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Abstract

This paper gives an information theoretic approach for detecting Byzantine modifications in networks employing random
linear network coding. Each exogenous source packet is augmented with a flexible number of hash symbols that are obtainedas a
polynomial function of the data symbols. This approach depends only on the adversary not knowing the random code coefficients
of all other packets received by the sink nodes when designing its adversarial packets. We show how the detection probability
varies with the overhead (ratio of hash to data symbols), coding field size and the amount of information unknown to the adversary
about the random code that reaches a sink node. This approachcan be used in conjunction with higher overhead schemes that
are activated only upon detection of a Byzantine node.

I. I NTRODUCTION

We consider the problem of information theoretic detectionof Byzantine, i.e. arbitrary, modifications of transmitteddata in
a network coding setting.

Interest in network coding has grown following demonstrations of its various advantages: in network capacity [1], robustness
to non-ergodic network failures [2] and ergodic packet erasures [3], [4], and distributed network operation [5]. Multicast in
overlay and ad hoc networks is a promising application. Since packets are forwarded by end hosts to other end hosts, such
networks are susceptible to Byzantine errors introduced bycompromised end hosts.

We show that Byzantine modification detection capability can be added to a multicast scheme based on random linear
block network coding [5], [6], with modest additional computational and communication overhead, by incorporating a simple
polynomial hash/check value in each packet. With this approach, a sink node can detect Byzantine modifications with high
probability, as long as these modifications have not been designed with knowledge of the random coding combinations present
in all other packets obtained at the sink: the only essentialcondition is the adversary’s incomplete knowledge of the random
network code seen by the sink. No other assumptions are made regarding the topology of the network or the adversary’s power
to corrupt or inject packets. The adversary can know the entire message as well as portions of the random network code, and
can have the same (or greater) transmission capacity compared to the source. This approach works even in the extreme case
where every packet received by a sink has been corrupted by being coded together with an independent adversarial packet.
This new adversarial model may be useful for application scenarios in which conventional assumptions of an upper bound on
adversarial transmission capacity are less appropriate. For instance, in some peer-to-peer or wireless ad hoc settings we may not
know how many adversarial nodes might join the network, while it may be more likely that there will be some transmissions
that are not received by the adversarial nodes. In such cases, our approach can provide a useful alternative to existing methods.

Our approach provides much flexibility in trading off between the detection probability, the proportion of redundancy,the
coding field size and the amount of information about the random code that is not observed by the adversary. This approach
can be used for low overhead monitoring during normal conditions when no adversary is known to be present, in conjunction
with more complex, higher overhead techniques which are activated upon detection of a Byzantine error, such as adding more
redundancy for error correction.

A preliminary version of this work with less general assumptions appeared in [7]. The security model is substantially
generalized and strengthened in this work.

A. Background and related work

The problem of secure network communications in the presence of Byzantine adversaries has been studied extensively,
e.g. [8], [9], [10], [11]. A survey of information theoreticresearch in this area is given in [12]. Two important issues are
secrecy and authenticity1; this work concerns the latter. Like one-time pads [13], ourapproach relies on the generation of
random values unknown to the adversary, though the one-timepad provides secrecy and not authenticity.

In the network coding context, the problem of ensuring secrecy in the presence of a wire tap adversary has been considered
in [14], [15], [16]. The problem of correcting adversarial errors, which is complementary to our work, has been studied in [17],
[18], [19], [20], [21].
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Adversarial models in existing works on information theoretic authenticity techniques commonly assume some upper bound
on the number of adversarial transmissions, which leads to arequirement on the amount of redundant network capacity. For
the problem of adversarial error correction or resilient communication, the number of links/transmissions controlled by the
adversary must necessarily be limited with respect to the number of links/transmissions in a minimum source-sink cut orthe
amount of redundancy transmitted by the source. For instance, in the resilient communication problem of Dolev et al. [9], the
source and sink are connected byn wires, and their model requires that no more than(n − 1)/2 wires are disrupted by an
adversary for resilient communication to be possible. In the network coding error correction problems of [17], [20], [21], the
rate of redundant information that the source needs to transmit is between one and two times the maximum rate of information
that can be injected by the adversary, depending on the specific adversarial model.

