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Abstract

Internet flash crowds (a.k.a. hot spots) are a phe-
nomenon that result from a sudden, unpredicted increase
in an on-line object’s popularity. Currently, there is no effi-
cient means within the Internet to scalably deliver web ob-
jects under hot spot conditions to all clients that desire the
object. We present PROOFS: a simple, lightweight, peer-
to-peer (P2P) approach that uses randomized overlay con-
struction and randomized, scoped searches to efficiently lo-
cate and deliver objects under heavy demand to all users
that desire them. We evaluate PROOFS’ robustness in en-
vironments in which clients join and leave the P2P network
as well as in environments in which clients are not always
fully cooperative. Through a mix of simulation and pro-
totype experimentation in the Internet, we show that ran-
domized approaches like PROOFS should effectively relieve
flash crowd symptoms in dynamic, limited-participation en-
vironments.

1. Introduction

Internet Flash Crowds (a.k.a. hot spots) are a phe-
nomenon that result from a sudden, unpredicted increase
in an on-line object’s popularity. Recent examples include
the news pages at www.cnn.com and www.nytimes.com on
September 11th and immediately following the plane crash
in New York on November 12th. During the very times
when content reaches its apex in popularity, it becomes un-
available to the majority of users that seek it.

There are several approaches to remedy the problem. A
straightforward but costly approach is to provision acces-
sibility based on peak demand. An alternative approach is
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to dynamically increase server locations of the popular doc-
uments. Content distribution companies such as Akamai
have identified ways to offload the burden placed on servers
to transfer embedded objects. However, to prevent flash
crowds from overloading servers with requests for container
pages, significant changes must be made to the Domain
Name System (DNS) so that clients’ initial requests can be
also immediately be redirected to available resources.

A third approach is to have the clients form a peer-to-
peer (P2P) overlay network that allows those clients that
have received copies of the popular content to forward the
content to those clients that desire but have not yet received
it. In this paper, we describe and evaluate our implemen-
tation that applies this third approach on top of overlay
topologies generated essentially at random to scalably, reli-
ably deliver content whose popularity exceeds the capabil-
ities of standard delivery techniques. We call this system
PROOFS: P2P Randomized Overlays to Obviate Flash-
crowd Symptoms.

PROOFS is not meant to replace the existing web-based
infrastructure that utilizes DNS. It is instead designed to
support that infrastructure at times when a flash crowd over-
whelms the original architecture’s capabilities - an idea sim-
ilar to that described in [4, 5]. PROOFS consists of two pro-
tocols. The first forms and maintains a network overlay that
connects the clients that participate in the P2P protocol. The
overlay construction is an ongoing, randomized process in
which nodes continually exchange neighbors with one an-
other at a low rate. The second protocol performs a series
of randomized, scoped searches for objects atop the overlay
formed by the first protocol. Objects are located by ran-
domly visiting sets of neighbors until a node is reached that
contains the object.

The PROOFS architecture makes two novel contribu-
tions to the general field of overlay and P2P networking.
First, the distributed protocol that forms the overlay is novel
in that we seek to “randomize” the connectivity in the over-
lay. In particular, we make no effort to connect nodes that
are “close” to one another with respect to a distance metric



such as end-to-end delay. While this approach may cause
an increase in search times, the randomness of the topology
makes the system more robust: if and when nodes join and
leave the overlay, little needs to be done to adjust the topol-
ogy to accommodate the changes in overlay membership.
In addition, since a query results in numerous searches per-
formed in parallel, with high likelihood there will be many
paths that choose (at random) nodes that are topologically
close. Since the time taken to retrieve an object is the min-
imum time taken by any search path that locates the object,
we conjecture that it is highly likely that some path that lo-
cates the object will consist mainly of “short” edges, mak-
ing expected search times low.

The search protocol itself has many similarities to proto-
cols used by applications such as Gnutella and is not strik-
ingly new. However, the second novel contribution of the
work is the application of this simple undirected search
protocol to satiate flash crowd demand. Unlike the major-
ity of other approaches, PROOFS does not require users to
cache copies of objects or pointers to objects outside from
what they have explicitly requested. As demonstrated by
our analysis in [13], when run atop a randomly-connected
overlay, this simple search protocol quickly retrieves “hot”
objects with low bandwidth overheads.

