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ABSTRACT

Recent advances in unmanned aerial vehicle (UAV) technologies
have made it possible to deploy an aerial video surveillance system
to provide an unprecedented aerial perspective for ground moni-
toring in real time. Multiple UAVs would be required to cover a
large target area, and it is difficult for users to visualize the over-
all situation if they were to receive multiple disjoint video streams.
To address this problem, we designed and implemented SkyStitch,
a multiple-UAV video surveillance system that provides a single
and panoramic video stream to its users by stitching together mul-
tiple aerial video streams. SkyStitch addresses two key design chal-
lenges: (i) the high computational cost of stitching and (ii) the diffi-
culty of ensuring good stitching quality under dynamic conditions.
To improve the speed and quality of video stitching, we incorporate
several practical techniques like distributed feature extraction to re-
duce workload at the ground station, the use of hints from the flight
controller to improve stitching efficiency and a Kalman filter-based
state estimation model to mitigate jerkiness. Our results show that
SkyStitch can achieve a stitching rate that is 4 times faster than ex-
isting state-of-the-art methods and also improve perceptual stitch-
ing quality. We also show that SkyStitch can be easily implemented
using commercial off-the-shelf hardware.

Categories and Subject Descriptors

I.4 [Image processing and computer vision]: [Applications]; I.2.9
[Robotics]: [Autonomous vehicles]
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1. INTRODUCTION
The proliferation of commodity UAV technologies like quad-

copters has made it possible to deploy aerial video surveillance
systems to achieve an unprecedented perspective when monitoring
a target area from the air. UAV-based surveillance systems have a
broad range of applications including firefighting [2], search and
rescue [3], and border monitoring [8].
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Figure 1: Illustration of SkyStitch. Each quadcopter transmits a live
video stream to the ground station, which stitches them together to
provide a single composite view of the target area.

For example, a UAV could be deployed to hover over a bush-
fire to transmit a live video feed to firefighters using wireless links
to allow them to appraise the situation from an aerial perspective.
However, because on-board cameras have only a limited field of
view, multiple UAVs would be required to cover a large target area.
If the firefighters were to receive multiple disjoint video streams
from each UAV, it would be difficult for them to put together a con-
sistent view of the situation on the ground.

To address this problem, we designed and implemented SkyS-
titch, a quadcopter-based HD video surveillance system that incor-
porates fast video stitching. With SkyStitch, users on the ground
would receive a single composite live video feed produced from the
video streams from multiple UAVs. This is illustrated in Figure 1,
where an SOS sign is marked on the ground by victims trapped in
a bushfire.

Although the high-level idea of SkyStitch is relatively straight-
forward, there are two practical design challenges. The first chal-
lenge is that image stitching inherently has a very high compu-
tational cost. Existing stitching algorithms in both industry and
academia [5, 26, 13] were designed for better stitching quality rather
than shorter stitching time. Although some algorithms can achieve
shorter stitching times [6, 27, 31], they impose an additional re-
quirement that the cameras be in fixed relative positions, which is
infeasible in our operating scenario as the cameras are mounted
on moving quadcopters. The other challenge is that existing im-
age stitching algorithms are designed for static images, and not
video. We found that even though the individual frames produced
by image stitching algorithms might look fine, the video obtained
by naively stitching them together would usually suffer from per-
spective distortion, perspective jerkiness and frame drops.

To address these challenges, we made a few key observations
about our unique operating environment and developed several prac-
tical techniques to improve both stitching efficiency and quality.
One observation is that, although each UAV has only a limited pay-



load, each on-board computer has a fair amount of computational
power. In SkyStitch, we divide the video stitching process into sev-
eral tasks and offload some pre-processing to the UAVs. In this
way, we can improve the speed of stitching by reducing the work-
load of the ground station, which would be a potential bottleneck
when there are a large number of UAVs. Another observation is that
we can exploit the hints from instantaneous flight information like
UAV attitude and GPS location from the on-board flight controller
to greatly improve the efficiency of stitching and rectify perspective
distortion. Our third observation is that image stitching and optical
flow have complementary properties in terms of long-term stabil-
ity and short-term smoothness. Therefore, a Kalman filter-based
state estimation model can be applied by incorporating optical flow
information to significantly reduce perspective jerkiness.

We deployed SkyStitch on a pair of low-cost self-assembled quad-
copters and evaluated its performance for two ground scenarios
with very different feature distributions. Our experiments showed
that SkyStitch achieves a shorter stitching time than existing meth-
ods with GPU acceleration [26], e.g., SkyStitch is up to 4 times
faster for 12 concurrent aerial video sources. In other words, for a
fixed frame rate, SkyStitch can support many more video sources
and thus cover a much larger target area in practice. For exam-
ple, at a stitching rate of 20 frames per second (fps), SkyStitch
is able to stitch videos from 12 quadcopters while existing meth-
ods can only support three with the same hardware. In addition,
SkyStitch is able to achieve better stitching quality by rectifying
perspective distortion, recovering stitching failures and mitigating
video jerkiness. Furthermore, SkyStitch can be easily implemented
using commercial off-the-shelf hardware thereby reducing the cost
of practical deployment.

The rest of this paper is organized as follows. In Section 2, we
present the prior work related to SkyStitch. In Section 3, we discuss
the design details of SkyStitch, followed by its implementation in
Section 4. In Section 5, we present the performance evaluation of
SkyStitch. Finally, we conclude this paper in Section 6.

