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Abstract

Today an application developer using a distributed hash ta-
ble (DHT) with n nodes must choose a DHT protocol from
the spectrum between O(1) lookup protocols [9, 18] and
O(log n) protocols [20–23,25,26]. O(1) protocols achieve
low latency lookups on small or low-churn networks be-
cause lookups take only a few hops, but incur high main-
tenance traffic on large or high-churn networks. O(log n)
protocols incur less maintenance traffic on large or high-
churn networks but require more lookup hops in small net-
works. Accordion is a new routing protocol that does not
force the developer to make this choice: Accordion adjusts
itself to provide the best performance across a range of net-
work sizes and churn rates while staying within a bounded
bandwidth budget.

The key challenges in the design of Accordion are the
algorithms that choose the routing table’s size and content.
Each Accordion node learns of new neighbors opportunis-
tically, in a way that causes the density of its neighbors
to be inversely proportional to their distance in ID space
from the node. This distribution allows Accordion to vary
the table size along a continuum while still guaranteeing at
most O(log n) lookup hops. The user-specified bandwidth
budget controls the rate at which a node learns about new
neighbors. Each node limits its routing table size by evict-
ing neighbors that it judges likely to have failed. High churn
(i.e., short node lifetimes) leads to a high eviction rate. The
equilibrium between the learning and eviction processes
determines the table size.

Simulations show that Accordion maintains an efficient
lookup latency versus bandwidth tradeoff over a wider
range of operating conditions than existing DHTs.

1 Introduction

Distributed hash tables maintain routing tables used when
forwarding lookups. A node’s routing table consists of a set

This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National
Science Foundation under Cooperative Agreement No. ANI-0225660.
Jinyang Li is also supported by a Microsoft Research Fellowship.

of “neighbor” entries, each of which contains the IP address
and DHT identifier of some other node. A DHT node must
maintain its routing table, both populating it initially and
ensuring that the neighbors it refers to are still alive.

Existing DHTs use routing table maintenance algorithms
that work best in particular operating environments. Some
maintain small routing tables in order to limit the main-
tenance communication cost [11, 20–23, 25, 26]. Small ta-
bles help the DHT scale to many nodes and limit the main-
tenance required if the node population increases rapidly.
The disadvantage of a small routing table is that lookups
may take many time-consuming hops, typically O(log n)
in a system with n nodes.

At the other extreme are DHTs that maintain a complete
list of nodes in every node’s routing table [9, 18]. A large
routing table allows single-hop lookups. However, each
node must promptly learn about every node that joins or
leaves the system, as otherwise lookups are likely to expe-
rience frequent timeout delays due to table entries that point
to dead nodes. Such timeouts are expensive in terms of in-
creased end-to-end lookup latency [2, 16, 22]. The mainte-
nance traffic needed to avoid timeouts in such a protocol
may be large if there are many unstable nodes or the net-
work size is large.

An application developer wishing to use a DHT must
choose a protocol between these end points. An O(1) pro-
tocol might work well early in the deployment of an ap-
plication, when the number of nodes is small, but could
generate too much maintenance traffic as the application
becomes popular or if churn increases. Starting with an
O(log n) protocol would result in unnecessarily low per-
formance on small networks or if churn turns out to be low.
While the developer can manually tune a O(log n) proto-
col to increase the size of its routing table, such tuning is
difficult and workload-dependent [16].

This paper describes a new DHT design, called Accor-
dion, that automatically tunes parameters such as routing
table size in order to achieve the best performance. Accor-
dion has a single parameter, a network bandwidth budget,
that allows control over the consumption of the resource
that is most constrained for typical users. Given the budget,
Accordion adapts its behavior across a wide range of net-
work sizes and churn rates to provide low-latency lookups.



The problems that Accordion must solve are how to arrive
at the best routing table size in light of the budget and the
stability of the node population, how to choose the most
effective neighbors to place in the routing table, and how
to divide the maintenance budget between acquiring new
neighbors and checking the liveness of existing neighbors.

Accordion solves these problems in a unique way. Un-
like other protocols, it is not based on a particular data
structure such as a hypercube or de Bruijn graph that con-
strains the number and choice of neighbors. Instead, each
node learns of new neighbors as a side-effect of ordinary
lookups, but selects them so that the density of its neigh-
bors is inversely proportional to their distance in ID space
from the node. This distribution allows Accordion to vary
the table size along a continuum while still providing the
same worst-case guarantees as traditional O(log n) pro-
tocols. A node’s bandwidth budget determines the rate at
which a node learns. Each node limits its routing table size
by evicting neighbors that it judges likely to have failed:
those which have been up for only a short time or have
not been heard from for a long time. Therefore, high churn
leads to a high eviction rate. The equilibrium between the
learning and eviction processes determines the table size.

Performance simulations show that Accordion keeps its
maintenance traffic within the budget over a wide range of
operating conditions. When bandwidth is plentiful, Accor-
dion provides lookup latencies and maintenance overhead
similar to that of OneHop [9]. When bandwidth is scarce,
Accordion has lower lookup latency and less maintenance
overhead than Chord [5, 25], even when Chord incorpo-
rates proximity and has been tuned for the specific work-
load [16].

The next two sections outline Accordion’s design ap-
proach and analyze the relationship between maintenance
traffic and table size. Section 4 describes the details of the
Accordion protocol. Section 5 compares Accordion’s per-
formance with that of other DHTs. Section 6 presents re-
lated work, and Section 7 concludes.

2 Design Challenges

A DHT’s routing table maintenance traffic must fit within
the nodes’ access link capacities. Most existing designs
do not live within this physical constraint. Instead, the
amount of maintenance traffic they consume is determined
as a side effect of the total number of nodes and the rate
of churn. While some protocols (e.g., Bamboo [22] and
MSPastry [2]) have mechanisms for limiting maintenance
traffic during periods of high churn or congestion, one of
the goals of Accordion is to keep this traffic within a bud-
get determined by link capacity or user preference.

Once a DHT node has a maintenance budget, it must de-
cide how to use the budget to minimize lookup latency. This

latency depends largely on two factors: the average number
of hops per lookup and the average number of timeouts in-
curred during a lookup. A node can choose to spend its
bandwidth budget to aggressively maintain the freshness
of a smaller routing table (thus minimizing timeouts), or
to look for new nodes to enlarge the table (thus minimiz-
ing lookup hops but perhaps risking timeouts). Nodes may
also use the budget to issue lookup messages along multiple
paths in parallel, to mask the effect of timeouts occurring
on any one path. Ultimately, the bandwidth budget’s main
effect is on the size and contents of the routing table.

Rather than explicitly calculating the best table size
based on a given budget and an observed churn rate, Ac-
cordion’s table size is the result of an equilibrium between
two processes: state acquisition and state eviction. The state
acquisition process learns about new neighbors; the big-
ger the budget is, the faster a node can learn, resulting in a
bigger table size. The state eviction process deletes routing
table entries that are likely to cause lookup timeouts; the
higher the churn, the faster a node evicts state. The next sec-
tion investigates and analyzes budgeted routing table main-
tenance issues in more depth.

3 Table Maintenance Analysis

In order to design a routing table maintenance process that
makes the most effective use of the bandwidth budget, we
have to address three technical questions:

1. How do nodes choose neighbors for inclusion in the
routing table in order to guarantee at most O(log n)
lookups across a wide range of table sizes?

2. How do nodes choose between active exploration
and opportunistic learning (perhaps using parallel
lookups) to learn about new neighbors in the most ef-
ficient way?