We demonstrate the claims above as well as the scalabil-
ity of the system to thousands of participants by performing
the following tasks:

� Through analytical modeling and simulation, we show
that the likelihood that the constructed overlay sepa-
rates a client from reaching a large fraction of other
clients is extremely rare, even in the presence of clients
dynamically joining and leaving the overlay.

� Through simulation, we show that traffic levels, la-
tency, and connectivity grow in a tolerable manner
as a function of the fraction of overlay nodes cease
to perform query and object forwarding (i.e., non-
cooperative nodes). For instance, we show that even
when up to 70% of the overlay participants refuse to
forward queries and deliver the requested object, a
query for an object locates the object more than 95% of
the time. In addition, the number of queries transmit-
ted does not even double, and the time taken is slightly
more than double the what it is when all overlay par-
ticipants perform these forwarding tasks.

� We evaluate a prototype implementation on a testbed
comprised of end-systems scattered around the world.
Although small in scale compared to how we hope
the system will eventually be used, the testbed demon-
strates that latencies and traffic utilizations by the sys-
tem are low enough to make the approach feasible in
today’s networks.

We note that the search protocol used by PROOFS scales
poorly when applied by users searching for “unpopular”
content. This is because the fraction of nodes storing copies
of a particular item is small, making undirected searches
costly both in terms of the number of queries that must be
transmitted and in terms of the time taken to retrieve the re-
quested object. Directed search approaches [17, 2, 9, 12]
or undirected search approaches with forced caching (users
must also cache objects or pointers to objects that they did
not explicitly request) [1] are more suitable. However, to
scale directed searches to handle flash crowds, it is neces-
sary for nodes along the search path to cache copies of the
searched object once found. 1 Furthermore, directed search
approaches need to to hash all requests for the same object
to the same identifier, restricting the types of queries that a
user can issue. For instance, it is not clear how the system
could be made amenable to temporally restricted queries
such as “Locate a copy of object
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The paper proceeds as follows. In Section 2, we

overview related work. Section 3 describes the basic archi-
tecture of PROOFS. In Section 4, we evaluate our design’s
robustness in the face of dynamic changes to overlay mem-
bership and clients who offer limited participation. Section
5 presents experimental results using a prototype version
of PROOFS upon the real Internet. We discuss some lim-
itations, future directions, and challenges in Section 6 and
conclude in Section 7.

2. Related Work

The idea of flash-crowd alleviation via replication was
previously considered in [3]. However, the architecture
there involves an elaborate communication and exchange
mechanism between servers within the network, having
been developed before the notion of peer-to-peer commu-
nication gained in popularity. The idea of designing a peer-
to-peer system that operates as a “backup” to the exist-
ing DNS/Web infrastructure to support loads brought on by
flash crowds was recently proposed in [5, 4].

This paper focuses on the robustness of PROOFS in
overlays where protocol participants may limit their partic-
ipation in the protocol. Our main focus here is not to eval-
uate its scalability as a function of time to recover objects
and messages sent throughout the network as the number of
participants grows. A thorough investigation of that prob-
lem appears in a separate work [13], where we analyze and
simulate a discrete-event version of a randomized, scoped
search protocol that is the basis of PROOFS. There, we
show that upon randomized topologies, such systems can

1We stress that copies of the objects, and not merely pointers to copies
must be cached. Otherwise, the small number of locations that store the
physical copies will become new bottlenecks of the flash crowd.



effectively scale to overlays that contain millions of partici-
pating clients.

Using randomized means to share content among peers
has also been considered in mobile environments [8, 7].
However, there the “shape” of the overlay, and therefore
the performance of the approach, is a stochastic function
of how users move through the system and their transmis-
sion limitations. In PROOFS, we can further optimize the
overlay, given that we expect that at all times, any pair of
participants can communicate directly atop the underlying
IP substrate as long as one participant has the identity (e.g.,
the IP address) of the other.

A significant amount of attention has been paid to sec-
ond generation P2P architectures such as CAN [9], CHORD
[17, 2] and PASTRY [12], in which participants have a
sense of direction as to where to forward requests. For un-
popular documents, second generation architectures clearly
provide benefit over their first generation counterparts in
terms of the amounts of network bandwidth utilized and
the time taken to locate those documents. However, to
be able to handle documents whose popularity suddenly
spikes without inundating those nodes responsible for serv-
ing these documents, these architectures must implement a
caching mechanism that caches the objects, as is proposed
in [15]. It is unclear whether the transfer overheads such an
approach makes sense in a browser-like environment where
clients join and leave the system at high frequency. Last,
we suspect that members of the overlay who do not partici-
pate fully (e.g., drop requests or refuse to transmit objects)
can significantly deteriorate the effectiveness of these ap-
proaches.

