
Structured Superpeers: Leveraging Heterogeneity
to Provide Constant-Time Lookup

Alper Tugay Mızrak, Yuchung Cheng, Vineet Kumar and Stefan Savage
Department of Computer Science & Engineering

University of California, San Diego
{amizrak, ycheng, vineet, savage}@cs.ucsd.edu

Abstract

Peer-to-peer (P2P) systems are typically divided into
those that centralize lookup functionality in a single loca-
tion and those that distribute the lookup operation across
the set of participating hosts. The former approach can of-
fer constant time lookup latency, but is more expensive to
scale and suffers from single points of failure. In contrast,
the fully distributed approach is easier to scale and can be
more resilient to failures, but the lookup latency scales as
a function of the total number of participants. While the
research community has made great progress in improving
the latency of distributed lookup, these systems, exemplified
by Chord[17], typically require O(logN) hops to locate an
object in a system with N hosts.

In this paper, we explore the costs and benefits of a new
hybrid approach that partially distributes lookup informa-
tion among a dynamically adjusted set of high-capacity
“superpeers”. This design exploits the resource hetero-
geneity inherent in existing P2P systems to provide many of
the advantages of a centralized system, even while avoiding
most of the problems associated with such systems. Lookup
is performed using superpeers in constant-time, and the sys-
tem performs well even in the event of simultaneous super-
peer failures. Finally, while our gain in performance is po-
tentially at the expense of scalability, we will show that a
straightforward implementation should be able to scale to
over one million peers with reasonable lookup rates.

1 Introduction

Peer-to-peer (P2P) systems are designed to distribute
functionality and resources among a large number of inde-
pendent hosts. The promise of this design is that highly
distributed state is easier to scale, is more resilient to fail-
ure and supports greater administrative autonomy. How-
ever, the costs of distribution can be significant as well and

consequently the research community has focused its atten-
tion on developing efficient distributed hash table (DHT)
algorithms for routing requests to individual peers. The
best of these algorithms, exemplified by systems such as
Chord [17], Pastry [12], and Tapestry [20], are able to locate
any item after querying no more than O(logN) individual
peers. While this is no small feat, it still imposes a signifi-
cant performance penalty for many purposes. For example,
Cox et al. show that while Chord can be used to serve Do-
main Name Service (DNS) records, the latency incurred is
increased by an order of magnitude [1]. They further ob-
serve that “the problem becomes worse as the peer-to-peer
network grows” since a large system with 1,000,000 nodes
might require each lookup to traverse 20 nodes on the over-
lay network before locating each item of interest.

This latency is a direct consequence of homogeneously
distributing index state among peers. If each peer main-
tains unique state necessary for a successful lookup, then
the cost of a query must grow with the number of peers. In
systems like Chord, this means that some queries must take
O(logN) steps to be resolved. The opposite extreme, illus-
trated by Napster [9], is to centralize the index in a single
location. While this allows lookups to be completed with a
single message exchange, the central index then becomes a
potential bottleneck and single point of failure. We believe
that neither of these architectures is ideally matched to the
capabilities of existing networks of peers and it is time to
revisit the design tradeoffs made in modern structured P2P
systems.

Measurements of deployed P2P systems all reveal signif-
icant heterogeneity in the capabilities and activities of their
members [13, 11, 10, 14]. While most peers are short-lived
and have minimal bandwidth, a small fraction typically re-
mains connected for extended periods and have significant
storage, memory and bandwidth resources. This popula-
tion heterogeneity suggests that performance may be signif-
icantly improved by assigning index state unequally – pick-
ing a design point somewhere between fully centralized and
fully distributed.

This paper describes the design of a structured P2P
system that explores this tradeoff. Our approach delivers
constant-time O(1) lookup by assigning additional state to
these high-capacity peers, or superpeers, present in many
peer-to-peer systems. Moreover, we argue that this ap-
proach can easily support 1,000,000 peers – a scaling point
that represents an interesting class of peer-to-peer systems.
In the remainder of this paper we briefly discuss related
work, describe our system architecture, and then use a com-
bination of analytic and simulated results to explore the
scaling issues of this design.