2. RELATED WORK
Image stitching has been widely studied in the literature. Most

available stitching algorithms are focused on improving stitching
quality without considering stitching time [26, 16, 13]. Recently,
image stitching algorithms have been applied in UAV-based incre-
mental image mosaicking [32]. Basically, a UAV flies over a tar-
get area along a pre-planned route and continuously takes images,
which are transmitted to a ground station and incrementally stitched
to produce a large image of the target area. Unlike SkyStitch, such
applications do not have a stringent requirement on stitching rate.
Wischounig et al. improved the responsiveness of mosaicking by
first transmitting meta data and low-resolution images in the air,
and only transmitting the high-resolution images at a later stage,
i.e., after landing [30]. There are also commercial systems for
UAV-based image mosaicking. The company NAVSYS claims that
its system can achieve a stitching rate of one image per second [12].

There are several existing video stitching algorithms that can
achieve fast stitching rate, but most of them only work for a static
camera array like the one used by Google Street View [10]. Ten-
noe et al. developed a real-time video stitching system using four
static HD cameras installed in a sports stadium [27]. The key idea
of their design is to pipeline the stitching process and implement it
in GPU, and it is able to achieve a stitching rate of 30 fps. Adam et
al. utilized belief propagation to obtain depth information of images
captured on a pair of fixed cameras [9]. Their GPU-based imple-
mentation is able to achieve a rate of 37 fps when stitching two
1600×1200 images, but it requires a calibration process to com-
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Figure 2: Overview of image stitching.

pute the overlapping region of the camera views. Another GPU-
based method relied on specific photogrammetric procedure to find
the cameras’ orientation and translation relative to a common co-
ordinate system, and it could support a stitching rate up to 360
fps when stitching four 1360×1024 images [15]. A CPU-based
method of video stitching can be found in [31]. Although these
methods achieve fast stitching rates, they assume that the cameras
are in a static position and require system calibration and are thus
not applicable to stitching videos from highly dynamic UAVs.

As smartphones become ubiquitous, some researchers have tried
in recent times to improve viewers’ viewing experience by man-
aging video streams from multiple smartphones. Kaheel et al. pro-
posed a system called Mobicast which could stitch several 352×288
video streams from smartphones that captured the same event [22].
While the frame rate of Mobicast was able to meet real-time re-
quirements, its stitching quality in real experiments was generally
poor, with a stitching failure rate of some 60%. El-Saban et al.
improved the frame rate of a similar system by considering the
temporal correlation of frames [17]. Since most smartphones are
equipped with various sensors, we believe that the methods pro-
posed in this paper could potentially also be applied to improve the
performance of smartphone-based video stitching systems.

3. REAL-TIME VIDEO STITCHING
Image stitching involves the alignment and blending of a pair

of images with some overlap into a single seamless image. Video
stitching is effectively the stitching of a series of image pairs (i.e.,
video frame pairs). Image stitching is computationally expensive
and it takes several seconds to stitch a pair of HD images using
Hugin [5], a popular image stitching software, on a workstation
with a 3.4 GHz CPU. The challenge of real-time video stitching
is to ensure that we can stitch a set of video frames within the re-
quired video frame interval. In this paper, we will use image and
video frame interchangeably. In this section, we describe the steps
required in image stitching and explain how SkyStitch improves the
efficiency and quality of video stitching.

The key task in image stitching is to find the transformation be-
tween two images. Assume the ground is a planar surface, and
let each pixel location in an aerial image be represented by a ho-

mogeneous coordinate (x, y, 1). Then the pixel locations of the
overlapping area in the two images are related by

[x′ y′ 1]T ∼ H · [x y 1]T (1)

where H is a 3×3 homography matrix for transformation. In order
to align two images, we need to estimate H.

The most popular method for H estimation is the feature-based
method illustrated in Figure 2. Features refer to the unique parts
in an image, e.g., corners are often considered as features. A fea-
ture is usually represented using a high-dimensional vector, called
feature descriptor, which encodes feature information like gradient
and orientation histogram in the neighborhood. A feature-based



method for estimating H generally consists of the following three
steps: (i) feature extraction, (ii) feature matching and (iii) robust
homography estimation (e.g., using RANSAC [18]).

Once the image alignment (i.e., H) is determined, it remains to
combine the images into a single composite image while minimiz-
ing visual artefacts such as seams, blurring and ghosting. A more
detailed discussion on image stitching can be found in [26].

The challenge of video stitching is that most of the abovemen-
tioned steps in image stitching are computationally expensive. Our
main contributions in SkyStitch are several techniques to reduce
the processing time of video frame stitching to the scale of tens
of milliseconds, while maintaining good stitching quality, as fol-
lows: (i) we reduce the workload of the ground station by offload-
ing feature extraction to quadcopters (§ 3.1); (ii) we exploit flight
status information to speed up feature matching and rectify per-
spective distortion (§ 3.2); (iii) we propose an efficient GPU-based
RANSAC implementation (§ 3.3); and (iv) we utilize optical flow
and Kalman filtering to improve video smoothness (§ 3.4). Finally,
we developed a new approach for closing loops when stitching mul-
tiple video sources (§ 3.5).

3.1 Offloading Feature Extraction
In traditional image stitching systems, feature extraction and the

subsequent processing steps are all performed on a single computer.
However, such an approach might be problematic for SkyStitch
because the ground station would become the computation bottle-
neck, especially when the number of quadcopters is large.

We noticed that there is an on-board computer in each quad-
copter, and thus we can offload feature extraction to the quadcopters
to reduce the amount of computation at the ground station. In other
words, instead of transmitting only a video frame to the ground
station, a quadcopter would also compute and append the corre-
sponding features, which are simply a series of high-dimensional
vectors, for each frame.

