
Dynamic Regulation of Mobile 3G/HSPA Uplink

Buffer with Receiver-Side Flow Control

Yin Xu, Wai Kay Leong and Ben Leong

Department of Computer Science

National University of Singapore

{xuyin, waikay, benleong}@comp.nus.edu.sg

Ali Razeen

Department of Computer Science

Duke University

alrazeen@cs.duke.edu

Abstract—We show that the performance of downloads in a
3G/HSPA mobile network can be significantly degraded by a
concurrent upload that saturates the uplink buffer on the mobile
device. In particular, we found in some instances that download
speeds can be reduced by over an order of magnitude from
2,000 kbps to 100 kbps. To mitigate this problem, we propose
a new algorithm called Receiver-side Flow Control (RSFC) that
regulates the uplink buffer on 3G/HSPA data senders. It uses
a feedback loop to monitor the available upload capacity and
dynamically adjusts the TCP receiver window (rwnd) accord-
ingly. We evaluated RSFC on the 3G/HSPA networks of three
different mobile ISPs and show that for one of them, RSFC can
improve the download throughput from less than 400 kbps to
up to 1,400 kbps. In the presence of a concurrent upload, RSFC
can also reduce website load times from more than 2 minutes to
less than 1 minute 90% of the time. Our technique is compatible
with existing TCP implementations and can easily be deployed
at 3G web proxies without requiring any modification to existing
mobile devices.

I. INTRODUCTION

The increasing popularity of mobile devices and online so-

cial networks has caused simultaneous uploads and downloads

to become commonplace in 3G mobile networks. For example,

the fans at a recent sports event uploaded 40% more data

(such as photos and videos) than they downloaded [4]. It

would not therefore be surprising to find users attempting to

access websites while photos and video are being uploaded in

the background. However, we found in a measurement study

that in the presence of a simultaneous background upload,

3G download speeds can be drastically reduced from more

than 1,000 kbps to less than 100 kbps. With 3G poised to

become even more ubiquitous [8], there is an urgent need to

understand and address this performance issue associated with

mobile uploads.

Since upload speeds in 3G/HSPA mobile networks are typi-

cally lower compared to the download speeds, the downstream

ACKs will be queued behind the data packets in the uplink

buffer when there are concurrent flows in both directions.

The ACKs can sometimes be severely delayed and cause

the download speeds to slow to a crawl. While one might

be tempted to think that this is a manifestation of the well-

known ACK compression problem [26], Heusse et al. recently

demonstrated that ACK compression rarely occurs in practice

and even if it does, it has little effect on performance [11].

Instead, they show that the degradation in performance is a

result of the uplink buffer not being appropriately sized for

the available link capacity.

TCP buffer sizing is also a well-studied problem. There is

an old rule of thumb that the size of a buffer should be set to

the bandwidth-delay product [25] (BDP). More recently, it was

found that it should be set to BDP/
√

n, where n is the number

of long lived flows [3]. Unfortunately, these rules cannot be

applied to 3G mobile networks directly because such networks

exhibit significant spatial and temporal variation. Depending

on the ISP, we have found that the available uplink bandwidth

can vary by more than an order of magnitude from 30 kbps to

1,600 kbps at a single location. Therefore, to fully utilize the

available uplink capacity, we cannot use a fixed buffer size.

Instead, the size of the uplink buffer needs to be dynamically

adjusted according to the available bandwidth.

In this paper, we describe Receiver-side Flow Control

(RSFC), a method to dynamically control the uplink buffer

of a 3G data sender from the receiver. Our approach uses

a feedback loop to continuously estimate the available uplink

bandwidth and advertises an appropriate TCP receiver window

(rwnd). The technique of using rwnd to control a TCP flow

has been employed in other contexts [2], [15], [24]. However,

to the best of our knowledge, we are the first to apply this

technique to improve the utilization of a 3G mobile downlink

in the presence of concurrent uploads. The key innovation in

our algorithm is a method to dynamically adapt to variations

in the 3G link capacity.

In this paper, we make two key contributions. First, we

demonstrate clearly that in a 3G/HSPA network, a concurrent

upload can cause significant degradation to the download

performance. Second, we developed RSFC, a new algorithm

that can dynamically regulate the utilization of the uplink

buffer of a 3G mobile device by actively adjusting the TCP

receiver window rwnd.

We evaluated RSFC extensively on three 3G mobile ISPs

using Android phones and found that RSFC can significantly

improve downlink utilization, especially with an ISP with

consistently low upload speeds. In our experiments, we found

that RSFC can improve download speeds from lower than

400 kbps to up to 1400 kbps. RSFC can also reduce the time

taken to load websites in the presence of concurrent uploads

from more than 2 minutes to less than 1 minute some 90% of

the time. We also show that RSFC is compatible with existing



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

T
h

ro
u

g
h

p
u

t 
(k

b
p

s
)

Time

    ISP C
    ISP B
    ISP A

Fig. 1. TCP upstream throughput measured in the lab over 24 hours for the
local mobile ISPs A, B and C. Measurements were obtained by uploading
1 MB of data every 15 minutes.

TCP implementations.

The rest of this paper is organized as follows: in Section II,

we show the problems caused by a saturated upstream buffer

in 3G networks. In Section III, we describe RSFC and explain

how it can dynamically regulate the number of packets in the

uplink buffer of a mobile device. In Section IV, we evaluate

the effectiveness of RSFC with experiments on three 3G/HSPA

networks. Finally, we provide an overview of related work in

Section V and conclude in Section VI.