3. How do nodes evict neighbors from the routing table
with the most efficient combination of active probing
and uptime prediction?

3.1 Routing State Distribution

Each node in a DHT has a unique identifier, typically 128 or
160 random bits generated by a secure hash function. Struc-
tured DHT protocols use these identifiers to assign respon-
sibility for portions of the identifier space. A node keeps
a routing table that points to other nodes in the network,
and forwards a query to a neighbor based on the neighbor’s
identifier and the lookup key. In this manner, the query gets
“closer” to the node responsible for the key in each succes-
sive hop.

A DHT’s routing structure determines from which re-
gions of identifier space a node chooses its neighbors. The



ideal routing structure is both flexible and scalable. With
a flexible routing structure, a node is able to expand and
contract the size of the routing table along a continuum in
response to churn and bandwidth budget. With a scalable
routing structure, even a very small routing table can lead
to efficient lookups in a few hops. However, as currently
defined, most DHT routing structures are scalable but not
flexible and constrain which routing table sizes are possi-
ble. For example, a Tapestry node with a 160-bit identifier
of base b maintains a routing table with 160

log
2

b
levels, each

of which contain b − 1 entries. In practice, few of these
levels are filled, and the expected number of neighbors per
node in a network of n DHT nodes is (b−1) logb n. The pa-
rameter base (b) controls the table size, but it can only take
values that are powers of 2, making it difficult to adjust the
table size smoothly.

Existing routing structures are rigid in the sense that they
require neighbors from certain regions of ID space to be
present in the routing table. We can relax the table structure
by specifying only the distribution of ID space distances
between a node and its neighbors. Viewing routing struc-
ture as a probabilistic distribution gives a node the flexi-
bility to use a routing table of any size. We model the dis-
tribution after proposed scalable routing structures. The ID
space is organized as a ring as in Chord [25] and we define
the ID distance to be the clockwise distance between two
nodes on the ring.

Accordion uses a 1
x

distribution to choose its neighbors:
the probability of a node selecting a neighbor with dis-
tance x from itself in the identifier space from itself is
proportional to 1

x
. This distribution causes a node to pre-

fer neighbors that are closer to itself in ID space, ensur-
ing that as a lookup gets closer to the target key there is
always likely to be a helpful routing table entry. This 1

x

distribution is the same as the “small-world” model pro-
posed by Kleinberg [13], previously used by DHTs such
as Symphony [19] and Mercury [1]. The 1

x
distribution is

also scalable and results in O( log n log log n
log s

) lookup hops if
each node has a table size of s; this result follows from an
extension of Kleinberg’s analysis [13].

3.2 Routing State Acquisition

A straightforward approach to learning new neighbors is to
search actively for nodes with the 1

x
distribution. A more

bandwidth-efficient approach, however, is to learn about
new neighbors, and the liveness of existing neighbors, as
a side-effect of ordinary lookup traffic.

Learning through lookups does not necessarily yield
useful information about existing neighbors or about new
neighbors with the desired distribution in ID space. For
example, if the DHT used iterative routing [25] during
lookups, the original querying node would talk directly to
each hop of the lookup. Assuming the keys being looked up

are uniformly distributed, the querying node would com-
municate with nodes in a uniform distribution rather than a
1
x

distribution.
With recursive routing, on the other hand, intermediate

hops of a lookup forward the lookup message directly to the
next hop. This means that nodes communicate only with
existing neighbors from their routing tables during lookups.
If each hop of a recursive lookup is acknowledged, then a
node can check the liveness of a neighbor with each lookup
it forwards, and the neighbor can piggyback information
about its own neighbors in the acknowledgment.

If lookup keys are uniformly distributed and the nodes
already have routing tables following a small-world distri-
bution, then each lookup will involve one hop at exponen-
tially smaller intervals in identifier space. Therefore, a node
forwards lookups to next-hop nodes that fit its small-world
distribution. A node can then learn about entries immedi-
ately following the next-hop nodes in identifier space, en-
suring that the new neighbors learned also follow this dis-
tribution.

In practice lookup keys are not necessarily uniformly
distributed, and thus Accordion devotes a small amount of
its bandwidth budget to actively exploring for new neigh-
bors according to the small-world distribution.

A DHT can learn even more from lookups if it performs
parallel lookups, by sending out multiple copies of each
lookup down different lookup paths. This increases the op-
portunity to learn new information, while at the same time
decreasing lookup latency by circumventing potential time-
outs. Analysis of DHT design techniques show that learn-
ing extra information from parallel lookups is more effi-
cient at lowering lookup latencies than checking existing
neighbor liveness or active exploration [16]. Accordion ad-
justs the degree of lookup parallelism based on the current
lookup load to stay within the specified bandwidth budget.

3.3 Routing State Freshness

A DHT node must strike a balance between the freshness
and the size of its routing table. While parallel lookups can
help mask timeouts caused by stale entries, nodes still need
to judge the freshness of entries to decide when to evict
nodes, in order to limit the number of expected lookup
timeouts.

Timeouts are expensive as nodes need to wait multiple
round trip times to declare the lookup message failed be-
fore re-issuing it to a different neighbor [2, 22]. In order to
avoid timeouts, most existing DHTs [2, 5, 20, 26] contact
each neighbor periodically to determine the routing entry’s
liveness. In other words, a node can control its routing state
freshness by evicting neighbors from its routing table that
it has not successfully contacted for some interval. If the
bandwidth budget were infinite, the node could ping each
neighbor often to maintain fresh tables of arbitrarily large
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Figure 1: Cumulative distribution of measured Gnutella node up-
time [24] compared with a Pareto distribution using α = 0.83 and
β = 1560 sec.

size. However, with a finite bandwidth, a DHT node must
somehow make a tradeoff between the freshness and the
size of its routing table. This section describes how to pre-
dict the freshness of routing table entries so that entries can
be evicted efficiently.

3.3.1 Characterizing Freshness

The freshness of a routing table entry can be characterized
with p, the probability of a neighbor being alive. The evic-
tion process deletes a neighbor from the table if the esti-
mated probability of it being alive is below some thresh-
old pthresh. Therefore, we are interested in finding a value
for pthresh such that the total number of lookup hops in-
cluding timeout retries are minimized. If node lifetimes
follow a memoryless exponential distribution, p is deter-
mined only by ∆tsince, where ∆tsince is the time interval
since the neighbor was last known to be alive. However,
in real systems, the distribution of node lifetimes is often
heavy-tailed: nodes that have been alive for a long time are
more likely to stay alive for an even longer time. In a heavy-
tailed Pareto distribution, for example, the probability of a
node dying before time t is

Pr(lifetime < t) = 1−

(

β

t

)α

where α and β are the shape and scale parameters of the
distribution, respectively. Saroiu et al. measure such a dis-
tribution in a study of the Gnutella network [24]; in Fig-
ure 1 we compare their measured Gnutella lifetime dis-
tribution with a synthetic heavy-tailed Pareto distribution
(using α = .83 and β = 1560 sec). In a heavy-tailed dis-
tribution, p is determined by both the time when the node
joined the network, ∆talive, and ∆tsince. We will present our

estimation of pthresh assuming a Pareto distribution for node
lifetimes.

Let ∆talive be the time for which the neighbor has been
a member of the DHT, measured at the time it was last
heard, ∆tsince seconds ago. The conditional probability of
a neighbor being alive, given that it had already been alive
for ∆talive seconds, is

p = Pr(lifetime > (∆talive + ∆tsince) | lifetime > ∆talive)

=
( β

∆talive+∆tsince
)α

( β
∆talive

)α
=

(

∆talive

∆talive + ∆tsince

)α

(1)

Therefore, ∆tsince = ∆talive(p
−

1

α − 1). Since ∆talive

follows a Pareto distribution, the median lifetime is 2
1

α β.