The computer on our quadcopters is an NVIDIA Jetson TK1
board. We implemented feature extraction using its GPU, which
has 192 CUDA cores. We adopted the latest ORB method [25] for
feature extraction, as it has been shown to achieve comparable ac-
curacy to other methods such as SIFT [23] and SURF [11] but at
a much lower computational cost. Profiling shows that extracting
1,000 features from a 1280×1024 image takes less than 35 ms.

3.2 Exploiting Flight Status Information
It is difficult to achieve short stitching time and high stitching

quality at the same time. First, because of wind turbulence, the on-
board camera will not always be pointing vertically downwards.
Consequently, the images taken from a tilted camera will almost
certainly have some amount of perspective distortion, which affects
the quality of stitching.

Second, feature matching between two images is time-consuming
since all the features have to be pairwise compared. For exam-
ple, matching the features from two images with 1,000 features
each would require one million pairwise comparisons of feature
descriptors. This would take around 16 ms on a workstation with
a 3.4 GHz CPU. Furthermore, for each feature in an image, there
is at most one correct feature match in the corresponding image.
This means that the probability of incorrect matching will be high
when the number of features is large. If there are many mismatched
features, the quality of stitching will suffer.

We observed that we have more information about the images to
be stitched compared to conventional image stitching. In particular,
because quadcopters are equipped with various on-board sensors
for flight control, we are able to derive a relationship between the

two images from the flight status information. We can detect and
correct for perspective distortion and determine the region of over-
lap between two images to significantly reduce the target region in
the images for feature matching.

3.2.1 Orthorectification of Perspective Distortion

Perspective distortion occurs when the camera is not pointing
vertically downwards to the ground. With orthorectification, we
can transform the image so that it looks as if the camera is pointed
vertically downwards.

Since the degree of camera tilt is determined by the angles of roll
and pitch, we can correct for the resulting perspective distortion
using the attitude information from the flight controller. Let θr , θp
and θy be the Euler angles of roll, pitch and yaw in the coordinate
system of the flight controller, respectively (see Figure 3). Then
the transformation matrix (denoted by the matrix R) to map from
strictly downwards camera direction to the tilted direction can be
expressed as follows:

R =

[

1 0 0

0 cos θr sin θr

0 − sin θr cos θr

][

cos θp 0 − sin θp

0 1 0

sin θp 0 cos θp

][

cos θy sin θy 0

− sin θy cos θy 0

0 0 1

]

(2)
We include the yaw angle in R so that orthorectification can also
align the two images to a common orientation (i.e., to the north).

As the angles in the attitude information are with respect to the
flight controller itself, we need another two simple transformations
for orthorectification. One is needed to transform the pixel loca-
tions of an image (originally in pixel coordinates) into world coor-
dinates that is centered at the camera. This can be easily achieved
using camera intrinsic matrix K. The other transformation (de-
noted by matrix B) is needed to map from the world coordinates
centered at the camera to the world coordinates centered at the
flight controller. Both K and B can be easily obtained via cali-
bration.

In summary, the orthorectification process consists of (i) map-
ping the pixels of an image into the world coordinates system of
the flight controller (using matrices K and B), (ii) correcting for
the effect due to camera tilt (using matrix R), and (iii) mapping
them back to pixel coordinates (again using matrices K and B).
The orthorectification matrix (denoted by M) can be expressed as,

M = KBR
−1

B
−1

K
−1

(3)

Let (x, y, 1) be the original homogeneous pixel coordinates. Then
the corresponding pixel coordinates after orthorectification (x′, y′, z′)
can be expressed using matrix multiplication,

[x′ y′ z′]T = M [x y 1]T (4)

3.2.2 Search Region Reduction for Feature Matching

To reduce feature matching time, we take the spatial locations
of features into consideration. Like image orthorectification, we
exploit the available flight status information to find the mapping
of pixel locations between two images. We first transform the pixel
locations from pixel coordinates to a world coordinate system, with
the center of the camera sensor as the origin, and merge the two
world coordinate systems using the reported GPS locations (see
Figure 4). Recall (x′, y′, z′) are the coordinates of a pixel location
after orthorectification. Let s be the number of meters represented
by the side of a pixel, W × H be the image resolution (in pixels),
θf be the angle of horizontal field of view in the camera, and h be
the quadcopter altitude. Then,

s = 2h tan(
θf
2
)/W (5)
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Then the final world coordinates (xw, yw, zw) can be obtained by,










xw = s (x
′

z′
− W

2
)

yw = s ( y
′

z′
− H

2
)

zw = h

(6)

In other words, each pixel of an image is mapped to a point (xw, yw)
on the ground, with the center of the camera sensor as the coordi-
nate origin. The two world coordinate systems can then be corre-
lated using the difference in the GPS locations. With such infor-
mation, we only need to search in a small local neighborhood for
the matched feature. Because the area of the local neighborhood
is often much smaller than the whole image, we can significantly
reduce the search time of feature matching as compared with the
traditional method of searching the entire image for the target fea-
ture.

This simple idea is illustrated in Figure 5. P is the location in
Image 2 that we map for a feature point from Image 1, and r is
the search radius for the matched feature. Since an image covers a
finite 2D space, a grid indexing approach is preferred. We divide
Image 2 into 50 × 40 bins. 50 × 40 was chosen because it is pro-
portional to the aspect ratio of the image and it yields bins that are
small enough. We would use more bins for a bigger image. If a bin
is within a distance r from P (i.e., the colored bin), all the features
in the bin will be considered as candidates for feature matching.