II. THE PROBLEM OF SATURATED UPLINK

In this section, we demonstrate and explain why a concur-

rent upload can cause significant degradation to the download

throughput. All the experiments were performed in our lab

with three local mobile ISPs: A, B, and C. We anonymized

the names of the ISPs because we do not want our study to be

used as evidence of one ISP’s superior performance over the

others. The performance of an ISP will vary due to a variety

of factors including the location of the mobile devices and the

time of 3G access [17]. In Fig. 1, we show that the upload

throughput of the three ISPs are quite different in our lab over

a 24-hour period, even though the 3G data plans used for all

ISPs have the same advertised maximum download and upload

throughputs of 7.2 Mbps and 2 Mbps respectively. This turns

out to be fortuitous as we were able to obtain a holistic view

of the 3G network performance from a single location.

Impact of Saturated Uplink. To verify that a saturated

uplink can negatively impact downstream performance, we ran

an experiment with three independent sets of TCP flows: (i) a

download-only flow (d0) that downloads 1 MB of data from a

server, (ii) an upload-only flow (u0) that sends 1 MB of data

to the server, and (iii) an upload flow (u1) that continuously

sends random data to the server while a concurrent download

flow (d1) downloads 1 MB of data from the server. In a single

run, these three sets of flows are run immediately one after

another to minimize temporal variations. This experiment was

conducted continuously over several days at 15-min intervals.

In Fig. 2, we plot the performance of d1 against d0 and

observe that a saturated uplink can significantly increase

RTTs and reduce the downlink utilization. However, this phe-

nomenon is not observed for all the experiments. We further

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12

R
T

T
 o

f 
d

o
w

n
s
tr

e
a

m
 w

/ 
c
o

n
c
u

rr
e

n
t 
u

p
lo

a
d

 (
s
)

RTT of downstream w/o concurrent upload (s)

ISP A
ISP B
ISP C

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  500  1000  1500  2000  2500  3000

T
h
ro

u
g
h
p
u
t 

o
f 

d
o
w

n
s
tr

e
a
m

 w
/ 

c
o
n
c
u

rr
e

n
t 
u

p
lo

a
d

 (
k
b

p
s
)

Throughput of downstream w/o concurrent upload (kbps)

ISP A
ISP B
ISP C

Fig. 2. Comparison of RTT and throughput for downloads with and without
uplink saturation.

investigated the relationship between the upload throughput

and the downlink performance degradation by plotting the

performance ratio, d1/d0, against the throughput of u0 in

Fig. 3. We observed that the downstream performance is

poorest when the upload speeds are low. For instance, ISP

A consistently has low upload throughput and hence the

downstream performance is severely degraded. We show later

in this section that this poor downlink utilization can partially

be explained by ACKs being delayed at the uplink buffer.

We found it interesting that even when an ISP has a

consistently high upload speed, as in the case of ISP B, the

downlink utilization is still reduced by a small amount. We

investigated this further by repeating our experiments with

UDP flows. Even with UDP, the throughput of a download

flow is degraded by a concurrent upload. Since there are no

ACKs for UDP flows, this suggests that mobile downloads are

naturally degraded by a concurrent upload, possibly because of

ISP-level air time scheduling. As this phenomenon is beyond

our control, the focus of this paper is on mitigating the problem

of ACK delays, which clearly significantly exacerbates the

degradation when upload speeds are low.

Measuring One-Way Delays. To confirm our hypothesis

that delayed ACKs is a major reason for the poor downlink

utilization, we set up an experiment in a loopback configura-

tion. In this configuration, an Android phone was tethered to

a server machine via USB. Next, upload and download TCP



 0.1

 1

 10

 100

 0  200  400  600  800  1000 1200 1400 1600 1800

R
a

ti
o

 o
f 
d

o
w

n
s
tr

e
a

m
 R

T
T

Upstream throughput (kbps)

ISP A
ISP B
ISP C

 0.001

 0.01

 0.1

 1

 10

 0  200  400  600  800  1000 1200 1400 1600 1800

R
a
ti
o
 o

f 
d
o
w

n
s
tr

e
a

m
 t
h

ro
u

g
h

p
u

t

Upstream throughput (kbps)

ISP A
ISP B
ISP C

Fig. 3. Plot of ratio of downstream RTT and throughput, with and without
upload saturation, against the upload throughput.

flows were initiated on the server and these flows were routed

through the phone’s 3G link via the USB connection and back

to the server via the wired network. As the server is both the

source and destination of all the TCP packets, the timestamps

are fully synchronized and we can measure the one-way delay

of the downlink (for data packets from the server to the phone),

and the one-way delay of the uplink (for ACK packets from

the phone to the server). In Fig. 4, we plot the results of

this experiment conducted on ISP A. We found that there is

significant asymmetry in the delays and that the uplink one-

way delay can be up to two orders of magnitude larger than

the downlink one-way delay.

III. RECEIVER-SIDE FLOW CONTROL

In Section II, we showed that the downstream performance

can be severely degraded at a mobile sender when the uplink

bandwidth is low and the ACKs for the downstream data

are delayed in the uplink buffer. One straightforward way to

eliminate the delay would be to use a small uplink buffer.

However, doing so will cause the uplink to be under-utilized

when the available uplink bandwidth increases at a later time.

Another possible approach is to control the total amount of

data in flight so that the number of packets in the uplink buffer

is large enough to fully utilize the uplink capacity and yet not

so large as to inflate the uplink one-way delay unnecessarily.

In fact, TCP Vegas [7] works in a similar manner by using

packet delays to detect impending congestion (arising from

packets building up in a buffer) in order to regulate the packet

 0.01

 0.1

 1

 10

 100

 0  20  40  60  80  100  120

D
e

la
y
 (

s
)

Packet arrival time (s)

RTT
Upstream

Downstream

Fig. 4. The breakdown of the downstream RTT into the one-way upstream
delay and the one-way downstream delay.

send rate. However, TCP Vegas does not contend well with

the common default TCP implementations and it is thus not

likely to be adopted as the default TCP implementation for

mobile devices anytime soon.