Therefore, within ∆tsince = 2
1

α β(p
−

1

α

thresh − 1) seconds, half
of the routing table should be evicted with the eviction
threshold set at pthresh. If stot is the total routing table size,
the eviction rate is approximately stot

2∆tsince
.

Since nodes aim to keep their maintenance traffic be-
low a certain bandwidth budget, they can only refresh or
learn about new neighbors at some finite rate determined
the budget. For example, if a node’s bandwidth budget is
20 bytes per second, and learning liveness information for
a single neighbor costs 4 bytes (e.g., the neighbor’s IP ad-
dress), then at most a node could refresh or learn routing
table entries for 5 nodes per second.

Suppose that a node has a bandwidth budget such that it
can afford to refresh/learn about B nodes per second. The
routing table size stot at the equilibrium between eviction
and learning is:

stot

2∆tsince
= B

⇒ stot = 2B∆tsince = 2B(2
1

α )β(p
−

1

α

thresh − 1) (2)

However, some fraction of the table points to dead neigh-
bors and therefore does not contribute to lowering lookup
hops. The effective routing table size, then, is s = stot ·
pthresh.

3.3.2 Choosing the Best Eviction Threshold

Our goal is to choose a pthresh that will minimize the ex-
pected number of hops for each lookup. We know from
Section 3.1 that the average number of hops per lookup in
a static network is O( log n log log n

log s
); under churn, however,

each hop successfully taken has an extra cost associated
with it, due to the possibility of forwarding lookups to dead
neighbors. When each neighbor is alive with probability at
least pthresh, the upper bound on the expected number of tri-
als per successful hop taken is 1

pthresh
(for now, we assume no

parallelism). Thus, we can approximate the expected num-
ber of actual hops per lookup, h, by multiplying the number
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Figure 2: The function h∗ (Equation 4) with respect to pthresh, for
different values of Bβ and fixed α = 1. h∗ goes to infinity as
pthresh approaches 1.

of effective lookup hops with the expected number of trials
needed per effective hop:

h ∝
log n log log n

log s
·

1

pthresh

We then substitute the effective table size s with stot ·pthresh,
using Equation 2:

h ∝
log n log log n

log(2Bβ(2
1

α )(p
−

1

α

thresh − 1) · pthresh)
·

1

pthresh
(3)

The numerator of Equation 3 is constant with respect
to pthresh, and therefore can be ignored for the purposes of
minimization. It usually takes on the order of a few round-
trip times to detect lookup timeout and this multiplicative
timeout penalty can also be ignored. Our task now is to
choose a pthresh that will minimize:

h∗ =
1

log(2Bβ(2
1

α )(p
−

1

α

thresh − 1)pthresh) · pthresh

(4)

The minimizing pthresh depends on the constants (Bβ) ·

(2
1

α ) and α. If pthresh varied widely given different values of
Bβ and α, nodes would constantly need to reassess their es-
timates of pthresh using rough estimates of the current churn
rate and the bandwidth budget. Fortunately, this is not the
case.

Figure 2 plots h∗ with respect to pthresh, for various val-
ues of Bβ and a fixed α. We consider only values of Bβ
large enough to allow nodes to maintain a reasonable num-
ber of neighbors under the given churn rate. For example,
if nodes have mean lifetimes of 10 seconds (β = 5 sec,
α = 1), but can afford to refresh/learn one neighbor per
second, no value of pthresh will allow s to be greater than 2.

Figure 2 shows that as pthresh increases the expected
lookup hops decreases due to fewer timeouts; however, as

pthresh becomes even larger and approaches 1, the number
of hops actually increases due to a limited table size. The
pthresh that minimizes lookup hops lies somewhere between
.7 and .9 for all curves. Figure 2 also shows that as Bβ in-
creases, the pthresh that minimizes h∗ increases as well, but
only slightly. In fact, for any reasonable value of Bβ, h∗

varies so little around its true minimum that we can ap-
proximate the optimal pthresh for any value of Bβ to be
.9. A similar analysis shows the same results for reason-
able α values. For the remainder of this paper, we assume
pthresh = .9, because even though this may not be precisely
optimal, it will produce an expected number of hops that is
nearly minimal in most deployment scenarios.

The above analysis for pthresh assumes no lookup par-
allelism. If lookups are sent down multiple paths concur-
rently, nodes can use a much smaller value for pthresh be-
cause the probability will be small that all of the next-hop
messages will timeout. Using a smaller value for pthresh

leads to a larger effective routing table size, reducing the
average lookup hop count. Nodes can choose a pthresh value
such that the probability that at least one next-hop message
will not fail is at least .9.

3.3.3 Calculating Entry Freshness

Nodes can use Equation 1 to calculate p, the probability of a
neighbor being alive, and then evict entries with p < pthresh.
Calculating p requires estimates of three values: ∆talive and
∆tsince for the given neighbor, along with the shape pa-
rameter α of the Pareto distribution. Interestingly, p does
not depend on the scale parameter β, which determines the
median node lifetime in the system. This is counterintu-
itive; we expect that smaller median node lifetimes (i.e.,
faster churn rates) will decrease p and increase the eviction
rate. This median lifetime information, however, is implic-
itly present in the observed values for ∆talive and ∆tsince,
so β is not explicitly required to calculate p.

Equation 1, as stated, still requires some estimate for α,
which may be difficult to observe and calculate. To simplify
this task, we define an indicator variable i for each routing
table entry as follows:

i =
∆talive

∆talive + ∆tsince
(5)

Since p = iα, a monotonically increasing function of i,
there exists some ithresh such that any routing table entry
with i < ithresh will also have a p < pthresh. Thus, if nodes
can estimate the value of ithresh corresponding to pthresh, no
estimate of α is necessary. All entries with i less than ithresh

will be evicted. Section 4.6 describes how Accordion esti-
mates an appropriate ithresh for the observed churn, and how
nodes learn ∆talive and ∆tsince for each entry.



4 The Accordion Protocol

Accordion uses consistent hashing [12] in a circular iden-
tifier space to assign keys to nodes. Accordion borrows
Chord’s protocols for maintaining a linked list from each
node to the ones immediately following in ID space
(Chord’s successor lists and join protocol). An Accordion
node’s routing table consists of a set of neighbor entries,
each containing a neighboring node’s IP address and ID.

An Accordion lookup for a key finds the key’s succes-
sor: the node whose ID most closely follows the key in ID
space. When node n0 starts a query for key k, n0 looks in
its routing table for the neighbor n1 whose ID most closely
precedes k, and sends a query packet to n1. That node fol-
lows the same rule: it forwards the query to the neighbor n2

that most closely precedes k. When the query reaches node
ni and k lies between ni and the ni’s successor, the query
has finished; ni sends a reply directly back to n0 with the
identity of its successor (the node responsible for k).

4.1 Bandwidth Budget

Accordion’s strategy for using the bandwidth budget is to
use as much bandwidth as possible on lookups by exploring
multiple paths in parallel [16]. When some bandwidth is
left over (perhaps due to bursty lookup traffic), Accordion
uses the rest to explore; that is, to find new routing entries
according to a small-world distribution.

