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Abstract

This paper gives an information theoretic approach for aitg Byzantine modifications in networks employing random
linear network coding. Each exogenous source packet is entga with a flexible number of hash symbols that are obtairsea
polynomial function of the data symbols. This approach ddpeonly on the adversary not knowing the random code cosffigi
of all other packets received by the sink nodes when degigitinadversarial packets. We show how the detection prbtyabi
varies with the overhead (ratio of hash to data symbols)ingofield size and the amount of information unknown to theessary
about the random code that reaches a sink node. This appoaache used in conjunction with higher overhead schemes that
are activated only upon detection of a Byzantine node.

I. INTRODUCTION

We consider the problem of information theoretic detectibByzantine, i.e. arbitrary, modifications of transmittgata in
a network coding setting.

Interest in network coding has grown following demonstrasi of its various advantages: in network capacity [1], sthess
to non-ergodic network failures [2] and ergodic packet @res [3], [4], and distributed network operation [5]. Ma#st in
overlay and ad hoc networks is a promising application. &ipackets are forwarded by end hosts to other end hosts, such
networks are susceptible to Byzantine errors introduceddmgpromised end hosts.

We show that Byzantine modification detection capability ¢ added to a multicast scheme based on random linear
block network coding [5], [6], with modest additional comational and communication overhead, by incorporatingnapke
polynomial hash/check value in each packet. With this apgpa sink node can detect Byzantine modifications with high
probability, as long as these modifications have not beeignled with knowledge of the random coding combinations gmées
in all other packets obtained at the sink: the only essentabition is the adversary’s incomplete knowledge of thedoam
network code seen by the sink. No other assumptions are negdeding the topology of the network or the adversary’s powe
to corrupt or inject packets. The adversary can know theentiessage as well as portions of the random network code, and
can have the same (or greater) transmission capacity cechparthe source. This approach works even in the extreme case
where every packet received by a sink has been corrupted ing beded together with an independent adversarial packet.
This new adversarial model may be useful for applicatiomades in which conventional assumptions of an upper bound o
adversarial transmission capacity are less appropriatanBtance, in some peer-to-peer or wireless ad hoc sstivegmay not
know how many adversarial nodes might join the network, &ftimay be more likely that there will be some transmissions
that are not received by the adversarial nodes. In such,caseapproach can provide a useful alternative to existieghods.

Our approach provides much flexibility in trading off betwethe detection probability, the proportion of redundaribg,
coding field size and the amount of information about the cam@ode that is not observed by the adversary. This approach
can be used for low overhead monitoring during normal comultwhen no adversary is known to be present, in conjunction
with more complex, higher overhead techniques which areadet! upon detection of a Byzantine error, such as addingmo
redundancy for error correction.

A preliminary version of this work with less general assuiopg appeared in [7]. The security model is substantially
generalized and strengthened in this work.

A. Background and related work

The problem of secure network communications in the presaficByzantine adversaries has been studied extensively,
e.g. [8], [9], [10], [11]. A survey of information theoretiesearch in this area is given in [12]. Two important issues a
secrecy and authenticitythis work concerns the latter. Like one-time pads [13], approach relies on the generation of
random values unknown to the adversary, though the onefiadeprovides secrecy and not authenticity.

In the network coding context, the problem of ensuring sBcie the presence of a wire tap adversary has been considered
in [14], [15], [16]. The problem of correcting adversariatas, which is complementary to our work, has been studidd 7],

[18], [19], [20], [21].