The above techniques can also be considered in the context oferror detection. For example, in one phase of the secret
sharing based algorithm in [9], the source communicates a degreeτ polynomialf(x) ∈ Fq(x) by sendingf(i) on theith wire.
If the adversary controls at mostn − τ wires, any errors it introduces can be detected. In general,for approaches based on
error-correcting codes such as in [17], the number of adversarial errors that can be detected is given by the difference between
the source-sink minimum cut and the source information rate.

Such approaches have a threshold nature in that they do not offer graceful performance degradation when the number of
adversarial transmissions exceeds the assumed upper bound. Their efficiency is also sensitive to overestimates of adversarial
transmission capacity, which determines the amount of redundancy required.

The adversarial model considered in this paper is slightly different. Instead of assuming a limit on the number of adversarial
errors, our only assumption is on the incompleteness of the adversary’s knowledge of the random code (the adversary can
know the entire source message). In this case, the overhead (proportion of redundant information transmitted by the source)
is no longer a function of the estimated upper bound on the number of adversarial errors. Instead, it is a design parameter
which, as we will show, can be flexibly traded off against detection probability and coding field size. Unlike approaches based
on secret sharing and its variants where the required proportional overhead is a function of the adversarial strength, in our
approach, for any nonzero proportional overhead and any adversarial strength short of full knowledge or control of network
transmissions, the detection probability can be made arbitrarily high by increasing the field size. The former has the advantage
of deterministic guarantees, while our approach has the advantage of greater flexibility with additional performance parameters
that can be traded off against one another.

The use of our error detection technique for low-overhead monitoring under normal conditions when no adversary is known
to be present, in conjunction with a more complex technique activated upon detection of an adversary, has a parallel in works
such as [22] and [23]. These works optimize for normal conditions by using less complex message authentication codes and
signed digests respectively during normal operation, resorting to more complex recovery mechanisms only upon detection of
a fault.

B. Notation

In this work we denote matrices with bold uppercase letters and vectors with bold lowercase letters. All vectors are row
vectors unless indicated otherwise with a subscriptT . We denote by[x,y] the concatenation of two row vectorsx andy.

II. M ODEL AND PROBLEM FORMULATION

Consider random linear block network coding [5], [6], [24] of a block of r exogenous packets which originate at a source
node and are multicast to one or more sink nodes. We assume that the network coding subgraph is given by some separate
mechanism, the details of which we are not concerned with2. An adversary observes some subset of packets transmitted in the
network, and can corrupt, insert or delete one or more packets, or corrupt some subset of nodes. The only assumption we make
is that the adversary’s observations are limited such that when designing the adversarial packets, the adversary does not know
the random coding combinations present in all other packetsobtained at the sinks. This assumption is made precise usingthe
notion of secret packets which we define below. The source andsinks do not share any keys or common information.

Each packetp in the network is represented by a row vectorwp of d+ c+ r symbols from a finite fieldFq, where the first
d entries are data symbols, the nextc are redundant hash symbols and the lastr form the packet’s(global) coefficient vector
tp. The field size is 2 to the power of the symbol length in bits. The hash symbols in each exogenous packet are given by a
functionψd : F

d
q → F

c
q of the data symbols. The coefficient vector of theith exogenous packet is the unit vector with a single

nonzero entry in theith position. The coefficient vectors are used for decoding atthe sinks as explained below.
Each packet transmitted by the source node is an independentrandom linear combination of ther exogenous packets, and

each packet transmitted by a non-source node is an independent random linear combination of packets received at that node.
The coefficients of these linear combinations are chosen with the uniform distribution from the finite fieldFq, and the same
linear operation is applied to each symbol in a packet. For instance, if packetp3 is formed as a random linear combination
of packetsp1 and p2, thenwp3

= γ1,3wp1
+ γ2,3wp2

whereγ1,3 andγ2,3 are random scalar coding coefficients distributed
uniformly overFq.