This approach works well because parallel lookups serve
two functions. Parallelism reduces the impact of timeouts
on lookup latency because one copy of the lookup may pro-
ceed while other copies wait in timeout. Parallel lookups
also allow nodes to learn about new nodes and about the
liveness of existing neighbors, and as such it is better to
learn as a side-effect of lookups than from explicit probing.
Section 4.3 explains how Accordion controls the degree of
lookup parallelism to try to fill the whole budget.

Accordion must also keep track of how much of the bud-
get is left over and available for exploration. To control
the budget, each node maintains an integer variable, bavail,
which keeps track of the number of bytes available to the
node for exploration traffic, based on recent activity. Each
time the node sends a packet or receives the correspond-
ing acknowledgment (for any type of traffic), it decrements
bavail by the size of the packet. It does not decrement bavail

for unsolicited incoming traffic, or for the corresponding
outgoing acknowledgments. In other words, each packet
only counts towards the bandwidth budget at one end. Pe-
riodically, the node increments bavail at the rate of the band-
width budget.

The user gives the bandwidth budget in two parts: the av-
erage desired rate of traffic in bytes per second (ravg), and
the maximum burst size in bytes (bburst). Every tinc seconds,
the node increments bavail by ravg · tinc (where tinc is the

size of one exploration packet divided by ravg). Whenever
bavail is positive, the node sends one exploration packet, ac-
cording to the algorithm we present in Section 4.4. Nodes
decrement bavail down to a minimum of −bburst. While
bavail = −bburst, nodes immediately stop sending all low
priority traffic (such as redundant lookup traffic and explo-
ration traffic). Thus, nodes send no exploration traffic un-
less the average traffic over the last bburst/ravg seconds has
been less than ravg.

The bandwidth budget controls the maintenance traffic
sent by an Accordion node, but does not give the node di-
rect control over all incoming and outgoing traffic. For ex-
ample, a node must acknowledge all traffic sent to it from
its predecessor regardless of the value of bavail; otherwise,
its predecessor may think it has failed and the correctness
of lookups would be compromised. The imbalance between
a node’s specified budget and its actual incoming and out-
going traffic is of special concern in scenarios where nodes
have heterogeneous budgets in the system. To help nodes
with low budgets avoid excessive incoming traffic from
nodes with high budgets, an Accordion node biases lookup
and table exploration traffic toward neighbors with higher
budgets. Section 4.5 describes the details of this bias.

4.2 Learning from Lookups

When an Accordion node forwards a lookup (see Fig-
ure 4.2), the immediate next-hop node returns an acknowl-
edgment that includes a set of neighbors from its rout-
ing table; this acknowledgment allows nodes to learn from
lookups. The acknowledgment also serves to indicate that
the next-hop is alive.

If n1 forwards a lookup for key k to n2, n2 returns a
set of neighbors in the ID range between n2 and k. Ac-
quiring new entries this way allow nodes to preferentially
learn about ID spaces close-by to itself, the key characteris-
tic of a small-world distribution. Additionally, the fact that
n1 forwarded the lookup to n2 indicates that n1 does not
know of any nodes in the ID gap between n2 and k, and n2

is well-situated to fill this gap.

4.3 Parallel Lookups

An Accordion node increases the parallelism of lookups it
initiates and forwards until the point where the lookup traf-
fic nearly fills the bandwidth budget. An Accordion node
must adapt the level of parallelism as the underlying lookup
rate changes, it must avoid forwarding the same lookup
twice, and it must choose the most effective set of nodes
to which to forward copies of each lookup.

A key challenge in Accordion’s parallel lookup design
is caused by its use of recursive routing. Previous DHTs
with parallel lookups use iterative routing: the originating
node sends lookup messages to each hop of the lookup in



procedure NEXTHOP(lookup request q)
if this node owns q.key then {

reply to lookup source directly
return (NULL)

}
// use bias to pick best predecessor (Section 4.5)
nexthop← routetable.BESTPRED(q.key)
// forward query to next hop
// and wait for ACK and learning info
nextreply ← nexthop.NEXTHOP(q)
put nodes of nextreply in routetable
// find some nodes between this node
// and the key, and return them
return (GETNODES(q.lasthop, q.key))

procedure GETNODES(src, end)
s← neighbors between me and end
// m is some constant (e.g., 5)
if s.SIZE() < m then v ← s
else v ← m nodes in s nearest to src w.r.t. latency
return (v)

Figure 3: Learning from lookups in Accordion.

turn [15,20]. Iterative lookups allow the originating node to
explicitly control the amount of parallelism and the order in
which paths are explored, since the originating node issues
all messages related to the lookup. However, Accordion
uses recursive routing to learn nodes with a small-world
distribution, and nodes forward lookups directly to the next
hop. To control recursive parallel lookups, each Accordion
node independently adjusts its lookup parallelism to stay
within the bandwidth budget.

If an Accordion node knew the near-term future rate at
which it was about to receive lookups to be forwarded, it
could divide the bandwidth budget by that rate to determine
the level of parallelism. Since it cannot predict the future,
Accordion uses an adaptive algorithm to set the level of
parallelism based on the past lookup rate. Each node main-
tains a wp “parallelism window” variable that determines
the number of copies it forwards of each received or ini-
tiated lookup. A node updates wp every tp seconds, where
tp = bburst/ravg, which allows enough time for the band-
width budget to recover from potential bursts of lookup
traffic. During each interval of tp seconds, a node keeps
track of how many unique lookup packets it has origi-
nated or forwarded, and how many exploration packets it
has sent. If more exploration packets have been sent than
the number of lookups that have passed through this node,
wp increases by 1. Otherwise, wp decreases by half. This
additive increase/multiplicative decrease (AIMD) style of
control ensures a prompt response to wp overestimation or
sudden changes in the lookup load. Additionally, nodes do

not increase wp above some maximum value, as determined
by the maximum burst size, bburst. A node forwards the wp

copies of a lookup to the wp neighbors whose IDs most
closely precede the desired key in ID space.

When a node originates a query, it marks one of the par-
allel copies with a “primary” flag which gives that copy
high priority. Intermediate nodes are free to drop non-
primary copies of a query if they do not have sufficient
bandwidth to forward the query, or if they have already seen
a copy of the query in the recent past. If a node receives
a primary query, it marks one forwarded copy as primary,
maintaining the invariant that there is always one primary
copy of a query. Primary lookup packets trace the path a
non-parallel lookup would have taken, while non-primary
traffic copies act as optional traffic to decrease timeout la-
tency and increase information learned.

4.4 Routing Table Exploration

When lookup traffic is bursty, Accordion might not be able
to accurately predict wp for the next time period. As such,
parallel lookups would not consume the entire bandwidth
budget during that time period. Accordion uses this leftover
bandwidth to explore for new neighbors actively. Because
lookup keys are not necessarily distributed uniformly in
practice, a node might not be able to learn new entries with
the correct distribution through lookups alone; explicit ex-
ploration addresses this problem. The main goal of explo-
ration is that it be bandwidth-efficient and result in learning
nodes with the small-world distribution described in Sec-
tion 3.1.

For each neighbor x ID-distance away from a node, the
gap between that neighbor and the next successive entry
should be proportional to x. A node with identifier a com-
pares the scaled gaps between successive neighbors ni and
ni+1 to decide the portion of its routing table most in need
of exploration. The scaled gap g between neighbors ni and
ni+1 is:

g =
d(ni, ni+1)

d(a, ni)

where d(x, y) computes the clockwise distance in the cir-
cular identifier space between identifiers x and y. When an
Accordion node sends an exploration query, it sends it to
the neighbor with the largest scaled gap between it and the
next neighbor. The result is that the node explores in the
area of ID space where its routing table is the most sparse
with respect to the desired distribution.

