computetheir positionin
the next iteration, etc. Recentlya numberof approaches
have beenproposedhatrequirefew anchord4, 9, 10, 11].
They are quite similar and operateas follows. A node
measureshe distancedo its neighborsandthenbroadcasts
this information. This resultsin eachnode knowing the
distanceo its neighborsand somedistancedbetweerthose
neighbors. This allows for the constructionof (partial)
local mapswith relative positions.Adjacentlocal mapsare
combinedby aligning (mirroring, rotating) the coordinate
systemsTheknown positionsof theanchomodesareused
to obtainmapswith absolutgpositions.Whenthreeor more
anchorsare presentin the network a single absolutemap
results. This style of locationingis not very robust since
rangeerrorsaccumulatevhencombiningthe maps.



3. Two-phasepositioning

As mentionedearlier the two primary obstaclesto
positioningin an ad-hoc network are the sparseanchor
node problem and the rangeerror problem. In orderto
addressachof theseproblemssuficiently, our algorithm
is separatednto two phases:tart-upandrefinement.For
the start-up phasewe use Hop-TERRAIN, an in-house
algorithm similar to DV-hop [10]. The Hop-TERRAIN
algorithmis run once at the beginning of the positioning
algorithmto overcomethe sparseanchomodeproblem,and
the Refinementalgorithm is run iteratively afterwardsto
improve upon and refine the position estimatesgenerated
by Hop-TERRAIN. Note thereforethat the emphasisfor
Hop-TERRAIN is not on getting highly accurateposition
estimatesput insteadon getting very rough estimatesso
as to have a starting point for Refinement. Likewise,
Refinemenis concernednly with nodesthat exist within
a one-hopneighborhoodandit focuseson increasingthe
accurag of the positionestimatesasmuchaspossible.

3.1 Hop-TERRAIN

Before the positioning algorithm has started, most of
the nodesin a network have no positioningdata,with the
exceptionof the anchors. The networks being considered
for this algorithm will be scalableto very large numbers
of nodeswhich will be spreadover large areasyelative to
the short radio rangesthat eachof the nodesis expected
to possessFurthermoreijt is expectedthatthe percentage
of nodesthatareanchornodeswill be small. This results
in a situationin which only a very small percentagef the
nodesn thenetwork areableto establistdirectcontactwith
ary of the anchors,andprobablynoneof the nodesin the
network will be ableto directly contactenoughanchorsto
derive apositionestimate.

In orderto overcomethis initial informationdeficieng,
the Hop-TERRAIN algorithm finds the number of hops
from a nodeto eachof the anchorsnodesin a network
and then multiplies this hop count by a sharedmetric
(averagehop distance)to estimatethe rangebetweenthe
nodeandeachanchor Thesecomputedangesarethenused
togethemwith theanchomodes’known positionsto perform
a triangulationandget the nodes estimatedposition. The
triangulation consistsof solving a systemof linearized
equations(Ax=b) by meansof a leastsquaresalgorithm,
seg[11] for detalils.

Eachof the anchornodeslaunchegshe Hop-TERRAIN
algorithm by initiating a broadcastcontainingits known
locationand a hop countof 0. All of the one-hopneigh-
borssurroundingan anchorhearthis broadcastrecordthe
anchors positionand a hop countof 1, andthen perform
anotherbroadcastcontainingthe anchors position and a

hop count of 1. Every node that hearsthis broadcast
and did not hearthe previous broadcastswill recordthe
anchorspositionandahopcountof 2 andthenrebroadcast.
This processcontinuesuntil eachanchors positionandan
associatedhop countvaluehave beenspreado every node
in the network. It is importantthat nodesreceving these
broadcastsearchfor the smallesthumberof hopsto each
anchor This ensuresconformity with the model usedto
estimatethe averagedistanceof a hop, andit alsogreatly
reduceshetwork traffic.