2 Related work

Several popular unstructured P2P applications such as
FastTrack [3] and Gnutella [6, 18, 15] have explored using
heterogeneity to improve search performance. These sys-
tems forward queries to high-capacity superpeers (named
SuperNodes, Hubs, UltraPeers, Reflectors, etc. depending
on the system) selected based on their capability to pro-
cess large numbers of requests. A superpeer acts as a local
search engine, building an index of the files being shared
by each peer connected to it and proxying search requests
on behalf of these peers by flooding requests to other super-
peers. These systems significantly outperform pure flooding
systems by preventing low-performance hosts from transit-
ing requests, but they still rely on flooding at the superpeer-
level.

Structured P2P systems typically have not leveraged
heterogeneity in their algorithms. A recent exception is
Garces-Erice et al.’s two-tier hierarchical lookup design that
groups nearby peers based on network latency and com-
municates between groups using a superpeer layer [5]. To
find a peer that is responsible for a key, the top tier overlay
network routes among the superpeers to first determine the
group responsible for the key; the responsible group then
uses an intra-group overlay network to determine the spe-
cific peer that is responsible for the key. The authors pro-
pose using two different DHT algorithms at each level of the
hierarchy, a O(logN) algorithm that maintains O(logN)
state among superpeers and an O(1) algorithm that main-
tains O(N) state within a group. The resulting design com-
pletes lookups in O(logM) time where M is the number of
superpeers.

Several very recent P2P designs have also offered dra-
matic reductions in lookup latency. The Kelips system [7]
divides peers into groups by subdividing the identification
key space. Peers are aware of the files stored on every group
member and the identity of at least one member of every
other group. Consequently, Kelips can achieve a constant-
time lookup by either locating an object within its own
group or passing the query on to a member of the appro-
priate group. Both Kelips and our design achieve constant-

time lookup (in terms of hop count). However, Kelips does
not utilize peer heterogeneity at all. Every Kelips peer is re-
quired to store O(

√
N) state, while in our design, only the

O(
√

N) superpeers are required to maintain O(
√

N) more
storage. To put this in context, a 1,000,000 node P2P system
implemented in Kelips would require a total state expendi-
ture of 1 billion entries, while our design requires only 8
million entries.

The Coral [4] system takes a different approach. It fo-
cuses on improving the latency of lookup queries rather than
reducing hop count. To do this, Coral introduces a hierar-
chical lookup strategy that divides a single Chord-style ring
into three distinct rings called clusters. A Level-2 cluster
consists of peers that are mostly within 30msec of one an-
other, while a Level-1 cluster consists of Level-2 clusters
within a larger 100msec range. Finally, the Level-0 clus-
ter represents the original Chord ring, which has no latency
guarantee. A Coral peer only joins an acceptable cluster.
That is, one in which the latency to 90% of the nodes is
within the cluster’s diameter. If a node cannot find such a
cluster, it forms its own. Upon joining a cluster, each new
node insert itself into its higher-level clusters, keyed under
the IP addresses of its gateway routers, discovered using the
traceroute tool. A new node, searching for a low-level
acceptable cluster, can lookup topologically close peers by
using its gateway router addresses as lookup keys. Con-
sequently, lookups within a cluster or between Level1 and
Level-2 clusters are expected to be fast, while the overall
hop count is still O(log N). Compared with our approach,
Coral does not leverage the heterogeneity among the partic-
ipants. Since each Coral cluster is in fact a Chord ring, our
structured superpeer design can further speed up lookup, by
assigning powerful Coral peers to be superpeers. Hence, we
conclude that our design is indeed another optimization of
the Coral system.

Finally, several recently proposed DHT schemes have
demonstrated how to provide O(log N) hops lookup with
constant state per node. Kaashoesk and Karger [8], present
Koorde, a simple degree-optimal distributed hash table. Ko-
orde is based on the combination of Chord DHT and de-
Bruijn graphs [2]. They have shown that if each peer main-
tains state for only 2 nodes, O(log N) hops lookup is possi-
ble. Increasing the state requirement at each node, Koorde
can provide higher fault tolerance and moreover, with a state
cost of O(log N), a lookup can be resolved in O(log N

log log N
)

hops communication, which they prove is optimal. Using
this approach the expect hop count to satisfy a query in a
1,000,000 node network is approximately 5.

