
TCP Congestion Control Beyond Bandwidth-Delay Product for
Mobile Cellular Networks

Wai Kay Leong
National University of Singapore

waikay@comp.nus.edu.sg

Zixiao Wang
National University of Singapore

zixiao@comp.nus.edu.sg

Ben Leong
National University of Singapore

benleong@comp.nus.edu.sg

ABSTRACT

TCP does not work well in modern cellular networks because the

current congestion-window-based (cwnd-based) congestion con-

trol mechanism intimately couples congestion control and packet

dispatch, which provides TCP with only indirect control of the

e�ective data rate. The throughput degradation arising from the

cwnd-based mechanism is especially serious when the uplink is

congested. We describe PropRate, a new rate-based TCP algorithm

that directly regulates the packets in the bottleneck bu�er to achieve

a trade-o� in terms of delay and throughput along a more e�cient

frontier than conventional cwnd-based TCP variants. To the best

of our knowledge, PropRate is the �rst TCP algorithm that allows

an application to set and achieve a target average latency, if the

network conditions allow for it. Also, unlike the cwnd-based TCP

mechanism, our new rate-based TCP mechanism is signi�cantly

more resilient to saturated uplinks in cellular networks. PropRate

does not require modi�cations at the receiver and is amenable to

practical deployment in the base stations and proxies in mobile

cellular networks.

KEYWORDS

Transmission Control Protocol, Congestion Control, Mobile Cellu-

lar Network

1 INTRODUCTION

Mobile cellular networks have become a dominant mode of Inter-

net access due to the popularity of mobile devices and improve-

ments in cellular technology. Global mobile data tra�c was re-

ported to have grown by 63% in 2016, and this growth is expected to

continue [1]. End-to-end latency is often the dominant component

of the overall response time for real-time communication (RTC) ap-

plications, such as video conferencing and online gaming, which

are more sensitive to latency than throughput [22]. There is sig-

ni�cant interest in improving latency for transport protocols [7, 8,

26, 27, 31], with Skype and Google developing their own transport

layer protocols to address high latency [6, 13].

The design of the traditional congestion-window-based (cwnd-

based)mechanism is fundamentally incompatiblewith the features

of modern mobile cellular networks. Traditional cwnd-based TCP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/10.1145/3143361.3143378

su�ers from the bu�erbloat problem because it is designed to satu-

rate the bu�er to fully utilize the available bandwidth and to detect

congestion [8]. This design works well in wired networks where

routers have small bu�ers to quickly signal network congestion

to the sender. However, mobile cellular networks use large bu�ers

to bu�er the underlying variations in the link conditions to en-

sure high link utilization. Because the bu�ers are large relative to

the available bandwidth, bu�er saturation results in large laten-

cies [29]. Two features make cellular networks di�erent from tradi-

tional wired networks: �rst, there is an automatic retransmission

mechanism (ARQ) at the link layer that handles frame losses, so

most losses seen at the transport layer are due to bu�er over�ow;

second, fair scheduling is enforced at LTE base stations, which

means mobile devices can focus onmanaging their own bottleneck

bu�ers [21]. Thus we argue that directly regulating the packets in

the bottleneck bu�er is a better way for congestion control in mo-

bile cellular networks.

We propose to replace traditional loss-based congestion signal-

ing with bu�er-delay-based congestion detection and incorporate

a feedback loop that keeps the sending rate oscillating around the

estimated bottleneck bandwidth. We found that it is sometimes im-

possible to achieve low latency if the packets in �ight are kept

at the bandwidth-delay product (BDP). In fact, to achieve low la-

tency, it might sometimes be necessary to operate below the BDP. As a

proof-of-concept, we developed PropRate, a rate-based congestion

control protocol. We also observed that a simple feedback loop is

not always su�cient to regulate the latency accurately.We address

this problem by introducing an additional higher-level negative-

feedback loop. To the best of our knowledge, PropRate is the �rst

TCP algorithm that allows an application to set and successfully

achieve a target average latency, if the network conditions allow

for it.

PropRate uses the bu�er delay as the congestion signal, and per-

forms rate control by having the sending rate oscillate around the

estimated receive rate. In particular, the sending rate is set to be

proportional to the estimated receive rate. By doing so, the oper-

ating parameters can be determined solely by measuring the one-

way delay. Oscillation is introduced as a means to probe for spare

network capacity to utilize extra link bandwidth when it becomes

available, and to give up some bandwidth when there is network

congestion. Unlike most TCP variants, which have a �xed operat-

ing point, PropRate is a tunable protocol that can achieve a range

of performance trade-o�s between delay and throughput.

We compared the performance of PropRate to the publicly-available

implementations of the state-of-the-art algorithms, like BBR [5],

https://doi.org/10.1145/3143361.3143378

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Wai Kay Leong, Zixiao Wang, and Ben Leong

LEDBAT [23], Sprout [26], PCC [7] and Verus [31], and to tradi-

tional TCP variants implemented in the Linux kernel, using trace-

driven emulation, on actual 4G/LTE cellular networks, and on tra-

ditional wired networks. Our results show that PropRate can achieve

a more e�cient throughput-latency trade-o� than existing state-

of-the-art algorithms on mobile cellular networks. PropRate can

be tuned to achieve low delays similar to Sprout and PCC, but at

higher throughputs with lower overhead. We can also match the

throughput of TCP CUBIC and BBR, while keeping the average

latency low in our LTE traces.

Our key contribution is thatwe have shown that a bu�er-management-

based approach to congestion control is a viable and e�ective alter-

native to existing mechanisms for mobile cellular networks, and

potentially for traditional wired networks. We showed that there

is no compelling reason to predict the future [26, 27] or to do link

pro�ling [7, 31] for mobile cellular networks. It is su�cient to have

a control loop that can react su�ciently fast to the changing net-

work conditions.

PropRate is implemented as a Linux kernel module and requires

modi�cations only to the TCP sender. It is compatiblewith existing

TCP receivers, making it suitable for practical deployment in base

stations and middleboxes in mobile cellular networks.

2 RELATED WORK

The body of work related to TCP congestion control is vast and it is

not possible to do justice to them within this paper. Thus, we will

describe only the works that are most closely related to PropRate.

BBR [5] is the state-of-the-art congestion control protocol that

is most similar to PropRate. However, its design philosophy is very

di�erent. Cardwell et al. were working on the assumption that

events such as loss or bu�er occupancy are only weakly correlated

with congestion and proposed a control algorithm based on two

operating parameters: (i) estimated bandwidth and (ii) round-trip

time. BBR attempts to operate at an operating point that achieves

maximum throughput, while minimizing latency as the secondary

objective. We believe that it is important to not solely maximize

throughput, but also to consider the trade-o� between through-

put and latency in a congestion control algorithm. PropRate dif-

fers from BBR in 2 key design decisions: (i) BBR estimates the

bottleneck bandwidth as the maximum instantaneous bandwidth

observed, which is too aggressive and tends to over-estimate the

available bandwidth because cellular networks are highly volatile.

PropRate uses an exponential weighted moving average (EWMA)

and is more conservative. (ii) BBR does not incorporate any ex-

plicit congestion signal and simply attempts to converge naturally

to an operating point with maximal throughput. On the the hand,

PropRate uses the one-way delay as a congestion signal and can

achieve a range of trade-o�s between latency and throughput on

a more e�cient frontier curve instead of being limited to a single

operating point.

This particular �exibility has shown itself to be attractive in re-

cent times as apparent from the numerous attempts to improve the

latency of mobile cellular networks, mostly by attempting to fore-

cast network performance [26, 27, 31]. Xu et al. conducted exten-

sive experiments to show that network conditions within a small

time window are correlated, and used a regression tree to predict

the available bandwidth to set the sending rate [27]. Winstein et al.

forecasted the number of packets that can be sent in the next win-

dow to bound the latency and achieve high throughput [26]. Zaki

et al. used the link history to map the desired latency to the appro-

priate congestion window [31]. While these techniques are gener-

ally e�ective in improving the network latency, they incur signi�-

cant CPU overhead. Others have tried to improve performance by

de�ning a utility function of some network metrics, such as one-

way delay, loss rate and throughput, and adjusting cwnd to �nd a

value that maximizes it [7, 25]. For a given utility function, Remy

trains the model for common operating conditions [25], while PCC

adjusts the sending rate dynamically [7]. We show in §5 that these

approaches are not as e�ective in practice as BBR or PropRate.