There has been interesting theoretical work that looks at
ways to form “good” topologies for scoped searches. One
example is that of [6] which focuses on building random-
ized topologies with bounds on the overlay graph’s diame-
ter. The procedure is somewhat more complicated and relies
on a central server at various points in the algorithm beyond
mere bootstrapping. The overlay generation method con-
sidered here does not give any such guarantees on overlay
graph diameter, though we expect that in practice the diam-
eter will be small. In its current form, the only centralized
component of PROOFS is what is used to bootstrap new
clients into the overlay. However, other means such as mul-
ticast or anycast can be used in place, removing the need for
a centralized component. Last, there exists a small body of
work that has measured or analyzed existing P2P file shar-
ing systems such as Gnutella and Napster [14, 10, 11].

Last, we suspect that the recent caching approach de-
scribed in [1] will perform well in a flash-crowd environ-
ment. While the caching overheads are unnecessary when
it is known that the item being searched for is popular, re-
quiring explicit caching could be used to reduce damage
caused by false alarms, where users seek unpopular objects

that they mistakenly believe are inaccessible because of a
flash crowd.

3. Design Description

In this section, we describe the application for which the
PROOFS system was designed and describe the details of
that design. The objective of PROOFS is to provide addi-
tional support to the existing web/DNS infrastructure. In
particular, our goal is to provide timely delivery of web ob-
jects that are stored at locations whose availability is com-
promised as a result of a heavy request load for the objects.

3.1. PROOFS Design

Here we consider the architectural design of the
PROOFS system without attempting to optimize its perfor-
mance in any way whatsoever, i.e., no functionality is added
beyond what is necessary to make it functional and robust.
There are two components to the system, the client and the
bootstrap server. From the perspective of PROOFS (with-
out optimizations added), clients are a set of homogeneous
end-systems that form the P2P overlay and are used to send
searches. Bootstrap servers maintain a finite-sized cache of
recent users that have recently joined the overlay, provid-
ing a means (prior to hot spot activity) by which clients can
learn about and identify other clients in the overlay. In our
current implementation (discussed in Section 5, we utilize
a single bootstrap server. However, it is easy to extend the
system to one that employs several bootstrap servers so that
users can join the PROOFS system in environments where
bootstrap servers can fail.

Each PROOFS client runs two protocols, Construct-
Overlay and LocateObject. ConstructOverlay
is responsible for determining which sets of clients a client
is permitted to query when searching for objects. Locate-
Object is the protocol that participates in searches upon
the overlay network formed by ConstructOverlay.
ConstructOverlay is in essence the passive compo-
nent, running continually, whereas LocateObject runs
only when flash crowd phenomena exist within the network.
Below, we give brief descriptions of these two protocols.
These protocols rely heavily on randomness to be both sim-
ple and robust. All communications between clients occur
at the IP level, i.e., each client has an IP address and port
that it uses to send and receive communications. The un-
derlying routing system is not of concern in this paper.

3.1.1 ConstructOverlay

When a client wishes to participate in the PROOFS system,
the ConstructOverlay protocol first contacts a boot-
strap server to obtain a preliminary list of neighbors (an IP



address:port combination). A client � ’s neighbors are the
set of nodes with which it is permitted to initiate contact.
Hence, if the P2P overlay is viewed as a graph � in which
the set of clients are the nodes, then the neighbor relation
is indicated via a directed edge. Because we use directed
edges, it is possible for node � to be node � ’s neighbor
(such that � can initiate contact with � ) while � is not
� ’s neighbor (such that � can only communicate with �
directly by responding to � ). This set of neighbors is the
only state maintained by the ConstructOverlay proto-
col that varies with time. There is a fixed bound, � , on the
maximum number of neighbors that a client will maintain.