In our approach, which we call Receiver-side Flow Control

(RSFC), we regulate the number of packets in the uplink buffer

of a mobile sender at the receiver by dynamically adjusting the

advertised TCP receiver window (rwnd). The key challenge

is for the TCP receiver to accurately estimate the current

uplink capacity and to determine the appropriate rwnd to be

advertised so that the number of packets in the uplink buffer

is kept small without causing the uplink to become under-

utilized.

Similar to previous work [16], we estimate delays using

TCP timestamps, i.e. using the TSval and TSecr fields

in a received TCP packet. Our approach relies only on the

relative differences in the received timestamps and does not

require synchronization between the TCP sender and receiver.

One caveat is that the granularity of TCP timestamps is

not standardized and different devices may increment the

timestamps at different rates. In this paper, we work with

a granularity of 10 ms on both the mobile sender and the

receiver. We expect this issue to be less of a concern in the

future because an IETF working group is currently working

on the standardization of the TCP timestamp granularity [21].

In the following sections, we first describe how our algo-

rithm works in the general case and then we analyze how the

uplink buffer at the mobile sender behaves. Next, we explain

how RSFC adapts to changes in the underlying delays of the

network. Finally, we briefly discuss how our algorithm can be

deployed in practice.

A. RSFC Algorithm

A typical sequence of packets in an upstream TCP flow is

illustrated in Fig. 5. At time t = ts0
, a packet is sent and it

is received at time t = tr1
after a transmission delay tu. Note

that ts and tr are recorded with respect to the sender’s and

receiver’s local clocks respectively. The receiver then sends

an ACK packet with timestamp fields TSecr = ts0
and

TSval = tr1
. The sender receives the ACK packet after the

transmission delay td at time t = ts2
and immediately pushes



Queuing

Delay

Downstream

Delay tu

ReceiverMobile
ts0

tr3

Rate ρ

Delay td

Upstream
Sender

tbuff

ts2

tr1

Timestamp
TSval = tr1

TSecr = ts0

Timestamp
TSval = ts2

TSecr = tr1

Timestamp
TSval = ts2

TSecr = tr1

RTT = tr3
− tr1

RD = tr3
− ts2

Fig. 5. Packet flow diagram illustrating the various metrics. Solid lines
represent data packets, while dotted lines represent ACK packets.

a new data packet into the buffer, with TSecr = tr1
and

TSval = ts2
. After spending some time tbuff in the uplink

buffer, the packet is sent and after the transmission delay tu,
the packet is received at time t = tr3

. Clearly, there is also a

buffer at the downlink, but we do not consider it in our model

because as shown in Fig. 4, the downlink one-way delay is

negligible and so the amount of time that a packet will spend

in the downlink buffer is also negligible.

The receiver tracks the following metrics for each mobile

sender as soon as packets are received: (i) the relative one-

way delay (RD = tr3
− ts2

), (ii) the round-trip time (RTT =
tr3

− tr1
), and (iii) the rate at which packets are received (ρ).

RD and RTT will vary for different packets and the smallest

RD and RTT observed are recorded as RDmin and RTTmin

respectively. Clearly,

RD = tbuff + tu + toffset (1)

RTT = tbuff + tu + td (2)

where toffset is the clock offset between the sender’s and

the receiver’s clocks. If the transmission delays tu and td are

constant, it is reasonable to assume that RDmin and RTTmin

are obtained when tbuff ≈ 0, i.e.

RDmin ≈ tu + toffset (3)

RTTmin ≈ tu + td (4)

In other words, RD − RDmin is a good estimate t̂buff , the

time that a packet spends in the uplink buffer. Note that we

only estimate t̂buff from RD and RDmin when there are no

packet losses and no re-ordering.

The effective TCP sliding window at the mobile sender is

the minimum of the TCP congestion window (cwnd) and the

rwnd. By adjusting the value of rwnd, the receiver can cap

the growth of the sliding window. Recall that our objective is

to regulate the uplink buffer at the mobile sender so that the

available capacity is utilized while simultaneously minimizing

the uplink delay. Therefore, using this strategy, we advertise

an appropriate value of rwnd based on the estimated t̂buff .

If t̂buff is larger than a threshold T , we say that the system

is in the fast state because there are too many packets in the

uplink buffer. Conversely, if t̂buff ≤ T , we say the system

is in the slow state since we can possibly allow more packets

to be sent or buffered. It remains for us to determine a value

for T , which achieves a good trade-off between delay and

link utilization. With a small value of T , we can achieve a

lower delay at a higher risk of under-utilizing the upstream

link. We evaluated different choices of T and found that

setting T = RTTmin keeps the RTT below 1 s 80% of

the time, while keeping the upload throughput similar to that

of TCP Cubic. Reducing T below RTTmin will reduce the

throughput without much reduction to the RTT. Thus, we set

T = RTTmin in our implementation.

Fast State. In the fast state, our algorithm will freeze the

growth of the TCP buffer to prevent excessive delays, by

advertising the rwnd as min(rwnd, ⌈(ρ×RTTmin)/MSS⌉×
MSS), where ρ is the rate at which packets are received,

MSS is the Maximum Segment Size, and rwnd is the

original rwnd computed by the kernel. This sets the advertised

window to the estimated bandwidth-delay product (BDP) for

the transmission. Note that we cannot advertise more than what

is originally allowed by the kernel to prevent overflowing the

receiver’s buffer. Upon receiving the new rwnd, the mobile

sender will stop queuing more packets and its buffer will start

to empty. At some point, t̂buff will drop below T , causing

the algorithm to enter the slow state.

Slow State. In the slow state, we want to send more packets

to ensure that we fully utilize the available uplink capacity.

To do so, we need to increase the advertised rwnd. Like

TCP slow start, we increase the rwnd by one MSS after

the receiver receives each data packet. Eventually, the TCP

buffer at the sender would begin to fill and t̂buff will start to

increase until it exceeds T , and the algorithm returns to the

fast state.