A related design, motivated by fault-tolerance, is pre-
sented by Naor and Wieder [19]. In their system, each node
maintains constant state and they demonstrate that this is
sufficient to satisfy queries within O(log N) hops for the
random fail-stop failure model. They provide an alternative

superpeer add. range
sp0 (0 - 1]
sp1 (1 - 2]
sp2 (2 - 3]
sp3 (3 - 4]
sp4 (4 - 0]

Table 1: Superpeer table

Fig.1. General system architecture

0

1

2

34

sp0 sp1

sp2

sp3

sp4

p0

p1

p2

p3
p4

p5

p25
p26p27

p28

m1

m2
m3

m4

peer identity
p0 IP0
p1 IP1
p2 IP2
p3 IP3
p4 IP4
p5 IP5

peer identity
p25 IP25
p26 IP26
p27 IP27
p28 IP28

Table 2: Peer table at sp0

Table 3: Peer table at sp3

lookup algorithm that allows a random subset of nodes to
fail in an arbitrarily faulty manner in exchange for an in-
creased cost of O(log2 N) hops. Again, the lookup length
can be shortened increasing the state requirement per node
and their scheme has the same theoretical bounds as Ko-
orde. Furthermore, they have shown that constant time,
O(1), lookup is possible with O(N ε log N) state. We be-
lieve our approach is an instance of this family. In our case,
ε is chosen to be 1/2 in order to implement a practically
feasible system.

3 System Architecture

Figure 1 illustrates the basic architecture of our system.
Given a P2P system with N peers, we place each on a circu-
lar identifier space, the “outer ring”, using a DHT algorithm
such as Chord. Of these N peers, M are chosen to be su-
perpeers to create a smaller core “inner ring”. We describe
the process of choosing and maintaining the structure of the
inner ring later. The outer ring is split into arcs and each arc
is assigned to one superpeer. Each superpeer is responsible
for maintaining two pieces of information: the addresses of
the peers contained within its arc(e.g. sp0 maintains Table
2 tracking the IP addresses of all peers, p0−p5, on the outer
ring between 0 and 1; and sp3 maintains Table 3) and the
mapping between arcs and their responsible superpeers(e.g.

each superpeer maintains a table identical to Table 1).

3.1 Lookup and Query Routing

A lookup is extremely straightforward. When a peer re-
quests a document with key id, it sends this request directly
to its superpeer. If the superpeer itself is responsible for the
arc including the key id, then it locates the successor of id it
its peer table and returns the result. Otherwise, it forwards
the request to the superpeer who is responsible for the en-
closing arc for id. In response, the responsible superpeer
locates the successor peer in its peer table and the result is
returned to the peer who initiated the request. In the worst
case, two nodes must be contacted to resolve a lookup –
one for the immediate superpeer and one for the superpeer
responsible for the key – requiring three messages in total.

For example, in Figure 1, peer p2 requests a document
with a key id value of roughly 3.5. In normal operation,
p2 sends this request m1 to its superpeer sp0. Since sp0 is
only responsible for the arc (0,1], it consults its superpeer
table(Table 1) and finds that superpeer sp3 is responsible
the arc enclosing id, (3,4]. It forwards the request, m2 to
sp3, who in turns looks up the closest successor to id in its
peer table(Table 3) and returns the result, p26’s IP address,
to the original requestor in message m3. Finally, p2 can
connect to p26, and issue its request for content, m4.

As a result, this system architecture has a constant cost,

O(1). If the peer generating a lookup request has the same
superpeer as the peer it is looking for, then only one connec-
tion is sufficient to resolve the request: the immediate super-
peer. In the worst case lookup – where the correspondent
superpeers are different – the number of nodes that must be
contacted is two: one for the immediate superpeer, and one
for the superpeer responsible for the key.

This design has three key technical challenges: How to
bootstrap the system, how to manage failure and how to
address changes in load? We address each in turn below.

3.2 Bootstrapping

We assume that the outer ring is managed using a tra-
ditional DHT algorithm, such as Chord, and an external
mechanism is used to identify members of this ring so new
peers may join. As the first k peers join the system, these
peers are also commissioned as superpeers and placed into
the inner ring as well. This provides an initial set of su-
perpeers and a division of the identifier space, putting the
system into a consistent state. As additional peers join the
system, they obtain the identify of their superpeer from their
immediate neighbors in the outer ring. This peer sends a
join RPC to the superpeer who in turn updates the peer ta-
ble for its arc.