Clients continually perform what is called a shuffle op-
eration. The shuffle is an exchange of a subset of neigh-
bors between a pair of clients and can be initiated by any
client. The client ��� that initiates a shuffle chooses a subset
of neighbors of size � that is the no larger than the mini-
mum of the bound, � and its current number of neighbors.
It selects one neighbor, ��� from this subset and contacts that
neighbor to participate in the shuffle. �	� sends the subset of
neighbors it selected with ��� removed from the subset and
� � added. If � � accepts � � ’s shuffle, it selects a subset of
neighbors from its list of neighbors and forwards this sub-
set to � � . Upon receiving each other’s subsets of neighbors,
� � and � � update their respective neighbor sets by includ-
ing the set of neighbors sent to them. The replacement is
done according to three rules:

1. No neighbor appears twice within the set.

2. A client is never its own neighbor.

3. If the size of the the neighbor set currently lies below
the bound, � , new entries to the neighbor set are added
without overwriting previous entries (until the bound
reaches � ).

4. Neighbors in the neighbor set can only be overwritten
(i.e., removed) if they were sent to the other neighbor
during the shuffle.

A sample shuffle operation is shown in Figure 1. There,
clients are represented by numbered circles. Directed edges
indicate the neighbor relation, where an arrow pointing
from � to � means that � is a neighbor of � . Neighbors
are depicted only for the darkened clients numbered 4 and
10. These nodes start with the set of neighbors depicted in
Figure 1(a) and end with the set of neighbors depicted in
Figure 1(b).

Note two important points: first, no client becomes dis-
connected as a result of a shuffle: it simply moves from
being the neighbor of one node to being the neighbor of an-
other. Second, if client � is � ’s neighbor and � initiates
a shuffle with � , then after the shuffle, � is � ’s neighbor
(i.e., the edge reverses direction).
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(a) Before the shuffle
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(b) After the shuffle

Figure 1. An example of a shuffle operation

In our current implementation, a client waits a random
amount of time sampled from an exponential distribution.
A shuffle request is only rejected by neighbors that have
placed a request to shuffle but have not yet received a re-
sponse. Upon receiving a rejection (or a timeout), a client
continues the process of choosing the next time to initiate
the shuffle from a uniform distribution. The rejection must
be explicitly acknowledged. Clients that do not respond
to shuffle requests are assumed to be inactive (i.e., are no
longer part of the overlay) and are removed from the re-
questing client’s neighbor set.

3.1.2 LocateObject

The LocateObject protocol is the protocol that attempts
retrieval of the desired object by searching among the par-
ticipating clients that are connected together by the overlay
that was constructed using the ConstructOverlay pro-
tocol. Once a client decides to use PROOFS to retrieve an
object (how such a decision can be made is discussed in
Section 6), a query is initiated at the client. A query con-
tains the following information:

� Object: a description of the object being searched for.

� TTL: a counter that counts the maximum number of
additional hops in the overlay that the query should
propagate if a copy of the requested object has not been
located.

� fanout: a value 
 that indicates to how many neigh-
bors a client should forward a query that it has received
when it does not have a copy of the requested object
(assuming the TTL has not expired).

� Return Address: the address of the client that initiated
the query such that once a suitable object is located, it
can be returned directly.



When a client receives a query or initiates a query from
another client, it first checks to see if it contains a copy of
the requested object. If so, it forwards the object to the
return address specified in the query. Otherwise, it decre-
ments the TTL of the query, and if the TTL is non-negative,
randomly selects 
 neighbors from its neighbor set and for-
wards the query with the decremented TTL to those neigh-
bors. Neighbors that receive the query are expected to ac-
knowledge receipt by sending an ACK packet back to the
client that forwarded the query. If no ACK is returned from
a client then another client is selected at random and the
query is instead forwarded to that client.

If a client that initiates a query does not receive a copy
of requested object after a certain period of time, the client
assumes that no clients reached by the query had a copy of
the object and repeats the query. Currently, we increment
the TTL value by one each time a query fails until reaching
a given value.

4. Robustness

In this section, we evaluate the robustness of PROOFS.
In particular, we investigate the design’s robustness as a
function of the following networking phenomena:

� Joins/Leaves: One expects that over time, clients will
join and leave the overlay, and that clients may leave
without warning or notification. We show via simula-
tion that the majority of clients can still reach a very
large fraction of clients in the overlay even when join
and/or leave rates are extremely high.

� Pseudo-participants: There may exist clients that
wish to retrieve objects using the PROOFS system but
wish to limit participation assisting other clients within
LocateObject. Clients that do not participate in
the ConstructOverlay Protocol maintain a fixed
set of neighbors throughout the duration of their ses-
sion. This limits their own ability to retrieve content
as some of these neighbors may leave the system.2 We
show that, even with up to 80% of clients limiting their
participation, our design maintains acceptable traffic
levels and times for object delivery.