B. Maximum Buffer Utilization

As the algorithm oscillates between the fast and slow states,

the number of packets in the uplink buffer would fluctuate

over time. Hence, we need to ask and answer the following

question: what is the maximum time that we expect a packet to

stay in the uplink buffer? The answer will allow us understand

the effect of selecting different values for the threshold T , and

yield important insight into how RSFC adapts to changing

network conditions. In Fig. 6, we illustrate the change in the

number of packets in the uplink buffer over time.

Suppose that the mobile sender starts in the slow state

(i.e. t̂buff < T ). The receiver will continuously increase the

advertised rwnd by one MSS for every data packet received.

The sender will add more packets to the buffer and at some

point, it will add a packet that needs to spend a time tbuff = T
in the buffer before it is transmitted (See shaded packet in

Fig. 6). As this shaded packet moves to the head of the buffer,

the sender will continue to receive ACKs for the data packets

sent earlier, and the uplink buffer will continue to grow by

one MSS for each ACK. When the shaded packet reaches

the head of the buffer, by definition, the buffer queue would

have reached a point such that the next packet queued will

have a tbuff = 2T , since it took the shaded packet an amount

of time equal to T to reach the head.



A

A

A

Mobile
Sender Receiver

In slow state:

New packets are added
tbuff < T

tbuff < T

tbuff = 2T
RTTmin

tbuff = 2T + RTTmin

Received new rwnd
Buffer starts growing

tbuff = T
T

Buffer starts draining
rwnd frozen to BDP

Back to slow state:

tbuff ≤ T
rwnd += 1

In fast state:

rwnd += 1
tbuff ≤ T

Unacked packets < rwnd

tbuff > T
rwnd = MSS×
⌈(ρ × RTTmin)/MSS⌉

2T + RTTmin

Fig. 6. Packet flow diagram illustrating a typical scenario for buffer inflation.

Once the receiver receives the shaded packet, it switches to

the fast state and freezes the advertised rwnd. However, it will

take a roundtrip time of RTTmin from the time of transmission

of the shaded packet for this frozen rwnd to reach the sender.

Therefore, until the new rwnd is received, the sender would

keep queuing new packets as it receives ACKs with increasing

rwnd. When the new rwnd is finally received, the buffer

queue would be such that the next packet queued (see packet

A in Fig. 6) will have tbuff = 2T + RTTmin. This will be

the maximum buffer delay because the rwnd is now capped at

the estimated BDP ⌈(ρ×RTTmin)/MSS⌉×MSS. Since we
set T as RTTmin in our implementation, the largest expected

buffer delay tbuff is 3 × RTTmin.

At this point, the uplink buffer will start to drain and a

new packet will only be pushed into the uplink buffer when

the number of unacknowledged packets drops below rwnd.

As rwnd is set to the BDP, which is the number of packets

in flight, the buffer will eventually be completely emptied.

When this happens, the new packet sent will spend a time

tbuff = 0 < T in the buffer. Hence, when the receiver receives

this new packet, the algorithm will revert to the slow state and

start increasing the rwnd by one MSS for each packet. Once

again, it will take a time of RTTmin from the transmission

of the packet for the new rwnd to reach the sender. Hence,

in a typical scenario, the algorithm will spend at most 2T +
2RTTmin in the fast state before going back to the slow state.

C. Handling Changes in the Network

Because the 3G uplink is a shared resource, the base station

will allocate an amount of air time to each mobile device

depending on factors such as signal quality and the number

of connected devices. Hence, the available bandwidth and

associated network delays are expected to change over time.

In other words, we expect the variables ρ, td and tu to vary

over time and RSFC needs to adapt to these changes.

If there is a change only in the available bandwidth that

results in a change of the receive rate ρ, there will not be any

impact on the algorithm because ρ is only used to estimate

the BDP in the fast state. When ρ changes, we simply update

our estimate of the BDP with the new ρ. Also, the switching

between the fast and slow states is independent of ρ and

depends only on the delays tu and td.
Similarly, if there is a decrease in network delays tu and

td, no special handling is required. A decrease in either

tu or td will cause RD or RTT to drop lower than the

previously recorded values of RDmin or RTTmin, and these

two variables will simply be updated. Even if we do not

update RTTmin accordingly, the older (and larger) value of

RTTmin will simply result in an over-estimation of the BDP.

This means that the rwnd set in fast state will not allow the

buffer to empty completely and t̂buff will not be reduced to

zero. As long as t̂buff remains small, the uplink is still fully

utilized and rwnd is still capped, there will be an upper bound

on the delay.

The challenge arises when either of the network delays,

tu or td, increase. This will eventually cause the algorithm to

enter the fast state, since the increasing rwnd in the slow state

will cause the sender to queue packets until the t̂buff > T .

In the fast state, the BDP will be under-estimated because the

estimated RTTmin < tu + td. This causes rwnd to be set at

a value lower than the actual capacity of the link. The buffer

will eventually empty, yet the low rwnd prevents new packets

from being sent, which causes the link to be under-utilized.

In other words, an increase in tu might be interpreted as an

increase in t̂buff , which means that t̂buff can never fall to

zero. There are two possible situations:

(i) Enters Slow State. When the increase in tu is not large

and t̂buff ≤ T , rwnd will start increasing, allowing the

sender to send more packets for every ACK received.

Since the link was previously under-utilized, this will

result in ρ increasing at the receiver. Eventually the

algorithm will return to the fast state. Hence, if we detect

an increase in ρ in the most recent cycle of slow and

fast states, we can safely assume that link utilization

had dropped at some point and we update (increase)

RDmin and RTTmin to the minimum RD and RTT
values observed in the most recent cycle of slow and

fast states.