As broadcastsare omni directional,and will therefore
reachnodesbehindthe broadcastingnode, relative to the
directionof the flow of information, this algorithm causes
nodesto hearmary more packetsthannecessaryln order
to preventaninfinite loop of broadcastspodesareallowed
to broadcastnformationonly if it is not staleto them. In
this context, informationis staleif it refersto an anchor
thatthe node hasalreadyheardfrom andif the hop count
includedin the arriving paclet is greaterthan or equalto
the hop countstoredin memoryfor this particularanchor
New informationwill alwaystrigger a broadcastwhereas
staleinformationwill nevertriggerabroadcast.

Oncea node hasreceved dataregardingat least3(4)
anchornodesfor a network existing in a 2(3)-dimensional
space,it is ableto performa triangulationto estimateits
location. If this nodesubsequentlyecevesnew dataafter
alreadyhaving performeda triangulation,eithera smaller
hop countor a new anchor the nodesimply performsan-
othertriangulationto includethe new data. This procedure
is summarizedn thefollowing pieceof pseudacode:

when apositioningpacletis receved,

if new anchoror lower hopcountthen
storehop countfor thisanchor
computeestimatedangeto thisanchor
broadcashew pacletfor thisanchomwith
hop count= (hopcount+ 1).

else
do nothing.

if numberof anchors>= (dimensionof spacet 1) then
triangulate.

else
do nothing.

The resulting position estimateis likely to be coarsein
termsof accurag, but it providesaninitial conditionfrom
which Refinementcan launch. The performanceof this
algorithmis discussedn detailin Sectionb.

3.2 Refinement
Given the initial position estimatesof Hop-TERRAIN

in the start-upphase the objectie of the refinementphase
is to obtain more accuratepositionsusing the estimated



rangedetweemodes.SinceRefinementustoperatan an
ad-hocnetwork, only the distancego the direct (one-hop)
neighborsof a nodeare considered.This limitation allows
Refinemento scaleto arbitrarynetwork sizesandto operate
onlow-level networksthatdo not supporimulti-hoprouting
(only alocal broadcasis required).

Refinemenis aniterative algorithmin which the nodes
updatetheirpositionsin anumberof steps At thebeginning
of eachstepanodebroadcastgs positionestimatereceves
the positionsand correspondingangeestimatesfrom its
neighbors,and computesa leastsquaredriangulationso-
lution to determineits new position. In mary casesthe
constraintsimposedby the distancesto the neighboring
locations will force the new position towards the true
position of the node. When, after a numberof iterations,
the position updatebecomessmall Refinementstopsand
reportsthefinal position. NotethatRefinements by nature
anad-hoc(distributed)algorithm.

The beautyof Refinements its simplicity, but thatalso
limits its applicability In particular it was a priori not
clear under what conditions Refinementwould converge
and how accuratethe final solutionwould be. A number
of factorsthat influencethe corvergenceand accurag of
iterative Refinementre:

theaccurag of theinitial positionestimates
themagnitudeof errorsin therangeestimates
the averagenumberof neighbors
thefractionof anchomodes

Basedon previous experiencewe assumehat redundang
can counterthe above influencesto a large extent. When
anodehasmorethan3(4) neighborsn a 2(3)-dimensional
spaceaheinducedsystenof linearequationss over-defined
anderrorswill be averagedout by the leastsquaressolver.
For example, the data collectedby Beutel in [1] shavs
thatlarge rangeerrors(standarddeviation of 50%) canbe
toleratedwhenlocatinga nodesurroundedy 5 (or more)
anchorgn a 2-dimensionaspacethedistancebetweerthe
estimatedandtrue position of the nodeis lessthan5% of
theradiorange.

Despite the positive effects from redundang we ob-
senedthata straightforvardapplicationof Refinementid
not corverge in a considerablenumber of “reasonable”
casesCloseinspectiorof thesequencef stepsakenunder
Refinementevealedtwo importantcauses:

1. Errorspropagatdastthroughouthewhole network. If
the network hasa diameterd, thenan errorintroduced
by anodein steps has(indirectly) affectedevery node
in the network by steps + d becausef thetriangulate-
hop-triangulate-hop - pattern.