Active Queue Management (AQM) schemes like CoDel are de-

signed for routers that attempt to address the bu�erbloat prob-

lem [20]. The drawback of these schemes is that they require mod-

i�cations to intermediate routers. We decided that our algorithm

should be end-to-end and require only modi�cations to the sender

to facilitate practical deployment. That said, our solution could be

interpreted as an end-to-end implementation of CoDel within the

transport layer, which exposes parameters that can be directly con-

trolled by the application.

Besides PropRate and BBR, there have been many rate-based

TCP algorithms in the literature [4, 10, 15, 16, 23], but most are not

true rate-based algorithms because they still send packets based on

cwnd that is clocked by returning ACK packets. Such algorithms

su�er from twomain drawbacks: (i) large latencies due to bu�erbloat [8],

where congestion is triggered only by a loss event which happens

when the bu�er over�ows, and (ii) ACK delays from asymmet-

ric channels [18] since new packets are only sent when an ACK

packet is received. To the best of our knowledge, WTCP [24] is

the �rst true rate-based mechanism, but it was designed for CPDP

networks. However, WTCP uses packet loss for congestion detec-

tion and thus will not perform well on modern cellular networks.

RRE [18] is another attempt at rate-based congestion control, but

it is designed to achieve high throughput instead of low latency.

3 ALGORITHM DESIGN

It is clear that full link utilization can be achieved if packets are sent

at a rate that matches the available bandwidth, or bottleneck band-

width, which is determined by the slowest link or bottleneck link

along the end-to-end path. However, simply matching the sending

rate to the bottleneck bandwidth is not su�cient. Doing so naively

will allow us to detect a drop in the available bandwidth, but we

will not be able to tell if the available bandwidth has increased.

Also, the bottleneck bandwidth is di�cult to estimate with high

accuracy because the available bandwidth can vary by over an or-

der of magnitude in a period of several minutes in mobile cellular

networks [29]. In addition, we argue that while TCP congestion

control is typically analyzed in terms of the bandwidth-delay prod-

uct, our key insight is that the critical metric is not the round-trip

time but the one-way delay from the sender to the receiver. In cel-

lular networks, it is possible for the forward and return paths to be

asymmetric.

To analyze the bottleneck link, we consider a simpli�ed model

of the pipe: (i) there is a bottleneck bu�er somewhere along the

TCP Congestion Control for Mobile Cellular Networks CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

pipe that restricts the data rate to a bottleneck bandwidth ρ, which

means that the measured receive rate at the receiver would also be

ρ; and (ii) we are able to measure changes in the one-way delay

from the sender to the receiver with reasonable accuracy after a

delay of approximately one RTT .

Our key idea is to continuously probe the available network ca-

pacity by having the sending rate oscillate around the estimated

receive rate by �lling and draining the bottleneck bu�er. We send

at a rate σf that is faster than the receive rate ρ when we want to

�ll the bu�er (Bu�er Fill), and at a slower rate σd when we want

to drain the bu�er (Bu�er Drain). To decide whether to �ll or drain

the bu�er, we estimate the instantaneous bu�er delay tbuf f from

the observed one-way delay, and switch between �lling and drain-

ing when the one-way delay reaches a threshold T . The details on

how we achieve this in practice are described in §4.

In PropRate, we set σf = kf ρ and σd = kd ρ, i.e., the sending

rate in the Bu�er Fill and Bu�er Drain states is proportional to the

receive rate ρ. In Figures 1 and 2, we illustrate two possible cases

for how the instantaneous bu�er delay tbuf f might vary over time:

a bu�er full case where the bu�er is never emptied and a bu�er

emptied case where the bu�er is periodically emptied, respectively.

While it might seem surprising that we switch between the two

states at the same threshold T , the reason why this works is be-

causewe are not switching based on the instantaneous bu�er delay,

but based on the observed bu�er delay after a delay of RTT +tbuf f .

The hysteresis in the system creates the sawtooth pattern.

Clearly, if we want to fully utilize the available bandwidth, the

bu�er should never be allowed to be emptied at any time. However,

not allowing the bu�er to fully drain will impose a limit on how

low the latency can go. If we need to achieve really low average

latencies, we might need to operate in the latter regime where the

bu�er is periodically emptied. We denote the utilization U of the

link with:

U =

tf + td

tf + td + te
(1)

where tf is the time spent in the Bu�er Fill state. The time spent in

the Bu�er Drain state is divided into td , the time needed to drain

the bu�er, and te , the time during which the bu�er is empty. If

te = 0, the bu�er is never empty and U = 1. Furthermore, the

average bu�er delay tbuf f is the area of the shaded parts over one

period, i.e.,

tbuf f =

Dmax+Dmin
2 , Bu�er Full Case

Dmax
2 U, Bu�er Emptied Case

(2)

Dmax , Dmin and U are essentially determined by the bu�er de-

lay threshold T and the parameters kf and kd for the Bu�er Fill

and Bu�er Drain states, respectively. Thus, we need to understand

how these parameters a�ect the shape of the waveforms. More pre-

cisely, kf determines the gradient of the rising slope as well as the

height of the sawtooth wave (Dmax). Likewise, kd determines the

gradient of the descending slope as well as the depth of the trough

of the wave (Dmin). We summarize the relationship between the

variables in Table 1.

Optimizing for Throughput. First, we consider themore straight-

forward case where we try to optimize for throughput while mini-

mizing latency as a secondary objective. Figures 3(a), 3(b) and 3(c)

Table 1: Summary of parameters in our model.

Variable Name Meaning Dependent on

t̄buf f User speci�ed bu�er delay None
tbuf f Instantaneous bu�er delay Measurement
T Threshold of switching states t̄buf f
kf , kd Proportion to set sending rate t̄buf f
U Bottleneck-bu�er utilization T , kf , kd
Dmax, Dmin Max/Min instant bu�er delay T , kf , kd

t f

Dmax

Time

Dmin

T

td

T +RTT T +RTT
tbu f f

Figure 1: Bu�er full (throughout optimal) case: bu�er delay os-
cillates between Dmax and Dmin .

t f

Dmax

te Time

T

T +RTTT +RTT

td

tbu f f

Figure 2: Bu�er emptied (delay sensitive) case: bu�er delay os-
cillates between Dmax and 0.

show how the “skew” of the sawtooth waveform changes as T

varies for a �xed Dmax and Dmin . As T approaches the trough

(Figure 3(a)) or peak (Figure 3(b)) of the waveform, the period of

the waveform increases and the algorithm will remain in one state

longer than the other. If the time to switch between states is longer,

we will be less responsive to changes in the network. To minimize

the period, we setT = tbuf f , so that we obtain a symmetric wave-

form (Figure 3(c)) where tf = td = 2(T + RTT).

Next, we observe that the peak (Dmax) and trough (Dmin) can

be set independently from the periodwhile keeping tbuf f constant.

Figures 3(a) to 3(c) show cases withmaximumpeak-to-trough height

with Dmin = 0 and Dmax = 2tbuf f . In these scenarios, the bu�er

is empty only instantaneously at some points. Throughput varia-

tions in a real network could however cause the bu�er to be emp-

tied for a longer period, resulting in periods where the link is not

utilized. This suggests that we want Dmin > 0, so that we can

achieve full utilization of the link at all times. If wewere to increase

Dmin to a value close to tbuf f as shown in Figure 3(d), the variance

of tbuf f would become negligible, but this is undesirable because

in order for us to accurately probe for the available bandwidth, we

need some minimal variation. As both extremes are undesirable,

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Wai Kay Leong, Zixiao Wang, and Ben Leong

T

Delay

Time

tbu f f

(a) When T is close to the
trough.

Delay

Time

tbu f f

T

(b) When T is close to the
peak.