2The network coding subgraph defines the times at which packets are or can be transmitted on each network link (see, e.g. [25])
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Let row vectormi ∈ F
(c+d)
q represent the concatenation of the data and hash symbols forthe ith exogenous packet, and

let M be the matrix whoseith row is mi. A packetp is genuineif its data/hash symbols are consistent with its coefficient
vector, i.e.wp = [tpM, tp]. The exogenous packets are genuine, and any packet formed asa linear combination of genuine
packets is also genuine.Adversarial packets, i.e. packets transmitted by the adversary, may contain arbitrary coefficient vector
and data/hash values. An adversarial packetp can be represented in general by[tpM + vp, tp], wherevp is an arbitrary vector
F

c+d
q . If vp is nonzero,p (and linear combinations ofp with genuine packets) are non-genuine.
A setS of packets can be represented as a block matrix[TSM + VS |TS ] whoseith row iswpi

wherepi is theith packet
of the set. A sink nodet attempts to decode when it has collected adecoding setconsisting ofr linearly independent packets
(i.e. packets whose coefficient vectors are linearly independent). For a decoding setD, the decoding process is equivalent to
pre-multiplying the matrix[TDM + VD|TD] with T−1

D
. This gives

[

M + T−1
D

VD|I
]

, i.e. the receiver decodes toM + M̃,
where

M̃ = T−1
D

VD (1)

gives the disparity between the decoded packets and the original packets. If at least one packet in a decoding set is non-genuine,
VD 6= 0, and the decoded packets will differ from the original packets. A decoded packet isinconsistentif its data and hash
values do not match, i.e. applying the functionψd to its data values does not yield its hash values. If one or more decoded
packets are inconsistent, the sink declares an error.

The coefficient vector of a packet transmitted by the source is uniformly distributed overFr
q; if a packet whose coefficient

vector has this uniform distribution is linearly combined with other packets, the resulting packet’s coefficient vector has the same
uniform distribution. We are concerned with the distribution of decoding outcomes conditioned on the adversary’s information,
i.e. the adversary’s observed and transmitted packets, andits information on independencies/dependencies among packets. Note
that in this setup, scaling a packet by some scalar element ofFq does not change the distribution of decoding outcomes.

For givenM, the value of a packetp is specified by the row vectorup = [tp,vp]. We call a packetp secretif, conditioned
on the value ofvp and the adversary’s information, its coefficient vectortp is uniformly distributed overFr

q\W for some
(possibly empty) subspace or affine spaceW ⊂ F

r
q.3 Intuitively, secret packets include genuine packets whosecoefficient

vectors are unknown (in the above sense) to the adversary, aswell as packets formed as linear combinations involving at least
one secret packet. A setS of secret packets issecrecy-independentif each of the packets remains secret when the adversary is
allowed to observe the other packets in the set; otherwise itis secrecy-dependent. Secrecy-dependencies arise from the network
transmission topology, for instance, if a packetp is formed as a linear combination of a setS of secret packets (possibly with
other non-secret packets), thenS ∪ {p} is secrecy-dependent.

To illustrate these definitions, suppose that the adversaryknows that a sink’s decoding set contains an adversarial packet p1

as well as a packetp4 formed as some linear combinationk2wp2
+ k3wp3

of an adversarial packetp2 with a genuine packet
p3, so the adversary knowstp1

, tp2
,vp1

,vp2
andvp3

= 0. Since a decoding set consists of packets with linearly independent
coefficient vectors, the adversary knows thattp1

and tp3
are linearly independent. Suppose also that the adversary does not

observe the contents of any packets dependent onp3. Thus, the distribution oftp4
, conditioned on the adversary’s information

and any potential valuek2vp2
for vp4

, is uniform overFr
q\{ktp1

: k ∈ Fq}. Also, packetsp3 andp4 are secrecy-dependent.
Consider a decoding setD containing one or more secret packets. Choosing an appropriate packet ordering, we can express

[TD|VD] in the form

[TD|VD] =





A + B1 V1

CA + B2 V2

B3 V3



 , (2)

where for any given values ofBi ∈ F
si×r
q , Vi ∈ F

si×(d+c)
q , i = 1, 2, 3, and C ∈ F

s2×s1

q , the matrixA ∈ F
s1×r
q has a

conditional distribution that is uniform over all values for which TD is nonsingular. The firsts1 +s2 rows correspond to secret
packets, and the firsts1 rows correspond to a set of secrecy-independent packets.s2 = 0 if there are no secrecy-dependencies
among the secret packets inD.