Tracey Ho and Michelle Effros are with the California Insté of Technology, Pasadena, CA 91125, e-miiho, ef fros}@al t ech. edu

Ben Leong is with the National University of Singapore, eimbenl eong@onp. nus. edu. sg

Ralf Koetter is with the Coordinated Science Laboratoryjversity of lllinois, Urbana, IL 61801, e-maikoett er @sl . ui uc. edu

Muriel Médard is with the Laboratory for Information and @sion Systems, Massachusetts Institute of Technologyhbtidge, MA 02139, e-mail:
medard@ni t. edu

David R. Karger is with the Computer Science and Atrtificialelligence Laboratory, MIT, e-makar ger @sai |l . m t. edu

1These are independent attributes of a cryptographic sygt8m



Adversarial models in existing works on information themra@uthenticity technigues commonly assume some uppeandou
on the number of adversarial transmissions, which leadsregairement on the amount of redundant network capacity. Fo
the problem of adversarial error correction or resilieniaaunication, the number of links/transmissions contbly the
adversary must necessarily be limited with respect to thebar of links/transmissions in a minimum source-sink cuther
amount of redundancy transmitted by the source. For instanahe resilient communication problem of Dolev et al., @l
source and sink are connected bywires, and their model requires that no more tifan- 1)/2 wires are disrupted by an
adversary for resilient communication to be possible. i tletwork coding error correction problems of [17], [20]1]2the
rate of redundant information that the source needs torrans between one and two times the maximum rate of inforomati
that can be injected by the adversary, depending on thefgpadiversarial model.

The above techniques can also be considered in the contextraf detection. For example, in one phase of the secret
sharing based algorithm in [9], the source communicateggeede polynomial f(x) € F,(x) by sendingf (i) on theith wire.

If the adversary controls at moat— 7 wires, any errors it introduces can be detected. In genfmakhpproaches based on
error-correcting codes such as in [17], the number of advieserrors that can be detected is given by the differemteden
the source-sink minimum cut and the source information. rate

Such approaches have a threshold nature in that they do festgvhiceful performance degradation when the number of
adversarial transmissions exceeds the assumed upper.bbugid efficiency is also sensitive to overestimates of ashugal
transmission capacity, which determines the amount ofrréduocy required.

The adversarial model considered in this paper is slighffgrgnt. Instead of assuming a limit on the number of adweas
errors, our only assumption is on the incompleteness of tiweraary’s knowledge of the random code (the adversary can
know the entire source message). In this case, the overlpeapoftion of redundant information transmitted by thersel
is no longer a function of the estimated upper bound on thebaurof adversarial errors. Instead, it is a design parameter
which, as we will show, can be flexibly traded off against déts probability and coding field size. Unlike approacheasdil
on secret sharing and its variants where the required piriopaf overhead is a function of the adversarial strengthour
approach, for any nonzero proportional overhead and angradsial strength short of full knowledge or control of netiw
transmissions, the detection probability can be maderarltjt high by increasing the field size. The former has theaathge
of deterministic guarantees, while our approach has tharadge of greater flexibility with additional performanaagmeters
that can be traded off against one another.

The use of our error detection technique for low-overheaditodng under normal conditions when no adversary is known
to be present, in conjunction with a more complex techniqut&ated upon detection of an adversary, has a parallel ifksvo
such as [22] and [23]. These works optimize for normal coodg by using less complex message authentication codes and
signed digests respectively during normal operation,rtegpto more complex recovery mechanisms only upon deteabf
a fault.

B. Notation

In this work we denote matrices with bold uppercase letteusd \sectors with bold lowercase letters. All vectors are row
vectors unless indicated otherwise with a subscfipiVe denote byx, y] the concatenation of two row vectogksandy.

Il. MODEL AND PROBLEM FORMULATION

Consider random linear block network coding [5], [6], [24]ablock of » exogenous packets which originate at a source
node and are multicast to one or more sink nodes. We assumththaetwork coding subgraph is given by some separate
mechanism, the details of which we are not concerned®with adversary observes some subset of packets transmittee i
network, and can corrupt, insert or delete one or more packetorrupt some subset of nodes. The only assumption we mak
is that the adversary’s observations are limited such thenadesigning the adversarial packets, the adversary dadsiow
the random coding combinations present in all other paaketained at the sinks. This assumption is made precise tising
notion of secret packets which we define below. The sourcesark$ do not share any keys or common information.