Delay

Time

Dmax

tbu f f = T

(c) When T is in the middle,
the period is the smallest.

Delay

Time

tbu f f

(d) Minimal variance when
Dmin ≈ tbuf f .

Delay

Time

tbu f f

Dmax

Dmin

(e) Chosen con�gura-
tion when optimizing for
throughput.

Delay

Time

Dmax

tbu f f

(f) Chosen con�guration
when optimizing for la-
tency.

Figure 3: Di�erent shapes of the waveform under i) Bu�er Full
case with the same average bu�er delay (tbuf f) (a) to (e), and ii)

Bu�er Emptied case when tbuf f is low (f).

we choose the middle ground by setting:

Dmax − Dmin = tbuf f

Dmin =
tbuf f

2

(3)

as shown in Figure 3(e).

Optimizing for Latency. End-to-end delay consists of process-

ing delay, transmission delay, propagation delay and queuing delay,

among which transmission delay and queuing delay are the dom-

inant components. Assuming that a latency-sensitive application

has some maximum tolerable latency Lmax that it can work with,

the sumof the round-trip delay RTT and themaximumbu�er delay

Dmax should not be larger than Lmax , i.e., RTT + Dmax ≤ Lmax .

Our goal is to express themaximumbu�er delayDmax as a func-

tion of the bu�er utilization U, because intuitively Dmax should

decrease as U drops. Otherwise, a small U with a large Dmax will

result in a steep gradient, causing the latency to often overshoot

the target, especially when there are variations in the network. In

addition, Dmax should decrease more steeply than U so that the

sending rate is more conservative as U decreases. This suggests

that Dmax needs to be moderated by a function of U. After some

experimentation, we found that a simple cubic function ofUworks

well:

Dmax = U
3 (Lmax − RTT) (4)

In other words, Equation (4) determines the U required when we

operate in the bu�er emptied regime. To the best of our knowledge,

PropRate is the �rst algorithm that explicitly attempts to cause the

bottleneck bu�er to be emptied periodically. Other algorithms that

try to keep latency low [7, 26] would also do the same, but it hap-

pens implicitly. PropRate’s deliberate control over the �lling and

emptying of the bottleneck bu�er allows us to obtain a smooth

performance frontier that enables us to trade-o� throughput for

latency, or vice versa, as shown in §5.2.

3.1 Setting Parameters for PropRate

In general, we expect an application to specify a maximum end-

to-end round-trip latency Lmax that it can tolerate to guarantee

good user experience. For example, Lmax for RTC applications

like Skype and Facetime should be below 100ms, while that for

throughput-intensive applications could potentially be larger than

200ms. Given the measured RTT , we expect the target average

bu�er delay tbuf f to be ≤ Lmax − RTT .

Next, we need to decide whether PropRate will operate in the

bu�er full or bu�er emptied regime. From Equations (2) and (4), we

know that for the bu�er emptied regime:

tbuf f =
1

2
U
4 (Lmax − RTT) (5)

Hence, we will operate in the bu�er emptied regime only if U < 1,

or in other words when

tbuf f <
Lmax − RTT

2
(6)

where Lmax is the maximum end-to-end latency described above

and RTT is the round-trip time excluding the bu�er delay. RTT is

unlikely to change in the short term and can be estimated dynam-

ically during operation.

The derivation of the parameters involves only simple math and

is omitted here due to space constraints. Initially, we setT = tbuf f .

The remaining parameters can be derived as functions ofT . For the

bu�er full case we use the following parameters:

kf =

3
2T + RTT

T + RTT

kd =

1
2T + RTT

T + RTT

(7)

For the bu�er emptied case (U < 1), we apply these instead:

U =

(

2T

Lmax − RTT

) 1
4

kf =

2
U
T + RTT

T + RTT

kd =
RTT − 1−U

U
kf tf

1
U
T + RTT − 1−U

U
tf

(8)

where tf , the time spent in the Bu�er Fill state, can be obtained by

tf =
Dmax

kf −1
. kf and kd are set as functions of the threshold T and

the round-trip time excluding the bu�er delay RTT (note that U is

also a function ofT).

TCP Congestion Control for Mobile Cellular Networks CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

+ −

+
−

EWMA

Buffer Regulation tsample

tactual

T

tbu f f

tdi f f = |tactual − tbu f f |

log(tdi f f)

Figure 4: The negative-feedback loop to adjust T dynamically.

3.2 Updating the Threshold T

Since our network model does not consider network volatility, and

we make decisions based on a snapshot of the network conditions

after a delay of about oneRTT , it is not surprising that the resulting

bu�er delay would be di�erent from the target bu�er delay tbuf f .

Our key insight is that we can view bu�er regulation (see §4.1) as

a black box where an input T produces a resulting e�ective bu�er

latency tactual and thereby improve the performance by introduc-

ing a higher-level negative-feedback loop to updateT until tactual
converges to the required tbuf f . This is illustrated in Figure 4.

We can measure the instantaneous bu�er delay from each ACK

packet (described in §4.1). For each BDP window of packets, we

compute the instantaneous bu�er delay tsample . tactual is com-

puted from these instantaneous valueswith an exponentiallyweighted

moving average (EWMA):

tactual =
7

8
tactual +

1

8
tsample (9)

We adjust T after each BDP window of packets, and T is incre-

mented by log(tactual − tbuf f) in the Bu�er Fill state and the ac-

tual average latency tactual > tbuf f . In the Bu�er Drain state, T

would be decremented by the same amount if tactual < tbuf f . We

use log(tbuf f −tactual) instead of tbuf f −t because network vari-

ations could result in tactual becoming much larger than tbuf f , so

we need a means to scale down the observed di�erence.

4 IMPLEMENTATION

To explain how PropRate was implemented, we thought it would

be helpful to compare it to the implementation of conventional

cwnd-based TCP. Figure 5(a) illustrates a general cwnd-based TCP

implementation. Di�erent TCPvariants will set the cwnd and ssthresh

according to di�erent policies, represented by the functions F and

D.

Both the conventional cwnd-based implementation and our new

implementation begin in a Slow Start state. For the cwnd-based

stack, the cwnd is initially set to the initial window IW , which is

usually 1, 2 or 10MSS, and is doubled every RTT, until the cwnd ex-

ceeds ssthresh. In PropRate, a burst of 10 packets are sent to obtain

an initial estimate of the receive rate ρ. However, when all 10 pack-

ets are received at the same time-tick (with the same timestamp),

we are unable to estimate the receive rate. This will however sug-

gest that the bottleneck bandwidth can support a higher sending

rate, so the number of packets is doubled and another burst is sent.

This process is repeated until a rate estimate is obtained. We de-

cided on 10 packets by taking reference from Google [9], which

argued that the TCP initial window IW can be increased to 10 to

reduce latency at large without causing congestion. Based on our

measurement study of the Alexa top 5,000 websites, more than 60%

have already adopted this practice.

After Slow Start, the conventional cwnd-based implementation

will enter a Congestion Avoidance state. In this state, the cwnd is

now increased or decreased based on the function F (cwnd,delay)

for each ACK received. For traditional AIMD protocols like New

Reno, F = 1
cwnd

, while delay-based protocols like Vegas set F dif-

ferently according to whether there is network congestion. This

process continues until network congestion is detected, presum-

ably due to a packet loss and it goes into the Fast Recovery state.

For our rate-based TCP implementation, we have an analogous

state called the Bu�er Fill state. In this state, the sending rate is

set to σf > ρ which will essentially cause the bu�er to �ll. Once

the congestion is detected by the congestion detection module, it

switches to the Bu�er Drain state. In the Fast Recovery state of

the cwnd-based TCP implementation, the cwnd is controlled by

the fast recovery algorithm to retransmit packets and prevent the

pipe from draining. Once the sender has received the ACKs for

the retransmitted packets, recovery is complete, the cwnd is set to

ssthresh, and the state returns to the Congestion Avoidance state.