This notion of secret packets provides the most general characterization of the conditions under which the scheme succeeds.
For a given network topology, a requirement on the number of secrecy-independent secret packets received at the sink canbe
translated into constraints on the subsets of links/packets the adversary can observe and/or modify. For instance, if information
is sent onn parallel paths from a source to a sink node, then the number ofsecrecy-independent secret packets is the number
of linearly independent packets received on paths that are not observed or controlled by the adversary.

Note that we allow each packet of the decoding set to be corrupted with an independent adversarial packet, as long as at
least one of the packets has been formed as a linear combination with some secret packet.

3This definition of a secret packet is conservative as it does not distinguish between packets with a nonuniform conditional distribution and packets that are
fully known to the adversary. Taking this distinction into account would make the analysis more complicated but would insome cases give a better bound on
detection probability.
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III. M AIN RESULTS

In the following theorem, we consider decoding from a set of packets that contains some non-genuine packet, which causes
the decoded packets to differ from the original exogenous packets. The first part of the theorem gives a lower bound on
the number of equally likely potential values of the decodedpackets– the adversary cannot narrow down the set of possible
outcomes beyond this regardless of how it designs its adversarial packets. The second part provides, for a simple polynomial
hash function, an upper bound on the proportion of potentialdecoding outcomes that can have consistent data and hash values,
in terms ofk =

⌈

d
c

⌉

, the ceiling of the ratio of the number of data symbols to hashsymbols. Larger values fork correspond
to lower overheads but lower probability of detecting an adversarial modification. This tradeoff is a design parameter for the
network.

Theorem 1:Consider a decoding setD containing a secrecy-independent subset ofs1 secret (possibly non-genuine) packets,
and suppose the decoding set contains at least one non-genuine packet.

a) The adversary cannot determine which of a set of at least(q − 1)s1 equally likely values of the decoded packets will be
obtained at the sink. In particular, there will be at leasts1 packets such that, for each of these, the adversary cannot determine
which of a set of at leastq − 1 equally likely values will be obtained.

b) Let ψ : F
k
q → Fq be the function mapping(x1, . . . , xk), xi ∈ Fq, to

ψ(x1, . . . , xk) = x2
1 + . . .+ xk+1

k , (3)

wherek =
⌈

d
c

⌉

. Suppose the functionψd mapping the data symbolsx1, . . . , xd to the hash symbolsy1, . . . , yc in an exogenous
packet is defined by

yi = ψ(x(i−1)k+1 , . . . , xik) ∀ i = 1, . . . , c− 1

yc = ψ(x(c−1)k+1, . . . , xd).

Then the probability of not detecting an error is at most
(

k+1
q

)s1

.
Corollary 1: Let the hash functionψd be defined as in Theorem 1b. Suppose a sink obtains more thanr packets, including

a secrecy-independent set ofs secret packets, and at least one non-genuine packet. If the sink decodes using two or more

decoding sets whose union includes all its received packets, then the probability of not detecting an error is at most
(

k+1
q

)s

.
Example:With 2% overhead (k = 50), symbol length=7 bits,s = 5, the detection probability is at least 98.9%; with 1%

overhead (k = 100), symbol length=8 bits,s = 5, the detection probability is at least 99.0%.

IV. D EVELOPMENT, PROOFS AND ANCILLARY RESULTS

A. Vulnerable scenarios

Before analyzing the scenario described in the previous sections, we first point out when this approach fails to detect
adversarial modifications.

First, the sink needs some way of knowing if the source stops transmitting, otherwise the assumption of no shared secret
information results in the adversary being indistinguishable from the source. One possibility is that the source either transmits
at a known rate or is inactive, and that the sink knows at what rates it should be receiving information on various subsets of
incoming links when the source is active. If the adversary isunable to reproduce those information rates, e.g. because it does
not control the same part of the network as the source, then the sink knows when the source is inactive.