(ii) Stuck in Fast State. If the increase in tu is sufficiently

large such that t̂buff > T , the algorithm will end up

getting stuck in the fast state and the link will always be

under-utilized. We showed earlier in Section III-B that

the algorithm will typically spend at most 2T+2RTTmin

in the fast state before reverting to the slow state. Hence,

we can deduce that something is wrong if the algorithm

spends significantly longer than 2T + 2RTTmin in the

fast state. In this light, if we find that the algorithm stays

in the fast state for longer than 2T +3RTTmin, we will

switch to a third special monitor state. Essentially, we

add an extra RTTmin to provision for possible transient

changes in delays.



������
������

�	
�
��	��
�

�
���	����������
���	�

������	���������
��
���	�

�����	�������������
��	���������

��
������	���

������
������

��
 !

������


��������

Fig. 7. The bottleneck 3G link is virtually dedicated to each device.
Multiplexing is done by the ISP in a schedule which is assumed to be fair.

Monitor State. Like in the slow state, rwnd is increased

by 1 for every data packet received and we monitor ρ. There
are two possible scenarios:

(a) If an increase is detected in ρ, we switch to the slow state.

Simultaneously, RDmin and RTTmin is updated to the

minimum RD and RTT observed while in the monitor

state and rwnd is updated to ⌈(ρ × RTTmin)/MSS⌉ ×
MSS accordingly with the new value of RTTmin.

(b) If ρ does not seem to increase even after RD increases by

T , it suggests that the link is still fully utilized, i.e. there

are still packets in the uplink buffer. We then halve both

RDmin and RTTmin and switch to the fast state. This will

likely force the buffer to empty and cause RSFC to switch

back to monitor state. However, this time in the monitor

state, we will likely end up in case (a) above and both

RDmin and RTTmin will be set to the correct values.

We demonstrate in Section IV-E that the monitor state is

crucial for RSFC to achieve good link utilization in the

presence of network variations.

D. Practical Deployment

RSFC requires minor modifications to the TCP stack at

the TCP receiver, but no modification needs to be made

to an existing mobile device, though it does require the

TCP timestamp option to be enabled. A quick survey of

the available smartphones suggests that the TCP timestamp

option is enabled by default for both Android and iPhone

(which together constitute about three quarters of the global

smartphone market [9]) and disabled by default for Windows

Mobile phones. In this light, we believe that the majority of

smartphones are RSFC-ready at present.

The current architecture of existing 3G mobile networks

makes it relatively straightforward to deploy our algorithm. In

particular, we found that all three local mobile ISPs implement

a transparent web proxy that intercepts all HTTP connections,

and effectively converts them into split TCP [18] connections.

These proxies are used to improve 3G performance by caching

commonly accessed web content (such as images on popular

websites) and in some cases, to perform QoS filtering on the

traffic. The current situation suggests we can deploy RSFC

for an entire 3G network easily by modifying the TCP stack

on these proxies as illustrated in Fig. 7. Unfortunately, this

also suggests that it would not be helpful to deploy RSFC on

individual servers (unless the connections are not made on the

HTTP port) because the mobile connections would be likely

be routed through a web proxy and hence RSFC would not

be able to have any direct effect on the mobile device.

IV. PERFORMANCE EVALUATION

In this section, we present our evaluation results for RSFC.

We begin by investigating RSFC’s effectiveness at reducing

the RTT and in improving throughput. Next, we evaluate how

RSFC performs in two possible application scenarios: (i) when

users surf the web while there is a concurrent background

upload, and (ii) when there are simultaneous uploads. Finally,

we demonstrate the necessity of having to adapt to changing

network conditions and also show that RSFC is compatible

with other TCP congestion control algorithms.

All of the experiments in this section were conducted in our

lab, on Android phones, on all three local ISPs. The congestion

control algorithm used on the phones is TCP Cubic [10], which

is the default TCP implementation in the Android kernel. It is

clear from our measurement results in Section II that ISP A has

the poorest upload performance in our lab. As to be expected,

RSFC achieves the greatest improvement in performance with

ISP A’s network. For ISPs B and C, where the upload speeds

are relatively high, RSFC was less effective, though it does not

perform worse than the default TCP Cubic. Because our goal is

to show that RSFC can significantly improve downloads when

mobile connectivity is less than ideal (and almost all mobile

users will find themselves at such locations every once in a

while), and because of space constraints, we present only the

results for ISP A, except where stated otherwise.

A. Reduction in RTT

To verify that RSFC can reduce the RTT for a TCP upload,

we ran an experiment where we uploaded 1 MB of data from

the phone using TCP Cubic and then repeated the process

with RSFC. This experiment was repeated periodically every

15 min over several days and the CDF of our results is shown

in Fig. 8. We observe that in general, using RSFC results in

much lower RTT compared to TCP Cubic. TCP Cubic’s RTT

is greater than 6 s 50% of the time while the RTT with RSFC is

close to 1 s more than 90% of the time. It is also apparent that

the upload throughput achieved by RSFC is almost identical to

that for TCP Cubic. This simple experiment shows that RSFC

can achieve a significant reduction in RTT without suffering

any loss in upload throughput.

B. Improving Downstream Throughput

Next, we measured the improvement in downlink utilization

achieved in the presence of a concurrent upload by running

the following sets of experiments: (i) a single TCP Cubic

download flow (d0), (ii) a single TCP Cubic upload flow (u0),

(iii) a TCP Cubic download flow with a concurrent TCP Cubic

upload flow (d1 and u1), and (iv) a TCP Cubic download

flow with a concurrent RSFC upload flow (d2 and u2). These

experiments were run one after the other to minimize the

effect of temporal variance. In Fig. 9, we plot the CDF of

the throughputs achieved.

As expected, the throughput of d1 is poor. It is lower than

400 kbps all the time and it is close to 10 kbps 30% of the time.