It remains for us to determine an appropriate value for the search
radius r. Fortunately, the simple approach of setting a fixed and
conservative value for r based on empirical experiments seems to
be sufficient. In particular, we found that r = 200 pixels was suffi-
cient in our implementation. In Section 3.4, we show that r can be
further reduced if we estimate and compensate for GPS errors.

3.3 Optimizing RANSAC
The step after feature matching is to use the standard RANSAC

method [18] to remove outliers. RANSAC arbitrarily selects four
matched features to compute a homography matrix H, applies this
estimated H on all the matched features, repeats it for N iterations
and finds the one with the most inliers. In challenging cases where
the inlier ratio is low, we often set N to a large value (e.g., 500) in
the hope that at least one subset of the four matched features would
not contain any outliers.

While a large N improves RANSAC’s likelihood of finding the
correct homography, it also increases its computation time. For ex-
ample, it takes about 11 ms to perform a 512-iteration RANSAC
on a computer with a 3.4 GHz Intel CPU. This means that it is
impossible to stitch more than 4 videos at 30 fps. In order to
speed up RANSAC, we noticed that the traditional Singular Value
Decomposition (SVD) method is unnecessary for 4-point homog-
raphy and can be replaced with Gauss-Jordan elimination. The
Gauss-Jordan method runs efficiently on GPU due to its simple
and branchless structure, whereas an SVD implementation is usu-
ally much more complicated and GPU-unfriendly. Finally, we im-
plemented an OpenCL-based RANSAC homography estimator that
can compute a 512-iteration RANSAC in 0.6 ms.

To further improve RANSAC performance when the number of
image pairs is large, we maximize parallelism and minimize IO
overhead by performing RANSAC on all image pairs in one pass
(Figure 6). First, candidate homographies of all image pairs are
computed in a single kernel execution. The candidate homogra-
phies are then routed to corresponding image pairs for reprojection
error computation and inlier mask generation. Finally, the scores
and inlier masks of all candidate homographies are downloaded to
main memory. Our RANSAC pipeline has only four CPU-GPU
memory transactions and the amount of parallelism at each stage is
much higher than performing RANSAC sequentially for each im-
age pair.

In addition to execution speed, we also made improvements to
the accuracy of RANSAC. Traditionally, each RANSAC iteration
is scored based on the number of inliers. While this approach works
well most of the time, we found that when the inliers are concen-
trated in a particular region, it may result in a bad estimation of H.
To mitigate this problem, we modified the score by taking into con-
sideration the distribution of inliers. Specifically, we use a score
that is a function of both the number of inliers and the standard
deviations of their locations:

score = Ninliers σx σy (7)

This score can be efficiently computed on the GPU during inlier
mask generation. The RANSAC iteration with the highest score
under this new metric was used to provide the inliers for the final
H estimation.

3.4 Optimizing Video Stitching Quality
Given the set of inliers identified by RANSAC, we can pro-

ceed to compute the homography matrix H using least squares and
then composite the two images based on H [26]. However, even
though the set of inliers appears to be the best that we can find, it
is possible for the resulting H to be ill-formed and to produce a
stitched image with some perceptual artefacts. In particular, part of
a stitched video frame may suddenly “jerk” when compared to the
video frames before and after it.

There are two common causes for such “stitching failures”. One
is that the overlapping area between the two images is too small,
and the resulting matched features are not sufficient to produce a
good estimate of H. Our experiments showed that the stitched im-
ages generally start exhibiting a certain degree of perceptual dis-
tortion when the number of inliers is smaller than 30. An example
is shown in Figure 7(a). The other cause is that the original set
of inliers selected by RANSAC are concentrated in a small region,
and the resultant H becomes less stable, causing distant regions of
images to be misaligned. An example is shown in Figure 7(b).

As human vision is sensitive to sudden scene change, we need
to detect ill-formed H and prevent them from affecting the percep-
tual experience. In particular, we first determine whether there are
sufficient inliers produced by H. If the number of inliers is smaller
than 30 (which we had determined from empirical experiments),
we consider it as a failure and discard the current frame.
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(a) Inaccurate rotation. Notice the
broken and bent touchline of the
football field, below the running
track.

(b) Perspective distortion. Notice
that the left part of the image is
erroneously warped and cannot be
perfectly aligned with the right im-
age.

Figure 7: Examples of perceptual distortion. Each blue cross rep-
resents a feature point.

When there are sufficient inliers, we also check whether H badly
warps the images and introduces perspective distortion. Let θ be the
angle between the two image planes after orthorectification using
M. Ideally, θ should be zero, but in practice it could be a small
non-zero value due to the errors in the readings of our on-board
sensors. To find θ we do homography decomposition on H [24]

H = R+ t n
T

(8)

R is a 3× 3 rotation matrix that transforms camera from the refer-
ence image to the target image. We are concerned about the angle
between the reference xy-plane and the target xy-plane, which is
simply the angle between the reference z-axis and the target z-axis:

cos(θ) = r33 (9)

By analyzing 300 stitched frames that do not exhibit noticeable per-
spective distortion (i.e., H is well-formed), we found that 90% of
them have |θ| ≤ 5◦. Thus, we use θ of 5◦ as the threshold to
determine whether H is erroneously estimated.

3.4.1 Recovering from Failed Stitching

While discarding ill-formed H alleviates jerkiness in the stitched
video frames, it also leads to frame drops and viewers may notice
discontinuity in the video. To reduce frame drops, we use an al-
ternative method to “predict” H when the original method fails, by
utilizing the optical flow of adjacent frames.

