
An Efficient Synchronization Mechanism for Mirrored

Game Architectures

(Extended Version)

Eric Cronin, Anthony R. Kurc, Burton Filstrup and Sugih Jamin∗

({ecronin,tkurc,bfilstru,jamin}@eecs.umich.edu)
Electrical Engineering and Computer Science Department
University of Michigan

Abstract. Existing online multiplayer games typically use a client-server model,
which introduces added latency as well as a single bottleneck and single point of
failure to the game. Distributed multiplayer games minimize latency and remove the
bottleneck, but require special synchronization mechanisms to provide a consistent
game for all players. Current synchronization methods have been borrowed from
distributed military simulations and are not optimized for the requirements of fast-
paced multiplayer games. In this paper we present a new synchronization mechanism,
trailing state synchronization (TSS), which is designed around the requirements of
distributed first-person shooter games.

We look at TSS in the environment of a mirrored game architecture, which is a
hybrid between traditional centralized architectures and the more scalable peer-to-
peer architectures. Mirrored architectures allow for improved performance compared
to client-server architectures while at the same time allowing for a greater degree of
centralized administration than peer-to-peer architectures.

We evaluate the performance of TSS and other synchronization methods through
simulation and examine heuristics for selecting the synchronization delays needed
for TSS.

Keywords: Consistency, Game Platforms, System Architectures

1. Introduction

Online multiplayer games typically take one of two basic forms: cen-
tralized client-server (all commands go through a single server), shown
in Fig. 1.a, or distributed peer-to-peer (commands go directly to other
players), shown in Fig. 1.b. Client-server architectures are usually sim-
pler, but are also less efficient and scalable. Every command must go
from the client to the server and then be re-sent by the server to other

∗ This research is supported in part by the NSF CAREER Award ANI-9734145,
the Presidential Early Career Award for Scientists and Engineers (PECASE) 1998,
the Alfred P. Sloan Foundation Research Fellowship 2001, and by the United
Kingdom Engineering and Physical Sciences Research Council (EPSRC) Grant
no. GR/S03577/01, and by equipment grants from Sun Microsystems Inc. and
HP/Digital Equipment Corp. Part of this work was completed when Sugih Jamin
was visiting the Computer Laboratory at the University of Cambridge.

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

tss.tex; 28/01/2003; 15:18; p.1

2

Command
State Update Command

a. Client-Server b. Peer-to-Peer

Private

Network

Command
State Update

c. Mirrored Server

Figure 1. Multiplayer Game Architectures.

clients in the form of update messages. This adds additional latency
over the minimum cost of sending commands directly to other clients.
In addition, the server becomes a single point of failure in the game.
Unlike centralized games, where there is a single authoritative copy
of the game state kept at the server, distributed game architectures
require a copy of the entire game state to be kept at each client.
As a result, these architectures require some form of synchronization
between clients to ensure that each copy of the game state is the same.
Without synchronization, clients’ game states would diverge over time
due to network delays and other factors.

Common synchronization techniques used in existing distributed
simulation environments include bucket synchronization, breathing bucket
synchronization, and TimeWarp synchronization [8, 19]. Many of these
synchronization mechanisms were initially designed for use in large-
scale military simulations, and were only later adapted for use in mul-
tiplayer games as games gained popularity. In this paper we present
a novel new synchronization mechanism, trailing state synchroniza-
tion (TSS), which is designed specifically with distributed first-person
shooter games such as Quake [10] in mind. First-person shooters are the

tss.tex; 28/01/2003; 15:18; p.2

3

most latency-sensitive class of multiplayer games, and have a different
set of optimization parameters than large military simulations. Existing
synchronization techniques suffer from problems such as introducing
too much additional latency, providing only loosely consistent syn-
chronization, or requiring high memory and computation costs. TSS
is designed to execute commands quickly while at the same time main-
taining a consistent copy of the game state at all players, and doing
this in a computationally and memory-wise efficient manner.

The remainder of the paper is organized as follows: in Section 2 we
provide background on multiplayer game architectures, including the
mirrored game architecture, and previously proposed synchronization
methods. In Section 3 we introduce trailing state synchronization. Sec-
tion 4 examines the performance of TSS and compares it with other
synchronization algorithms. Finally, Section 5 concludes.

2. Background

2.1. Mirrored Game Server Architecture

Despite the added latency, the single point of failure, and the scalability
problems, the client-server architecture is by far the most commonly
used architecture in current multiplayer games. There are a number of
reasons behind the popularity of the client-server architecture. First,
the networking code is simpler to write since complicated synchroniza-
tion processes can be avoided. Often a single player version of a game
can be quickly adapted for client-server play with only minor changes.
Second, and usually more importantly, controlling the server gives the
game publisher more administrative control. Having control over game
servers lets publishers perform authentication, copy protection, ac-
counting and billing, and easy update of client code. Third, to reap
all the benefits of a peer-to-peer architecture, a multicast connection
between clients is needed to reduce the bandwidth requirements. Un-
fortunately, IP multicast is not yet widely available, and most existing
peer-to-peer games resort to sending a separate copy of each message
to every player, greatly increasing the bandwidth requirements [13].
End-host multicast [9] can be used to reduce this problem, but to our
knowledge has not been used in multiplayer games.

The mirrored server architecture (Fig. 1.c) that we first proposed
in [4] is a hybrid architecture designed to address the problems with
client-server and peer-to-peer architectures, similar to the generic proxy
architecture proposed in [15]. Instead of a single central server, there are
multiple distributed servers for each game. Clients connect to the mirror

tss.tex; 28/01/2003; 15:18; p.3

4

closest to themselves in a traditional client-server fashion. Players can
either pick a mirror manually, or the game client could make use of an
Internet distance service [7] to automatically select a mirror close to the
client. If the mirrors are well placed, the additional latency overhead of
the client-server architecture is greatly reduced. The mirrors themselves
are then connected to each other over a private, low-latency multicast
network used only for game traffic. The mirrors exchange commands
using a peer-to-peer architecture, with each mirror maintaining its own
copy of the game state. The use of a private network allows IP multicast
to be realistically used.

Since there are now multiple servers for the same instance of a game,
the single point of failure in traditional client-server architectures is
eliminated. If any one of the servers crashes, the clients connected to
it will be disconnected, but the other servers and clients can continue
with the game. Unlike peer-to-peer games, the networking complexity
in the mirrored server architecture lies in the servers not in the client.
In fact, in our prototype mirrored server version of Quake described
in Section 4.1, the Quake client itself is not changed at all. Unlike
a fully distributed game architecture, the mirrored servers are still
under the game publisher’s control. This allows for authentication, copy
protection, as well as the ability to trust mirrors. The ability to trust
the mirrors is important because in peer-to-peer architectures (which
the mirror architecture is) where the clients are untrusted, it becomes
easier to cheat, and it becomes more difficult for other participants to
detect when someone is cheating [2].

The use of mirrored servers does place some restrictions on what
the synchronization algorithm can do. Each mirror must be able to
handle multiple clients that could be located in any part of the game’s
world at any given time. As a consequence, it is not straightforward to
perform interest management between mirrors. In a purely peer-to-peer
architecture, two clients who are not interacting with each other need
not be tightly synchronized, reducing the bandwidth requirements, and
preventing clients from knowing information they do not absolutely
need (thus reducing the opportunities for cheating). A limited degree
of interest management between individual clients and their mirror is
still possible, e.g., the mirror can send clients only the information
necessary to render their current locations. We plan to study this issue
in greater detail as part of our future work.