With RSFC, the downstream throughput improves significantly

and 50% of the time, it is greater than 400 kbps. When we



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7

C
D

F

RTT (s)

RSFC
Cubic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

C
D

F

Throughput (kbps)

RSFC
Cubic

Fig. 8. CDF of RTT and throughput for TCP Cubic and RSFC uploads.

compare the throughputs of u2 and u1, we found that they

are similar in spite of the increase in downlink utilization for

RSFC. This suggests that our approach of regulating the uplink

buffer size is effective; the buffer always has packets to send

but the packets are not unnecessarily delayed. However, the

throughput of d2 is still not as good as the d0 benchmark. As

discussed in Section II, this is likely due to the interactions

between the concurrent flows arising from scheduling at the

3G layer, which is beyond our control.

We also investigated how the current uplink capacity will

affect the improvement in the downlink utilization. In Fig. 10,

we compare RSFC to TCP Cubic by plotting the throughput

ratio d2/d1 against u0. We included the data points from all

three ISPs for a better overview. It is clear that RSFC achieves

the greatest improvement when the upload throughput is below

400 kbps. Fig. 10 also shows that RSFC does not achieve much

improvements for ISPs B and C. These two ISPs typically

have higher uplink capacity, which makes it more unlikely for

the uplink buffer to be saturated. In such cases, RSFC has a

similar performance as TCP Cubic. Note that our experiments

were conducted at a fixed location where ISPs B and C seem

to have significantly better performance than ISP A. However,

they could have lower upload speeds at other locations and in

those instances, RSFC would be helpful for ISPs B and C as

well.

C. Improving Web Surfing

Next, we investigate how RSFC performs in a common sce-

nario: surfing the web while uploading data in the background.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500

C
D

F

Downstream Throughput (kbps)

With Cubic upload (d1)
With RSFC upload (d2)

Without upload (d0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400
C

D
F

Upstream Throughput (kbps)

RSFC upload (u2)
Cubic upload (u1)

Fig. 9. CDF of the throughput achieved by the downstream and upstream
flows under different conditions.

 0.1

 1

 10

 100

 1000

 0  200  400  600  800  1000 1200 1400 1600 1800

R
a
ti
o
 o

f 
d
o
w

n
s
tr

e
a
m

 t
h
ro

u
g
h
p
u
t

Throughput of benchmark upstream (kbps)

ISP A
ISP B
ISP C

Fig. 10. Plot of ratio between RSFC’s downstream throughput to that of
TCP Cubic against the throughput of the benchmark upstream flow.

In this experiment, we visited the Alexa Top 100 websites [1]

under three conditions: (i) with a concurrent RSFC upload,

(ii) with a concurrent TCP Cubic upload, and (iii) without

any concurrent uploads. In Fig. 11, we plot the CDF of the

time taken to receive the last byte of the last HTTP response.

Without a concurrent upload, 90% of these websites take less

than 30 s to load. However, with a TCP Cubic upload, 70%

of them can take more than 2 mins to load. Such performance

degradation will severely impact user-perceived performance

of the mobile web access. RSFC mitigates the impact of a

concurrent upload as it reduce the load time to within 30 s for

70% of the websites and to within 1 min for 90% of them.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10

C
D

F

Time (minutes)

Without upstream
With RSFC upstream
With Cubic upstream

Fig. 11. CDF of the time taken to load the top 100 websites under different
conditions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10

C
D

F

Fairness and efficiency

RSFC Fairness
pTCP Efficiency
RSFC Efficiency

Fig. 12. CDF of the fairness between two RSFC uploads and the efficiency
of two RSFC uploads compared to a single TCP Cubic upload.

D. Fairness of Competing RSFC Uploads

If there are multiple upload flows from a single 3G con-

nection, RSFC will be applied to each flow independently.

The rate estimation and rwnd advertisement for a flow would

be done without considering the other flows. We attempt

to understand how well this simple scheme will perform in

practice by running the following experiment. We first upload

1 MB of data using a single TCP Cubic flow as a reference.

After the upload is complete, we start two concurrent RSFC

upload flows from the phone and upload 1 MB of data in

total. This experiment was repeatedly executed over a 24-hour

period.

We quantified the fairness of the throughput utilization

between the two RSFC flows using the Jain fairness index [13],

i.e. (R1 +R2)
2/(2× (R1

2 +R2
2)), where R1 and R2 are the

throughput of the two flows. We also compared the efficiency

of the throughput utilization for the RSFC flows to the TCP

Cubic flow by computing the ratio (R1 + R2)/C, where C is

the throughput of the TCP Cubic flow. A CDF of our findings

is shown in Fig. 12.

We found that the two RSFC flows achieve very similar

throughput. It turns out that the oscillating nature of our

algorithm, between the fast and slow states, ensures that

neither flow dominates the uplink. Hence, we conclude that

RSFC flows are relatively fair when they contend with each

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h

ro
u

g
h

p
u

t 
(k

b
p

s
)

R
T

T
 (

s
)

Time (s)

Delay change not

detected, link

under-utilized.

Throughput
RTT

Fig. 13. Plot of the average throughput achieved and RTT using RSFC
variant without RDmin and RTTmin update mechanism.

other. In terms of utilization efficiency, the two concurrent

RSFC flows seem to perform no worse than a single TCP

Cubic flow about 80% of the time and can occasionally achieve

better throughput since parallel TCP flows can generally better

utilize the link capacity compared to a single flow.

For the remaining 20% of the time, the two RSFC flows

seemed to perform worse than a single TCP Cubic flow.

To further investigate why this might be the case, we ran

a benchmark experiment where we compared the efficiency

of two parallel TCP Cubic upload flows against a single TCP

Cubic flow. The results of this experiment is labeled in Fig. 12

as “pTCP Efficiency”. Since this new curve was remarkably

similar to the curve for the parallel RSFC flows, it suggests

that it is likely that the two RSFC flows performed worse 20%

of the time because of temporal variations in the 3G link.