An exploration message from node a asks neighbor ni

for m neighbor entries between ni and ni+1, where m is
some small constant (e.g., 5). ni retrieves these entries from
both its successor list and its routing table. ni uses Vivaldi
network coordinates [4] to find the m nodes in this gap with
the lowest predicted network delay to a. If ni returns fewer



than m entries, node a will not revisit ni again until it has
explored all other neighbors.

The above process only approximates a 1
x

distribution;
it does not guarantee such a distribution in all cases. Such
a guarantee would not be flexible enough to allow a full
routing table when bandwidth is plentiful and churn is low.
Accordion’s exploration method results in a 1

x
distribution

when churn is high, but also achieves nearly full routing
tables when the bandwidth budget allows.

4.5 Biasing Traffic to High-Budget Nodes

Because nodes have no direct control over their incom-
ing bandwidth, in a network containing nodes with di-
verse bandwidth budgets we expect that some nodes will
be forced over-budget by incoming traffic from nodes with
bigger budgets. Accordion addresses this budgetary imbal-
ance by biasing lookup and exploration traffic toward nodes
with higher budgets. Though nodes still do not have direct
control over their incoming bandwidth, in the absence of
malicious nodes this bias serves to distribute traffic in pro-
portion to the bandwidth budgets of nodes.

When an Accordion node learns about a new neighbor,
it also learns that neighbor’s bandwidth budget. Traditional
DHT protocols (e.g., Chord) route lookups greedily to the
neighbor most closely preceding the key in ID space, be-
cause that neighbor is expected to have the highest den-
sity of routing entries near the key. We generalize this idea
to consider bandwidth budget. Since the density of routing
entries near the desired ID region increases linearly with
the node’s bandwidth budget but decreases with the node’s
distance from that region in ID space, neighbors should
forward lookup/exploration traffic to the neighbor with the
best combination of high budget and short distance.

Suppose a node a decides to send an exploration packet
to its neighbor n1 (with budget b1), to learn about new en-
tries in the gap between n1 and the following entry n0 (as
discussed in Section 4.4). Let x be the distance in identi-
fier space between n1 and the following entry n0. Let ni

(i = 2, 3...) be neighbors preceding n1 in the a’s routing
table, each with a bandwidth budget of bi. In Accordion’s
traffic biasing scheme, a prefers to send the exploration
packet to the neighbor ni (i = 1, 2...) with the largest value
for the following equation:

vi =
bi

d(ni, n1) + x

where x = d(n1, n0). In the case of making lookup for-
warding decisions for some key k, x = d(n1, k) and n1 is
the entry immediately precedes k in a’s routing table. For
each lookup and exploration decision, an Accordion node
examines a fixed number of candidate neighbors (set to 8
in our implementation) preceding n1 and also ensures that

Figure 4: A list of contact entries, sorted by increasing i values.
Up arrows indicate events where the neighbor was alive, and down
arrows indicate the opposite. A node estimates i0 to be the mini-
mum i such that there are more than 90% (pthresh) live contacts for
i > i0, and then incorporates i0 into its ithresh estimate.

the lookup progresses at least halfway towards the key if
possible.

To account for network proximity, Accordion further
weights the vi values by the estimated network delay to
the neighbor based on network coordinates. With this ex-
tension, a chooses the neighbor with the largest value for
v′i = vi/delay(a, ni). This is similar in spirit to traditional
proximity routing schemes [7].

4.6 Estimating Liveness Probabilities

In order to avoid timeout delays during lookups, an Ac-
cordion node must ensure that the neighbors in its routing
table are likely to be alive. Accordion does this by estimat-
ing each neighbor’s probability of being alive, and evict-
ing neighbors judged likely to be dead. For any reason-
able node lifetime distribution, the probability that a node
is alive decreases as the amount of time since the node was
last heard from increases. Accordion attempts to calculate
this probability explicitly.

Section 3.3 showed that for a Pareto node lifetime distri-
bution, nodes should evict all entries whose probability of
being alive is less than some threshold pthresh so the prob-
ability of successfully forwarding a lookup is greater than
.9 given the current lookup parallelism wp (i.e., 1 − (1 −
pthresh)

wp = 0.9). The value i from Equation 5 indicates the
probability p of a neighbor being alive. The overall goal of
Accordion’s node eviction policy is to estimate a value for
ithresh, such that nodes evict any neighbor with an associ-
ated i value below ithresh. See Section 3.3 for the definitions
of i and ithresh.

A node estimates ithresh as follows. Each time it contacts
a neighbor, it records whether the neighbor is alive or dead
and the neighbor’s current indicator value i. Periodically,
a node reassesses its estimation of ithresh using this list. It
first sorts all the entries in the list by increasing i value, and
then determines the smallest value i0 such that the fraction
of entries with an “alive” status and an i > i0 is pthresh. The
node then incorporates i0 into its current estimate of ithresh,
using an exponentially-weighted moving average. Figure 4
shows the correct i0 value for a given sorted list of entries.



To calculate i for each neighbor using Equation 5, nodes
must know ∆talive (the time between when the neighbor last
joined the network and when it was last heard) and ∆tsince

(the time between when it was last heard and now). Each
node keeps track of its own ∆talive based on the time of
its last join, and includes its own ∆talive in every packet it
sends. Nodes learn (∆talive, ∆tsince) information associated
with neighbors in one of the following three ways:

• When the node hears from a neighbor directly, it
records the current local timestamp as tlast in the rout-
ing entry for that neighbor, and resets an associated
∆tsince value to 0 and sets ∆talive to the newly-received
∆talive value.

• If a node hears information about a new neighbor in-
directly from another node, it will save the supplied
∆tsince value in the new routing entry, and set the en-
try’s tlast value to the current local timestamp.

• If a node hears information about an existing neigh-
bor, it compares the received ∆tsince value with its
currently recorded value for that neighbor. A smaller
received ∆tsince indicates fresher information about
this neighbor, and so the node saves the correspond-
ing (∆talive, ∆tsince) pair for the neighbor in its routing
table. It also sets tlast to the current local timestamp.

Whenever a node needs to calculate a current value for
∆tsince (either to compare its freshness, to estimate i, or to
pass it to a different node), it adds the saved ∆tsince value
and the difference between the current local timestamp and
tlast.

5 Evaluation

This section demonstrates the important properties of
Accordion through simulation. It shows that Accordion
matches the performance of existing log n-routing-table
DHTs when bandwidth is scarce, and the performance of
large-table DHTs when bandwidth is plentiful under dif-
ferent lookup workloads. Accordion achieves low latency
lookups under varying network sizes and churn rates with
bounded routing table maintenance overhead. Furthermore,
Accordion’s automatic self-tuning algorithms approach the
best possible performance/cost tradeoff, and Accordion’s
performance degrades only modestly when the node life-
times do not follow the assumed Pareto distribution. Ac-
cordion stays within its bandwidth budget on average even
when nodes have heterogeneous bandwidth budgets.

5.1 Experimental Setup

This evaluation uses an implementation of Accordion in
p2psim, a publicly-available, discrete-event packet level

simulator. Existing p2psim implementations of the Chord
and OneHop DHTs simplified comparing Accordion to
these protocols. The Chord implementation chooses neigh-
bors based on their proximity [5, 7].