This prediction method is illustrated in Figure 8. F is the 3×3
homography matrix of optical flow, which can be accurately and
efficiently computed on each quadcopter as adjacent frames usually
have large overlap. Fn+1 is transmitted together with frame n+ 1
to the ground station, which will predict Hn+1 as follows:

Hn+1 = M2,n+1 F2,n+1 M
−1

2,n Hn M1,n F
−1

1,n+1 M
−1

1,n+1 (10)

where M is the orthorectification matrix described in Section 3.2.1
and Hn is the transformation matrix of the previous stitching which
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was not ill-formed. We check that Hn+1 is not ill-formed accord-
ing to the criteria described in the previous section.

3.4.2 Fusing Stitching and Prediction

In cases where stitching succeeds, we have two homography so-
lutions: one is from pairwise stitching and the other is from predic-
tion by optical flow. Stitching is independently performed for each
pair of frames so it does not take temporal information into con-
sideration. Optical flow makes use of previous results to estimate
current homography but it could suffer from drift errors in the long
term. The property of stitching is like an accelerometer: stable in
long term but noisy in short term. Optical flow is like a gyroscope:
accurate in the short term but prone to drift over time. This implies
that sensor filtering techniques can be applied to achieve a better
estimate by considering both stitching and prediction results.

The fusion procedure is shown in Figure 9. First, the two homog-
raphy matrices are decomposed into rotations and translations (eq.
8). The rotation matrices R1 and R2 are converted to quaternions
and fed into a Multiplicative Extended Kalman Filter (MEKF) [28].
The quaternion produced by stitching acts as a measurement vector
and the quaternion produced by optical flow is used to generate a
state transition matrix. We chose not to filter both the rotation and
translation at the same time because the filtered homography would
generate noticeable misalignment. Instead, the filtered rotation R′

is used to compute a least-squares solution of translation t′ using
matched features. Finally, the filtered rotation R′ and recomputed
translation t′ are combined to form a new homography matrix H′.

3.4.3 GPS Drift Compensation

We explained in Section 3.2.2 that we can improve the speed of
feature matching by focusing on a small search region with radius
r. The purpose of r is to tolerate the potential errors when mapping
pixels between two images since there are likely errors in the flight
status information from on-board sensors, i.e., GPS drift errors.

We observed that when two images are successfully stitched, we
will know the ground truth of the transformation. By comparing the
ground truth with the transformation which relies on GPS locations
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(Section 3.2.2), we can estimate the GPS error. Subsequently, we
feed this estimated GPS error to feature matching and reduce r by
subtracting the GPS error for the next round of stitching. Experi-
mental results show that r can be reduced to smaller than 30 pixels,
which makes the search area less than 1/300 of total image size. If
stitching fails, we reset r to the original conservative value.

3.5 Multiple Video Sources
Stitching multiple video frames can be considered as iteratively

performing pairwise stitching. One problem is to decide which im-
age pairs can be stitched. Previous approaches perform pairwise
feature matching for all the images to identify the pairs of over-
lapping images based on matched features [13]. Such exhaustive
search is too costly for SkyStitch. Instead, we make use of available
flight status information to identify overlapping images and find a
sequence of images for stitching. If we assume the quadcopters
hover in a grid-like pattern, a simple stitching sequence would be a
loop that traverses all the images as shown in Figure 10.

While such loop-based stitching is simple, stitching errors will
gradually accumulate along the loop. Consequently, there could
be significant distortion between the first and last images, e.g., be-
tween images I1 and I6 in Figure 10. To address this problem, our
solution is to perform adjustment on every pairwise stitching along
the loop so that the distortion can be gradually corrected.

Suppose we want to stitch four images in Figure 10, according
to the sequence I1, I2, I5 and I6. Let H1, H2, H3 and H4 be the
homography matrices of image pairs 〈I1, I2〉, 〈I2, I5〉, 〈I5, I6〉 and
〈I6, I1〉 respectively. Ideally, we should have

M1p ∼ H4H3H2H1M1p

where p is a feature point in image I1 and M1 is the orthorectifica-
tion matrix of I1. However, in practice, H4H3H2H1 is often not
an identity matrix (even after scaling) because of errors in the ho-
mography matrices. To make the above relationship hold, we can
introduce a correction matrix H such that:

M1p ∼ HH4H3H2H1M1p

Then we decompose H into four “equal” components and distribute
them among the original four homography matrices. One way to
decompose H is RQ decomposition:

H = AR

Here A is an upper triangular matrix (affine) and R is a 3D rotation
matrix. A can be further decomposed as follows:

A = TSD

where T is a 2D translation matrix, S is a scaling matrix and D is
a shearing matrix along x-axis. T, S, D can be taken nth real root
where n is number of images in the loop. We can write H as

H = T
′4
S
′4
D

′4
R

′4

Since the reference image is well orthorectified, A and R have ge-
ometric meanings. They represent how a camera should be rotated

Table 1: Major components used in our quadcopter. The total
weight (including components not listed) is 2.1 kilograms, and the
total cost is about USD1,200.

Components Model

Flight controller APM 2.6
GPS receiver uBlox LEA-6H

Motor SunnySky X3108S
Electronic speed controller HobbyWing 30A OPTO

Propeller APC 12×3.8
Airframe HobbyKing X550

On-board computer NVIDIA Jetson TK1
Camera PointGrey BlackFly 14S2C

Lens Computar H0514-MP2
WiFi adapter Compex WLE350NX

and translated to match the reference camera frame. We move each
element from H into H1, · · · , H4 to slightly adjust each camera’s
rotation and translation. For example, we move one R′ into H1

so that the rotational error is reduced by 1/4. In this way, we can
partially correct the errors at each stitching step along the loop to
mitigate the distortion between images I1 and I6. Note that for a 6-
image stitching loop as in Figure 10, we can also perform a similar
adjustment to correct the distortion between images I2 and I5.