2.2. Synchronization Techniques

In peer-to-peer games, instead of sending commands to a central server
that computes the game state and issues updates, clients send messages

tss.tex; 28/01/2003; 15:18; p.4

5

directly to each other. In order for each client to have a consistent view
of the game state, there needs to be some mechanism to guarantee a
global ordering of events1 [12]. This can either be done by preventing
misordering outright (by waiting for all possible commands to arrive),
or by having mechanisms in place to detect and correct misorderings.
An additional complication to synchronization of multiplayer arises
from their continuous nature. Even if there are no direct misorderings
of commands, the time at which they are executed can create additional
ordering constraints. In these simulations, both the order and the simu-
lation time of execution are important in maintaining consistency. How
this synchronization is performed is very important to the success of
the game; if it is not possible to maintain ordering within a reasonable
time, no one will be willing to play the game.

2.2.1. Conservative Algorithms
Lockstep synchronization [17], used in military simulations, is by far
the simplest technique available to ensure consistency. No member is
allowed to advance its simulation clock until all other members have
acknowledged that they are done with computation for the current time
period. This takes the first approach to providing a global ordering of
events: preventing out of order events from even being generated. In this
system, it is impossible for inconsistencies to occur since no member
performs calculations until it is sure it has the exact same informa-
tion as everyone else. Unfortunately, this scheme also means that it
is impossible to guarantee any relationship between simulation time
(also sometimes referred to as global virtual time (GVT) or game time)
and wall-clock time. There is no way to guarantee that the game will
advance at a regular rate, much less at a rate fast enough for interactive
gameplay. In a multiplayer game, this is not an acceptable tradeoff.
There are a number of similar conservative algorithms that perform
better than lockstep but are still unable to maintain a constant rate
in all situations. One of these is fixed time-bucket synchronization [17],
where a synchronization delay is used to reduce the dependency on
latency between members; an optimistic version of this algorithm that
is better suited to multiplayer games is discussed below. While these
“conservative” algorithms perform poorly in fast-paced games where a
constant rate of simulation is important, they may still be suitable for
slower turn-based games.

1 When discussing TSS we often use events and commands interchangeably, as
the events being synchronized in Quake are player commands.

tss.tex; 28/01/2003; 15:18; p.5

6

Events (GVT)

...

Simulation time

Last executed event

Late event (should have been executed here)

Anti-messages

Rollback

Simulation time{
Rollback Magnitude

time

time

host1

host2
Network transmission

Synchronization delay

Transmission delay

buckets

a. TimeWarp b. Optimistic Bucket

Figure 2. Optimistic Synchronization Algorithms.

2.2.2. Optimistic Algorithms
The second approach to ensuring consistency is to detect and correct
any differences in states. Optimistic algorithms execute events before
they know for sure that no earlier events could arrive, and then repair
inconsistencies when they are wrong. This class of algorithms is far
better suited for interactive situations. It is worth looking at several
examples of existing optimistic algorithms and their shortcomings when
used with games like Quake before describing TSS.

TimeWarp synchronization [19] (Fig. 2.a) works by taking a snap-
shot of the state before each execution (we call this snapshot the
execution context), and issuing a rollback to an earlier state if an event
earlier than the last executed event is received. On a rollback, the state
is first restored to that of the snapshot, and then all events between the
snapshot time and the current execution time are re-executed, including
the late command in its correct place. Periodically, all members reset
the oldest time at which an event can be outstanding, thereby limit-
ing the number of snapshots needed (and also limiting the maximum
lateness of a command that can be recovered from).

A main limiting feature of TimeWarp synchronization in a game
such as Quake is the requirement to checkpoint the execution con-
text at every message. A Quake execution context consumes about
one megabyte of memory, and new messages arrive at a rate of one
every thirty milliseconds from each client (more recent games have
even higher frame rates and larger execution contexts). Additionally,
copying an execution context involves not just the memory copy but
also repairing linked lists and other dynamic structures. Copying state
on every command requires both a fast machine and large amounts of
memory.

One optimization to remove this limitation is to only take snap-
shots of the state periodically [14], which reduces the memory and
copy overheads, but makes rollbacks potentially more costly since there

tss.tex; 28/01/2003; 15:18; p.6

7

is no longer always a snapshot from exactly before the inconsistency
occurred. Additionally, to reduce memory usage, the snapshots can con-
tain only what has changed in the state instead of the entire state. This
enhancement however complicates both command execution (requiring
all changes to state to be explicitly logged) and rollbacks (requiring the
game to support an “undo” mode of operation), both of which require
tight integration into the design of the game engine.

Another complication with rollbacks is that TimeWarp assumes that
events directly generate new events. As part of the rollback, special
anti-messages are sent out to cancel previously generated events that
have become invalid (that in turn can trigger other rollbacks if these
messages have already been executed, which in turn trigger more anti-
messages and so on). This explosion of anti-messages can bog down
the network and tie up servers with anti-message processing instead
of executing the game. In addition, in interactive games the player
sits between incoming events and newly generated ones, removing this
direct causal relationship. Anti-messages do not fit in well with this ar-
chitecture, since the player is outside the control of the synchronization
mechanism.

Finally, TimeWarp issues a rollback immediately upon detecting a
late command. While this has the benefit of making rollbacks as small
as possible, if there are several delayed commands in rapid succession,
there will be several of these rollbacks in a row. The combined effect
of these multiple rollbacks is similar to that of a single larger rollback
to the player. If the additional delay is small, delaying these rollbacks
and aggregating them into one will not be noticed by the player.

“Breathing” algorithms [18] attempt to solve the problem of exces-
sive rollbacks seen in TimeWarp by restricting the number of commands
that can be executed optimistically. Instead of fully optimistic execu-
tion, breathing algorithms limit their optimism to events within an
event horizon. Events beyond the horizon can not be guaranteed to be
consistent, and are therefore not executed. As with anti-messages in
TimeWarp, a problem with applying this to Quake is that nearly all
events in Quake are not directly generated by other events. Instead,
they are generated by user actions (that may be influenced by earlier
events), and it is therefore not clear how to accurately define an event
horizon.

The algorithm implemented in MiMaze [8] is an optimistic version
of the conservative bucket synchronization algorithm (Fig. 2.b). Events
are delayed for a time that should be long enough to prevent misor-
derings before being executed. If events are lost or arrive later than
expected, however, MiMaze does not attempt to detect inconsistencies
or recover in any way. If no events from a member are available in

tss.tex; 28/01/2003; 15:18; p.7

8

a particular bucket, the previous bucket’s event is dead reckoned, for
example by simply replaying the last event again or extrapolating a
new event based on the last few events; if multiple events are available
in a particular bucket, only the most recent one is used. Late events
are scheduled for the next available bucket; however, late events are not
likely to be used because only one event for each member is executed
per bucket. For a simple game such as MiMaze, in which movement
is limited to a confined maze where positional errors are minimal, and
interactions between players are limited enough that any inconsistencies
do not dramatically impact gameplay, these optimizations at the cost of
consistency may be acceptable. For a game like Quake, where interac-
tions between players are much more frequent, small inconsistencies are
likely to combine to lead to larger divergences between different states.
It is possible to decrease the number of inconsistencies in bucket syn-
chronization, but only by increasing the synchronization delay, which
decreases responsiveness.

3. Trailing State Synchronization

None of the existing distributed game or military simulation synchro-
nization algorithms introduced above are entirely suited to a game
such as Quake that has frequent updates, has a need for strong consis-
tency, and is very latency sensitive. Our solution to this problem is a
new algorithm called trailing state synchronization (TSS). Similar to
TimeWarp, TSS is an optimistic algorithm, and must execute rollbacks
when inconsistencies are detected. However, it does not suffer from the
high memory or processor overheads of TimeWarp, is able to aggregate
multiple rollbacks into a single one, is able to provide an arbitrary
maximum lateness that can be recovered from, and has the potential
to recover from inconsistencies without full rollbacks in some situations.