2. Somenetwork topologiesare inherentlyhard, or even
impossibleto locate.For example,a clusterof n nodes
(no anchors)connectedby a single link to the main

network canbe simply rotatedaroundthe ‘entry’-point
into the network while keepingthe exact sameintra-
noderanges Anotherexampleis givenin Figurel.

To mitigate error propagationrwe modified the refinement
algorithm to include a confidenceassociatedwith each
nodes position. The confidencesare usedto weigh the
equationswhen solving the systemof linear equations.
Insteadof solving Ax=b we now solve wAx=wb, wherew
is the vector of confidenceweights. Nodes,like anchors,
that have high faith in their position estimatesselecthigh
confidencevalues (close to 1). A node that obsenes
poor conditions (e.g., few neighbors,poor constellation)
associates low confidence(closeto 0) with its position
estimateandconsequentijhaslessimpacton the outcome
of thetriangulationgperformedoy its neighbors Thedetails
of confidenceselectionwill be discussedn Section4.3.
The usageof confidenceweightsimprovedthe behavior of
Refinemengreatly: almostall casexornvergenow, andthe
accurag of the positionsis alsoimprovedconsiderably

Anotherimprovementto Refinementwas necessaryo
handlethe secondissueof ill-connectedgroupsof nodes.
Detectingthat a single node is ill-connectedis easy: if
the numberof neighborsis lessthan 3(4) thenthe nodeis
ill-connectedin a 2(3)-dimensionaspace.Detectingthata
group of nodesis ill-connected however, is more compli-
catedsincesomeglobal overview is necessaryWe employ
aheuristicthatoperate$n anad-hodashion(no centralized
computation)yetis ableto detectmostill-connectedhodes.
The underlying premisefor the heuristicis that a sound
node hasindependenteferencego at least3(4) anchors.
That is, the multi-hop routesto the anchorshave no link
(edge)in common.For example,node3 in Figurel, which
is taken from [12], meetsthis criteria and is considered
sound.

@ Anchor
(O Unknown

Figure 1. Example topology .

In the start-up phase, the Hop-TERRAIN algorithm
floodsthe anchorpositionsthroughthe network andnodes
recordthe hop count of the shortestpathto eachanchor
We extent the administrationto also recordthe neighbor
ID on the shortestpath. TheselDs are collectedin a set
of potentially soundneighbors. Whenthe size of this set
reaches3(4) anodedeclarestself soundandmay enterthe



Refinemenphase. Theneighborof the soundnodeaddits
ID to their setsandmayin turnbecomesound etc. Theend
resultis thatill-connectednodeswill notbeabletofill their
setsof soundneighborswith enoughentriesand,therefore,
maynotparticipaten theRefinemenphaseln theexample
topologyin Figurel, node3 will becomesound but node4
will not. We alsonotethatthe morerestrictive participating
node definition by Savvides et al. rendersboth unknown
nodesasill-conditioned [12].

Refinement with both maodifications (confidence
weights, detectionof ill-connectednodes)performsquite
satishctorily, as will be shavn by the experimentsin
Sectionb.

4. Implementation

To study the robustnessof our two-phasepositioning
algorithm we createda simulation ervironmentin which
we can easily control a numberof (network) parameters.
We implementedthe Hop-TERRAIN and Refinemental-
gorithms as C++ code running under the control of the
OMNeT++ discreteevent simulator[13]. The algorithms
are event driven, where an event can be an incoming
messager a periodictimer. Processingan event usually
involvesupdatinginternalstate,andoften generatesutput
messageshat must be broadcast. All simulatedsensor
nodesrun exactly the sameC++ code. The OMNeT++
library is in control of the simulatedtime and enforces
a semi-concurrenexecutionof the code ‘running’ on the
multiple sensomnodes.