Second, if the adversary knows that the genuine packets received at a sink have coefficient vectors that lie in somew-
dimensional subspaceW ⊂ F

r
q, the following strategy allows it to control the decoding outcome and so ensure that the

decoded packets have consistent data and hash values.
The adversary ensures that the sink receivesw genuine packets with linearly independent coefficient vectors in W , by

supplying additional such packets if necessary. The adversary also supplies the sink withr − w non-genuine packets whose
coefficient vectorst1, . . . , tr−w are not inW . Let tr−w+1, . . . , tr be a set of basis vectors forW , and letT be the matrix
whoseith row is ti. Then the coefficient vectors of ther packets can be represented by the rows of the matrix

[

I 0

0 K

]

T,

whereK is a nonsingular matrix inFw×w
q . From (5), we have

[

I 0

0 K

]

TM̃ =

[

Ṽ

0

]

M̃ = T−1

[

I 0

0 K−1

] [

Ṽ

0

]

= T−1

[

Ṽ

0

]

.

Since the adversary knowsT and controlsṼ, it can determineM̃.
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B. Byzantine modification detection

We next consider the scenario described in Section II, wherethe adversary designs its packets without knowing the contents
of one or more secret packets the receiver will use for decoding, and prove the results of Section III.

We first establish two results that are used in the proof of Theorem 1. Consider the hash function defined in (3). We call a
vector(x1, . . . , xk+1) ∈ F

k+1
q consistentif xk+1 = ψ(x1, . . . , xk).

Lemma 1:At most k + 1 out of theq vectors in a set

{u + γv : γ ∈ Fq},

where u = (u1, . . . , uk+1) is a fixed vector inF
k+1
q and v = (v1, . . . , vk+1) is a fixed nonzero vector inFk+1

q , can be
consistent.

Proof: Suppose some vectoru + γv is consistent, i.e.

uk+1 + γvk+1 = (u1 + γv1)
2 + . . .+ (uk + γvk)k+1. (4)

Note that for any fixed value ofu and any fixed nonzero value ofv, (4) is a polynomial equation inγ of degree equal to
1 + k̃, wherek̃ ∈ [1, k] is the highest index for which the correspondingvk′ is nonzero, i.e.vk̃ 6= 0, vk′ = 0 ∀ k′ > k̃. By the
fundamental theorem of algebra, this equation can have at most 1 + k̃ ≤ 1 + k roots. Thus, the property can be satisfied for
at most1 + k values ofγ.

Corollary 2: Let u be a fixed row vector inFn
q andY a fixed nonzero matrix inFn×(k+1)

q . If row vectorg is distributed
uniformly overFn

q , then the vectoru + gY is consistent with probability at mostk+1
q

.
Proof: Suppose theith row of Y, denotedyi, is nonzero. We can partition the set of possible values forg such that

each partition consists of all vectors that differ only in the ith entrygi. For each partition, the corresponding set of values of
u + gY is of the form{u′ + giyi : gi ∈ Fq}. The result follows from Lemma 1 and the fact thatgi is uniformly distributed
over Fq.

Proof of Theorem 1:We condition on any given values ofBi,Vi, i = 1, 2, 3, andC in (2). Writing A′ = A + B1, TD

becomes




A′

C(A′ − B1) + B2

B3



 .

From (1), we have




A′

C(A′ − B1) + B2

B3



 M̃ =





V1

V2

V3









A′

−CB1 + B2

B3



 M̃ =





V1

V2 − CV1

V3





which we can simplify to
[

A′

B′

]

M̃ =

[

V1

V′
2

]

(5)

by writing

B′ =

[

−CB1 + B2

B3

]

, V′
2 =

[

V2 − CV1

V3

]

.

Since the determinant of a matrix is not changed by adding a multiple of one row to another row, and

[

A′

B′

]

is obtained

from TD by a sequence of such operations, we have
[

A′

B′

]

is nonsingular⇔ TD is nonsingular.