Comparison with Bundle Adjustment. The classical method
to close loops is to do bundle adjustment [13]. We tested bundle
adjustment in SkyStitch and noticed that it has a few limitations.
First, bundle adjustment requires pairwise matching information to
be available. This is not always possible because pairwise stitching
may fail and have to be predicted by optical flow, in which case
bundle adjustment is unusable. Second, bundle adjustment does
not take any temporal information into consideration so perspective
jerkiness can be introduced between consecutive frames. Our loop
closing approach works even when pairwise feature matching in-
formation is missing; there is very little jerkiness since cameras are
smoothly and coherently adjusted. Even though we cannot prove
that our approach will always reduce reprojection errors, we found
that in practice, it introduces less perspective jerkiness and is much
faster, while visually, it performs as well as bundle adjustment for
small loops.

4. SYSTEM IMPLEMENTATION
The implementation of the SkyStitch system involves the inte-

gration of UAV design, computer vision and wireless communica-
tion. In this section, we describe the key implementation details of
SkyStitch.

While there were commercial quadcopters available in the mar-
ket, we chose to assemble our own quadcopter because it offered
the greatest flexibility for system design and implementation. The
components used in our quadcopter assembly are listed in Table 1,
and our self-assembled quadcopter is shown in Figure 11. We built
two identical quadcopters of the same design.

We used ArduPilot Mega (APM) 2.6 [1] as the flight controller.
APM 2.6 has built-in gyroscope, accelerometer and barometer, and
both its hardware and software are open source. The on-board
computer is a 120-gram NVIDIA Jetson TK1, featuring a 192-core
GPU and a quad-core ARM Cortex A15 CPU. The GPU is dedi-
cated for feature extraction, while the CPU is mainly used for data
transmission and optical flow computation. Jetson TK1 also has a
built-in hardware video encoder, which we used for H.264 encod-
ing. The Jetson TK1 board runs Ubuntu 14.04.

Each quadcopter is equipped with a PointGrey BlackFly camera,
which has a 1/3 inch sensor with 1280×1024 resolution. The exter-
nal lens we added to the camera has a 62.3◦ diagonal field of view.



To avoid seam artefacts caused by the imaging process, we applied
the same exposure parameters to the cameras and each quadcopter
periodically broadcasts its white balance values to neighbors so that
videos from both quadcopters have consistent colors.

The ground station consists of an Advantech MIO-2260 board,
which acts as a wireless router, and a commodity computer that
performs video stitching. The computer, which runs Ubuntu 12.04,
has a quad-core 3.4 GHz Intel CPU and is connected to the router
through Ethernet. Our implementation uses only a single thread to
do video stitching, while the rest of the CPU resources are used for
other tasks such as video decoding. The computer also has a GTX
670 graphics card which has 1,344 CUDA cores, much higher than
the 192 CUDA cores in the Jetson TK1. We also implemented
seam finding and image blending on the GPU. The seam finder
is based on Voronoi diagram and is implemented in OpenCL. We
adopted the classical multi-resolution approach for image blending
and implemented it in OpenGL shaders. We optimized these two
stages so that it takes 6 ms to composite two HD images and 30 ms
to composite 12 HD images.

Video Synchronization. An implicit requirement for high-quality
video stitching is that the video frames to be stitched should be
captured at exactly the same instant. Without accurate video syn-
chronization, a mobile object on the ground would appear at differ-
ent locations from different cameras, which is commonly known as
“ghosting” artefacts. Software-based synchronization methods are
intrinsically inaccurate since they do not consider the non-negligible
delay from the time when photons hit the sensor to the time when
the host computer receives the video frame [19].

In SkyStitch, we adopt a hardware-based approach for video
synchronization. Our key observation is that each quadcopter is
equipped with a GPS receiver for flight control, which also pro-
vides an accurate time source. In particular, we connected the GPS
receiver’s time pulse pin to the external shutter trigger of the cam-
era, and set the GPS receiver to issue a triggering pulse at desired
frame rate. When issuing the very first pulse, the GPS receiver
also sends the corresponding UTC time to the on-board computer
through the flight controller. In this way, the on-board computer
can associate every video frame with an accurate UTC time, which
will be transmitted to the ground station along with the correspond-
ing video frame. Offline ground truth measurement using a logic
analyzer showed that our hardware-based approach could reduce
video synchronization errors down to smaller than 10 µs.

5. EVALUATION
In this section, we evaluate the performance of SkyStitch on both

stitching time and stitching quality. We conducted our experiments
over two types of ground with different distributions of features.
One venue was a grass field in a park, covered by yellow leaves
and a few wooden blocks (“Grass field”). Due to the scattered yel-
low leaves, the images taken over this field were rich in features.
These features were similar to each other and could lead to many
feature mismatches, thereby degrading stitching quality. The other
venue was a running track, which did not have many good features
(“Running track”).

In our experiments, the two quadcopters hovered at an altitude
of 20 m, equivalent to the height of a 6-storey building. We did
not typically fly higher for safety reasons. That said, we did some
simple experiments to verify that altitude did not have a significant
effect on performance. The benchmarks we used for comparison
are the popular OpenCV implementations [7] of commonly-used
stitching algorithms [26].