E. Adapting to Changing Network Conditions

In Section III-C, we described how RSFC updates RDmin

and RTTmin to handle variations of the 3G link capacity to

maintain good link utilization. To evaluate the necessity of

updating RDmin and RTTmin, we ran an experiment where

we uploaded data for 60 s using a variant of RSFC that keeps

the values to the lowest measured from the start of the flow.

We plot the resulting throughput and RTT achieved in Fig. 13.

At the start of the flow, the estimated RDmin and RTTmin

are accurate and the uplink is fully utilized. There are network

fluctuations in the middle of the flow and after 25 s, the

throughput is lower than that achieved during the first 10 s even

though the network conditions for both periods are similar.

This is because the underlying network delays decreased

then subsequently increased, but their estimates RDmin and

RTTmin were not updated. Hence, the rwnd advertised is

smaller than the ideal value and the link is under-utilized.

We repeated this experiment with the default version of

RSFC and our results are shown in Fig. 14. We can infer

from the oscillations in the RTT that the feedback mechanism

of RSFC is operating correctly even though like before, there

was a temporary decrease in the network delay at 5 s and

a subsequent increase at 20 s. This demonstrates that the

mechanism to update RDmin and RTTmin is effective and

necessary to adapt to changing network conditions.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h

ro
u

g
h

p
u

t 
(k

b
p

s
)

R
T

T
 (

s
)

Time (s)

Throughput
RTT

Fig. 14. Plot of the average throughput achieved and RTT using full RSFC
algorithm.

 0.1

 1

 10

 0  5  10  15  20  25  30  35  40

R
T

T
 (

s
)

Time (s)

Cubic/Cubic
Westwood/Cubic
Westwood/RSFC

 0.1

 1

 10

 0  5  10  15  20  25  30  35  40

R
T

T
 (

s
)

Time (s)

Cubic/RSFC
Vegas/Cubic
Vegas/RSFC

Fig. 15. Plot of the RTT for the transfer of 1 MB file using different TCP
variants at both sender and receiver side. In the legend, we indicate first the
mobile sender followed by the receiver.

F. Compatibility with other TCP variants

We investigated RSFC’s compatibility with other sender-

side TCP congestion control algorithms by running a new

set of experiments. In these experiments, we uploaded 1 MB

of data from the phone to a receiver and alternated the

TCP implementation on the phone between Westwood [19],

Vegas [7], New Reno [12] and TCP Cubic. We also varied the

receiver-side algorithm on the server between TCP Cubic and

RSFC.

In Fig. 15, we plot the RTT achieved in the different exper-

iments (the results of New Reno at the sender is not shown

because it is similar to TCP Cubic). We see that if the receiver

uses RSFC, then the RTT can be improved regardless of the

algorithm used at the sender. We also ran the simultaneous

upload and download experiments described in Section IV-B

and plot our results in Fig. 16. Once again, as long as RSFC

is enabled at the receiver, the downlink utilization can be

improved. This shows that RSFC is compatible with other TCP

variants.

We noticed that the performance of Vegas/Cubic is slightly

better than that for Cubic/RSFC. This is to be expected as

Vegas is more aggressive in controlling the delays compared to

RSFC. Moreover, TCP Vegas can immediately effect changes

on the sender whereas RSFC’s changes are delayed by at least

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

D
o

w
n

s
tr

e
a

m
 t
h

ro
u

g
h

p
u

t 
(K

B
/s

)

Vegas/RSFC
Vegas/Cubic

Westwood/RSFC
Cubic/RSFC

Westwood/Cubic
Cubic/Cubic

 0

 50

 100

 150

 200

 250

 300

 350

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00
U

p
s
tr

e
a
m

 t
h

ro
u

g
h

p
u

t 
(k

b
p

s
)

Time of day(24-hour)

Vegas/RSFC
Vegas/Cubic

Westwood/RSFC
Cubic/RSFC

Westwood/Cubic
Cubic/Cubic

Fig. 16. Plot of downstream throughput when the upstream is saturated with
different algorithms over a 24-hour period. In the legend, we indicate first the
mobile sender followed by the receiver.

one RTTmin. However, RSFC is fully compatible with TCP

Vegas and is a compelling alternative to deploying TCP Vegas

on mobile devices.

V. RELATED WORK

In this section, we discuss prior work in the literature that

are related to our work.

Saturated Uplinks. The impact of saturated uplink buffers

on download performance is a well-studied problem, and

it was first characterized as the ACK compression problem.

When upload speeds are low, the downstream TCP ACKs

get compressed in the buffer and are sent out in bursts,

causing the self-clocking mechanism in TCP to break [14],

[26]. However, more recently, Heusse et al. showed that in

practice, the Data Pendulum effect is more prevalent than

ACK compression [11]. According to them, when there are

concurrent upload and download connections, it is possible for

the buffers on both sides of the connections take turns to fill up

and fully utilize their links while the other idles, provided the

buffer sizes are configured correctly. However, when the buffer

sizes are misconfigured relative to the link capacities, the link

with the lower capacity will become the sole bottleneck. We

have verified that indeed, the uplink can become a bottleneck

and cause the downlink to be under-utilized in 3G networks.

Previous Approaches. Two previous proposals for mitigat-

ing the problem of under-utilized downlinks are prioritizing

the ACKs and optimizing how the ACKs are sent [5], [6],



and using separate queues for ACKs and data packets [14],

[20]. There are also some sender side congestion control

algorithms that are designed to achieve low delay, like Ve-

gas [7] and LEDBAT [22]. These solutions all require client-

side modifications. Another possible solution is to use parallel

TCP connections [23]. However, we verified that parallel TCP

flows are not sufficient to improve link utilization because a

slow uplink will ultimately delay the ACKs and become the

bottleneck.