4.1. Handling Dynamic Joins and Leaves

We now evaluate via simulation the likelihood of a parti-
tion for the case where clients dynamically join and leave
the PROOFS system. Clearly, one can construct sample
paths of joins and leaves that cause a partition in the under-
lying directed graph. In each simulation, an upper bound,

2Note that under the bootstrapping process, these nodes are assigned as
neighbors to other nodes and remain as parents until explicitly removed.

�
, is placed on the number of clients participating in the

overlay. These clients join and leave the overlay, each
client’s join and leave times are exponentially distributed
with rates of � and � , respectively. Each client initiates
shuffles where the time between these initiations is expo-
nentially distributed with mean rate 1. In these experi-
ments, when clients leave the overlay, there are no explicit
attempts to self-heal the overlay, i.e., edges that pointed to
clients since departed subsequently point to nowhere un-
til the client returns. Upon their return to the overlay, a
client contacts the bootstrap server of its arrival and obtains
a new list of neighbors. We varied the likelihood with which
a client would inform the bootstrap server of its departure
from the overlay. However, we found this announcement to
have negligible impact on performance, so results presented
here are only for the case where clients do not inform the
bootstrap server of their departures.

During a simulation, we sample the status of the overlay
at an average rate of ��� � , with the time between samples
drawn from an exponential distribution. We collect 1200
samples and discard the first 200 to allow the experiment
time to converge toward a steady state. By PASTA, the fact
that the times between samples are exponentially distributed
guarantees that the samples reflect steady-state behavior.3

During each sample, for each active client � (currently
joined to the overlay), we computed the fraction of other
active clients that can be reached by � via some path along
a sequence of directed edges within the overlay graph. We
call this quantity the reachability of � . During each sample,
we compute the minimum, mean, median, and maximum
reachability over all active clients. Table 1 lists the set of
parameters varied during experiments as well as the values
to which the different parameters were set.

Table 1. Parameters varied for partition simu-
lations

# clients 50,100,500,1000,2000
client neighborhood size 5,10,25,50
� 0.01 through 1
� 0,0.01,0.1,1
shuffle size 2,5,10
bootstrap server cache 5, 10, 50, 100

4.1.1 Results

Figure 2 presents results for experiments in which
���

	�
�


clients formed the overlay, each with a bound of 25

3This of course assumes that the system has reached steady state by the
200th sample.
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Figure 2. 95% bounds on reachability

on the size of its neighbor set. The shuffle size is set to 5
and bootstrap cache size is set to 25. Figure 2(a) plots, as a
function of � and � , the level of reachability that is exceeded
in at least 95% of the samples by all clients. In other words,
fewer than 1 of 20 samples should contain a client whose
reachability is lower than the values plotted in the figure.
� is varied on the � -axis with the different curves plot the
results for differing values of � . Figure 2(b) is similar to
Figure 2(a) except that the average reachability is used in
place of the minimum reachability.

We see at least 95% of the time, the average reachabil-
ity equals one (all clients are able to reach all other active
clients). A client with the minimum reachability within a
sample can drop as low as 20%, which means that a clients’
query can reach at most 400 of the 2000 clients participat-
ing in the system. We emphasize that these plots are based
on the reachability of the client with lowest reachability at
each sample. A single client remains “the worst” for short
periods of time and so an individual client’s average reach-
ability is much higher than what is plotted here. In addition,
we note that low levels of reachability occur only in extreme

cases where the expected time for which a client remains in
the system is 50 times smaller than the expected time for
which the client is exited from the system. Note that such
a ratio corresponds to a scenario in which clients that use
web browsers twice a day run the browser on average for
less than 15 minutes per sitting. This makes these high ra-
tios unlikely in practice. We therefore expect under realistic
conditions, reachability will be high for all active clients at
all times.

We now discuss the case where the set of clients are fixed
is covered by setting � � 


(clients join and never leave).
We omit the plots since they overlap with the case where
� � 
�� 
 � . In summary, in our experiments with � � 


,
client reachability dipped below 1 less than 5% of the time,
and never dipped below 0.95.