Code developmentfor OMNeT++ proved to be very
effective, and the run-time of the resulting simulator is
satishctory too; most of the time (80%) is spentin our
triangulationcore. In the remainderof this sectionwe dis-
cusssomespecificimplementatiordetailsof our simulation
ervironment.

4.1 Network layer

Although our positioning algorithm is designedto be
usedin anad-hocnetwork that presumablyemplagys multi-
hop routing algorithms,our algorithmonly requiresthata
nodebe ableto broadcast messagéo all of its one hop
neighbors. An importantresult of this is the ability for
systemdesignerdo allow the routing protocolsto rely on
positioninformation, ratherthanthe positioningalgorithm
relying onrouting capabilities.

An importantissueis whetheror not the network pro-
videsreliablecommunicationln this paperwe assumehat
messagdoss or corruptiondoesnot occur and that each
messages deliveredat the neighborswithin a fixed radio
range(R) from thesendingnode.Concurrentransmissions
are allowed when the transmissionareas(circles) do not

overlap. A nodewantingto broadcasta messagewhile
anothermessageén its areais in progressmustwait until
that transmission(and possibly other queuedmessages)
completeslin effectwe employ a CSMA policy.

The functionality of the network layer (local broadcast)
is implementedin a single OMNeT++ object, which is
connectedto all sensomode objectsin the simulation.
This network object holds the topology of the simulated
sensometwork, which canbe readfrom a "scenario”file
or generatedat random at initialization time. At time
zero the network object sendsa pseudomessagdo each
sensomodeobjecttelling its role (anchoror unknown) and
someattributes(e.g.,the positionin the caseof an anchor
node).Fromthenonit relaysmessagegeneratedby sensor
nodego the senders neighborawithin aradiusof R units.

4.2 Hop-TERRAIN

At time zero of the Hop-TERRAIN algorithm, all of
the nodesin the network are waiting to recewve hop count
pacletsinforming themof the positionsandhop distances
associatedvith eachof the anchornodes. Also at time
zero, eachof the anchornodesin the network broadcasts
a hop countpaclet, which is receved and repeateddy all
of the anchors’one-hopneighbors. This information is
propagatedhroughoutthe network until, ideally, all the
nodesin the network have positionsandhop countsfor all
of the anchorsin the network. At this point, eachof the
nodesperformsa triangulationto createaninitial estimate
of its position. The numberof anchorsin ary particular
scenarias notknown by thenodesn thenetwork, however,
soit is difficult to definea stoppingcriteriato dictatewhen
a node should stop waiting for more information before
performinga triangulation. To solve this problem,nodes
performtriangulationsevery time they receve information
thatis not staleafter having receved informationfrom the
first 3(4) nodedn a2(3)-dimensionaspacgseeSection3.1
for a definition of staleinformation).

Nodesalsorely on the anchornodesto inform them of
thevalueto usefor the assumedwveragehop distanceused
in calculatingthe estimatedrangeto eachanchor Initially
we experimentedwith simply using the maximum radio
rangefor this quantity Better position results, however,
are attainedby dynamically determiningthe averagehop
distanceby comparingthe numberof hops betweenthe
anchorghemselesto the known distanceseparatinghem
following the calibration procedureusedfor DV-hop (see
Section2).

The above detailsaresufficient for controllingthe Hop-
TERRAIN algorithmwithin asimulatedcernvironmentwhere
all of the nodesstartup at the sametime. Oneimportant
consequencef arealnetwork, however, is thatthenodesn
the network startup or enterthe network at randomtimes,



relative to eachother This allows for the possibility that
a late node might miss someof the waves of propagated
broadcastmessage®riginating at the anchornodes. To
solve this, eachnode is programmedto announceitself
whenit first comesonlinein a new network. Lik ewise, ev-
erynodeis programmedo respondo theseannouncements
by passingthe new nodetheir personajpositionestimates,
the positionsof all of the anchornodesthey know of, and
the hop countsand hop distancemetrics associatedvith
theseanchorsNotethat,accordingto therebroadcastules
regardingstaleinformation,thisinformationwill all benew
to the new node,causingthis new nodeto thenrebroadcast
all of the informationto all of its one-hopneighbors.This
becomesmportantin the caseswvherethe new nodeforms
a link betweentwo clustersof nodesthat were previously
notconnectedin casesvhereall or mostof thenew nodes
one-hopneighborscameonline beforethe new node, this
information will most likely be consideredstale, and so
thesebroadcastsvill not berepeategasta distanceof one
hop.