If fast recovery fails and the retransmission times out, the TCP

will reset cwnd to the loss window LW , which is de�ned as 1 in

RFC5681, and return to the Slow Start state [3]. Similarly, our rate-

based TCP implementation sends packets at a rate of σd < ρ to

drain the bu�er in the Bu�er Drain state. Once the congestion is

eased, it switches back to the Bu�er Fill state. Also, if there is a re-

transmission timeout, the implementation returns to the Slow Start

state. In this way, the rate-based implementation provides protocol

designers with the �exibility to set the sending rate based on dif-

ferent requirements of latency and throughput. In particular, Pro-

pRate sends at the rates σf = kf ρ and σd = kd ρ (kf > 1,kd < 1) in

the Bu�er Fill state and Bu�er Drain state respectively, which are

proportional to themeasured receive rate of the receiver, hence the

name PropRate.

The key di�erence between PropRate and the cwnd-based TCP

implementation is that we have an additional Monitor state. In the

Bu�er Drain state, we send at a rate that is slower than the receive

rate to ease the congestion. However, if we stay in the Bu�er Drain

state for an extended period of time, it implies that something is

wrong with either the congestion detection module or the mea-

sured receive rate ρ. In this case, we switch to the Monitor state

where the latency and receive rate will be measured afresh.

In the Monitor state, we use a burst of 10 packets to obtain a

new estimate of the receive rate. While the new estimate is being

obtained, the sending rate σm is conservatively set to 1
2σd to avoid

�ooding the bu�er. If the new rate estimate ρ is greater than or

equal to the current estimate, we conclude that the network condi-

tion is indeed good. We update congestion detection module and

switch to the Bu�er Fill state. Otherwise, it means that the network

is still congested, and we simply return to the Bu�er Drain state to

continue draining the bu�er. Monitor state is also required to ad-

dress the variation of background network conditions that causes

the background latency to increase due to poor signal strength or

competitions from new �ows that join the same bottleneck link. In

this case, Monitor state allows PropRate to check the background

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Wai Kay Leong, Zixiao Wang, and Ben Leong

Congestion Avoidance

Fast Recovery

Start
Slow Start

Update ssthresh
“freeze” cwnd

Congestion Detected

Done Recovery

cwnd = IW

Packet Loss

Retransmit

Timeout

increase cwnd exponentially

cwnd = F(cwnd,delay)

cwnd > ssthresh

cwnd = D(ssthresh,delay)

Update ssthresh

cwnd = LW

(a) Conventional cwnd-based mechanism.

Buffer Drain State

Buffer Fill State

Slow Start

Monitor State

Start

Estimate ρ

send n pkts

send at rate σf > ρ

send at rate σd < ρ

set rate to σm

Network
Changes

send n pkts

Update congestion
information

Congestion
Eased

Congestion
Detected

dropped

ρ has increased
Timeout
Retransmit

ρ has

(b) Rate-based mechanism.

Figure 5: Comparison of TCP packet regulation mechanisms.

network condition, and potentially recalibrate the sending rate ac-

cordingly. The cwnd-based TCP implementation does not need a

state that is equivalent to theMonitor state because the cwnd-based

congestion control implementation relies on packet loss to signal

congestion, and thus does not need to worry about underlying

changes in the network.

One concern is whether sending a burst of 10 packets in the

Monitor state would be too aggressive, which might add additional

tra�c at times of congestion, while traditional cwnd-based proto-

cols typically set cwnd to 1 after a timeout event. We argue that as

PropRate meant for deployment in mobile cellular networks, the

bu�ers at base stations are relatively large with sizes of 2,000 or

more packets [29]. 10 packets would be relatively small compared

to the bu�er size, which means that the bu�er can accommodate

up to 200 �ows without any issues.

4.1 Bu�er Regulation

The congestion detection module determines the e�ciency of the

negative-feedback loop. Instead of using packet drops to detect

congestion, PropRate adopts the technique used in recent works [18,

23, 26] to detect the congestion by estimating the bu�er delay. Specif-

ically, PropRate switches to the Bu�er Fill state and Bu�er Drain

state when the estimated bu�er delay tbuf f is above and below

a threshold T respectively. Because the underlying one-way delay

might change due to variations in mobile networks, it is possible

for the bu�er to be completely emptied, even when the measured

bu�er delay remains above T . As discussed above, this happens

when the underlying one-way delay suddenly drops due to net-

work changes. To address this scenario, we switch to the Monitor

state when the algorithm remains in the Bu�er Drain state for an

extended period of time. As for the congested uplink case where

returning ACK packets are delayed, using a timer here might cause

the unnecessary switch to theMonitor state due to the delayed ACK

packets. Hence we decided to limit the number of packets transmit-

ted during the Bu�er Drain state before switching to the Monitor

state. The cap is set at RTT ∗ ρ here.

The level of congestion in the network is inferred by estimating

the bu�er delay tbuf f from the observed changes in the one-way

delay of the received packets. When the bu�er is empty, this is

simply the propagation delay of the packet. When the packet is

queued in the bu�er, the one-way delay will increase to include

the time it spends in the bu�er. Thus, we estimate tbuf f by tak-

ing the di�erence between the currently observed one-way delay

RD and the minimum one-way delay observed in the recent past

RDmin , as illustrated in Figure 6(a). The relative one-way delay RD

is computed by subtracting the timestamp tr when the packet is re-

ceived from the timestamp ts , which is the point when a packet is

queued for delivery at the sender. Since these two timestamps are

available in ACK packets, the sender can easily compute the rela-

tive one-way delay as RD = tr − ts from the returned ACK, and

estimate the bu�er delay as tbuf f = RD − RDmin .

Packet losses need to be handled. When a packet loss occurs,

TSecr is set to the TSval of the last in-sequence data packet before

the packet loss, rather than to the most recently received packet.

As the sender already records the sending time of each packet to

determine retransmission timeouts, it can obtain the sending time

of any given packet.

As astute reader would likely highlight at this point that the

bottleneck might not occur at a cellular base station and so it is in-

correct to assume that the bu�er will only be �lled by the packets

from our PropRate. It is possible that the bu�er might be �lled by

cross tra�c instead. The truth is that we had initially attempted to

model the network dynamics, but we were not able to do a good

job, so what PropRate e�ectively attempts to do is to make control

decisions based on a snapshot of the network, taking into account

the one RTT delay in the measurements. This seems to work well

in practice. Our model is abstract and makes no assumptions on

the location of the bottleneck or that the bottleneck will not move.

A change in the position of the bottleneckwill seem to the network

to be a change in the receive rate. Similarly, cross tra�cwould also

be observed as a decrease in the receive and a possible increase in

the baseline one-way delay. We see in §5.4 that PropRate’s perfor-

mance is comparable to that for CUBIC and BRR on Internet-scale

paths.

4.2 Bandwidth Estimation and Rate Control

A natural approach to obtain an estimate of the receive rate or bot-

tleneck bandwidth, is for the receiver to perform the estimation

TCP Congestion Control for Mobile Cellular Networks CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

replacements

RD

TSecr= ts

TSval= tr

Mobile
Receiver

Bottleneck

ts

RDmin

tbu f f

tbu f f = RD−RDmin

RD = tr − ts
tr

(a) Estimating the bu�er delay

replacements

TSval= tr0

ACK= 1000

TSval= tr1

ACK= 2000

Bottleneck Mobile
Receiver

TSval= tr1

ACK= 2000

ACK= 1000
TSval= tr0

(b) Estimating the receive rate.

Figure 6: Using TCP timestamps for estimation at the sender.

based on the received packets and to send the estimate back to

the sender [26, 28]. The same approach could also be adopted for

PropRate. However, congestion control is strictly a sender-side ini-

tiative and does not depend upon the receiver’s TCP stack. Thus, to

maintain this compatibility by avoiding modi�cations to the TCP

receiver, we decided to adopt an indirect method that allows the

rate estimation to be performed at the sender when the TCP times-

tamp option is enabled, which makes our stack compatible with

existing cwnd-based protocols at the receiver. The TCP timestamp

option is enabled by default on Android and iPhone devices, which

together account for more than 95% of the current smartphone

market [2]. The only caveat is that the TCP timestamp granularity

of the receiver needs to be known to the sender. Since most mobile

devices currently use 10ms as the timestamp granularity, we can

assume this granularity by default. Even when this assumption is

wrong, we also have developed a simple technique that will allow

us to estimate the granularity within one RTT.