We have also evaluated the impact that neighborhood
size has on minimum reachability. Due to lack of space,
we simply summarize our finding that increasing neighbor-
hood size greatly increases the minimum reachability in the
overlay graph when ����� � .

We conclude the examination of the reachability within
overlays generated by the shuffling algorithm by noting that
we have examined the algorithm in an environment where
we make no explicit attempts to repair partitions. In prac-
tice, it would be simple if desired to add an additional mech-
anism to explicitly perform repairs. For instance, a client,
upon detecting an unresponsive neighbor could remove the
neighbor from its neighbor set and shuffle with an active
neighbor to replenish its neighbor set. On the rare occasions
that a client finds itself partitioned or unable to increase its
neighborhood to the desired size by shuffling can contact
the bootstrap server to obtain a fresh set of neighbors. Such
types of mechanisms would reduce the likelihood of parti-
tioning, improving reachability, if deemed necessary.

4.2. Non-cooperating clients

We now turn our attention to evaluating the robustness
of PROOFS as we vary the level of participation of clients
within protocol LocateObject. Because PROOFS is de-
signed to run on users’ desktop machines, we must account
for the fact that not all clients will be willing to fully par-
ticipate. In some cases, clients may even attempt to deceive
others about their levels/ability to participate [14]. Often,
the ability to adjust the level of participation is a feature
in file-sharing systems.We introduce three basic means by
which a client can limit its participation in PROOFS:

� Query-only: a query-only client will act as though it
has not received a copy of the object. However, the
client will forward queries further in the normal fash-
ion (forwarding the query to 
 neighbors after decre-
menting the TTL as long as the TTL is larger than 0.)



� Tunneling: upon receiving a query, a tunneling client
selects a single neighbor and forwards the query to the
neighbor with a decremented TTL.4

� Mute: a mute client drops all queries it receives with-
out notifying other clients of this behavior. We assume
that other clients are not aware that a given client is
mute and therefore no action is taken to compensate
for mute clients.

Using discrete-event simulation, we evaluate the perfor-
mance of PROOFS as a function of the number of messages
transmitted to each client5 and the average time taken for a
client to receive the requested object. In these simulations,
time is measured in hops: the time for a client to communi-
cate with another client (i.e., forward a query) takes a single
time unit. A client can transmit an unlimited number of
queries to neighboring clients within the same time unit.

Following the lead of [13], we evaluate these measures of
performance using two different client arrival processes that
determine the proximity in time with which clients become
interested in the “hot” object and initiate queries. In the
isolated arrival process, only one client is interested at any
given time. A client’s search for the object must complete
before the next client’s search commences. In the joined ar-
rival process, the times at which client searches are initiated
follow the distribution of a branching process. This is im-
plemented by probabilistically initializing a client’s search
that has not yet begun at each time unit. The probability for
time unit � is ������� �
	�� , where � and � are constant and ������
is the number of clients that had been initiated by time unit
��� � . This emulates a scenario where a client self-initializes
with probability � or is “told” about the object by each other
client that has already started its search independently with
probability � . In our experiments, we set � � 
 � 

 � and
� � 
 � 
 � .

We begin by considering the fraction of searches that fail
to locate a copy of the desired object. As the fraction of
clients that are willing to forward queries or return copies
of objects decreases, the likelihood of a search failing in-
creases. Figures 3 and 4 plot results of simulations using
the isolated arrival process. In both figures, the � -axis indi-
cates the fraction of clients that are non-participants. The
type of non-participants (query-only, tunneling, or mute)
is indicated by the different bars in Figure 3 and different
curves in Figure 4. When � � 


, all clients are “behav-
ing” following the basic rules of the protocol. Here, the
overlay used to generate these plots contains � 

�
 clients,

4Our original intention was to not decrement the TTL but this created
large bandwidth overheads as the number of limited-participation clients
was large.

5A subtle point should be made here that the average number of queries
received equals the average number of queries sent (since every query that
leaves a client must arrive at another client.
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Figure 3. Non-cooperation search completion
rates: Isolated arrival process

each with a neighbor set of size
	��

. The fanout, 
 , used
here is

�
. Each point plotted is the the average of � 

 runs.

When shown, 95% confidence intervals are generated from
20 samples that average 15 data points at a time (such that
each sample is drawn from a distribution that is approxi-
mately normal).