4.3. Refinement

The refinementalgorithmis implementedas a periodic
processTheinformationin incomingmessageis recorded
internally, but not processedmmediately This allows
for accumulatingmultiple position updatesfrom different
neighbors,and respondingwith a single reply (outgoing
broadcasimessage).The task of an anchornodeis very
simple: it broadcastdts positionwhenever it hasdetected
a new neighborin the precedingperiod. The task of an
unknowvn nodeis more complicated. If new information
arrivedin theprecedingperiodit performsatriangulationto
computea new positionestimate determinesnassociated
confidencdevel, andfinally decideswhetheror notto send
outa positionupdateto its neighbors.

A confidenceis a value betweenO and 1. Anchors
immediatelystart off with confidencel; unknovn nodes
startoff atalow value(0.1) andmayraisetheir confidence
at subsequenRefinementiterations. Wheneer a node
performsa successfultriangulationit setsits confidence
to the averageof its neighbors’confidences.This will, in
generalraisethe confidencdevel. Nodescloseto anchors
will raisetheir confidenceat the first triangulation,raising
in turntheconfidenceof nodeswo hopsawayfrom anchors
onthe next iteration, etc. Triangulationssometimedail or
the new positionis rejectedon othergrounds(seebelow).
In thesecasesthe confidencels setto zero, so neighbors
will not be usingerroneousnformationof theinconsistent
nodein the next iteration. This generallyleadsto new
neighbor positions bringing the faulty node back into a
consistentstate, allowing it to build its confidencelevel
again. In unfortunatecasesa node keepsgetting back

into an inconsistentstate,never corverging to a final po-
sition/confidence.To warrantterminationwe simply limit
thenumberof positionupdatesf anodeto a maximum.
To avoid flooding the network with insignificant or
erroneousposition updatesthe triangulation results are
classifiedas follows. First, a triangulation may simply
fail becausethe systemof equationsis underdetermined
(too few neighbors,bad constellation). Second,the new
position may be very closeto the currentone, rendering
the positionupdateinsignificant. Third, we checkthatthe
new position is within the reachof the anchorsusedby
Hop-TERRAIN. Similarly to Doherty et al. [5] we check
thecornvex constraintghatthedistancébetweertheposition
estimateandanchora; mustbe lessthanthe lengthof the
shortestpathto a; (hop-couny) timesthe radio range(R).
Whenthepositiondrifts outsidethe corvex region, we reset
the position to the original initial position computedby
Hop-TERRAIN. Finally, the validity of the new positionis
checled by computingthe differencebetweenthe sum of
the obsened rangesandthe sum of the distancesetween
the new positionandthe neighborlocations. Dividing this
differenceby the numberof neighborsyields a normalized
residue. If the residueis large (residue> radio range)
we assumehatthe systemof equationds inconsistenaind
rejectthe new position. To avoid being trappedin some
local minima, however, we occasionallyacceptbad moves
(10%chance)similarto a simulatedannealingorocedure.
An unexpectedsourceof errorsis that Hop-TERRAIN
assignghe sameinitial positionto all nodeswith identical
hop countsto the anchors. For example,twin nodesthat
sharethe exactsamesetof neighborsarebothassignedhe
samaenitial position. The consequencis thata neighborof
two ‘look-alikes’ is confrontedwith a large inconsisteng:
two nodesthat sharethe sameposition have two different
rangeestimates Simply droppingoneof the two equations
from the triangulationyields better position estimatesin
the first iteration of Refinementand even hasa noticeable
impactontheaccurag of thefinal positionestimates.