When the TCP timestamp option is enabled, a TCP receiver will

send ACK packets with the TSval set to its current time. This

timestamp is the same as the receiving time of the data packet.

Thus, the packet arrival times are e�ectively embedded in the ACK

packets. From theACKnumber and the timestamp value, the sender

can determine the number of bytes received by the receiver. In the

example illustrated in Figure 6(b), the sender can determine that

1,000 bytes have been received in the time period between tr0 and

tr1 .

Packet losses, which will cause the ACK number to stop increas-

ing, need to be handled. We can obtain reasonably good estimates

by assuming that each duplicate ACK corresponds to one MSS

packet received. Also, when enabled, SACK blocks in the ACKs

can be used to accurately determine the exact number of bytes re-

ceived.

PropRate uses an exponentiallyweightedmoving average (EWMA)

of the instantaneous throughput measured from a sliding window

to estimate ρ from the timestamps of packet arrivals. As suggested

by Xu et al., we use a window of 50 bursts to estimate the instanta-

neous throughput [29]. In other words, instead of sizing our sliding

window in terms of packets, the sliding window consists of either

50 consecutive and distinct timestamps with reported packet ar-

rivals (which would contain at least 50 packets). We found that

while this approach is suitable for very fast �ows, the length of

the sliding window can become as long as a few seconds when the

throughput is low. Since using a long history of timestamps to esti-

mate the throughput would not re�ect the instantaneous through-

put accurately, we limit themaximum length of the slidingwindow

to 500ms if there are fewer than 50 distinct timestamps in this pe-

riod)

4.3 Kernel Implementation Details

We implemented PropRate in the Linux 3.13 kernel in a manner

that is similar to the existing cwnd-based TCP congestion control

modules. The decoupled components of congestion detection, rate

control and packet dispatching are abstracted as API functions so

that new rate-based TCP variants can be implemented as new ker-

nel modules.

While both of the traditional cwnd-based mechanism and our

new rate-based mechanism allow a congestion control module to

determine the sending rate, the regulation of the sending rate is

done di�erently. Traditional cwnd-based congestion control mod-

ules will adjust the cwnd , which indirectly controls the sending

rate by determining the number of unacknowledged packets that

the TCP stack can have in �ight at any time. The sending of new

data packets is clocked by the received ACK packets. In our new

rate-based mechanism, the congestion control module explicitly

sets a rate, and packets will be sent continuously (clocked by a

timer) at a given rate as long as there are available packets to be

sent.

To implement our new mechanism for the Linux kernel, we had

to modify the kernel to add hooks to our new module. In total, we

added about 200 lines of code to the kernel and the kernel module

is about 1,500 lines of code. The following is a brief description of

some of the signi�cant modi�cations.

Sendingpackets.At every kernel tick interval, the controlmech-

anism determines how many packets should be sent based on the

sending rate obtained from the congestion control module. If the

result is a non-integer number, we round up this value in the Bu�er

Fill state and round down this value in the Bu�er Drain and Mon-

itor states, as it is preferable to send full-size packets of 1 MSS. A

history of the exact number of bytes sent is kept so that we can

make up for the rounding discrepancy over a few ticks.

Receiving ACK. Every ACK packet received will be used to

compute the one-way delay and the update function of the con-

gestion control modulewill be called.When packets are lost, SACK

is used to determine the number of newly received bytes. In order

to avoid code duplication, we added hooks into the TCP SACK pro-

cessing routine to pass this information directly to our module.

Handling packet losses. When there are packet losses, the

Linux TCP stack enters the Fast Recovery state, where lost packets

are automatically retransmitted based on the SACK information.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Wai Kay Leong, Zixiao Wang, and Ben Leong

Table 2: Detailed information of the traces.

Trace Name Average Throughput Variance

ISP A-Stationary 1735.5 KB/s 616.8 KB/s
ISP A-Mobile 1726.2 KB/s 817.5 KB/s
ISP B-Stationary 2453.8 KB/s 929.0 KB/s
ISP B-Mobile 710.2 KB/s 619.5.3 KB/s
ISP C-Stationary 2549.8 KB/s 993.0 KB/s
ISP C-Mobile 849.8 KB/s 130.4 KB/s

We use the same mechanism by simply ignoring the cwnd and con-

tinue transmitting at the speci�ed rate. Basically, PropRate does

not require packet losses to be specially handled by fast retrans-

mission algorithms like PRR [8].

5 PERFORMANCE EVALUATION

The network conditions of cellular data networks can vary greatly

even over a short period of time [28]. To ensure that the compar-

ison is consistent among the algorithms, we performed our main

evaluation using the trace-driven network emulator Cellsim,which

was used by Winstein et al. in evaluating Sprout [26]. Cellsim acts

as a transparent proxy between two devices, and controls the for-

warding of packets by bu�ering and releasing them according to

the timing and bandwidth in a given trace. The original Cellsim

source code implements an in�nite bu�er. Since traditional cwnd-

based algorithms like CUBIC react to packet loss due to bu�er over-

�ow, we enhanced Cellsim by introducing a �nite drop-tail bu�er

for a fairer evaluation. The queue size is set to 2,000 packets accord-

ing to previous studies on the bu�er sizes of ISP base stations [29].

We collected network traces from 3 local cellular ISPs using a

custom Android application by saturating the network with UDP

packets. tcpdump was used to capture the packet traces. We used

UDP to measure the available network bandwidth because we did

not �nd any evidence of UDP tra�c throttled by the ISPs. Two sets

of traces were collected from each ISP—one set with the phone in a

stationary position ("Stationary" traces) and the other set taken on

board a vehicle that was driven around campus ("Mobile" traces).

Table 2 lists the average standard deviation of throughput with the

window of 100ms. We followed the evaluation methodology and

used the same emulation parameters as Winstein et al. [26], using

both the uplink and downlink traces in the network emulator. The

propagation delaywas set to 20ms and iperfwas used to generate

TCP tra�c.

We also evaluated various algorithms over real LTE networks

using an Android phone as the receiver. To mitigate the variations

in a real network, we performed a large number of experiments

over a 6-month period and collected over 60GB of 4G/LTE trace

data. Finally, to show that PropRate works and competes well in

traditional wired networks, we evaluated PropRate in both local

and inter-continental scenarios using a sender in Singapore and

receivers on AWS in the US, the UK, Australia and Singapore. We

did not use AWS for the sender to avoid potential measurement

errors from virtualization [30].

We compared PropRate to the algorithms listed in Table 3. They

range from traditional TCP congestion control algorithms, such as

CUBIC and Vegas, to state-of-the-art algorithms like LEDBAT [23],

PROTEUS [27], Sprout [26], PCC [7], Verus [31] and BBR [5]. For

Table 3: Comparison of state-of-the-art algorithms.

Algorithm Sending Regulation Congestion Trigger

PropRate Rate-based Bu�er Delay
(+ window-capped)

RRE [18] Rate-based Bu�er Delay
BBR [5] Rate-based NA
PCC [7] Rate-based Utility Function
PROTEUS [27] Rate-based Rate Forecast

Sprout [26] Window-based Rate Forecast
Verus [31] Window-based Utility Function
LEDBAT [23] Window-based Bu�er Delay + Packet Loss
CUBIC [12] cwnd-based Packet Loss
Vegas [4] cwnd-based Packet Loss
Westwood [19] cwnd-based Packet Loss

PCC, we only used its default delay-sensitive utility function, as

we found in our experiments that its throughput-sensitive mode

was too aggressive in practice and caused bu�er over�ow almost

all the time. We obtained the source code for all the algorithms

above and made minor modi�cations to make them work locally

on ourmachines. We found an implementation of BBR in the Linux

kernel 4.10 network development branch. The only exception was

PROTEUS [27], which we implemented following the description

in the paper because the source code was not available.

PropRate can be con�gured to operate at a range of operating

points by setting the target average bu�er delay tbuf f . In our ex-

periments, we present the results of tbuf f = 20ms, 40ms and

80ms, and denote them as PR(L), PR(M) and PR(H), respectively.