For simulations involving networks of less than 1740
nodes, we use a pairwise latency matrix derived from mea-
suring the inter-node latencies of 1740 DNS servers using
the King method [8]. However, because of the limited size
of this topology and the difficulty involved in obtaining
a larger measurement set, for simulations involving larger
networks we assign each node a random 2D synthetic Eu-
clidean coordinate and derive the network delay between a
pair of nodes from their corresponding Euclidean distance.
The average round-trip delay between node pairs in both
the synthetic and measured delay matrices is 179 ms. Since
each lookup for a random key starts and terminates at two
random nodes, the average inter-host latency of the topol-
ogy serves as a lower bound for the average DHT lookup
latency. By default, our experiments use a Euclidean topol-
ogy of 3000 nodes, except when noted. p2psim does not
simulate link transmission rates or queuing delays. The ex-
periments involve only key lookups; no data is retrieved.

Each node alternately leaves and re-joins the network;
the interval between successive events for each node fol-
lows a Pareto distribution with median time of 1 hour (i.e.,
α = 1 and β = 1800 sec), unless noted. This choice of life-
time distribution is similar to past studies of peer-to-peer
networks, as discussed in Section 3.3. Because α = 1 in
all simulations involving a Pareto distribution, our imple-
mentation of Accordion does not use the ithresh-estimation
technique presented in Section 4.6, as it is more convenient
to set ithresh = pthresh = .9 instead.

Nodes issue lookups with respect to two different work-
loads. In the churn intensive workload, each node issues a
lookup once every 10 minutes, while in the lookup inten-
sive workload, each node issues a lookup once every 9 sec-
onds. Experiments use the churn intensive workload unless
otherwise noted. Each time a node joins, it uses a differ-
ent IP address and DHT identifier. Each experiment runs
for four hours of simulated time; statistics are collected
only during the final half of the experiment and averaged
over 5 simulation runs. All Accordion configurations set
bburst = 100ravg.

5.2 Comparison Framework

We evaluate the performance of the protocols using two
types of metrics, performance and cost, following from the
performance versus cost framework (PVC) we developed
in previous work [16]. Though other techniques exist for
comparing DHTs under churn [14, 17], PVC naturally al-
lows us to measure how efficiently protocols achieve their
performance vs. cost tradeoffs.

We measure performance as the average lookup latency
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Figure 5: Accordion’s bandwidth vs. lookup latency tradeoff
compared to Chord and OneHop, using a 3000-node network and
a churn intensive workload. Each point represents a particular pa-
rameter combination for the given protocol. Accordion’s perfor-
mance matches or improves OneHop’s when bandwidth is plenti-
ful, and Chord’s when bandwidth is constrained.

Figure 6: The average routing table size for Chord and Accor-
dion as a function of the average per-node bandwidth, using a
3000-node network and a churn intensive workload. The routing
table sizes for Chord correspond to the optimal parameter combi-
nations in Figure 5. Accordion’s ability to grow its routing table
as available bandwidth increases explains why its latency is gen-
erally lower than Chord’s.

of correct lookups (i.e., lookups for which a correct answer
is returned), including timeout penalties (three times the
round-trip time to the dead node). All protocols retry failed
lookups (i.e., lookups that time out without completing) for
up to a maximum of four seconds. We do not include the
latencies of incorrect or failed lookups in this metric, but
for all experiments of interest these counted for less than
5% of the total lookups for all protocols.

We measure cost as the average bandwidth consumed per
node per alive second (i.e., we divide the total bytes con-
sumed by the sum of times that each node was alive). The
size in bytes of each message is counted as 20 bytes for
headers plus 4 bytes for each node mentioned in the mes-
sage for Chord and OneHop. Each Accordion node entry is
counted as 8 bytes due to additional fields on the bandwidth
budget, node membership time (∆talive), and time since last
contacted (∆tsince) for each node entry.

For graphs comparing DHTs with many parameters (i.e.,
Chord and OneHop) to Accordion, we use PVC to explore
the parameter space of Chord and OneHop fully and scat-
terplot the results. Each point on such a figure shows the
average lookup latency and bandwidth overhead measured
for one distinct set of parameter values for those protocols.
The graphs also have the convex hull segments of the proto-
cols, which show the best latency/bandwidth tradeoffs pos-
sible with the protocols, given the many different config-
urations possible. Accordion, on the other hand, has only
one parameter, the bandwidth budget, and does not need to
be explored in this manner.
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Figure 7: Accordion’s lookup latency vs. bandwidth overhead
tradeoff compared to Chord and OneHop, using a 1024-node net-
work and a lookup intensive workload.

5.3 Latency vs. Bandwidth Tradeoff

A primary goal of the Accordion design is to adapt the
routing table size to achieve the lowest latency depending
on bandwidth budget and churn. Figure 5 plots the average
lookup latency vs. bandwidth overhead tradeoffs of Accor-
dion, Chord, and OneHop. In this experiment, we varied
Accordion’s ravg parameter between 3 and 60 bytes per sec-
ond. We plot measured actual bandwidth consumption, not
the configured bandwidth budget, along the x-axis. The x-
axis values include all traffic: lookups as well as routing
table maintenance overhead.
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Figure 8: The lookup latency of Chord, Accordion and One-
Hop as the number of nodes in the system increases, using a
churn intensive workload. Accordion uses a bandwidth budget of
6 bytes/sec, and the parameters of Chord and OneHop are fixed
to values that minimize lookup latency when consuming 7 and 23

bytes/node/sec in a 3000-node network, respectively.

Figure 9: The average bytes consumed per node by Chord, Ac-
cordion and OneHop as the number of nodes in the system in-
creases, from the same set of experiments as Figure 8.

Accordion approximates the lookup latency of the best
OneHop configuration when the bandwidth budget is large,
and the latency of the best Chord configuration when band-
width is small. This is a result of Accordion’s ability to
adapt its routing table size, as illustrated in Figure 6. On
the left, when the budget is limited, Accordion’s table size
is almost as small as Chord’s. As the budgets grows, Accor-
dion’s routing table also grows, approaching the number of
live nodes in the system (on average, half of the 3000 nodes
are alive in the system).

As the protocols use more bandwidth, Chord cannot in-
crease its routing table size as quickly as Accordion, even
when optimally-tuned; instead, a node spends bandwidth
on maintenance costs for its slowly-growing table. By in-
creasing the table size more quickly, Accordion reduces the
number of hops per lookup, and thus the average lookup la-
tency.

Because OneHop keeps a complete routing table, all ar-
rival and departure events must be propagated to all nodes
in the system. This restriction prevents OneHop from being
configured to consume very small amounts of bandwidth.
As OneHop propagates these events more quickly, the rout-
ing tables are more up-to-date and both the expected hop
count and timeouts per lookups decrease. Accordion, on the
other hand, adapts its table size smoothly as its bandwidth
budget allows, and can consistently maintain a fresher rout-
ing table, and thus lower latency lookups, than OneHop.

5.4 Effect of a Different Workload

The simulations in the previous section featured a workload
that was churn intensive; that is, the amount of churn in the
network was high in proportion to the lookup rate. This

section evaluates the performance of Chord, OneHop, and
Accordion under a lookup intensive workload. In this work-
load, each node issues one lookup every 9 seconds (almost
70 times more often than in the churn intensive workload),
while the rate of churn is the same as that in the previous
section.

Figure 7 shows the performance results for the three
protocols. Again, convex hull segments and scatter plots
characterize the performance of Chord and OneHop, while
Accordion’s latency/bandwidth curve is derived by vary-
ing the per-node bandwidth budget. As before, Accordion’s
performance approximates OneHop’s when bandwidth is
high.