5. Experiments

In order to evaluateour algorithm, we ran mary ex-
perimentson both Hop-TERRAIN and Refinementusing
the OMNeT++ simulation ervironment. All data points
representveragesover 100 trials in networks containing
400 nodes. The nodesare randomly placedaccordingto
a uniform distribution on a 100x100square the specified
fraction of anchorsis randomly selected,and the range
betweenconnectechodesis blurred by drawing a random
value from a normal distribution with the true rangeas
the mean, and a parametrizedstandarddeviation. The
connectvity (averagenumberof neighbors)s controlledby
specifyingthe radio range. To allow for easycomparison
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betweendifferentscenariosrangeerrorsaswell aserrors
on positionestimatesarenormalizedo theradiorange(i.e.
50% positionerror meanshalf therangeof theradio).

Figure 2 shaws the averageperformanceof the Hop-
TERRAIN algorithm as a function of connectity and
anchorpopulationin the presenceof 5% rangeerrors. As
seenn thisplot, positionestimatedy Hop-TERRAINhave
an averageaccuray under100% error in scenarioswith
atleast5% anchorpopulationand an averageconnectvity
level of 7 or greater In extremesituationswherevery few
anchorsexist and connectvity in the network is very low,
Hop-TERRAINerrorsreachabose 250%.

Figure 3 displaysthe resultsfrom the sameexperiment
depictedin Figure 2, but now the position estimatesof
Hop-TERRAIN aresubsequentlprocessedy the Refine-
ment algorithm. Its shapeis similar to that of Figure 2,
shawving relatively consistenerrorlevelsof lessthan33%in
scenariosvith atleasts% anchompopulationandanaverage
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Figure 4. Fraction of located nodes (2% an-
chors, 5% rang e errors).

connectvity level of 7 or greater Refinemenalsohasprob-
lemswith low connectvity andanchorpopulationsandis
shavn to climb above 50% position error in theseharsh
conditions. Overall Refinemenimprovesthe accurag of
thepositionestimatedy Hop-TERRAINwith afactorthree
to five.

Figure4 helpsto explainthe sharpincreasesn position-
ing errorsfor low anchorpopulationsand sparsenetworks
shaovn in figures2 and 3. Figure 4 shaws that, as the
averageconnectvity betweemodeghroughouthenetwork
decreasepastcertainpoints, both algorithmsbreakdown,
failing to derive position estimatesfor large fractions of
the network. This is duesimply to a lacking of sufficient
information, andis an impossibleconsequencef loosely
connectechetworks. It shouldbe notedthat the resultsin
Figure4 imply thatthe reportedaveragepositionerrorsfor
low connectiities in figures2 and 3 have low statistical
significance asthesepointsrepresenbnly small fractions
of the total network. Neverthelessthe generalconclusion
to be drawn from figures 2, 3, and 4 is that both Hop-
TERRAIN and Refinementperform poorly in networks
with averageconnectvity levelsof lessthan?.

Sinceconnectvity hasa pronounceceffect on position
errorwe wereinterestedf othertopologicalcharacteristics
would show large effects as well. In the following ex-
perimentwe useda fixed grid layout insteadof randomly
placing nodesin a squareareaaccordingto a uniform
distribution. We foundthatthe grid layoutdid not resultin
betterperformancdor theRefinementlgorithm,relativeto
the performanceof the Refinementlgorithmwith random
nodeplacement.We do not include a plot herebecauset
looksalmostidenticalto Figure3. We did find a difference
in performancdor Hop-TERRAINthough.Figure5 shavs
that placing the nodeson a grid dramaticallyreducesthe
errorsof the Hop-TERRAIN algorithmin the caseswvhere
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chors, connectivity 12).

connectvity or anchor node populationsare low. For
example,with 5% anchorsand a connectvity of 8 nodes,
the averageposition error decreasedrom 95% (random
distribution) to 60% (grid).