Thus, matrixA′ ∈ F
s1×r
q has a conditional distribution that is uniform over the setA of values for which

[

A′

B′

]

is nonsingular.

The condition that the decoding set contains at least one non-genuine packet corresponds to the conditionVD 6= 0. We

consider two cases. In each case we show that we can partitionthe setA such that at most a fraction
(

k+1
q

)s1

of values

in each partition give decoding outcomesM + M̃ with consistent data and hash values. The result then follows since the
conditional distribution of values within each partition is uniform.

Case 1:V′
2 6= 0. Let vi be some nonzero row ofV′

2, andbi the corresponding row ofB′. ThenbiM̃ = vi.
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We first partitionA into cosets
An = {An + rTbi : r ∈ F

s1

q }, n = 1, 2, . . . , χ

where

χ =
|A|

qs1

.

This can be done by the following procedure. Any element ofA can be chosen asA1. MatricesA2,A3, . . . ,Aχ are chosen
sequentially; for eachm = 2, . . . , χ, Am is chosen to be any element ofA not in the cosetsAn, n < m. Note that this forms
a partition ofA, since the presence of some elementc in two setsAn andAm , n < m, implies thatAm is also inAn, which
is a contradiction. It is also clear that each coset has size

∣

∣{r : r ∈ F
s1

q }
∣

∣ = qs1 .
For each such cosetAn, the corresponding values of̃M satisfy, from (5),

[

An + rT bi

B′

]

M̃ =

[

V1

V′
2

]

[

An

B′

]

M̃ =

[

V1 − rT vi

V′
2

]

M̃ =

[

An

B′

]−1 [

V1 − rT vi

V′
2

]

,

wherer ∈ F
s1

q . Let U be the submatrix consisting of the firsts1 columns of

[

An

B′

]−1

. SinceU is full rank, we can find a

setJ ⊂ {1, . . . , r} of s1 indexes that correspond to linearly independent rows ofU. Let
[

U1 U2

]

be thes1×r submatrix

of

[

An

B′

]−1

consisting of rows with indexes inJ . Consider the corresponding rows ofM + M̃, which can be expressed in

the form
MJ + U1V1 − U1r

Tvi + U2V
′
2 (6)

whereMJ is the submatrix ofM consisting of rows corresponding to setJ . SinceU1 is non-singular by the choice of
J , U1r

T takes potentially any value inFs1

q . Thus, the set of potential values for each row of (6), for anygiven value of
MJ ,An,B

′,V1,V
′
2,vi and the other rows, is of the form{u+γvi : γ ∈ Fq} whereu is a function ofMJ ,An,B

′,V1,V
′
2.

Applying Lemma 1 yields the result for this case.
Case 2:V′

2 = 0, i.e. V2 − CV1 = V3 = 0. ThenV1 6= 0, since otherwiseV1 = V2 = 0 and VD = 0 which would
contradict the assumption that there is at least one non-genuine packet.

We partitionA such that each partition consists of all matrices inA that have the same row space:

An =
{

RAn : R ∈ F
s1×s1

q , det(R) 6= 0
}

, n = 1, 2, . . . , χ

where

|An| =

s1−1
∏

i=0

(

qs1 − qi
)

, χ =
|A|

|An|
.

This can be done by choosing any element ofA as A1, and choosingAn, n = 2, . . . , χ sequentially such thatAn is any
element ofA not in Am,m < n.

For eachAn, n = 1, . . . , χ, the corresponding values of̃M satisfy, from (5),
[

RAn

B′

]

M̃ =

[

V1

0

]

[

An

B′

]

M̃ =

[

R−1V1

0

]

M̃ =

[

An

B′

]−1 [

R−1V1

0

]

.