When rollbacks are required, instead of copying the state from a
snapshot taken just prior to the offending command as TimeWarp does,
TSS copies the state from a second copy of the same game that is
running at a delay relative to the inconsistent state. This second copy
of the game state, since it is trailing the first in execution, has had
more time to reorder commands and does not have the inconsistency
that must be repaired (in fact, as we will see later, it is this second state
that actually detects that an inconsistency has occurred). This use of
dynamically changing states as the source of rollbacks as opposed to
static (including periodic [14]) snapshots is a fundamental difference
between TSS and TimeWarp.

tss.tex; 28/01/2003; 15:18; p.8

9

Simulation Time

100ms 200ms 300ms

Leading State S0

Trailing State S1

Execution Time

d0 = 50ms

d1 = 100ms

0ms

Current Simulation time

Pending Commands

Executed Commands

Synchronization Delay

d0 = 50ms

d1 = 100ms

(Issue time)

(Render time)

Figure 3. TSS Terminology.

Instead of keeping snapshots at every command (or every few com-
mands), TSS keeps and updates a fixed number of copies of the game
state, each of which is at a different simulation time. These copies,
referred to as states, each execute every command, but after differing
synchronization delays. Only the leading state, which has the shortest
synchronization delay, is rendered to the clients’ screens, while the
other trailing states are used to detect and correct inconsistencies. At
simulation time t, if the leading state S0 is executing a command from
simulation time t− d0, then the first trailing state S1 will be executing
commands up to simulation time t − d1, the second trailing state S2

commands up to t − d2 and so on, where d0 < d1 < d2 < In
this manner, only one snapshot’s worth of memory is required for each
trailing state, reducing and bounding the memory requirements. Note
that the synchronization delays do not have to be linearly spaced. From
this description, it is clear that a main assumption with TSS is that the
cost of executing commands multiple times in each of the states is less
expensive than just taking a snapshot. In Section 4 we will revisit this
assumption, and see that for first person shooters it appears to hold
true.

Fig. 3 graphically depicts the components of TSS. Time increases to
the right. The 0 point on each state is in reference to execution time,
not simulation time. TSS is able to provide consistency because each
trailing state sees fewer misordered commands than the state preceding
it by waiting longer for delayed commands to arrive before executing.
The leading state executes with a small synchronization delay (d0). The
synchronization delay for a state is defined as the difference between
the current simulation time (a global value at each client with which
new commands are timestamped before being sent) and the execution
time of the state. The simulation time is used to allow commands to

tss.tex; 28/01/2003; 15:18; p.9

10

be reordered properly before execution. If a command is stamped with
simulation time t at the generating client, then it cannot be displayed
until simulation time t + d0, even at that same client. In other words,
the simulation time is used internally to timestamp commands when
issued, while the execution time of the leading state is what is actually
rendered to clients.

3.1. TSS Operation

As commands arrive (or are generated) at a client, they are placed on
a pending list for each trailing state in timestamp order. Late moves
whose timestamps are earlier than the current execution time for a
state are placed at the head of the pending list for the state and
are executed immediately. Different copies of a particular command
in each trailing state are linked together, so that the command from
state Si can find the copy of the same command that was executed in
the preceding state Si−1. To detect inconsistencies, each trailing state
looks at the changes in game state that the execution of a command
produced, and compares them with the changes recorded in the directly
preceding state. While this execution information kept is similar to that
kept in the second TimeWarp optimization discussed in Section 2.2.2,
the record in TSS need not contain everything that would be required
to repair the changes, but only enough data to determine that the
two executions were not identical. This has the potential to make TSS
simpler to integrate into an existing game engine.

When a command is executed in the last of the trailing states, the
command is deleted from all states since it will never be needed again.
The last state has no trailing state to synchronize it, and therefore any
inconsistencies in it will go undetected. However, if it is assumed (as
is done in the other bounded optimistic algorithms) that the longest
synchronization delay is large compared to expected command transit
delays, this is unlikely to pose a problem.

If an inconsistency is discovered, a rollback from the incorrect lead-
ing state to the correct trailing state is performed in the leading state.
This consists of copying the game state from the trailing state to the
leading state, as well as adding back to the leading state’s pending
list any commands that were executed in the incorrect state after the
rollback time. The next time the leading state executes, it will re-
execute these commands and return to the proper execution time for its
synchronization delay. If a rollback occurs between states Si and Si−1,
it is possible that once Si−1 re-executes to correct the inconsistency,
new inconsistencies between Si−1 and Si−2 will be found, generating a

tss.tex; 28/01/2003; 15:18; p.10

11

rollback between Si−1 and Si−2. In this fashion, any inconsistencies in
a trailing state that the leading state also shares will be corrected.

When an inconsistency is detected between states Si and Si−1, where
i > 1, the rollback “cascades” until it reaches S0. The first rollback will
be between Si and Si−1. Then, once Si−1 re-executes and detects the
inconsistency with its leading state Si−2, a second rollback between
Si−1 and Si−2 will occur. This repeats until finally S0 is corrected.
This mechanism is used as opposed to just executing several rollbacks
immediately between Si and Si−1, Si and Si−2, ... , Si and S0 to pre-
vent unnecessary re-execution. In order for TSS to continue to function
correctly, all the states between Si and S0 must eventually re-execute
commands between Si’s execution time and the execution time of the
intermediate state to maintain consistency. If the rollbacks all occur at
once, many of these re-executions will be duplicated in all the states,
whereas with cascading rollbacks each command is only re-executed
once and the updated (consistent) state copied to the preceding state
where further re-executions will be done. There is no additional cost to
using cascading rollbacks other than having to do the comparison to
detect that an inconsistency has occurred in each state.

One of the not immediately obvious features of the way TSS detects
inconsistencies is that a rollback in TSS may actually repair more than
one inconsistency, eliminating the need for future rollbacks. In Time-
Warp, as soon as an out of order command is received, a rollback occurs.
In TSS however, rollbacks are delayed until the trailing state reaches
the point where the inconsistency occurred in the leading state. In this
extra time, other commands may have arrived which were also late
for the leading state, creating more inconsistencies. When the rollback
occurs however, these commands will be moved back to the pending list
to be re-executed, this time in the correct order. This feature can be
seen as delaying the rollback in order to amortize its cost over several
inconsistencies. This amortization of rollbacks is unique to TSS among
the optimistic synchronization algorithms studied.

When a rollback occurs, the player’s position will jump from the
incorrect position to the correct position and gameplay continues. Oc-
casionally, rollbacks will cause more drastic changes, such as the player
coming back to life when they thought they had been killed. The impact
of these events can be lessened by delaying slightly the notification that
the player has been killed, in case there is a rollback. Instead of issuing
anti-messages on rollbacks as in TimeWarp, we take the same approach
often used in dead reckoned games, applying the new commands to the
corrected state. These problems are no worse in TSS than in any other
dead reckoned game that corrects for inconsistencies [3].

tss.tex; 28/01/2003; 15:18; p.11

12

3.1.1. Weakly and Strictly Consistent Events
The synchronization techniques studied in Section 2.2 treat all com-
mands in the same way, i.e., they do not distinguish between different
types of commands when determining how to handle late commands.
By differentiating between different types of commands, TSS has the
potential to avoid rollbacks in some situations where TimeWarp (or
other synchronization algorithms that do not employ multiple exe-
cution states) would not be able to. By waiting until the results of
the on-time execution of a command are known before triggering a
rollback, TSS has more information available when determining if the
rollback is necessary. If either the correct or incorrect execution result
is unavailable when the rollback decision must be made, as is the case
with TimeWarp, the only choice is to be conservative and trigger a
rollback.