Sensitvity to averageerror levels in the range mea-
surementss a major concernfor positioningalgorithms.
Figure 6 shavs the results of an experimentin which
we held anchor populationand connectvity constantat
10%and12 nodesyrespectiely, while varyingthe average
level of error in the rangemeasurementsWe found that
Hop-TERRAINwasalmostcompletelyinsensitve to range
errors.Thisis aresultof the binary natureof theprocedure
in which routing hopsare counted;if nodescanseeeach
other, they passon incrementechop counts,but at no time
do ary nodesattemptto measurehe actualrangeshetween
them.Unlike Hop-TERRAIN, Refinementioesrely on the
range measurementperformedbetweennodes,and Fig-
ure 6 shaws this dependencaccordingly At lessthan40%
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Figure 7. Cumulative error distrib ution (5%
range errors).

error in the rangemeasurementxn average,Refinement
offers improved position estimatesover Hop-TERRAIN.
Theresultsfrom Refinemenimprove steadilyasthe range
errors decrease. For referencewe determinedthe best
possiblepositioninformationthat canbe obtainedin each
case. For eachnodewe performeda triangulationusing
the true positionsof its neighborsand the corresponding
erroneousrange measurements. The resulting position
errors are plotted as the lower boundin Figure 6. This
shavsthatthereis roomfor improvementfor Refinement.

Up until this point we reportedaveragepositionerrors.
Figure 7, in contrast,gives a detailedlook at the distri-
bution of the position errors for individual nodesunder
four different scenarios. Note that the distributions have
similar shapes:mary nodeswith small errors, large tails
with outliers. Refinemens confidencemetrics are to
someextend capableof pinpointingthe outliers. Figure 8
shaws the relationshipbetweenposition error levels and
thecorrespondingonfidencevaluesassignedo eachnode.
The datafor Figure 8 was taken from the bestand worst
casescenariodrom the sameexperimentusedto generate
Figure7. As desiredthe nodeswith higherpositionerrors
are assignedower confidencelevels. In the easiercase,
the confidencendicatorsaremuchmorereliablethanin the
moredifficult case.Thelarge standardleviations,however,
shav thatconfidencdevelsareweakindicatorsfor position
accurag at the applicationlevel. Currently the value of
usingconfidencess theimprovedaveragepositioningerror
comparedo anaive implementatiorof Refinementvithout
confidences.

Finally, yet anotherusefulway of looking at the distri-
bution of errorsover individual nodesis to take their geo-
graphicallocationinto account.Figure9 plots positioning
errorsas a function of a nodes location in the 100x100
testingarea. This experimentused400 randomly placed
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nodesananchormpopulationof 5%, anaverageconnectvity
level of 12, andrangeerrorsof 5%. The error distribution
in Figure 9 is quite typical for mary scenariosshowving
that areasalong the edgesof the network lacking a high
concentratiorof anchornodesare particularly susceptible
to high positionerrors.

6. Discussion

It is interestingto compareour resultsfrom the previous
sectionwith the alternatve approachesliscussedn Sec-
tion 2. First,we discusghe performancef Hop-TERRAIN

andrelatedalgorithmsthatdo not userangemeasurements.

Hop-TERRAINIs equivalentto the“D V-hop” algorithmby

Niculescuand Nath [10], but we get consistentlyhigher
positionerrors,for example,69% (Hop-TERRAIN)versus
35% (DV-hop) on a scenariowith 10% anchorsand a

connectvity of 8. It is not clearwherethe differencestems
from, but the trend obsened in both studiesis the same:
when the fraction of anchorsdrops belov 5%, position
errorsrapidly increase The corvex optimizationtechnique

error [%R] anchors %

200

Figure 9. Geographic error distrib ution (5%
anchors, connectivity 12, 5% range errors).

by Dohertyetal. [5] is aboutasaccurateasHop-TERRAIN,
except for very low fractions of anchors. For example,
corvex optimizationachievespositionerrorsthatareabove
150%o0n a scenario(200 nodes, 5% anchors connectvity
of 6) whereHop-TERRAIN errorsare around125%; the
gapgrows for evenlower fractionsof anchors.