PR(L) operates in the Bu�er Emptied regime, PR(H) operates in

the Bu�er Full regime, and PR(M) is approximately at the crossover

point between the 2 regimes.

5.1 Trace-based Emulation

In Figure 7, we plot the mean and 95th-percentile one-way packet

delay against the total average throughput of di�erent algorithms

for both the stationary and mobile traces for one ISP. The results

for the two remaining ISPs are omitted because of space constraints,

and because they were similar and did not yield additional insight.

The 95th-percentile value follows the evaluation metric earlier pro-

posed by Winstein et al. [26]. The black dotted lines indicate the

maximumaverage throughput andminimum latency for each trace.

We make several observations from these results: (i) PropRate

achieves a more e�cient throughput-latency trade-o� than all ex-

isting state-of-the-art algorithms.Modern forecast-based algorithms

like Sprout, PCC and PROTEUS that are optimized for low latency

in cellular networks do achieve low latencies, but at signi�cant

penalties to the resulting throughput. (ii) As expected, all the algo-

rithms seem to performworse in the mobile traces since the under-

lying bandwidth variations are larger than those for the stationary

traces, which are very stable. (iii) BBR performs surprisingly well

for mobile cellular networks.

Handling poor connectivity. Our mobile cellular ISPs had

generally good performance. We also repeated our experiments us-

ing the mobile traces used by Winstein et al. [26], which were col-

lected by driving around Boston. The results for the 5 traces were

TCP Congestion Control for Mobile Cellular Networks CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600

Mean 95%

PropRate

Other TCP

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

Delay (ms)

CUBIC

Sprout

Vegas

Westwood
LEDBAT

PCC

Verus

BBR
RRE

PROTEUS

PR(L)

PR(M)

PR(H)

(a) Stationary

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400 450

Mean 95%

PropRate

Other TCP

Delay (ms)

CUBIC

Vegas

Westwood

LEDBAT

Sprout

PCC

Verus

RRE

PROTEUS

BBR

PR(L)

PR(M)

PR(H)

(b) Mobile

Figure 7: Comparison of performance for stationary and mobile ISP traces.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 1000 10000 100000

Mean 95%

PropRate

Other TCP

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

Delay (ms)

Vegas

Westwood

Sprout

CUBIC

LEDBAT

PCC

Verus

BBR

PROTEUS

RRE

PR(L)

PR(M)

PR(H)

Figure 8: Results for Sprint trace [26].

similar, with the exception of the Sprint trace shown in Figure 8.

Upon investigation, we found that the main di�erence between

our traces and the Sprout Sprint trace is that the Sprint trace had

signi�cantly lower bandwidth, high network variations and many

periods of network outage (54% of the time!). We found that Pro-

pRate does not performwell because the outages resulted in many

packet losses. While it might seem that RRE, Westwood and CU-

BIC achieved higher throughput, the absolute throughput for the

network was so low that the di�erence is not signi�cant. These

algorithms are very aggressive, which resulted in high latencies

(note the log scale in Figure 8). What we found surprising was that

BBR seemed to be relatively robust to the network outages. We are

currently investigating how BBR achieves this robustness. We also

noted that PCC was not able to cope well with the outages. That

said, we should not read too much into the results for this trace

because it represents a poorly performing mobile network, which

should not be the norm moving forward. We are highlighting this

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

A
c
tu

a
l
B

u
ff
e
r

d
e
la

y
 (

m
s
)

Target Buffer Delay (ms)

ISP A w/o NFL
ISP B w/o NFL
ISP C w/o NFL

ISP A
ISP B
ISP C

Figure 9: Average latency performance of PropRate versus the
target bu�er delay on mobile traces.

trace merely because it reveals the relative robustness of existing

algorithms to network outage.

E�ectiveness of Negative-Feedback Loop (NFL). To investi-

gate the e�ectiveness of the negative-feedback loop (see §3.2) in

achieving convergence to the desired latency, we compared Pro-

pRate with and without the negative-feedback loop for both the

stationary and mobile traces, with the expected bu�er delay tbuf f
varying from 20 to 120ms. In Figure 9, we plot tbuf f against the

observed average bu�er delay for the mobile trace. The diagonal

line represents the perfect match between target and achieved av-

erage latency. We can see that the negative-feedback loop allows

PropRate to converge closer to the target latency.

We omit the results for the stationary trace because there is

no signi�cant di�erence between the two cases (NFL vs. no NFL).

Upon further analysis, we found that the negative-feedback loop

only helps if there were signi�cant network volatility and outages.

Our network model does not take into account network volatility

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Wai Kay Leong, Zixiao Wang, and Ben Leong

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400 450

Mean 95%

PropRate

Other TCP

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

Delay (ms)

CUBIC

Sprout

PCC

BBR

Figure 10: Performance frontier achievable by PropRate on mo-
bile trace.

and so the negative-feedback loop acted as a mechanism to correct

for high volatility.

5.2 Understanding the Performance Frontier

PropRate can be tuned to achieve a range of performance trade-

o�s between throughput and latency. To visualize the performance

frontier that is achievable by PropRate, we plot more con�gura-

tions for PropRate by varying tbuf f from 12ms to 30ms in steps

of 1ms and from 30ms to 120ms in steps of 4ms in Figure 10 for

the mobile trace shown earlier in Figure 7(b). We also reproduce

the results for CUBIC, BBR, Sprout and PCC for comparison. To

the best of our knowledge, PropRate is the only algorithm that

achieves such a smooth and continuous frontier. Sprout claims to

achieve this using a parameter called the con�dence percentage and

we tried it on the various traces. Unlike PropRate, Sprout was not

able to produce a smooth frontier for most of the traces. Further-

more, PropRate’s frontier is signi�cantly closer to optimal perfor-

mance.

5.3 Practical 4G/LTE Networks

To validate our emulation results, we evaluated the performance

of PropRate over real cellular data networks. Like the emulation

experiments, we used the same con�gurations described in §5.1.

We used iperf to generate the test tra�c and started a 30-second

TCP transfer from our server to an Android smartphone over the

LTE networks. We could not get Sprout to compile natively on An-

droid, so we tethered the phone to a laptop that could run Sprout.

We measured the one-way delay using a loopback con�guration,

where both sender and receiver were on the same machine. Rout-

ing was done using iptables.

The operating conditions for real cellular networks can vary sig-

ni�cantly over time, even when the mobile device is at a station-

ary position. Thus, each experiment was repeated many times for

each algorithm. We plot the results for one ISP in Figure 11. Due

to space constraints, we omit the results for the remaining ISPs, as

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

Mean 95%

PropRate

Other TCP

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

Delay (ms)

CUBIC

Vegas

Westwood

Sprout

LEDBAT

PCC

Verus

BBR

PROTEUS

RRE

PR(L)

PR(M)

PR(H)

Figure 11: Throughput and latency performance for a real LTE
network.

they are similar. The key takeaway from our results for real cellu-

lar networks is that they are similar to and validate the results for

our trace-based emulation experiments in Figure 7. After having

worked with Cellsim for many years, we are pleased to report that

Cellsim is an excellent emulation tool. Its emulation results tend

to be very close to that obtained from experiments with real LTE

networks.

5.4 Playing Well with Others in the Wild

One of the key concerns for a new TCP variant is incremental de-

ployability. Given that CUBIC is the dominant TCP of the Internet

and it is known to be very aggressive in terms of ramping up its

congestion window to �ll the available bu�er, can a new latency-

sensitive TCP variant work in such an environment?

As a baseline, we �rst investigated how two �ows of the same

algorithmwould a�ect each other using our stationary and mobile

traces for each of the three ISPs. We conducted a series of exper-

iments using the same PropRate con�gurations described in §5.1

and also with BBR and CUBIC. In each experiment, we �rst started

one TCP�ow and then a second �owafter 30 s. Both �ows continue

for another 60 s, and we compute the average throughput for each

�ow during the latter 60 s. In Figure 12(a), we can see that both

PropRate and BBR are generally more friendly to themselves than

CUBIC. In terms of the ratio of the throughput of the second �ow

to that of the �rst �ow, we found that the average throughputs

were only 23% for CUBIC and close to 100% for BBR and PropRate.