We also assume the each new peer identifies itself to a
volunteer service, which maintains the resources that a peer
is willing and able to contribute to the system. This metric
can be computed based on the lookup message processing
power and/or storage capability. We assume that the volun-
teer service is provided as a black box, it might be imple-
mented as a centralized or distributed service. This service
is used by the superpeers in the inner ring to select addi-
tional superpeer candidates in response to increased load or
superpeer failure.

3.3 Detecting and Managing Failure

There are two qualitatively different kinds of failures that
must be tolerated: peer failures and superpeer failures.

If a peer fails, or leaves the system, the principal issue
is updating the peer table at its responsible superpeer. If a
peer leaves gracefully it can simply contact its superpeer di-
rectly. If the peer fails unexpectedly, this is detected by its
neighbors who periodically issue local keep-alive messages
(identically to the scheme described in [17]). When a peer
detects that its neighbor has failed, it communicates this in-
formation to its superpeer in turn. In all cases, the superpeer
simply removes the failed peer from its table.

If a superpeer fails, this presents two issues. First, all of
the peers in the arc previously managed by the superpeer
must be reassigned to one or more replacement superpeers.

Second, all other superpeers must be informed about these
replacements so they may update their arc tables.

We detect superpeer failures in a similar fashion to peer
failures. Each superpeer sends periodic keep-alive mes-
sages to its neighbors in the inner ring. If a neighbor cannot
be reached then the probing continues with further neigh-
bors until the scope of the unmanaged arc can be deter-
mined. Depending on the size of this range, one or more
new superpeers may be created from peers listed in the vol-
unteer service or the range may be assigned to neighboring
superpeers. In either case the changes to topology of the
inner ring are distributed to all superpeers. Note that this
operation is the only action that takes more than constant
time to complete.

To recover the lost peer to superpeer state, each super-
peer replicates the peer information at k of its inner ring
neighbors, providing protection against (k− 1) consecutive
failures (we expect a small value of k = 2 or k = 3 to
suffice). Consequently, when a replacement superpeer is in-
serted into the inner ring, it can obtain the contents of its
peer table directly and quickly from its immediate neigh-
bors. To ensure that these replicas are consistent, each su-
perpeer must update its neighbors with any changes to its
peer table that occur. If this system fails due to many con-
secutive superpeer failures, a new superpeer can still recon-
struct its peer info by traversing the peers in its arc from one
end to another, using the successor list in the outer ring.

3.4 Load balancing

There are several reasons why a superpeer may receive
more load than it can handle. Superpeers are themselves
heterogeneous and may vary significantly in storage capac-
ity or message processing power. Similarly, the popularity
of content may be non-uniform and particular arcs may ex-
perience more requests than others. In these cases it may
be necessary to move load among superpeers or change the
number of superpeers in the system.

We assume that each superpeer knows its maximum ca-
pacity and measures the current load driven by the request
rate. When a superpeer’s load approaches to capacity, it
may share its load with its neighbors if they have sufficient
excess capacity or with a new superpeer from the volunteer
service. In either case the superpeer splits its arc appro-
priately and reassigns pieces of this range to the neighbors
accepting the load. Conversely, if a superpeer has suffi-
cient excess capacity than it may absorb the entire load of
a neighbor and return that neighbor to the volunteer service
list.

To tune the load balancing behavior we define four limit
parameters for each superpeer: min, max, lower, and
upper. The first two represent hard limits on the capacity
of the superpeer, while the later two are soft limits meant to

initiate load balancing activities long before a superpeer is
overwhelmed or idle.

There are four criteria that cause a load balancing opera-
tion to occur:

• if the load of a superpeer exceeds the hard limit max

• if the load of a superpeer goes below the hard limit
min

• if the cumulative load of three neighbor superpeers ex-
ceeds the soft limit upper times three

• if the cumulative load of three neighbor superpeers
goes below the soft limit lower times three

Depending on the cumulative load of three neighbor su-
perpeers (e.g. smaller than 3·lower or bigger than 3·upper),
the load balancing algorithm either shifts load to the neigh-
bors, introduces a new superpeer or dismisses an existing
superpeer. While each comparison and action is entirely
local, the system converges in steady state so that all su-
perpeers are loaded between their soft limits and the total
number of superpeers in the system is within a constant fac-
tor of optimal.