In Quake, there are two basic classes of commands. The first type
we refer to as weakly consistent, which consists of move commands.
With these commands, it is not essential that the same move hap-
pened at the same time, as much as that the position of the player
in question is within some small margin of error in both states. The
other class of commands we refer to as strictly consistent. For these
commands, such as weapons being fired (particularly projectiles), it
is important that both states agree on exactly when and where the
event occurred. Strictly consistent commands also dominate any weakly
consistent commands near them in time. For example, when a weapon is
fired, having the exact correct position for players within the weapon’s
range becomes important. For other uses of TSS, there may be similar
classifications where comparing the results of a command, as opposed
to just the execution time of the command, gives a better indication of
whether an inconsistency occurred.

The advantage of separating commands into classes in this manner is
that when comparing the results of executing a command in two states,
weakly consistent commands can be allowed a margin of error, and
less invasive means of repairing inconsistencies can be employed (for
example, by adjusting the player’s trajectory to correct for positional
errors). If these less invasive corrections are ineffective, the error will
become large enough to trigger a rollback, to maintain complete consis-
tency. The disadvantage is that the game must now provide functions to
classify commands, compare two executions of commands, and perform
corrections without rollbacks.

If commands are not separated into classes, the information needed
to determine if two executions of a command are consistent is reduced
to determining if the command was executed on time or not. This has
the advantage that if a move arrives late, there is no need to place it

tss.tex; 28/01/2003; 15:18; p.12

13

Simulation Time

100ms 200ms 300ms

Leading State S0

Trailing State S1

d0 = 50ms

d1 = 100ms

0ms

: timestamp=225

Simulation Time

100ms 200ms 300ms

Leading State S0

Trailing State S1

d0 = 50ms

d1 = 100ms

0ms

: timestamp=175

a. On-Time Command b. Late Command

Figure 4. TSS Execution.

Simulation Time

100ms 200ms 300ms

Leading State S0

Trailing State S1

d0 = 50ms

d1 = 100ms

0ms

: timestamp=175

175 != 200

Simulation Time

100ms 200ms 300ms

Leading State S0

Trailing State S1

d0 = 50ms

d1 = 100ms

0ms

: timestamp=175

COPY {

Rollback Magnitude

a. Detection b. Repair

Figure 5. TSS Rollback.

at the head of the pending list to be executed immediately, since we
already know that this execution will be incorrect and it will need to be
re-executed once a rollback occurs. Depending on the game however, it
may still be advantageous to execute the command immediately, even
though we know it will be re-executed later, in order to lessen the
impact of the rollback on the client.

3.2. An Example of TSS

We provide a graphical example of TSS’s operation. Fig. 4.a shows the
normal on-time operation of TSS. A command with timestamp 225ms
arrives at the synchronizer when it is at simulation time 250ms. Because
the synchronization delays in use are 50ms and 100ms, the command is
placed in the pending list for both states, to be executed in the future.
It will first be executed at simulation time 275ms in state S0. At time
325ms, state S1 will execute it, and compare its results with that of S0.
Since they are identical, no inconsistency is found and the command is
discarded from the synchronizer.

Fig. 4.b depicts what happens when a command arrives late. The
synchronizer is still at simulation time 250ms, but now the arriving
move has a timestamp of 175ms. The state S0, which has a synchroniza-
tion delay of 50ms is already at execution time 200ms, so the command
is executed immediately there, but still 25ms later than it should have
been (we assume for illustrative purposes that late commands are al-
ways executed). State S1 has a large enough synchronization delay and
the move can still be executed on time.

tss.tex; 28/01/2003; 15:18; p.13

14

When S1 executes this command and compares its result with that of
S0, they do not match (Fig. 5.a), which triggers a rollback (Fig. 5.b).
The entire state of S1 is first copied over S0’s incorrect state. Any
commands in the 50ms gap between where S1 has executed up to and
where S0 was executing before the rollback (dark shaded region in the
figure) are moved back to the pending list in S0 to be re-executed. If
any of the other commands in the dark shaded region had originally
arrived late at S0 (e.g. the second command shown, with timestamp
290), they will no longer generate a rollback in the future since they
will be re-executed on-time as part of the 175ms command’s rollback.

3.3. Analysis of TSS

TSS is an optimistic algorithm, executing commands before it is certain
that no earlier commands may still be in transit. This distinguishes it
from the entire family of conservative protocols, and makes it suitable
for use in first-person shooters where the game must be able to keep
up with wall-clock time. Although it uses a synchronization delay as in
MiMaze, TSS is able to provide both a quick initial delay and a long
window for which all inconsistencies will be detected through the use of
multiple states. In MiMaze, these two variables are controlled through
the single synchronization delay parameter, so the system can either
be responsive or consistent but not both.

TSS is most similar to TimeWarp, since both are fully optimistic and
employ rollbacks to recover from any inconsistencies. With the addition
of optimizations such as less frequent snapshots, to contain the memory
usage, and a synchronization delay, to prevent unnecessary rollbacks in
a game environment, TimeWarp can be made to perform similarly to
TSS in the respective aspects. TimeWarp is not, however, able to handle
bursts of late events in a single rollback, nor is it able to control how
much re-execution is needed when fewer snapshots are used (sometimes
a rollback will occur a few events after a snapshot, sometimes a few
events before the next snapshot). In addition, TimeWarp is unable to
take advantage of event classifications to reduce the number of rollbacks
needed.

TSS performs best when the cost of executing a command (multiple
times) is less than the cost of making a snapshot because it must run
multiple parallel versions of the same game. Experiments in Section 4
show that in the case of Quake, the cost of executing a command is an
order of magnitude less than the cost of making a snapshot. Although it
must execute each command multiple times (once for each state being
maintained), since each state is independent, TSS is able to perform

tss.tex; 28/01/2003; 15:18; p.14

15

these executions in parallel if the server has multiple processors or
support for CPU threading.

3.3.1. Choosing Synchronization Delays
There is a tradeoff in TSS between how many states are used (and the
synchronization delays for each of them) and the number of commands
that must be re-executed on a rollback. The number of states used also
determines the responsiveness of the system. Because an inconsistency
is not detected until it is executed in the trailing state, the leading state
will have progressed further down an incorrect path than in TimeWarp.
The longer TSS waits before detecting the inconsistency, the more the
states will have diverged, and the more likely it is that the player will
notice the rollback when it occurs.

With a synchronization delay of zero, the leading state would provide
the fastest updates, allowing clients to see their own commands immedi-
ately (if TSS is run at the client side). However, with a synchronization
delay of zero, the leading state would also almost always be incorrect,
because commands from other players cannot arrive that quickly, and
there will be many rollbacks. If the synchronization delay of the leading
state is very large, the number of rollbacks will be reduced, but the
game will become much less responsive. In Section 4.2, we examine
several heuristics to pick this first synchronization delay in order to
reduce rollbacks but still provide adequate responsiveness.

Picking the correct number of states and the synchronization delay
for each state is also important to the optimal performance of TSS.
In order to provide a large enough window of synchronization, if too
few states are used the gaps between states must necessarily be large.
This leads to greater delay before an inconsistency is detected, which
in turn leads to more drastic and noticeable rollbacks. Conversely, if
too many states are used, the memory savings provided by TSS will
be eliminated, and the cost of executing commands in each state will
grow. Additionally, rollbacks will likely be more expensive since a longer
cascading rollback involving more state copies is needed before reaching
the leading state.