5.1 Stitching Time
The time required to stitch a pair or batch of frames directly de-

termines the maximum frame rate (or stitching rate) that a stitching
algorithm can support. A higher frame rate generally results in bet-
ter user experience. On the other hand, given a particular frame
rate, a shorter stitching time also allows a stitching algorithm to
support more video sources. In this section, we show that SkyS-
titch achieves shorter stitching times than existing methods.

The 12 video traces used in our evaluation were collected by our
quadcopters in a 2×6 grid pattern (for the Grass field venue). The
resolution of the traces is 1280×1024 and the overlap between ad-
jacent traces is about 80%. The duration of each video trace is 15
seconds at a frame rate of 20 fps. We ran both the CPU-based and
GPU-based implementations of the benchmarks at the ground sta-
tion. One exception is that we used the GPU-based implementation
in [20] to benchmark RANSAC, for which OpenCV lacks the GPU-
based implementation. We selected OpenCV’s BruteForceMatcher
method (instead of the KD-tree method) as a benchmark for feature
matching, as we found the KD-tree method has little speed advan-
tage when feature database is small. The number of iterations in
all the RANSAC implementations was set to 512. The CPU in the
ground station is a 3.4 GHz quad-core CPU, and the GPU is a GTX
670 graphics card with 1,344 cores (see Section 4).

Execution time of individual step. We varied the number of
video sources N from 2 to 12 and measured the execution time of
each individual step. Figure 12(a) compares the average execution
time of feature extraction for SkyStitch to the two benchmarks (i.e.,
the CPU-based and GPU-based implementations). The standard
deviation of the results are not included as they are very small. As
expected, we find that SkyStitch is scalable to many video sources
because feature extraction is offloaded to each quadcopter. On the
other hand, the execution time of benchmarks is proportional to the
number of video sources. Even though the GPU benchmark uses
a more advanced GPU (1,344 cores) than SkyStitch (192 cores),
it has a worse execution time than SkyStitch when the number of
video sources is large (N > 6).

Figure 12(b) illustrates the execution time of feature matching.
SkyStitch is approximately 4 times faster than the GPU-accelerated
benchmark and up to 70 times faster than the CPU benchmark (not
shown in the figure as it is too slow). Such large gain of SkyS-
titch over CPU benchmark is mostly due to the reduction of the
search space, as feature matching in SkyStitch runs in CPU as
well. We believe that a GPU implementation of feature match-
ing in SkyStitch could further reduce its execution time. Note that
when N > 7, the slopes of both methods become steeper. The rea-
son is that our 12 video traces are in a 2×6 grid pattern and more
pairwise stitchings are needed when processing the second row of
video sources.

The execution time of RANSAC is shown in Figure 12(c). SkyS-
titch is up to 18 times faster than the GPU benchmark and 24 times
faster than the CPU benchmark. Surprisingly, the gap between the
GPU benchmark and the CPU benchmark is not large. One reason
is that a typical SVD solver (e.g., Jacobian SVD) does not run ef-
ficiently on GPU cores and the speedup due to high parallelism is
partially offset by its poor performance per core. Another reason is
that sequentially performing RANSAC for each image pair requires
many CPU-GPU memory transactions and thus introduces signifi-
cant IO overhead. In contrast, SkyStitch’s RANSAC GPU pipeline
is much more efficient. Even with 12 video sources, its execution
time is below 10 ms.

Stitching rate. We calculate stitching rate by taking the recipro-
cal of the total execution time for stitching a batch of frames. Let
Textract denote feature extraction time and Tothers denote the total
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(a) Feature extraction.
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(b) Feature matching.
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Figure 12: Execution time of each step of video stitching. The number of features extracted from every frame is 1,000.
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Figure 13: Stitching rate (in terms of frames per second) with re-
spect to the number of video sources.

time of the remaining steps (i.e., feature matching, RANSAC and
image compositing). Then the execution time per stitching is equal
to max(Textract, Tothers) for SkyStitch and Textract + Tothers

for the benchmarks.
Figure 13 shows that SkyStitch achieves a stitching rate up to

4 times faster than the GPU benchmark and up to 16 times faster
than the CPU benchmark. The stitching rates of both benchmarks
drop sharply as N increases due to the fact that all computations
are performed at the ground station. SkyStitch, however, offloads
feature extraction to the UAVs to greatly reduce the workload at the
ground station. When N ≤ 10, SkyStitch’s stitching rate is solely
determined by the feature extraction time, which is around 28 fps.
When N > 10, the bottleneck of SkyStitch shifts to the ground
station and the stitching rate starts to drop. Nevertheless, we esti-
mate that SkyStitch will be able to support a stitching rate of 22 fps
when N = 12 while the two benchmarks could not maintain such
stitching rate when N > 3.

Impact of feature count and overlap percentage. In the above
experiments, the number of extracted features is fixed at 1,000 and
the overlap between two adjacent video sources is about 80%. We
found that these two factors do not affect stitching time except the
time of feature matching. Figure 14(a) shows the impact of feature
count on the time of feature matching, for the case of two video
sources. We can see that the feature matching time of both SkyS-
titch and the GPU benchmark increases with feature count, but the
rate of increase for SkyStitch is slower. This is expected since the
GPU benchmark requires pairwise comparison for all the features
while SkyStitch only needs to search in a small area for the poten-
tial match.

The impact of overlap percentage on feature matching time is
shown in Figure 14(b). Generally the time of SkyStitch increases
with overlap since more features in the overlapping area need to
be matched. The exception is at the overlap of 20%, where feature
matching time does not follow the trend. Upon closer inspection,
we found that it is because when the overlap is small there are more
stitching failures which lead to a larger search radius r (see Sec-
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(a) Impact of feature count.
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(b) Impact of overlap.