4 Scalability Analysis

In this section we analyze the scalability of the approach
we have described, including the storage overhead incurred,
the lookup processing required, and the effects of mainte-
nance traffic. We explore these issues analytically to capture
steady state behavior and through simulation to explore the
impact of membership dynamics on our approach.

4.1 Storage requirements

Each superpeer has to maintain a record to track ev-
ery other superpeer in the inner ring (including information
such as IP address, node id, address range of its arc, net-
work connection state, etc.) and a record for each peer in its
address range (including IP address, node id, network con-
nection state, etc.) If a superpeer record consumes cs bytes,
and a peer record requires cp bytes, then the total storage at
each superpeer is:

S = csM + cp(
N

M
)

The storage requirements at each superpeer is minimal

when M =
√

cpN

cs

. Under this condition, the storage at

each superpeer is S = 2
√

cscpN , and the total extra storage
required in the whole network is Stotal = csM

2 + cpN , a
value that is surprisingly small.

Mapping this to a particular example, in an overlay net-
work of N = 106 peers and M = 103 superpeers, each
superpeer must maintain only 2000 additional records. For
comparison, if this state were used instead to improve the
performance of a Chord-based network, each peer would
only receive 2 extra records in their finger table (which is
unlikely to have a significant effect). Similarly, the Pastry
system [12] must contact dlogB Ne nodes to satisfy a query,
given (B − 1)dlogB Ne routing entries per node – where
B is the number of address bits that each peer matches in
a round. To support 1,000,000 nodes with a lookup cost
of only two hops, then B must be equal to 1000, and all
1,000,000 peers must maintain a routing table with 1998
entries. We achieve the same lookup performance with
roughly the same storage requirement imposed at only 1000
superpeers.

Therefore, for reasonably large peer-to-peer networks,
the storage overhead is not a significant scalability limita-
tion.

4.2 Lookup processing

Superpeers must be able to service all the lookups they
receive from the peers for whom they are responsible.
In addition, they must handle queries from other super-
peers. We model the lookup process as a uniform rate of
q lookups/second for each peer. At a particular superpeer,
the lookup rate is Ri = 2qNi, where Ni is the number of
peers in its arc. If all superpeers are homogeneous, assum-
ing a uniform distribution of peers in the key space, then
the average lookup rate at a superpeer can be estimated as
R = 2q N

M
.

Again, consider an overlay network of N = 106 peers
and M = 103 superpeers, assuming that each node uni-
formly issues q = 1 lookup/sec for objects that are uni-
formly distributed throughout the system (a much higher
rate that is likely in practice). Under these conditions, the
average lookup rate that a superpeer must process is only
R = 2000 lookup/sec. For comparison, Stoica et al’s re-
cent i3 system is able to process in excess of 25,000 queries
per second [16].

Lookup processing does not appear to significantly limit
this design either.

4.3 Maintenance traffic

As peers join or leave the system, the responsible su-
perpeer must alert its neighboring superpeers to ensure that
peer table state is replicated consistently. The number of
messages per node is constant relative to the size of the sys-
tem and the size of each message is bounded by the number
of peers that each superpeer can handle. Another sound of
maintenance traffic is the keepalive messages used to detect

0

2

4

6

8

10

12

0 30 60 90 129 159 189 219 261 291 321

time(min)

av
g

o
f l

oo
ku

p
m

es
 / S

P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av
g

o
f m

ain
te

. m
es

 / S
P

new SP

load sharing

SP dismissed

SP failure

analytic query rate

actual query rate

analytic join+leave+keepalive

actual join+leave+keepalive

actual maintenance

Figure 2. Average lookup and maintenance message rates

failures among superpeers. Similarly, the number of mes-
sages per node remains constant for all system sizes as does
the message size. Neither of these activities are likely to
impact system scalability.