4. Performance Evaluation

There are two main questions we want to ask when evaluating TSS.
First, were we correct in our main design assumption that, for a first
person shooter, it is significantly more expensive to take a snapshot
of the state than it is to execute commands multiple times? Second,

tss.tex; 28/01/2003; 15:18; p.15

16

does TSS perform better than other synchronization mechanisms when
using similar memory settings?

To answer these questions we performed two different experiments.
In the first experiment, we implemented a mirrored server architecture
based on the popular Quake I first person shooter, and used TSS as
the synchronization mechanism. This allowed us to determine the costs
of rollbacks and command executions empirically. To answer the sec-
ond question, we turned to a simulation of just the synchronization
mechanisms, and looked at the performance under different parame-
terizations. Section 4.1 presents the first experiment, and Section 4.2
the second.

4.1. Command Execution and Rollback Costs

We implemented TSS in the open-source QuakeForge [16] server for
the Quake I first-person shooter. For the experiments reported here
we set up two mirrored servers, with three clients connected to each
(see Fig. 1.c). The servers run TSS to synchronize the commands from
the six clients. There is a very low-latency connection between clients
and servers. The latency of the server-to-server connection is 50 ms.
As mentioned above, the main goal of these experiments is to get a
concrete example of the costs of rollbacks and re-executions in a first
person shooter. A second result of this experiment was insight into
some of the challenges in adding a synchronization mechanism to an
existing game engine.

4.1.1. Implementation
The first step in implementing TSS in QuakeForge was to alter the
server so that all game state data was within an execution context,
and create functions capable of copying one execution context onto
another. Although for performance reasons Quake uses almost no dy-
namic memory, within the statically allocated structures the developers
of Quake use numerous tricks to avoid extraneous pointer dereferenc-
ing. These optimizations make the encapsulation and copying of game
state a non-trivial task. In addition, changes had to be made to the
game to account for the use of random numbers for events such as
item placement. Ideally, a separate pseudo-random number generator
(RNG) with the same initial seed would be used to provide consistent
random numbers in each execution context. On rollbacks, the RNG
state can be included in the copied state in case the leading state had
used more random numbers. Unfortunately, Quake was not designed
this way and preserving random events turned out to be the major
difficulty in implementing and evaluating TSS in QuakeForge.

tss.tex; 28/01/2003; 15:18; p.16

17

Table I. Trailing State Synchronization Execution Times in QuakeForge

Run Synch. Execution Executed Command Rollback Rollbacks Rollback

Delays (ms) Time Commands Cost Time Cost

1 0,50 6.14 s 40,780 0.15 ms 1.15 s 817 1.41 ms

2 0,100 6.37 s 45,401 0.14 ms 1.23 s 870 1.41 ms

3 0,50,100 9.02 s 59,981 0.15 ms 1.32 s 938 1.40 ms

4 0,50,100,150 12.15 s 79,357 0.15 ms 1.53 s 1,092 1.41 ms

5 0,50,100,500 13.26 s 99,730 0.13 ms 3.36 s 2,370 1.42 ms

Once the QuakeForge server had been altered to use execution con-
texts, it was fairly simple to add synchronization. When client com-
mands are received by a mirror, instead of being executed immediately,
they are diverted and sent out over the multicast channel to all the
mirrors (including the mirror that received the command initially).
Upon receiving a multicast command, it is inserted back into Quake’s
network buffer at the mirror and parsed by the Quake engine. If the
command is one that requires synchronization (some commands that
do not alter the game state can be executed immediately), it is placed
in TSS to be executed later. In the main event loop, the mirror checks
each of the TSS states for any pending commands that are ready to be
executed. Inconsistencies between the executing trailing state and its
leading state are checked for, after commands are executed. In addition
to mirroring and synchronization, we also added a trace feature to
the QuakeForge server. This logs to a file every command sent to the
multicast channel and allows games to be replayed exactly in the future
for deterministic simulations.

4.1.2. Execution Results
To test the performance of TSS in this mirrored server, we ran a series
of simulations using the aforementioned trace feature with different net-
work and synchronization parameters. Unfortunately, due to difficulties
accounting for all random events, inconsistencies often occurred, despite
the use of a synchronization mechanism. Nevertheless, we were able to
gather the cost of rollbacks in Quake. The results in Table I show five
runs, all using the same trace file, with three users connected to each of
the two mirrors. The statistics were gathered at mirror one, which saw
18,593 commands in total. The “Executed Commands” column shows
the total number of Quake moves executed by the mirror, including the
18, 593 ·#states commands that would be executed with no rollbacks,
plus any additional commands re-executed due to rollbacks. The “Ex-
ecution Time” column shows the total time (system and user) spent
executing these commands, measured by the instrumented server. The

tss.tex; 28/01/2003; 15:18; p.17

18

“Rollbacks” column shows the number of rollbacks that occurred during
the simulation, and the “Rollback Time” column shows the system and
user time spent performing the execution context copy, repairing data
structures within the execution context, and moving events back to
the event queue to be re-executed. “Total Time” includes command
execution, rollback, and other functions of the server such as providing
reliable multicast. Finally, “Command Cost” and “Rollback Cost” are
calculated by dividing the execution time and rollback time by the
number of commands and rollbacks respectively.

The command cost is dominated by the actual execution of com-
mands in the Quake engine. TSS event queue management and other
bookkeeping turn out to be minor components of the time. Similarly,
the rollback cost is dominated by the time to copy the execution con-
text and repair data structures, while the time spent moving executed
commands back to the event queue for re-execution is minor. In all
of the runs these costs were nearly identical, with command execution
being an order of magnitude less expensive than rollback. This confirms
our assumption that command executions are far cheaper than state
snapshots.

4.2. TimeWarp and TSS Performance Comparison

In order to explore the parameter space for TSS, as well as to compare
its performance to that of TimeWarp, we use trace driven simulation
of the protocols to collect statistics on a number of metrics relevant to
both server and client performance. We do not include MiMaze’s bucket
synchronization in this comparison because it cannot provide adequate
consistency without an unnecessarily large synchronization delay. This
makes it unsuitable for a first person shooter such as Quake.

We made several straightforward modifications to TimeWarp to al-
low a side-by-side comparison of the two algorithms, as follows. To
prevent unnecessary rollbacks from local commands being executed
immediately, a synchronization delay d is added to TimeWarp. To
reduce and bound memory usage, we also provide a maximum time
l for which consistency must be maintained and a fixed number of
snapshots s TimeWarp can use. The time between snapshots is com-
puted as (l − d)/s (we generate a new snapshot based on time since
last snapshot, not the number of commands since last snapshot). As
in TSS, we assume that TimeWarp will not issue any anti-messages on
rollback.

tss.tex; 28/01/2003; 15:18; p.18

19

4.2.1. Trace Collection
Ideally, we would like to simulate these two mechanisms using traces
gathered at each of the nodes of a mirrored or distributed FPS game
deployed on the Internet. These traces would contain the time at which
each command is sent by its issuing mirror, and the time at which the
command arrives at every other mirror. Unfortunately, for a number
of reasons, collecting these ideal traces is not practical. First and fore-
most, all popular first-person shooters presently use the client-server
architecture. To solve this problem we constructed artificial mirrored
architecture traces from available game server logs.

To gather traces of typical game play, we instrumented and ran
a well-connected Quake III server at the University of Michigan. We
collected the round trip times (RTTs) between the server and each
connected client once per second over several periods in January, 2002.
Quake III was chosen because it is far more popular than QuakeForge,
making it easier to get traces with more than one or two active players.
The game itself and its network properties are roughly the same as
Quake I or any of the other first person shooters for which TSS was
designed.