Figure 3 illustrates the fraction of clients that locate a
document as a function of the fraction of non-cooperative
clients. Those clients who limit their participation all do
so in an identical fashion: the different curves indicate the
type. We see that even when the fraction of non-cooperating
clients is as high as 0.5, all clients’ queries are successful
when the non-cooperation type is query-only or tunneling.
When the type is mute, a client’s query is successful 99.5%
of the time. We also observe that the fraction of clients that
find the document does not degrade as the fraction of non-
cooperating clients increases further with the exception of
the mute type of non-cooperation. There, fewer than 20%
of searches fail to locate the object.

Figure 4 plots the average number of messages per client
and average time units required using the isolated arrival
process. We emphasize that this is the expected number of
messages that each client expects to receive so that the de-
sired object can be delivered to all 999 other clients (in-
cluding itself) to obtain a copy of the object. It is also the
expected number of messages that each client must send for
this purpose.6 such From Figure 4(a) we observe that when

6This seems somewhat counter-intuitive at first, since a client typically
sends � messages for each message received. However, there are occasions
when the TTL reaches 0 at the client such that it forwards nothing when it
receives a message. The observation is proved by noting that each message
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Figure 4. Non-cooperation overhead: Isolated
arrival process

the fraction of non-cooperating clients is 0.5, the average
number of messages does not even double. In fact, for mute
and tunneling types, levels of traffic increase by only 50%.
We see that types tunneling and mute have less of an impact
on traffic than does type query-only. We note a rather large
confidence intervals at � � 
 ���

for the mute type. These are
a result of the small number of searches that do not locate
the object because no path exists through non-mute clients
to the object. This creates a small set of searches that use a
significantly larger amount of traffic.

Figure 4(b) plots the average number of time units taken
for a client to retrieve the object. We observe here that types
query-only and tunneling cause minimal increases in search
times. The mute type causes a minimal increase when the
fraction non-cooperating clients falls below 0.6. However,
the time increases dramatically once this fraction is passed.

We ran similar experiments for the case where clients ini-
tiated queries according to the joined arrival process. There,

sent by a client is received by another.

we observe similar trends in both the average number of
messages and the average number of time units. The only
difference is that the averages are slightly (no more than
20%) higher than for the isolated arrival process.

We have also examined the effect of non-cooperative
users as we vary the size of each user’s neighbor set. Due
to lack of space, these results are relegated to [16].

In summary, these simulation results indicate that
PROOFS is robust in overlays even when the fraction of
clients that are non-cooperative 0.5.

5. Experiments

In this section, we present results of our use of an
experimental prototype within a wide-area network set-
ting. Our experimental testbed consists of a variety of
machines gathered at the following academic institutions
around the globe: MIT(MA), USC(CA), Columbia (NY),
UCL (London), GeorgiaTech (GA), UKentucky (KY),
NTUA (Athens, Greece), UNC (NC), CMU (PA), UCSD
(CA), UDelaware (DE), UMass (MA), UWisconsin (WI),
UoA(Athens, Greece), UMN (Minnesota), and University
of Maryland (MD). The hosts yielded a heterogeneous mix
of operating systems (mostly Linux and Solaris), bandwidth
capabilities, processor speeds and memories.

Our goal was to examine PROOFS within a wide scale
experiment containing thousands of participating clients.
However, doing so would have overloaded the small number
of distributed machines to which we had access. To gener-
ate more participants, multiple clients (between 5 and 15)
were assigned to a single machine as separate processes.
Since a client’s neighbors are assigned randomly via the
shuffling process, the selection of neighbors is not biased by
their network or physical proximity. Hence, the only effect
that this artificial proximity has on the experiments is that
approximately ���  th of the time, the end-to-end transmis-
sion delay between pairs is smaller than would be expected
in practice, where  is the number of hosts.

Our prototype is a multi-threaded Java executable that
uses TCP sockets to form and maintain connections be-
tween neighbors in the overlay. We selected Java because of
its inherent portability to all the machines, though the exe-
cutable code is slower than what can be achieved by coding
in C. By using TCP sockets, we did not need to concern
ourselves with handling lost transmissions within the net-
work. When a client shuffles a neighbor away, it closes the
TCP socket that leads to the departed neighbor. When a
client is informed of a new neighbor (during a shuffle) it
then initiates a TCP connection with that neighbor. We also
implemented a bootstrap server to provide the clients with
a valid sets of neighbors during their startup. In all experi-
ments, the times at which each client initiates shuffle opera-
tions are exponentially distributed with an expected time of
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Figure 5. Experiments with 180 clients, simul-
taneous searches

two minutes between shuffle initiations. We let the shuffling
proceed for a half hour before initiating our experiments to
give the overlay time to “randomize” itself.