In contrast, the topology changes of the inner ring are
relatively expensive. If the superpeer table is changed due
to a failure or a load balancing action, then this data must
be distributed to all superpeers in the inner ring. While the
size of each message is constant, the number of messages to
be sent grows linearly with the number of superpeers. How-
ever, determining the sensitivity of this overhead is a func-
tion of load balancing dynamics that are not well described
analytically. Instead, we use an event-driven simulation to
explore this issue.

4.4 Simulator methodology

The simulation was performed by modifying the Chord
simulator to accommodate the changes in the system archi-
tecture. In the simulation, our target environment is around
10,000 peers. The fixed parameters for the system were set
as follows:

• the allowed range of peers for each super-
peer (min, lower, upper, max) were set to
(55, 67, 113, 125).

• the redundancy parameter k = 2.

• the lookup rate for each peer was set to q = 0.05
lookup/sec.

• each superpeer failure probability is 0.036 over an
hour.

• the keep-alive period for superpeers is 30 sec.

Phase Duration Join rate Leave rate
(min) (peer/sec) (peer/sec)

1 120 1.5 0
2 60 1.0 1.0
3 20 0.3 3.0
4 60 1.0 1.0
5 20 3.0 0.3
6 60 1.0 1.0
7 10 0 0

Figure 3. Simulation Phases

We create a synthetic workload, listed in Figure 3, meant
to explore several different operating regimes. The first
phase is to bootstrap and setup a network of 10800 = 120
* 1.5 * 60 nodes. The second, fourth and sixth phases are to
simulate the steady network with equal join and leave rate.
The third phase is to simulate heavy leave in a 20 minutes
period. The fifth phase is to simulate heavy join in a 20
minutes period. The last phase is a quiet period.

0

20

40

60

80

100

120

140

160

0 30 60 90 129 159 189 219 261 291 321

time(min)

o
f S

Ps
av

g #
 of

 pe
ers

 / S
Ps

0

2000

4000

6000

8000

10000

12000

o
f p

ee
rs

new SP

load sharing

SP dismissed

SP failure

avg # of peers/SP

of SPs

of peers

Figure 4. The # of peers, superpeers and average load/superpeer

4.5 Simulation Results

Figure 2 and Figure 4 show the simulation results. Sys-
tem events such as superpeer creation, load balancing ac-
tions, and superpeer failures are plotted on the top of both
figures.

In Figure 2, the expected average analytic lookup
rate(R = 2q N

M
) is drawn and the actual values are plotted

over it demonstrating a strong match.
The maintenance messages at superpeers due to peer

joining, peers leaving or failing, and the keepalive mes-
sages between superpeers are all predictable with the fixed
parameters in the simulator. In Figure 2, the expected main-
tenance traffic rate per superpeer (excluding load balancing
messages) is drawn below and the actual values plotted over,
again showing a near-perfect match. The maintenance mes-
sages for load balancing is unpredictable, because of the na-
ture of the load balancing algorithm and the behavior of the
whole system. However all these messages constitute main-
tenance traffic. The actual average maintenance messages
per superpeer is drawn in Figure 2. The cost of the load
balancing can be computed as the difference of total main-
tenance traffic minus the predictable message rate. When
compared with the lookup rate, it is seen that the mainte-
nance traffic is quite insignificant.

The simulation results show that the system is highly
adaptive to the peer joins or leaves and failures of both peers
and superpeers. In Figure 4, the total number of peers can

be seen plotted. As the number of peers changes, the num-
ber of superpeers and the load on each superpeer are tuned
by the load balancing algorithm fairly well. It is seen that
the number of superpeers adjusts dynamically to represent
the change in load caused by the peers joining and leaving.
Moreover, the load at a particular superpeer never exceeds
the hard limits and generally stays between the soft limits.
This indicates that the load-balancing algorithm is able to
balance the load among the superpeers.

5 Conclusion

There are a wide-range of design options in building
peer-to-peer systems. In a centralized system, exemplified
by Napster, the obvious advantage is that of lower lookup
cost, with the associated challenges of scalability and relia-
bility. Decentralized systems, such as Chord, can offer im-
proved scalability and reliability, but with increased lookup
overhead relating to the nature of distributed hash tables.