We obtained client RTTs from two sources: the Quake III server’s
internal RTT measurements and an external ping program. The server
was modified to record its internal RTT measurements to each client
in the game log once a second. The external program sends a ping
to each client once per second as long as they are connected to the
server. It relies on TCP pings [5] as opposed to ICMP pings, since
the latter are more often blocked by ISPs or personal firewalls. A
comparison of the server and external ping data shows that the server
measurements contain a significant amount of application-level latency,
as well as additional jitter. Therefore, our simulations rely on the more
accurate external ping data. These latencies are between the clients
and the server, not between pairs of clients as it would be in a mirrored
architecture. True client-to-client latency measurements would have
required cooperation from every player who used our server, asking
them to run measurements and return the results to us. Many players
are very untrusting (fearing viruses or trojan horses), and we did not
feel this was a realistic goal. Instead, we assume that client RTT is
nearly symmetric, and therefore the one-way delay between our server
and a client is half the measured ping time. We then approximate the
end-to-end latency between two clients to be the sum of the one-way
delays between the clients and the server. The consequence of this is
that the topology is somewhat artificial, but still provides a suitable
basis for comparing the different protocols in identical conditions. To
approximate the origination time of a packet from a mirror, we use the

tss.tex; 28/01/2003; 15:18; p.19

20

Table II. Log Snippets Used

Number of Total Gametime

Mirrors Moves (mm:ss)

2 49,590 18:47

4 94,195 15:55

6 48,684 05:30

time the packet arrives at our server minus the most recently observed
one-way delay. The arrival times at the other mirrors is calculated as
packet origination time plus the approximated one-way delay in the
star topology.

The timestamps within the Quake III server log only have the one
second granularity provided by the localtime() function in the stan-
dard C library. Because of this, the log does not contain exact arrival
times of the 30-50 commands per second from each client which we need
for our simulations. To remedy this lack of information, the command
inter-arrival times for the clients are generated by a model derived from
tcpdump [11] logs of Quake III games. We used the Quake III client to
connect to several Quake III servers on the Internet and recorded the
game traffic locally with tcpdump. We then used Ethereal [6], which has
a built-in packet decoder for Quake III, to filter out everything except
the game commands sent out by our client. We computed the cumula-
tive distribution function of the gaps between commands, and used this
distribution to randomly pick inter-arrival times for the commands in
the trace. With this last step we now have a trace which contains the
command issue and receive times for each of the mirrors, as we wanted
in the ideal case.

A simplification we make for our simulations is to break the traces
up into smaller snippets of gameplay. The set of clients is constant
for the duration of the snippet, and the game does not reset or change
levels. We do not look at dynamic adjustment of any of the synchroniza-
tion mechanisms below, so including clients joining and leaving would
merely complicate the presentation of the results without gaining any
additional insight For our simulations, we used a variety of snippets,
focusing on those with longer playtime. We look at different numbers of
mirrors (clients) and different distributions of mirror-to-mirror latencies
when selecting the snippets to use.

Below, we examine three different snippets in our simulations. Ta-
ble II shows the number of moves and total time elapsed for the three

tss.tex; 28/01/2003; 15:18; p.20

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Round Trip Time (ms)

Client 0
Client 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Round Trip Time (ms)

Client 0
Client 1
Client 5
Client 8

a. Two Mirrors b. Four Mirrors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Round Trip Time (ms)

Client 0
Client 1
Client 2
Client 3
Client 6
Client 8

c. Six Mirrors

Figure 6. Snippet Ping Time Distributions.

snippets. Fig. 6 shows cumulative distribution of the ping times to each
of the clients in these traces.

4.2.2. Simulation
There are several metrics of interest when trying to compare the per-
formance of these two synchronization methods. First, there is the total
number of rollbacks needed. This is important both to the server, where
rollbacks are expensive and limit the server’s performance, and to the
client, where rollbacks can cause unexpected changes to the view of the
world and disrupt gameplay. All rollbacks are not equal however, so we
also look at the rollback magnitude (which we abbreviate M in the
results). The magnitude of a rollback is how long the state has been
incorrect due to the inconsistency. Rollback magnitude can be measured
either in time (difference between when the inconsistency was caught
and when the command should have been executed) or in executed
commands (number of commands executed after the inconsistent one).
Figures 2.a and 5.b show how magnitude is computed for TimeWarp
and TSS respectively. In the simulation results below, we measure
magnitude in terms of time. Since Quake has regular packet rates, this

tss.tex; 28/01/2003; 15:18; p.21

22

can easily be converted to an approximate number of commands. The
higher the magnitude of a rollback, the more things that could have
diverged between the correct state and the executing state. This means
that when the rollback occurs, high magnitude rollbacks are more likely
to be noticed by the client.

From the server’s perspective, another important metric is the amount
of work that must be done during a rollback. This includes re-executing
the commands after the inconsistency in order to return to the correct
execution time. In TimeWarp, when the snapshot used to recover from
is older than the point where the inconsistency occurs, the commands
between the snapshot and the inconsistency must also be re-executed.
This metric, combined with the total number of rollbacks, determines
the cost of the synchronization mechanism on the server.

There are a number of questions we hope to answer with these
simulations. The primary goal is to determine which synchronization
mechanism performs best when used in a first person shooter with a
high packet rate. We are interested to find out which synchronization
mechanism requires the least server resources and which disrupts the
clients’ gameplay the least. A second related question is how TSS and
TimeWarp compare in a scenario where there is a lower packet rate, a
situation disadvantageous to TSS since there are fewer potential com-
mands to amortize rollbacks. In addition to head-to-head comparison
of the two protocols, we would also like to know what role the dif-
ferent parameters of TSS and TimeWarp play in overall performance.
Do certain heuristics for picking the synchronization delays result in
fewer rollbacks or a decrease in rollback magnitude? Do they do so
consistently for different sets of mirrors?

To perform this comparative study of TSS and TimeWarp, we cre-
ated two simulators that receive as input the trace snippets and produce
as output results for the metrics described above. The simulators sim-
ulate only synchronization related operations of their respective mech-
anisms, not the actual gameplay. The TimeWarp simulator allows us
to modify the frequency of snapshots and the point at which snapshots
are thrown away. There is also a parameter that adds a synchronization
delay between the origination time of the packet and when each of the
mirrors schedule execution of the command. The TSS simulator allows
us to specify the number of states to use and the synchronization delay
for each of the states.

When comparing the two synchronization mechanisms, we tried to
configure them to have similar memory usage, consistency, and added
minimum delay. Therefore we used n states in TSS and n−1 snapshots
(plus the additional actual game state) in TimeWarp. The same syn-
chronization delay was used for TimeWarp and the first state in TSS.

tss.tex; 28/01/2003; 15:18; p.22

23

Table III. Snippet Heuristics Based on Delay Observa-
tions

Synchronization Delay (ms)

Number of Maximum Maximum Aggregate

Mirrors Mean 90%-tile 90%-tile

2 51 68 66

4 117 91 89

6 143 243 177

Similarly, the maximum time used for TimeWarp is the synchronization
delay used for the last state in TSS. These settings fully configure Time-
Warp, but with TSS there is also the issue of assigning synchronization
delays to the remaining state(s). We look at how this is done below.

As mentioned above, one of the questions we would like to answer
is what impact the parameters have on performance. In particular,
we look at how setting the initial synchronization delay affects the
performance of each of the algorithms. We look at different heuristics
that analyze the entire snippet and produce a synchronization delay
to be used when executing that snippet. Ideally, when selecting the
first synchronization delay we want something low enough that it does
not hurt gameplay (by adding too much additional latency), while at
the same time we want it high enough that most commands do not
generate rollbacks. If latencies were constant, this would simply be
the maximum of the end-to-end latencies to each of the other mirrors.
A lower synchronization delay would cause moves from one client to
always arrive late and cause a rollback; a higher one will unnecessary
add additional delay to each command.