Receiver-side Congestion Control. The technique of con-

trolling the advertised receive window, rwnd, to regulate a

TCP flow is not new. Neil et al. used this technique to improve

the performance of interactive network applications that are

competing with bulk-transfer connections for bandwidth [24];

The explicit window adaptation scheme proposed by Lampros

et al. also uses rwnd to control the downstream queue size

to achieve fairness between window-based and rate-based

congestion control algorithm [15]. Andrew et al. used it to

fairly share the available bandwidth between users [2]. We

solve a different problem from these previous proposals and

our goal is to improve downlink utilization in 3G networks by

controlling the uplink delay.

TCP Buffer Management. The classic rule of thumb is to

set the buffer size to the bandwidth-delay product (RTT ×
C) [25] and more recently, it was suggested that it should be

sufficient to set the buffer size to (RTT ×C)/
√

n [3], where

C is the data rate of the connection and n is the number

of long-lived flows. A fixed-sized approach to buffer sizing is

however not feasible in a 3G environment, since unlike routers

which typically have fixed throughput, there can be significant

variations in the link speed of over an order of magnitude.

VI. CONCLUSION

We have shown that the performance of a TCP download

in a 3G mobile network can be significantly degraded by a

simultaneous TCP upload and that Receiver-side Flow Control

(RSFC) is effective at mitigating this problem, especially in sit-

uations where mobile connectivity is poor. RSFC is compatible

with existing sender-side TCP congestion control algorithms,

and is a practical technique that can be easily deployed at

3G web proxies without requiring any modification of the

existing mobile devices. Given that simultaneous upload and

downloads are likely going to become more common in 3G

networks, we believe that RSFC is an important mechanism for

improving the user-perceived performance of the Internet for

mobile devices, even though its benefits may seem somewhat

indirect.

ACKNOWLEDGMENTS

This work was supported by the Singapore Ministry of

Education grant T1 251RES1006.

REFERENCES

[1] Alexa. Top Global Sites. http://www.alexa.com/topsites. Accessed
March 2012.

[2] L. L. Andrew, S. V. Hanly, and R. G. Mukhtar. Active Queue
Management for Fair Resource Allocation in Wireless Networks. IEEE
Transactions on Mobile Computing, 7(2):231–246, February 2008.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers.
In Proceedings of SIGCOMM ’04, August 2004.

[4] AT&T. A Different Take on the Big Game - Stats from the
Stands. http://www.attinnovationspace.com/innovation/story/a7780988,
February 2012. Accessed September 2012.

[5] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriyaban-
dara. TCP Performance Implications of Network Path Asymmetry. RFC
3449 (Best Current Practice), December 2002.

[6] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz. The Effects
of Asymmetry on TCP Performance. ACM Mobile Networks and

Applications, 4(3):219–241, October 1999.

[7] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion
Avoidance on a Global Internet. IEEE JSAC, October 1995.

[8] Forex Pros. Qualcomm: Much to Like Behind the Numbers.
http://www.forexpros.com/analysis/qualcomm-much-to-like-behind-
the-numbers-121093, April 2012. Accessed September 2012.

[9] Gartner. Worldwide Smartphone Sales Soared in Fourth Quarter of
2011 With 47 Percent Growth. http://www.gartner.com/it/page.jsp?id=
1924314, February 2012. Accessed September 2012.

[10] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. SIGOPS Operating Systems Review, July 2008.

[11] M. Heusse, S. A. Merritt, T. X. Brown, and A. Duda. Two-way TCP
Connections: Old Problem, New Insight. ACM Computer Communica-

tions Review, 41(2):5–15, April 2011.

[12] J. C. Hoe. Improving the start-up behavior of a congestion control
scheme for TCP. In Proceedings of SIGCOMM ’96, August 1996.

[13] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A Quantitative Measure
of Fairness and Discrimination for Resource Allocation in Shared
Computer System. DEC Research Report TR-301, September 1984.

[14] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. Improving TCP
Throughput over Two-way Asymmetric Links: Analysis and Solutions.
In Proceedings of SIGMETRICS ’98, June 1998.

[15] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan. Explicit Win-
dow Adoption: A Method to Enhance TCP Performance. IEEE/ACM

Transactions on Networking, 10(3):338–350, June 2002.

[16] M. Kühlewind and B. Briscoe. Chirping for Congestion Control -
Implementation Feasibility. In Proceedings of PFLDNeT ’10, November
2010.

[17] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang. Expe-
riences in a 3G Network: Interplay between the Wireless Channel and
Applications. In Proceedings of MobiCom ’08, September 2008.

[18] D. A. Maltz and P. Bhagwat. TCP splicing for application layer proxy
performance. Journal of High Speed Networks, 8(3):225–240, 1999.

[19] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP
Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links. In Proceedings of MobiCom ’01, July 2001.

[20] M. Podlesny and C. Williamson. Improving TCP Performance in
Residential Broadband Networks: a Simple and Deployable Approach.
SIGCOMM Computer Communications Review, 42(1):61–68, January
2012.

[21] R. Scheffenegger and M. Kuehlewind. Additional Negotiation in the
TCP Timestamp Option Field during the TCP Handshake. IETF Working
Draft, October 2011.

[22] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay
Background Transport (LEDBAT). IETF Working Draft, October 2011.

[23] H. Sivakumar, S. Bailey, and R. Grossman. PSockets: The Case
for Application-level Network Striping for Data Intensive Applications
using High Speed Wide Area Networks. In Proceedings of SC ’00,
November 2000.

[24] N. T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson,
and B. Bershad. Receiver Based Management of Low Bandwidth Access
Links. In Proceedings of IEEE INFOCOM ’00, March 2000.

[25] C. Villamizar and C. Song. High Performance TCP in ANSNET.
SIGCOMM Computer Communications Review, 24(5):45–60, October
1994.

[26] L. Zhang, S. Shenker, and D. D. Clark. Observations on the Dynamics
of a Congestion Control Algorithm: The Effects of Two-Way Traffic. In
Proceedings of SIGCOMM ’91, September 1991.