In contrast to the churn intensive workload, in the lookup
intensive workload Accordion can operate at lower lev-
els of bandwidth consumption than Chord. With a low
lookup rate as in Figure 5, Chord can be configured with
a small base (and thus small routing table and more lookup
hops, accordingly) to achieve low latencies, with relatively
high lookup latencies. However, with a high lookup rate
as in Figure 7, using a small base in Chord is not the
best configuration: it has relatively high lookup latency,
but also has a large overhead due to the large number of
forwarded lookups. Because Accordion learns new routing
entries from lookup traffic, a higher rate of lookups leads
to a larger per-node routing table, resulting in fewer lookup
hops and less overhead due to forwarding lookups. Thus,
Accordion can operate at lower levels of bandwidth than
Chord because it automatically increases its routing table
size by learning from the large number of lookups.

The rest of the evaluation focuses on the churn intensive
workload, unless otherwise specified.
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Figure 10: The lookup latency of Chord, Accordion and OneHop
as median node lifetime increases (and churn decreases), using a
3000-node network. Accordion uses a bandwidth budget of 24

bytes/sec, and the parameters of Chord and OneHop are fixed to
values that minimize lookup latency when consuming 17 and 23

bytes/node/sec, respectively, with median lifetimes of 3600 sec.

Figure 11: The average bytes consumed per node by Chord,
Accordion and OneHop as median node lifetime increases (and
churn decreases), from the same set of experiments as Figure 10.

5.5 Effect of Network Size

This section investigates the effect of scaling the size of
the network on the performance of Accordion. Figures 8
and 9 show the average lookup latency and bandwidth con-
sumption of Chord, Accordion and OneHop as a function
of the network size. For Chord and OneHop, we fix the
protocol parameters to be the optimal settings in a 3000-
node network (i.e., the parameter combinations that pro-
duce latency/overhead points lying on the convex hull seg-
ments) for bandwidth consumptions of 17 bytes/node/sec
and 23 bytes/node/sec, respectively. For Accordion, we fix
the bandwidth budget at 24 bytes/sec. With fixed parameter
settings, Figure 9 shows that both Chord and OneHop incur
increasing overhead that scales as log n and n respectively,
where n is the size of the network. However, Accordion’s
fixed bandwidth budget results in predictable overhead con-
sumption regardless of the network size. Despite using less
bandwidth than OneHop and the fact that Chord’s band-
width consumption approaches that of Accordion as the
network grows, Accordion’s average lookup latency is con-
sistently lower than that of both Chord and OneHop.

These figures plot the average bandwidth consumed
by the protocols, which hides the bandwidth that is con-
sumed on per-node or burst levels. Because Accordion con-
trols bandwidth bursts, it keeps individual nodes within
their bandwidth budgets. OneHop, however, explicitly dis-
tributes bandwidth unevenly: slice leaders [9] typically use
7 to 10 times the bandwidth of average nodes. OneHop
is also more bursty than Accordion; we observe that the
maximum bandwidth burst observed for OneHop is 1200
bytes/node/sec in a 3000-node network, more than 10 times
the maximum burst of Accordion. Thus, OneHop’s band-

width consumption varies widely and could at any one time
exceed a node’s desired bandwidth budget, while Accor-
dion stays closer to its average bandwidth consumption.

5.6 Effect of Churn

Previous sections illustrated Accordion’s ability to adapt to
different bandwidth budgets and network sizes; this section
evaluates its adaptability to different levels of churn.

Figures 10 and 11 shows the lookup latency and band-
width overhead of Chord, Accordion and OneHop as a
function of median node lifetime. Lower node lifetimes
correspond to higher churn. Accordion’s bandwidth bud-
get is constant at 24 bytes per second per node. Chord and
OneHop uses parameters that achieve the lowest lookup la-
tency while consuming 17 and 23 bytes per second, respec-
tively, for a median node lifetime of one hour. While Accor-
dion maintains fixed bandwidth consumption regardless of
churn, both Chord and OneHop’s overhead grow inversely
proportional to median node lifetime (proportional to churn
rates). Accordion’s average lookup latency increases with
shorter median node lifetimes, as it maintains a smaller ta-
ble due to higher eviction rates under high churn. Chord’s
lookup latency increases due to a larger number of lookup
timeouts, because of its fixed table stabilization interval.
Accordion’s lookup latency decreases slightly as the net-
work becomes more stable, with consistently lower laten-
cies than both Chord and OneHop. OneHop has unusually
high lookup latencies under high churn as its optimal set-
ting for the event aggregation interval with mean node life-
times of 1 hour is not ideal under higher churn, and as a
result lookups incur more frequent timeouts due to stale
routing table entries.
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Figure 12: Bandwidth versus latency for Accordion and Stat-
icAccordion, using a 1024-node network and a churn inten-
sive workload. Accordion tunes itself nearly as well as the best
exhaustive-search parameter choices for StaticAccordion.

Parameter Range
Exploration interval 2-90 sec
Lookup parallelism wp 1,2,4,6
Eviction threshold ithresh .6 –.99

Table 1: StaticAccordion parameters and ranges.

5.7 Effectiveness of Self-Tuning

Accordion adapts to the current churn and lookup rate by
adjusting wp and the frequency of exploration, in order to
stay within its bandwidth budget. To evaluate the quality of
the adjustment algorithms, we compare Accordion with a
simplified version (called StaticAccordion) that uses fixed
wp, ithresh and active exploration interval parameters. Sim-
ulating StaticAccordion with a range of parameters, and
looking for the best latency vs. bandwidth tradeoffs, indi-
cates how well Accordion could perform with ideal param-
eter settings. Table 1 summarizes StaticAccordion’s param-
eters and the ranges explored.

Figure 12 plots the latency vs. bandwidth tradeoffs of
StaticAccordion for various parameter combinations. The
churn and lookup rates are the same as the scenario in Fig-
ure 5. The lowest StaticAccordion points, and those far-
thest to the left, represent the performance Accordion could
achieve if it self-tuned its parameters optimally. Accordion
approaches the best static tradeoff points, but has higher
latencies in general for the same bandwidth consumption.
This is because Accordion tries to control bandwidth over-
head, such that it not exceed the maximum-allowed burst
size if possible (where we let bburst = 100ravg). StaticAc-
cordion, on the other hand, does not attempt to regulate
its burst size. For example, when the level of lookup par-
allelism is high, a burst of lookups will generate a large
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Figure 13: The performance of Accordion on three different node
lifetime distributions, and of Chord on an exponential distribu-
tion, using a 3000-node network and a churn intensive workload.
Though Accordion works best with a Pareto distribution, it still
outperforms Chord with an exponential node lifetime distribution
in most cases.

burst of traffic. However, Accordion will reduce the lookup
parallelism wp to try to stay with the maximum burst size.
Therefore, StaticAccordion can keep its lookup parallelism
constant to achieve lower latencies (by masking more time-
outs) than Accordion, though the average bandwidth con-
sumption will be the same in both cases. As such, if con-
trolling bursty bandwidth is a goal of the DHT application
developer, Accordion will control node bandwidth more
consistently than StaticAccordion, without significant ad-
ditional lookup latency.

5.8 Lifetime Distribution Assumption

Accordion’s algorithm for predicting neighbor liveness
probability assumes a heavy-tailed Pareto distribution of
node lifetimes (see Sections 3.3 and 4.6). In such a dis-
tribution, nodes that have been alive a long time are likely
to remain alive. Accordion exploits this property by pre-
ferring to keep long-lived nodes in the routing table. If the
distribution of lifetimes is not what Accordion expects, it
may make more mistakes about which nodes to keep, and
thus suffer more lookup timeouts. This section evaluates
the effect of such mistakes on lookup latency.