The first heuristic we investigate is to set the synchronization delay
to the maximum over all pairs of mirrors of the mean end-to-end delay
between the two mirrors. We call this heuristic “Maximum Mean”. The
conjecture here is that in a controlled environment where all the mirror-
to-mirror latencies are roughly the same and variance is low (e.g., on
the private internal network of the mirrored server architecture), the
maximum of the means would be an aggressive setting, having a low
added delay; at the same time, it would not cause many rollbacks and
the rollbacks caused would have low magnitudes since the delay vari-
ance is low. In more heterogeneous environments, this heuristic would
likely perform much worse since it would tend to be skewed by outliers.

tss.tex; 28/01/2003; 15:18; p.23

24

Another heuristic we consider is to set the synchronization delay to
the maximum of the 90%-tile end-to-end delays between each pair of
mirrors, called “Maximum 90%-tile”. The intent of this heuristic is to
conservatively handle wide variances in delay, where a few very late
commands would skew the mean in the first heuristic. By choosing the
90%-tile of the maximum, our hope is that rollbacks occur only on
network anomalies, while wider delay distributions with many packets
arriving after the mean do not suffer from constant rollbacks.

The final heuristic we look at is setting the synchronization delay to
the 90%-tile of all end-to-end measurements, which we call “Aggregate
90%-tile”. This heuristic would help ensure that few total rollbacks
would occur overall, akin to the Maximum 90%-tile heuristic. By using
the aggregate delay observations, we more aggressively seek to generate
rollbacks only for outliers. However, this heuristic would be disadvanta-
geous if there is a single high delay mirror in an environment with few
delay outliers. In this case, because the delay is aggregated, the mirror
with high delay would have most of its commands seen as outliers, and
there would be a high likelihood that that mirror’s commands generate
rollbacks.

For each of the six snippets (three from each trace), we use these
heuristics to compute synchronization delays. The synchronization de-
lays calculated and used in our simulations are shown in Table III. We
will evaluate the effectiveness of these heuristics in Section 4.2.5

The second parameter to the simulators, the final synchronization
delay/maximum time, we set to a fairly conservative two seconds. This
was large enough so that all but a few late commands were able to
be recovered from, but not so large that performance suffers due to it.
TimeWarp is particularly vulnerable to this parameter being too large,
since it must evenly space its snapshots between this value and the
initial synchronization delay.

Our choice of number of states and the delay for each state was based
on the observation that we wanted rollbacks to cover as little time as
possible, but we also wanted to limit the memory and CPU overhead
of the synchronization mechanism. In the experiments below, we use
three states for each synchronizer: the main state and two snapshots
for TimeWarp and three states for TSS. For TSS, the first and last
synchronization delays are set as described before, and the middle
synchronization delay is set to be double the minimum synchronization
delay.

4.2.3. Simulation Results
The simulators were executed with each of the three snippets, using
the parameters specified by each of the heuristics for a total of nine

tss.tex; 28/01/2003; 15:18; p.24

25

Table IV. Trace-Based Simulation Results

a. Maximum Mean

Number of Sync.

Mirrors Alg. Rollbacks Re-execs M (ms)

2 TW 11,377 299,429 43

2 TSS 7,737 24,568 62

4 TW 5,511 852,121 1,358

4 TSS 455 66,296 1,766

6 TW 26,440 2,089,045 55

6 TSS 5,936 121,704 153

b. Maximum 90%-tile

Number of Sync.

Mirrors Alg. Rollbacks Re-execs M (ms)

2 TW 4,233 119,515 86

2 TSS 2,497 10,046 84

4 TW 9,819 1,069,622 919

4 TSS 2,136 82,406 932

6 TW 2,462 237,686 241

6 TSS 324 15,037 334

c. Aggregate 90%-tile

Number of Sync.

Mirrors Alg. Rollbacks Re-execs M (ms)

2 TW 4,955 137,679 75

2 TSS 3,013 11,482 80

4 TW 11,845 1,170,099 868

4 TSS 2,977 89,707 905

6 TW 10,599 877,512 90

6 TSS 2,066 54,839 193

side-by-side comparisons for each trace. The results of the simulations
are presented in Table 4.2.2 for the realistic trace and in Table V for
the unrealistic worst-case trace. We look at (1) the total number of
rollbacks, (2) the total number of re-executed commands, and (3) the
average magnitude (M) of rollbacks. The results for each snippet are
totals for all of the mirrors in that snippet combined. From Table 4.2.2,
we see that, due to its ability to repair bursts of late commands with a
single rollback, TSS has fewer rollbacks than TimeWarp. In most cases,

tss.tex; 28/01/2003; 15:18; p.25

26

the number of rollbacks with TSS is dramatically lower, but even in its
worst cases TSS has 40% fewer rollbacks than TimeWarp.

Fewer commands are re-executed by TSS than by TimeWarp due
to rollbacks. Consider the results for two mirrors. In this case, the
number of rollbacks is similar, but the re-executed commands are an
order of magnitude lower for TSS. The reason for this difference is that
TimeWarp must roll back from fixed interval snapshots. For this set
of mirrors, the rollback magnitudes are very small (indicating there
are few commands after the inconsistency that must be re-executed),
but they often have to be created from a relatively old snapshot. All
commands in the interval between when the snapshot was taken and
the point where the inconsistency occurred must be re-executed. In
TSS, the trailing state used in the rollback is always at the point where
the inconsistency occurred in the leading state, so there is no need to
re-execute commands to catch up from an outdated snapshot.

Not shown in Table 4.2.2 is the cost of initial execution of com-
mands. It must be kept in mind that TSS executes every command
once for each state, so in these examples there are three times as many
normal executions in TSS as in TimeWarp. Similarly, TimeWarp must
make snapshots approximately once every second while TSS requires
no state copying unless a rollback occurs. This cost is not accounted
for in Table 4.2.2 either. These costs are constant, so the server can
be properly provisioned to handle them. Re-execution costs, however,
happen unpredictably, and may become very expensive. We consider
these to be the larger problem. Even if rollbacks are rare, if they are
so expensive that the game must stop for a second while the rollback
is performed, gameplay will suffer noticeably. Even with the cost of
initial execution and snapshots figured in, TSS places a lower load on
the server than TimeWarp.

The average magnitude of rollbacks is, as expected, higher for TSS
than for TimeWarp, since TSS waits before generating rollbacks while
TimeWarp always rolls back immediately. Depending on the snippet
and heuristic, the difference in magnitudes ranges from roughly even
in the 2 mirror case to nearly three times greater for TSS in the 6
mirror case. Because we set the second synchronization delay in TSS
to be twice the initial synchronization delay, this limits the minimum
possible magnitude of a rollback in TSS. Especially in the 6 mirror
snippet, where the synchronization delays are large, this leads to a
noticeable difference between TSS and TimeWarp. Better tuning of the
middle synchronization delay(s) in TSS could reduce this magnitude.

When considering the impact of the average magnitude of rollbacks,
it is important to remember that it is the average for the rollbacks
that actually occurred. So although the average rollback in TSS may be

tss.tex; 28/01/2003; 15:18; p.26

27

Table V. TSS versus TW using Server Aggregated Moves and
Maximum 90%-tile Heuristic.