It is clear that an algorithm designed to minimize latency would

not be able to contend e�ectively against CUBIC. Also, with CU-

BIC cross tra�c, it would be impossible to achieve low latency

since CUBIC would �ll up the bottleneck bu�er and cause packet

losses. Nevertheless, we investigated how well existing algorithms

contend with CUBIC to understand how they would perform if

deployed in the wild. Due to space constraints, we only plot the

results for PropRate and BBR in Figure 12(b), because these are the

only ones that can contend e�ectively against CUBIC, and BBR

is already deployed by Google [5]. The experimental setup is the

same as that for self-contention.

TCP Congestion Control for Mobile Cellular Networks CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

T
h
ro

u
g
h
p
u
t

o
f

fl
o
w

 t
w

o
 (

K
B

/s
)

Throughput of flow one (KB/s)

PropRate
CU8IC

BBR

(a) Self-contention.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

CUBIC(1st) CUBIC(2nd)

PR(H)

PR(L)

BBR

T
h
ro

u
g
h
p
u
t

o
f

th
e
 o

th
e
r

fl
o
w

 (
K

B
/s

)

Throughput of CUBIC flow (KB/s)

(b) Contention against CUBIC.

Figure 12: Understanding contention between PropRate, BBR and CUBIC on the stationary and mobile traces of 3 local ISPs.

We make several observations: (i) the latency-minimizing con-

�guration for PropRate (PR(L)) receives a smaller share of the band-

width, but is not completely starved; (ii) BBR is less aggressive than

CUBIC; (iii) the throughput-maximizing con�guration for PropRate

(PR(H)) contends reasonably well with CUBIC. In fact, if the Pro-

pRate �ow starts before the CUBIC �ow, it is sometimes possible

for the PropRate �ow to get a slightly larger share of the bandwidth.

This was surprising to us.

We also evaluated PropRate on the Internet at large using Ama-

zon AWS servers in the US, the UK, Australia and Singapore with

the TCP sender in Singapore (and not on AWS). For each sender-

receiver pair, we used iperf to generate tra�c for 30 seconds

and measured the throughput, and repeated this measurement 30

times for each pair for each algorithm. Figure 13 shows the av-

erage throughput for CUBIC, BBR, PR(L) and PR(H). We found

that CUBIC achieved the highest average throughput and that the

throughput for BBR was generally lower than that for CUBIC, un-

like the results reported for the Google B4 network [5]. As ex-

pected, PR(L) had lower throughput, but the di�erence was less

than 30%. PR(H) performed slightly worse than BBR and CUBIC.

We presented PR(L) and PR(H) here for a fair comparison with the

emulations in the previous sections. We also tried larger values of

tbuf f and it comes as no surprise that throughput increases with

tbuf f until about 1
2RTT , where the maximum PR(max) is obtained.

The performance of PR(max) is close to that for CUBIC. This sug-

gests that if PropRate were to be deployed on the Internet, it would

be important to investigate how tbuf f should be set to achieve op-

timal throughput, but we leave this as future work.

5.5 Computation Overhead

In Table 4, we compare the measured CPU overhead of PropRate

to the state-of-the-art algorithms. We used iperf to generate TCP

tra�c and measured the CPU utilization ratio at the sender for

three di�erent CPUs. The key takeaway is that PropRate has a low

CPU footprint comparable to CUBIC. On the other hand, forecast-

based algorithms like Sprout, Verus and PCC incur signi�cantly

higher computation overhead.

 0

 10

 20

 30

 40

 50

US UK AU SG

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Location

CUBIC
BBR

PR(L)
PR(H)

PR(max)

Figure 13: Throughput performance of CUBIC, BBR and Prop-
Rate for inter-continental Internet tra�c.

6 DISCUSSION

PropRate represents a new approach to TCP congestion control by

directly regulating the bottleneck bu�er. We have demonstrated

that it is a viable and promising approach. Nevertheless, some ques-

tions and issues remain to be resolved.

Network volatility. In PropRate, we assumed a steady state

model of the bu�er. While it might seem obvious that we would do

better if we could take into account network volatility, we found

that it was not straightforward for two reasons. First, network

volatility is a second-order statistic that is not easy to measure

accurately in practice. Second, a complicated feedback loop was

prone to unstable behavior in a practical implementation. The bu�er

regulation algorithm that is presented in this paper is the only one

we tested that could achieve stable and good performance. Never-

theless, we believe that incorporating network volatility in a clever

way could potentially improve the model.

Link Asymmetry. BBR works with RTT, so there is an under-

lying assumption that the link is symmetric. PropRate works with

the one-way delay. This means that PropRate is able to handle the

problem of congested uplinks in cellular networks [11, 28], where

a congested uplink can su�ciently delay the returning ACK of a

download to result in the under-utilization of the downlink. To

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Wai Kay Leong, Zixiao Wang, and Ben Leong

Table 4: CPU utilization for the state-of-the-art TCP protocols.

Sprout LEDBAT PCC Verus BBR CUBIC RRE PropRate

Intel i7-2600 @ 3.4GHz 2.4% 0.1% 12.7% 21.8% 0.1% 0.1% 0.1% 0.1%
Intel Xeon E5640 @ 2.67GHz 2.8% 0.1% 12.8% 22.6% 0.1% 0.1% 0.1% 0.1%
Intel Q9550 @ 2.83GHz 3.5% 3.0% 25.4% 25.2% 1.5% 0.3% 0.3% 0.3%

 0

 500

 1000

 1500

 2000

 20 30 40 50 60 70 80 90 100

Mean 95%

PropRate

Other TCP

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

Delay (ms)

CUBIC

LEDBAT

Sprout
PCC

Vegas

Westwood Verus

BBR

PROTEUS

RRE

PR(L)

PR(M)

PR(H)

Figure 14: Downstream throughput and delay in the presence of
a concurrent upstream TCP �ow in a real LTE network.

simulate a congested uplink, we started a TCP CUBIC uplink �ow

simultaneously with the downlink �ow that was measured. The

results for a real LTE network are shown in Figure 14. Like RRE,

which was developed to address this problem, PropRate is able to

achieve high throughput.

ShallowBu�ers&AQM. Hock et al. showed that BBR is overly

aggressive compared to TCP CUBIC when there is a shallow bot-

tleneck bu�er for 1-Gbps and 10-Gbps links [14]. Also, a BBR �ow

does not achieve a fair share of the link bandwidth when compet-

ing with other BBR �ows, because it tends to over-estimate the

available bandwidth (since it uses the maximum observed instan-

taneous bandwidth as an estimate of the available bandwidth) and

ignores packet losses due to bu�er over�ow.

Because PropRate attempts to achieve a target bu�er delay, it

is plausible that this speci�ed target delay may not be achievable,

i.e. it might be too high, if the bu�ers are too shallow. Under such

circumstance, there will be packet losses due to bu�er over�ow. Ac-

tive queue management schemes like CoDel [20] e�ectively make

large bu�ers shallower and the net e�ect is that packets might get

dropped even before the bu�er over�ows. If the target bu�er delay

is set too high, then like BBR, PropRate ismore aggressive than con-

ventional cwnd-based algorithms like CUBIC and there will be sig-

ni�cant packet losses. PropRate however di�ers from BBR because

we can reduce the aggressiveness of the algorithm by reducing the

target bu�er delay. By tuning the target bu�er delay, PropRate can

be made to match CUBIC, or even to be less aggressive, when there

are shallow bu�ers.

This issue suggests that it would be helpful to dynamically ad-

just the target bu�er delay based on the observed pattern of packet

losses. We are aware of this shortcoming in PropRate and the dy-

namic adjustment of the target bu�er delay and reacting to con-

secutive packet losses is work in progress. Nevertheless, since Pro-

pRate is expected to be deployed in cellular networks, where bu�ers

are su�ciently large to absorb network variations, we believe that

the probability of encountering a shallow bu�er in the wild is low.