Figure 14: Impact of feature count and overlap percentage on the
execution time of feature matching.

tion 3.4.3). The feature matching time of the GPU benchmark ap-
pears to be independent of the overlapping area and is much longer
than SkyStitch.

5.2 Stitching Quality
In this section, we show that SkyStitch produces high-quality

stitching results. In particular, we evaluate the number of inliers,
the stitching success rate and the degree of frame jerkiness and also
the incidents of ghosting artefacts. Sample videos of stitching can
be found in [4].

Number of inliers. The number of inliers is a basic measure
of goodness for stitching algorithms. More inliers generally leads
to a better H estimate. Figure 16 shows the number of inliers at
different degrees of overlap. For both types of ground, SkyStitch
generates more inliers than the benchmark. The reason is that the
feature matching step in the benchmark uses pairwise comparison
among all the features and the probability of false matching is high.
In contrast, the feature matching in SkyStitch only searches in a
small target area and thus it is less likely to have false matching.
From Figure 16 we can also see that the slope of Grass field is
steeper than that of Running track. This is likely because these two
types of ground have different feature distributions.

Success rate of stitching. In Section 3.4, we define the failure of
stitching (or ill-formed H) based on the number of inliers and the
angle θ. In SkyStitch, failed stitching can be potentially recovered
using optical flow. We calculate the success rate of stitching for
the above experiment, as shown in Figure 17. For both types of
ground, we can see that SkyStitch has higher success rate than the
benchmark, because of the recovery using optical flow.

Frame jerkiness. Stitching every frame independently could
introduce perspective jerkiness which degrades visual quality. To
quantify perspective jerkiness and show how our approach can re-
duce jerkiness, we measure the rotation component in the homog-
raphy matrix, which is directly related to camera perspective. To
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Figure 15: Jerkiness of rotation components in computed homographies
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Figure 16: Impact of overlap percentage on the number of inliers.
The number of features extracted from every frame is 1,000.
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Figure 17: Impact of overlap percentage on success rate.

make things more intuitive, we convert the rotation matrix into
Euler angles yaw, pitch and roll. We stitched a pair of video se-
quences (40% overlap) in the Running Track scene. Figure 15
shows the Euler angles extracted in the estimated homographies.
Note that “Only stitching” produces very significant jerkiness in
pitch and roll angles. In contrast, “Only optical flow” method is
much smoother but suffers from drift especially in yaw and pitch
angles. The “Kalman filtered” angles are not prone to either of the
problems. It follows closely the results of “Only stitching” while
mitigating most of the jerkiness. The perceptual difference can be
seen from our demo videos [4].

Multiple video sources. In Section 3.5, we proposed a loop
closing method for multi-image stitching. Figure 18 illustrates the
effect of alleviating the misalignment between the first and the last
image during multi-image stitching. The six images were collected
from the Running track scene. We can see in Figure 18(a) that there
is a discernible misalignment along the stitching seam between the
first and the last image. By applying the loop closing method dis-
cussed in Section 3.5, we were able to mitigate the misalignment so
that the viewers could hardly notice it (see Figure 18(b)). A sample
video can be found in [4].

(a) No loop closing. (b) With loop closing.

Figure 18: Effect of loop closing for 6-image stitching.

(a) Unsynchronized frames. (b) Synchronized frames.

Figure 19: Effect of video synchronization on ghosting artefacts.

We follow a similar method to that in Section 3.4 to determine
the success rate of multi-image stitching. Specifically, if any pair-
wise stitching is found to have an ill-formed H, we consider the
multi-image stitching as a failure. Using the above trace with six
video sources, we found that the success rate of SkyStitch is about
97%, while the success rate of the benchmark is only 32%.

Elimination of Ghosting Artefacts. In Section 4, we explained
that our hardware-based method for video synchronization is im-
portant to ensure good stitching quality when there are mobile ob-
jects. Figure 19 illustrates the effectiveness of our synchronization
method. The source images were taken from two quadcopters with
hardware-based synchronization, while a man was jogging on the
running track. Figure 19(a) is stitched from two video images that
are 200 ms apart in capturing time. We can see a clear ghosting
artefact around the stitching seam, i.e., two running men instead of
one. In practice, such ghosting artefact will affect the viewers’ as-
sessment of the actual situation on the ground. In Figure 19(b), the
image is stitched from two video frames synchronized by GPS. We
can see that our hardware-based synchronization method is suffi-
ciently accurate to eliminate distracting ghosting artefacts.

6. CONCLUSION
In this paper, we present the design and implementation of SkyS-

titch, a multi-UAV-based video surveillance system that supports
real-time video stitching. To improve the speed and quality of video
stitching, we incorporated several practical and effective techniques



into SkyStitch, including feature extraction offloading, utilization
of flight status information, efficient GPU-based RANSAC imple-
mentation and jerkiness mitigation by Kalman filtering. By imple-
menting SkyStitch using a pair of quadcopters, we demonstrate that
it can achieve stitching rate 4 times faster than state-of-the-art GPU
accelerated methods, while ensuring good stitching quality.

Although SkyStitch is developed for quadcopters, its design prin-
ciples and techniques can also be applied to other types of hovering
aircraft such as blimps [14] which are more vulnerable to wind but
have longer flight time. In addition, SkyStitch is currently only a
proof-of-concept prototype and there is significant room for future
work. For example, we would like to understand how other types
of features (like color feature [29] or low-dimensional feature [21])
affect the performance of SkyStitch; it is also interesting to see how
SkyStitch performs in challenging environments such as over rough
ground with buildings.
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