Mirrors Sync. Alg. Rollbacks Re-execs M (ms)

2 TW 157 138 17

2 TSS 156 217 68

4 TW 408 1,845 930

4 TSS 322 1,745 1,181

6 TW 112 357 201

6 TSS 82 430 353

more noticeable, there are so many more rollbacks in TimeWarp that
considering the total magnitude (Rollbacks·M), TSS again outperforms
TimeWarp for all nine cases. Less encouraging however are the rollback
magnitudes themselves for both TSS and TimeWarp. Especially for
the 4 mirror snippet, where Mirror 0 has a heavy tail in its delay
distribution, very large rollbacks that are likely to be noticeable to the
players do occur. Without a significantly larger initial synchronization
delay, there is nothing any synchronization algorithm can do to improve
this situation.

4.2.4. Worst-case TSS Performance
We also looked at a second trace where the mirrors generated only
one move per second. It is highly unrealistic to assume a move issuance
rate of one move per second in any fast-pace FPS. We use present these
results here to show that even in this worst-case scenario for which TSS
was not designed, it does not fall apart. Table V presents the results
for the trace containing only one move per second from each mirror.
We would expect TSS to perform poorly in this situation, since it loses
the ability to combine many rollbacks into one, while it still pays the
penalty in rollback magnitude by waiting to execute the rollback. We
only show the Maximum 90%-tile heuristic case, but the results for the
other two heuristics are comparable.

Since both TSS and TimeWarp have nearly the same numbers of
rollbacks, by total rollback magnitude TimeWarp holds an edge for
client performance in this unrealistic scenario. Nevertheless, TSS still
has fewer total rollbacks than TimeWarp with this trace, which can be
attributed to commands from different mirrors being late at the same
time, allowing TSS to occasionally repair multiple inconsistencies. The
number of commands re-executed are roughly the same for both TSS
and TimeWarp, since with fewer commands, an outdated snapshot is

tss.tex; 28/01/2003; 15:18; p.27

28

no longer as damaging to TimeWarp. Once again, TSS outperforms
TimeWarp with regards to server performance, although the difference
is much smaller in this case. Finally, the rollback magnitude is higher
for TSS, but is less than twice as expensive for the four and six mirror
cases, and still below 100 ms for the two mirror case.

4.2.5. Heuristics for Setting Synchronization Delay
Looking back at Table 4.2.2, there is no clear winner among the three
heuristics used to compute the synchronization delay that performs
best for all three snippets, although Maximum 90%-tile has a slight
edge. Maximum Mean has more rollbacks and re-executions than the
other two heuristics in the 2 and 6 mirror cases because in these cases
the mirrors have a high percentage of their delays above the mean.
The average magnitude of these rollbacks however is the lowest when
using Maximum Mean, since the delay before detecting inconsistencies
is lower than with the other heuristics. In the 4 mirror case, Maximum
Mean is skewed by the outliers in Mirror 0, and produces a delay
which is too conservative. The result is few rollbacks, but with a very
high rollback magnitude. Aggregate and Maximum 90%-tile perform
about the same in the two and four mirror cases with similar roll-
back magnitudes and numbers of rollbacks, with more differentiation
between the two in the six mirror cases. Aggregate 90%-tile has lower
rollback magnitudes, while Maximum 90%-tile has fewer rollbacks and
re-executions. Turning to the Rollbacks ·M total magnitude again, we
give the edge to Maximum 90%-tile since although its rollbacks have a
higher magnitude there are few enough of them to make up for it.

5. Conclusion

In this paper we have presented TSS, an optimistic synchronization
mechanism designed for multiplayer games with low latency but strong
consistency requirements. It provides for low-latency, consistent game-
play through the use of multiple copies of the game state and rollbacks.
We have shown that because of its design characteristics, TSS performs
well in high-speed games where there is a large game state and many
commands to be synchronized. There are still a number of areas where
future work is needed. The benefits of event classification have not been
explored in depth. This has the potential to greatly reduce the number
of rollbacks experienced in TSS. In the mirrored server architecture
(where the mirrors can be trusted), there is potential for performing
some pre-execution at one mirror to reduce the cost of executing in
each state at each mirror. Similarly, in purely peer-to-peer environ-

tss.tex; 28/01/2003; 15:18; p.28

29

ments there is the ability to employ interest management. Neither of
these optimizations has been explored yet. More accurate game traces,
such as those recorded by pkthisto [1], could be used for simulating
TSS and other synchronization algorithms, although the traces we have
used in this paper provide an adequate means of comparing TSS and
TimeWarp side by side. The problem of selecting the right leading
synchronization delay was examined, but the selection of intermediate
synchronization delays or the dynamic adjustment of synchronization
delays as network conditions change is still unexplored.

References

1. Armitage, G.: 2001, ‘pkthisto-0.1.2’.
http://opax.swin.edu.au/∼garmitage/q3/quake-server-mods.html.

2. Baughman, N. and B. Levine: 2001, ‘Cheat-Proof Playout for Centralized and
Distributed Online Games’. In: Proc. Infocom 2001.

3. Bernier, Y.: 2001, ‘Latency Compensating Methods in Client/Server In-Game
Protocol Design and Optimization’. In: Proc. of GDC 2001.

4. Cronin, E., B. Filstrup, and A. Kurc: 2001, ‘A Distributed Multiplayer Game
Server System’. UM EECS589 Course Project Report,
http://www.eecs.umich.edu/∼bfilstru/quakefinal.pdf.

5. Dykes, S., K. Robbins, and C. Jeffery: 2000, ‘An Empirical Evaluation of Client-
side Server Selection Algorithms’. In: Proc. of IEEE Infocom 2000.

6. et al., G. C., ‘The Ethereal Network Analyzer’. http://www.ethereal.com/.
7. Francis, P., S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang: 2001,

‘IDMaps: A Global Internet Host Distance Estimation Service’. IEEE/ACM
Transactions on Networking 9(5), 525–540.

8. Gautier, L., C. Diot, and J. Kurose: 1999, ‘End-to-end Transmission Control
Mechanisms for Multiparty Interactive Applications on the Internet’. In: Proc.
of IEEE Infocom 1999, Vol. 3.

9. Helder, D. A. and S. Jamin: 2002, ‘End-host Multicast Communication Using
Switch-tree Protocols’. In: Proc. of GP2PC.

10. id Software, ‘Quake’. http://www.idsoftware.com/.
11. Laboratory, L. B. N., ‘tcpdump’. http://ee.lbl.gov/.
12. Lamport, L.: 1978, ‘Time, Clocks, and the Ordering of Events in a Distributed

System’. Communications of the ACM 21(7), 558–565.
13. Lincroft, P.: 1999, ‘The Internet Sucks: Or, What I Learned Coding X-Wing

vs. TIE Fighter’. In: Proc. of Game Developers Conference 1999.
14. Mauve, M.: 2000, ‘How to Keep a Dead Man from Shooting’. In: Proc. of the

7th International Workshop on Interactive Distributed Multimedia Systems. pp.
199–204.

15. Mauve, M., S. Fischer, and J. Widmer: 2002, ‘A Generic Proxy System for
Networked Computer Games’. In: Proc. of NetGames2002.

16. Project, T. Q., ‘QuakeForge’. http://www.quakeforge.net/.
17. Steinman, J. S.: 1995, ‘Scalable Parallel And Distributed Military Simulations

Using the SPEEDES Framework’. In: ELECSIM95.

tss.tex; 28/01/2003; 15:18; p.29

30

18. Steinman, J. S., R. Bagrodia, and D. Jefferson: 1993, ‘Breathing Time Warp’.
In: Proc. of the 1993 Workshop on Parallel and Distributed Simulation. pp.
109–118.

19. Steinman, J. S., J. W. Wallace, D. Davani, and D. Elizandro: 1998, ‘Scalable
distributed military simulations using the SPEEDES object-oriented simula-
tion framework’. In: Proc. of Object-Oriented Simulation Conference (OOS’98).
pp. 3–23.

tss.tex; 28/01/2003; 15:18; p.30