Figure 13 shows the latency/bandwidth tradeoff with
node lifetime distributions that are uniform and exponen-
tial. The uniform distribution chooses lifetimes uniformly
at random between six minutes and nearly two hours, with
an average of one hour. In this distribution, nodes that have
been part of the network longer are more likely to fail soon.
In the exponential distribution, node lifetimes are exponen-
tially distributed with a mean of one hour; the probability
of a node being alive does not depend on its join time.

Figure 13 shows that Accordion’s lookup latencies are
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Figure 14: Accordion’s bandwidth consumption vs. lookup rate,
using a 3000-node network and median node lifetimes of one
hour. All nodes have a bandwidth budget of 6 bytes/sec. Nodes
stay within the budget until the lookup traffic exceeds that budget.

higher with uniform and exponential distributions than they
are with Pareto. However, Accordion still provides lower
lookup latencies than Chord, except when bandwidth is
very limited.

5.9 Bandwidth Control

An Accordion node does not have direct control over all
of the network traffic it generates and receives, and thus
does not always keep within its bandwidth budget. A node
must always forward primary lookups, and must acknowl-
edge all exploration packets and lookup requests in order
to avoid appearing to be dead. This section evaluates how
much Accordion exceeds its budget.

Figure 14 plots bandwidth consumed by Accordion as a
function of lookup traffic rate, when all Accordion nodes
have a bandwidth budget of 6 bytes/sec. The figure shows
the median of the per-node averages over the life of the
experiment, along with the 10th and 90th percentiles, for
both incoming and outgoing traffic. When lookup traffic
is low, nodes achieve exactly 6 bytes/sec. As the rate of
lookups increases, nodes explore less often and issue fewer
parallel lookups. Once the lookup rate exceeds one every
25 seconds there is too much lookup traffic to fit within the
bandwidth budget. Each lookup packet and its acknowledg-
ment cost approximately 50 bytes in our simulator, and our
experiments show that at high lookup rates, lookups take
nearly 3.6 hops on average (including the direct reply to
the query source). Thus, for lookup rates higher than 0.04
lookups per second, we expect lookup traffic to consume
more than 50 · 3.6 · 0.04 = 7.2 bytes per node per second,
leading to the observed increase in bandwidth.

The nodes in Figure 14 all have the same bandwidth
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Figure 15: Bandwidth consumption of Accordion nodes in a
3000-network using a churn intensive workload where nodes have
heterogeneous bandwidth budgets, as a function of the largest
node’s budget. For each experiment, nodes have budgets uni-
formly distributed between 2 and the x-value. This figure shows
the consumption of the nodes with both the minimum and the
maximum budgets.

budget. If different nodes have different bandwidth bud-
gets, it might be the case that nodes with large budgets
force low-budget nodes to exceed their budgets. Accordion
addresses this issue by explicitly biasing lookup and ex-
ploration traffic towards neighbors with high budgets. Fig-
ure 15 shows the relationship between the spread of bud-
gets and the actual incoming and outgoing bandwidth in-
curred by the lowest- and highest-budget nodes. The node
budgets are uniformly spread over the range [2, x] where x
is the maximum budget shown on the x-axis of Figure 15.
Figure 15 shows that the bandwidth used by the lowest-
budget node grows very slowly with the maximum budget
in the system; even when there is a factor of 50 difference
between the highest and lowest budgets, the lowest-budget
node exceeds its budget only by a factor of 2. The node with
the maximum budget stays within its budget on average in
all cases.

6 Related Work

Unlike other DHTs, Accordion is not based on a particu-
lar data structure and as a result it has great freedom in
choosing the size and content of its routing table. The only
constraint it has is that the neighbor identifiers adhere to
the small-world distribution [13]. Accordion has borrowed
routing table maintenance techniques, lookup techniques,
and inspiration from a number of DHTs [9–11, 20, 23, 25],
and shares specific goals with MSPastry, EpiChord, Bam-
boo, and Symphony.

Castro et al. [2] present a version of Pastry, MSPastry,
that self-tunes its stabilization period to adapt to churn and



achieve low bandwidth. MSPastry also estimates the cur-
rent failure rate of nodes, using historical failure observa-
tions. Accordion shares the goal of automatic tuning, but
focuses on adjusting its table size as well as adapting the
rate of maintenance traffic.

Instead of obtaining new state by explicitly issuing
lookups for appropriate identifiers, Accordion learns infor-
mation from the routing tables of its neighbors. This form
of information propagation is similar to classic epidemic
algorithms [6]. EpiChord [15] also relies on epidemic prop-
agation to learn new routing entries. EpiChord uses paral-
lel iterative lookups, as opposed to the parallel recursive
lookups of Accordion, and therefore is not able to learn
from its lookup traffic according to the identifier distribu-
tion of its routing table.

Bamboo [22], like Accordion, has a careful routing table
maintenance strategy that is sensitive to bandwidth-limited
environments. The authors advocate a fixed-period recov-
ery algorithm, as opposed to the more traditional method of
recovering from neighbor failures reactively, to cope with
high churn. Accordion uses an alternate strategy of actively
requesting new routing information only when bandwidth
allows. Bamboo also uses a lookup algorithm that attempts
to minimize the effect of timeouts, through careful timeout
tuning. Accordion avoids timeouts by predicting the live-
ness of neighbors and using parallel lookups.

Symphony [19] is a DHT protocol that also uses a small-
world distribution for populating its routing table. While
Accordion automatically adjusts its table size based on
a user-specified bandwidth budget and churn, the size of
Symphony’s routing table is a protocol parameter. Sym-
phony acquires the desired neighbor entries by explicitly
looking up identifiers according to a small-world distri-
bution. Accordion, on the other hand, acquires new en-
tries by learning from existing neighbors during normal
lookups and active exploration. Existing evaluations of
Symphony [19] do not explicitly account for bandwidth
consumption nor the lookup latency penalty due to time-
outs. Mercury [1] also employs a small-world distribution
for choosing neighbor links, but optimizes its tables to han-
dle scalable range queries rather than single key lookups.

A number of file-sharing peer-to-peer applications allow
the user to specify a maximum bandwidth. Gia [3] exploits
that information to explicitly control the bandwidth usage
of nodes by using a token-passing scheme to approximate
flow control.

7 Conclusion

We have presented Accordion, a DHT protocol with a
unique design that automatically adjusts itself to reflect
current operating environments and a user-specified band-
width budget. By learning about new routing state oppor-

tunistically through lookups and active search, and evict-
ing state based on liveness probability estimates, Accordion
adapts its routing table size to achieve low lookup latency
while staying within a user-specified bandwidth budget.

A self-tuning, bandwidth-efficient protocol such as Ac-
cordion has several benefits. Users often don’t have the ex-
pertise to tune every DHT parameter correctly for a given
operating environment; by providing them with a single,
intuitive parameter (a bandwidth budget), Accordion shifts
the burden of tuning from the user to the system. Further-
more, by remaining flexible in its choice of routing table
size and content, Accordion can operate efficiently in a
wide range of operating environments, making it suitable
for use by developers who do not want to limit their appli-
cations to a particular network size, churn rate, or lookup
workload.

Currently, we are instrumenting DHash [5] to use Accor-
dion. Our p2psim version of Accordion is available at:
http://pdos.lcs.mit.edu/p2psim.
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