Let U be the submatrix consisting of the firsts1 columns of

[

An

B′

]−1

. We can find an ordered setJ = {i1, . . . , is1
: i1 <

. . . < is1
} ⊂ {1, . . . , r} of s1 indexes that correspond to linearly independent rows ofU. Let UJ andMJ be the submatrices

of U andM respectively consisting of thes1 rows corresponding toJ . ThenUJ is nonsingular, and the value of the matrix
representation of the corresponding decoded packets is uniformly distributed over the set

{

MJ + R′V1 : R′ ∈ F
s1×s1

q , det(R′) 6= 0
}

. (7)
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Let ν be the rank ofV1. Consider a set ofν linearly independent rows ofV1. Denote byI the corresponding set of row
indexes, and denote byVI the submatrix ofV1 consisting of those rows. We can write

V1 = LVI

whereL ∈ F
s1×ν
q has full rankν. We defineRI = R′L, noting that

RIVI = R′LVI = R′V1

and thatRI is uniformly distributed over all matrices inFs1×ν
q that have full rankν. Thus, (7) becomes

{

MJ + RIVI : RI ∈ F
s1×ν
q , rank(RI) = ν

}

. (8)

Denote byr1, . . . , rs1
the rows ofRI , and byRn the submatrix ofRI consisting of its firstn rows. We consider the rows

sequentially, starting with the first rowr1. For n = 1, . . . , s1, we will show that conditioned on any given value ofRn−1, the
probability that theinth decoded packetMin

+ rnVI is consistent is at mostk+1
q

.
Case A:Rn−1 has zero rank. This is the case ifn = 1, or if n > 1 andRn−1 = 0.
Suppose we remove the restriction rank(RI) = ν, so thatrn is uniformly distributed overFν

q . By Corollary 2,min
+ rnVI

would have consistent data and hash values with probabilityat mostk+1
q

. With the restriction rank(RI) = ν, the probability of
rn being equal to0 is lowered. Since the corresponding decoded packetmin

+ rnVI is consistent forrn = 0, the probability

that it is consistent is less than
(

k+1
q

)

.

Case B:n > 1 andRn−1 has nonzero rank.
Conditioned onrn being in the row space ofRn−1, rn = gRn−1 whereg is uniformly distributed overFn−1

q . SinceVI

has linearly independent rows,Rn−1VI 6= 0, and by Corollary 2, the corresponding decoded packet

min
+ rnVI = min

+ gRn−1VI

is consistent with probability at mostk+1
q

.
Conditioned onrn not being in the row space ofRn−1, we can partition the set of possible values forrn into cosets

{

r + gRn−1 : g ∈ F
n−1
q

}

wherer is not in the row space ofRn−1; the corresponding values of theinth decoded packet are given by
{

min
+ rVI + gRn−1VI : g ∈ F

n−1
q

}

.

Noting as before thatRn−1VI 6= 0 and applying Corollary 2, theinth decoded packet is consistent with probability at most
k+1

q
.
Proof of Corollary 1: Suppose two or more different sets of packets are used for decoding. If not all of them contain

at least one non-genuine packet, the decoded values obtained from different decoding sets will differ: sets containingonly
genuine packets will be decoded toM, while sets containing one or more non-genuine packets willnot. This will indicate an
error.

Otherwise, suppose all the decoding sets contain at least one non-genuine packet. LetS denote the set ofs secrecy-
independent packets. Consider the decoding sets in turn, denoting by s′i the number of unmodified packets fromS in the
ith decoding set that are not in any setj < i. Conditioned on any fixed values of packets in setsj < i, there remains′i

secrecy-independent packets in theith decoding set, and we have from Theorem 1 that at most a fraction
(

k+1
q

)s′

i

of decoding
outcomes for seti have consistent data and hash values. Thus, the overall fraction of consistent decoding outcomes is at most
(

k+1
q

)

∑

i
s′

i

=
(

k+1
q

)s

.

V. CONCLUSION

This paper has described an information theoretic approachfor detecting Byzantine modifications in networks employing
random network coding. Byzantine modification detection capability is added by augmenting each packet with a small, flexible
number of hash symbols; this overhead can be traded off against the detection probability and symbol length. The hash symbols
can be obtained as a simple polynomial function of the data symbols. The only necessary condition is that the adversarial
packets are not all designed with knowledge of the random code coefficients of all other packets received by the sink nodes.
This approach can be used in conjunction with higher overhead schemes that are activated only upon detection of a Byzantine
node.
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