Figure 5 plots results of 8 experiments using an overlay
consisting of 180 clients with a neighbor set size of 15. In
each experiment, a single client starts with a copy of the ob-
ject. All other clients simultaneously search for that object
using a fanout 
 � 	

. Figure 5(a) plots, for each exper-
iment, the average number of query requests received by
each client, as well as the maximum number of requests re-
ceived over all clients. On the � -axis, we vary � , where
a client waits � � milliseconds after initiating a query with
TTL � before initiating its next query (the maximum values
are shifted slightly to the right to more easily distinguish
between average and maximum points). Figure 5(b) plots
the corresponding average and maximum times taken from
the time that a client’s search is initiated to the first time that
the client retrieves the object (since multiple copies can be
returned due to the parallel nature of the search).

We see that by setting � to small values, the expected

time to delivery is reduced. However, there can be substan-
tial increases in traffic levels due to premature transmission
of queries (before previous queries have had a chance to
complete). We see that for values of ��� � 

 , average traf-
fic levels are approximately the same, with each client re-
ceiving on average fewer than 25 queries to allow all clients
to obtain the content. This follows from our observation that
typical response times to queries varied between 100ms and
350ms. The results indicate that a client should give ample
time for a query to complete its search before starting an-
other.

These experiments demonstrate that (admittedly, on a
smaller scale), PROOFS can retrieve popular objects in an
efficient fashion. The time between queries should be no
less than 250 msec, giving ample time for the large major-
ity of queries to reach their intended destinations.

6. Discussion

The appeal of PROOFS is the simplicity, scalability, and
robustness of its basic architecture. The fact that often
nodes receive redundant copies of queries does increase the
levels of traffic it adds to the network. However, this redun-
dancy proves to be helpful in naturally prevent partitions
and allows the system to operate effectively even when a
large fraction of clients limit their participation.

While we have demonstrated PROOFS’ ability to scal-
ably and robustly deliver objects under heavy demand, we
have not evaluated the potential damages to the network via
misuse or intentional abuse. PROOFS’ scalability relies on
the fact that the object a client searches for is also being
searched for by many other clients in the network. In prac-
tice, it is necessary to limit the amount of flooding caused
by searches that are not looking for popular content. We
envision two simple ways to control such flooding.

One way is to place limits on the rate at which clients
are willing to service queries. If all clients bound the rate
at which they process queries by some fixed � , then each
client can only inject queries into the network at a maxi-
mum rate of 
�� (the rate can be lower due to queries for
which a copy of the object can be returned). Another way
is to place limits on the maximum TTLs for queries. Large
TTLs are required when few clients are searching for an
object so that their queries cover the majority of nodes in
the overlay. In contrast, when numerous clients search for
a common object, repeated searches with small TTLs will
spread the objects around the overlay quickly as a result
of the overlay’s randomly connected structure. Hence, the
number of small scoped searches that find the object is ex-
pected to grow exponentially with time. This rate limiting
reduces the usefulness of PROOFS under non-flash crowd
conditions, but we expect will not significantly affect per-
formance during actual flash crowds.



We have demonstrated that PROOFS can provide ro-
bust performance in delivering hot objects as long as some
node in the overlay contains a copy of the sought after ob-
ject. PROOFS can incur significant overheads when used
to search for an object that is not “hot” or is unavailable
within the P2P network. For the former case, we are inves-
tigating mechanisms that can be used to predict the “heat”
of an object. The latter remains an open problem, not only
in PROOFS, but in all P2P search protocols.

7. Conclusion

We have presented PROOFS, a system designed to de-
liver objects whose servers of origins are experiencing flash
crowd conditions. The system uses overlays that are formed
via a distributed shuffling procedure such that neighbors are
selected at random. Randomized, scoped, flooding searches
are then used by clients upon the overlay to locate the object
that cannot be retrieved from the overwhelmed server. We
have shown via a mix of theoretical results, simulation, and
experimentation that by relying on randomness, PROOFS
can achieve low latency delivery utilizing modest traffic lev-
els, even when membership to the overlay changes dynam-
ically with time and when there exist members that limit
their participation in the system.
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