Our approach of using superpeers provides many of the
advantages of both centralized systems and distributed sys-
tems, while avoiding most of their drawbacks. Superpeer-
based lookup can offer constant-time latency, while offering
a configurable degree of resilience to superpeer failures. We
show that the overhead involved in maintaining the structure
of the superpeer ring is low as compared to lookup traf-
fic that the peers generate. Moreover, we demonstrate a

simple superpeer load-balancing algorithm, and show that
it provides an equitable and achievable load distribution.
While increased centralization does ultimately limit scala-
bility, we show that our proposed system could reasonable
scale over one million peers for reasonable lookup rates.
Consequently, this approach is a reasonable design choice
for most realistic system deployments. Finally, we note that
our approach can easily be integrated into existing P2P sys-
tems as a performance optimization to the existing lookup
algorithm rather than as a replacement.

Acknowledgments

We like to thank Ion Stoica for his valuable comments on
our system design and his help on modifying Chord Simu-
lator. We also are grateful to Ranjita Bhagwan for her com-
ments on earlier drafts of this paper.

References

[1] Russ Cox, Athicha Muthitacharoen, and Robert Mor-
ris. Serving DNS using Chord. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems
(IPTPS), Cambridge, MA, March 2002.

[2] N.G. de Bruijn. A combinatorial problem.
Kononklijke Nederlands Akademi van Wetenchappen,
49(2):758–764, 1946.

[3] Kazaa Media Desktop. http://www.kazaa.com.

[4] Michael Freedman and David Mazieres. Sloppy hash-
ing and self-organizing clusters. In 2st International
Peer To Peer Systems Workshop (IPTPS 2003), Berke-
ley, CA, USA, February 2003.

[5] Luis Garces-Erice, Keith W. Ross, Guillaume Urvoy-
Keller, and Ernst W. Biersack. Hierarchical peer-
to-peer look-up services. In submission to INFO-
COM2003, 2002.

[6] Gnutella. http://www.gnutella.com.

[7] Indranil Gupta, Kenneth Birman, Prakash Linga,
Al Demers, and Robbert Van Renesse. Kelips: build-
ing an efficient and stable P2P DHT through increased
memory and background overhead. In 2st Interna-
tional Peer To Peer Systems Workshop (IPTPS 2003),
Berkeley, CA, USA, February 2003.

[8] Frans Kaashoek and David R. Karger. Koorde: A sim-
ple degree-optimal hash table. In 2st International
Peer To Peer Systems Workshop (IPTPS 2003), Berke-
ley, CA, USA, February 2003.

[9] Napster. http://www.napster.com.

[10] Matei Ripeanu and Ian T. Foster. Mapping the gnutella
network: Macroscopic properties of large-scale peer-
to-peer systems. In Revised Papers from the First In-
ternational Workshop on Peer-to-Peer Systems, pages
85–93. Springer-Verlag, 2002.

[11] Matei Ripeanu, Adriana Iamnitchi, and Ian Foster.
Mapping the gnutella network. IEEE Internet Com-
puting, 6(1):50–57, 2002.

[12] Antony Rowstron and Peter Druschel. Pastry: Scal-
able, decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–??, 2001.

[13] Stefan Saroiu, P. Krishna Gummadi, and Steven D.
Gribble. A measurement study of peer-to-peer file
sharing systems. In Proceedings of Multimedia Com-
puting and Networking 2002 (MMCN ’02), San Jose,
CA, USA, January 2002.

[14] Shubho Sen and Jia Wang. Analyzing p2p traf-
fic across large networks. In Proceedings of ACM
SIGCOMM Internet Measurement Workshop (IMW),
November 2002.

[15] Anurag Singla and Christopher Rohrs. Ultrapeers:
Another step towards gnutella scalability. Whitepaper,
2002.

[16] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure. In In
Proc. ACM SIGCOMM Conference (SIGCOMM’02),
pages 73–88, August, 2002.

[17] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
Peer-To-Peer lookup service for internet applications.
In Proceedings of the 2001 ACM SIGCOMM Confer-
ence, pages 149–160, 2001.

[18] Kelly Truelove. Gnutella and the transient web.
Whitepaper, 2002.

[19] Udi Wieder and Moni Naor. A simple fault tolerant
distributed hash table. In 2st International Peer To
Peer Systems Workshop (IPTPS 2003), Berkeley, CA,
USA, February 2003.

[20] Ben Y. Zhao, John Kubiatowicz, and Anthony D.
Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