Our real network experiments seem to validate this assumption.

Practical Deployment. Mobile cellular networks typically pro-

vide a private queue for each subscriber and implement some form

of proportionate fair queuing at the base station. In other words,

the bu�er delay for an individual subscriber is e�ectively inde-

pendent of the other users in the network [17] and cellular net-

works would be the ideal environment for PropRate to be deployed.

Mobile ISPs also often have transparent proxies deployed at their

base stations. This makes PropRate immediately suitable for de-

ployment at these middleboxes.

Given that CUBIC is the dominant TCP variant on the Internet,

it would be di�cult for algorithms like BBR and PropRate to fully

achieve their potential in reducing TCP latency. Nevertheless, as

shown in §5.4, BBR and PropRate are amenable for practical de-

ployment in base stations and proxies in mobile cellular networks

since they can achieve good performance even in the existing en-

vironment. In time, we believe that there is a good chance that the

dominant TCP on the Internet would evolve into a more latency-

friendly variant, like BBR or PropRate.

7 CONCLUSION

In spite of the decades of work on TCP, we agree with Cardwell

et al [5] that it is timely to rethink congestion control in a funda-

mental way. Notwithstanding the work that has already been done

in BBR and PropRate, we believe that there is still room for inno-

vation in TCP by framing it as a control and feedback loop with

delayed inputs, in terms of measurable network metrics. We have

shown that our bu�er-regulation-based approach is a promising

alternative to the state-of-the-art BDP-based approach (BBR). Our

approach not only works well for mobile cellular networks, but

has the additional bene�t of allowing applications to choose their

operating point on a wide range of performance trade-o� points

between latency and throughput.

8 ACKNOWLEDGEMENTS

The authors would like to thank our shepherd Anna Brunstrom

and the anonymous CoNEXT reviewers for their valuable com-

ments and helpful suggestions. This research was carried out at the

NUS-ZJU SeSaMe Centre. It is supported by the National Research

Foundation, Prime Minister’s O�ce, Singapore under its Interna-

tional Research Centre in Singapore Funding Initiative.

TCP Congestion Control for Mobile Cellular Networks CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

REFERENCES
[1] 2015. Cisco Visual Networking Index: Global Mobile Data Tra�c Forecast Up-

date 2016, https://goo.gl/shrBPF. (2015).
[2] 2015. IDC Worldwide Mobile Phone Tracker. (2015).
[3] M. Allman, V. Paxson, and E. Blanton. 2009. TCP Congestion Control. RFC 5681.

(Sept. 2009).
[4] Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End to End Con-

gestion Avoidance on a Global Internet. IEEE J. Sel. Area Comm. 13, 8 (1995),
1465–1480.

[5] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. Queue 14, 5,
Article 50 (Oct. 2016), 34 pages.

[6] L. De Cicco and S. Mascolo. 2010. A Mathematical Model of the Skype VoIP
Congestion Control Algorithm. IEEE Trans. Autom. Control 55, 3 (March 2010),
790–795.

[7] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira.
2015. PCC: Re-architecting Congestion Control for Consistent High Perfor-
mance. In Proceedings of NSDI ’15.

[8] Nandita Dukkipati,MattMathis, Yuchung Cheng, andMonia Ghobadi. 2011. Pro-
portional Rate Reduction for TCP. In Proceedings of IMC ’11.

[9] Nandita Dukkipati, Tiziana Re�ce, Yuchung Cheng, Jerry Chu, Tom Herbert,
Amit Agarwal, Arvind Jain, and Natalia Sutin. 2010. An argument for increasing
TCP’s initial congestion window. SIGCOMM CCR 40 (June 2010), 26–33.

[10] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. 2000. Equation-
based congestion control for unicast applications. SIGCOMMCCR 30 (Aug. 2000),
43–56. Issue 4.

[11] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata
Sen. 2016. Understanding On-device Bu�erbloat for Cellular Upload. In Proceed-
ings of IMC ’16. ACM, New York, NY, USA, 303–317.

[12] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-Friendly
High-Speed TCP Variant. SIGOPS OSR (July 2008).

[13] R. hhHamilton, J. Iyengar, I. Swett, and A. Wilk. 2016. QUIC: A UDP-Based
Secure and Reliable Transport for HTTP/2. IETF Working Draft. (Jan. 2016).

[14] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental Evalua-
tion of BBR Congestion Control. In Proceedings of ICNP ’17.

[15] Cheng Jin, DavidWei, and Steven Low. 2004. Fast TCP:Motivation, Architecture,
Algorithms, Performance. In Proceedings of INFOCOM ’04.

[16] Aditya Karnik and Anurag Kumar. 2000. Performance of TCP Congestion Con-
trol with Explicit Rate Feedback: Rate Adaptive TCP (RATCP). In Proceedings of
Globecom ’00.

[17] H. J. Kushner and P. A.Whiting. 2004. Convergence of Proportional-fair Sharing
Algorithms Under General Conditions. Trans. Wireless. Comm. 3, 4 (July 2004),

1250–1259.
[18] Wai Kay Leong, Yin Xu, Ben Leong, and Zixiao Wang. 2013. Mitigating Egre-

gious ACKDelays in Cellular Data Networks by Eliminating TCPACKClocking.
In Proceedings of ICNP ’13.

[19] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren Wang.
2001. TCPWestwood: Bandwidth Estimation for Enhanced Transport overWire-
less Links. In Proceedings of MobiCom ’01.

[20] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay. Queue 10,
5, Article 20 (May 2012), 15 pages.

[21] K. I. Pedersen, T. E. Kolding, F. Frederiksen, I. Z. Kovacs, D. Laselva, and P. E. Mo-
gensen. 2009. An overview of downlink radio resourcemanagement for UTRAN
long-term evolution. IEEE Communications Magazine 47, 7 (July 2009), 86–93.

[22] Lenin Ravindranath, Jitendra Padhye, Ratul Mahajan, and Hari Balakrishnan.
2013. Timecard: Controlling User-perceived Delays in Server-based Mobile Ap-
plications. In Proceedings of SOSP ’13.

[23] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. 2011. Low Extra Delay
Background Transport (LEDBAT). IETF Working Draft. (Oct. 2011).

[24] Prasun Sinha, Narayanan Venkitaraman, Raghupathy Sivakumar, and Vaduvur
Bharghavan. 1999. WTCP: AReliable Transport Protocol forWirelessWide-area
Networks. In Proceedings of MobiCom ’99.

[25] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina: Computer-
generated Congestion Control. In Proceedings of SIGCOMM ’13.

[26] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In
Proceedings of NSDI ’13.

[27] Qiang Xu, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. 2013. PROTEUS: Net-
work Performance Forecast for Real-time, Interactive Mobile Applications. In
Proceeding of MobiSys ’13.

[28] Yin Xu,Wai Kay Leong, Ben Leong, andAli Razeen. 2012. Dynamic Regulation of
Mobile 3G/HSPA Uplink Bu�er with Receiver-Side Flow Control. In Proceedings
of ICNP ’12.

[29] Yin Xu, Zixiao Wang, Wai Kay Leong, and Ben Leong. 2014. An End-to-End
Measurement Study of Modern Cellular Data Networks. In Proceedings of PAM
’14.

[30] Brian Noble Yunjing Xu, Zachary Musgrave and Michael Bailey. 2013. Bobtail:
Avoiding Long Tails in the Cloud. In Proceedings of NSDI ’13.

[31] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular
Networks. In Proceedings of SIGCOMM ’15.

https://goo.gl/shrBPF

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm Design
	3.1 Setting Parameters for PropRate
	3.2 Updating the Threshold T

	4 Implementation
	4.1 Buffer Regulation
	4.2 Bandwidth Estimation and Rate Control
	4.3 Kernel Implementation Details

	5 Performance Evaluation
	5.1 Trace-based Emulation
	5.2 Understanding the Performance Frontier
	5.3 Practical 4G/LTE Networks
	5.4 Playing Well with Others in the Wild
	5.5 Computation Overhead

	6 Discussion
	7 Conclusion
	8 Acknowledgements
	References