The resultsof Refinementare comparableto those of
“iterative multilateration” by Savvides et al. reportedfor
a scenariowith 50 nodes,20% anchors,connectvity 10,
and 1% rangeerrors[12]. Their algorithm, however, can
handleneitherlow anchorfractionsnor low connectvities,
becauseositioningstartsfrom nodesconnectedo at least
3 anchors. Refinementstill performs acceptablywell
with few anchorsor a low connectvity. Furthermorethe
preliminary resultsof their more advanced“collaborative
multilateration”algorithmshaow that Refinemenis ableto
determinethe position of a larger fraction of unknawns:
56% (Refinement)versus10% (collaboratve multilater
ation) on a scenariowith just 5% anchors(200 nodes,
connectvity 6).

The “Euclidean” algorithmby Niculescuand Nath uses
rangeestimatego construciocal mapsthatareunifiedinto
a singleglobal map[10]. Theresultsreportedfor random
configurationsshav that “Euclidean” is rather sensitve
to rangeerrors, especiallywith low fractionsof anchors:
in caseof 10% anchorstheir Hop-TERRAIN equialent
(DV-hop) outperformsEuclidean. Refinementachieves
betterpositionestimatesand is morerobustsincethe cross
over with Hop-TERRAIN occursaround40% rangeerrors
(seeFigure6).

In summary the performanceof Hop-TERRAIN and
Refinements comparableto otheralgorithmsin the case
of “easy” network topologies (high connectvity, mary
anchors)wvith low rangeerrors,andoutperformghecompe-
tition in difficult caseglow connectvity, few anchorslarge



rangeerrors). Theresultsof refinementtanmostlikely be
improvedevenfurtherwhentheplacemenbf anchorsiodes
can be controlled given the positive experiencereported
by others[2, 5]. Sincethe largesterrorsoccur alongthe
edgesof the network (seeFigure 9), mostanchorsshould
be placedon the perimeterof the network.

Basedontheexperimentaresultsfrom Sections andthe
discussionabore we recommenda numberof guidelines
for theinstallationof wirelesssensomnetworks:

e ensureahigh connectity (> 10), or
e employ areasonabléractionof anchorq> 5%),and
e placeanchorscarefully(i.e. attheedges).

This will createthe bestconditionsfor positioningalgo-
rithmsin generalandfor Hop-TERRAIN and Refinement
in particular

7. Conclusionsand futur e work

In this paper we have presenteda completely dis-
tributed algorithm for solving the problemof positioning
nodeswithin anad-hoc,wirelessnetwork of sensomodes.
The procedureis partitionedinto two algorithms: Hop-
TERRAIN andRefinementEachalgorithmis describedn
detail. The simulationervironmentusedto evaluatethese
algorithmsis explained,including detailsaboutthe specific
implementatiorof eachalgorithm. Many experimentsare
documentedor eachalgorithm,shaving severalaspectof
the performanceachieved undermary differentscenarios.
Theresultsshav thatwe areableto achieve positionerrors
of lessthan33%in a scenariowith 5% rangemeasurement
error, 5% anchorpopulation,and an averageconnectvity
of 7 nodes. Finally, guidelinesfor implementingand
deploying anetwork thatwill usethesealgorithmsaregiven
andexplained.

An important aspectof wireless sensornetworks is
enegy consumption.In the nearfuture we thereforeplan
to study the amountof communicationand computation
inducedby runningHop-TERRAINandRefinementA par
ticularly interestingaspectis how the accurag vs. enegy
consumptiontrade-of changesover subsequeniterations
of Refinement.
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