Each packep in the network is represented by a row vectoy of d + ¢+ r symbols from a finite field,, where the first
d entries are data symbols, the nexare redundant hash symbols and the fagirm the packet'gglobal) coefficient vector
t,. The field size is 2 to the power of the symbol length in bitse iash symbols in each exogenous packet are given by a
functiony : ]FZ — [y of the data symbols. The coefficient vector of tiie exogenous packet is the unit vector with a single
nonzero entry in théth position. The coefficient vectors are used for decodintpatsinks as explained below.

Each packet transmitted by the source node is an indeperaigtm linear combination of the exogenous packets, and
each packet transmitted by a non-source node is an indeperadelom linear combination of packets received at thaenod
The coefficients of these linear combinations are chosen thi¢ uniform distribution from the finite fieldf,, and the same
linear operation is applied to each symbol in a packet. Fstaimce, if packeps is formed as a random linear combination
of packetsp; andp,, thenw,, = v1 3w,, + 72,3Wp, Wherey, 3 and~, 3 are random scalar coding coefficients distributed
uniformly overF,,.

2The network coding subgraph defines the times at which paeket or can be transmitted on each network link (see, e.§). [25



Let row vectorm,; € Féﬁd) represent the concatenation of the data and hash symboledéth exogenous packet, and
let M be the matrix whoséth row is m,. A packetp is genuineif its data/hash symbols are consistent with its coefficient
vector, i.e.w,, = [t,M,t,]. The exogenous packets are genuine, and any packet formediresar combination of genuine
packets is also genuinAdversarial packets.e. packets transmitted by the adversary, may contaiitramnp coefficient vector
and data/hash values. An adversarial pagken be represented in general pyM + v,, t,,], wherev,, is an arbitrary vector
Fg*d. If v, is nonzerop (and linear combinations qf with genuine packets) are non-genuine.

A setS of packets can be represented as a block m@iItgM + V5| Ts] whoseith row isw,, wherep; is theith packet
of the set. A sink node attempts to decode when it has collectede@oding setonsisting ofr linearly independent packets
(i.e. packets whose coefficient vectors are linearly inddpat). For a decoding s&, the decoding process is equivalent to
pre-multiplying the matriXTpM + Vp|Tp] with T,'. This gives[M + T;'Vp|I], i.e. the receiver decodes M + M,
where

M =T,'Vp 1)

gives the disparity between the decoded packets and thieargackets. If at least one packet in a decoding set is rmonige,
Vp # 0, and the decoded packets will differ from the original paské decoded packet isiconsistenif its data and hash
values do not match, i.e. applying the functigp to its data values does not yield its hash values. If one orendecoded
packets are inconsistent, the sink declares an error.

The coefficient vector of a packet transmitted by the sousagniformly distributed ovelfy; if a packet whose coefficient
vector has this uniform distribution is linearly combinedhwother packets, the resulting packet’s coefficient velsts the same
uniform distribution. We are concerned with the distribatiof decoding outcomes conditioned on the adversary’snmdtion,
i.e. the adversary’s observed and transmitted packetsiaimdormation on independencies/dependencies amorkgfadNote
that in this setup, scaling a packet by some scalar elemefij abes not change the distribution of decoding outcomes.

For givenM, the value of a packet is specified by the row vectat, = [t,, v,]. We call a packep secretif, conditioned
on the value ofv,, and the adversary’s information, its coefficient vectgris uniformly distributed ovet;\WW for some
(possibly empty) subspace or affine spdde C IFZ? Intuitively, secret packets include genuine packets whasficient
vectors are unknown (in the above sense) to the adversamgelaas packets formed as linear combinations involvingeast
one secret packet. A sétof secret packets isecrecy-independeifteach of the packets remains secret when the adversary is
allowed to observe the other packets in the set; otherwisesécrecy-dependerfsecrecy-dependencies arise from the network
transmission topology, for instance, if a packes formed as a linear combination of a sebf secret packets (possibly with
other non-secret packets), th8nJ {p} is secrecy-dependent.

To illustrate these definitions, suppose that the advelgaows that a sink’s decoding set contains an adversaridepa¢
as well as a packet, formed as some linear combinatiépw,,, + ksw,, of an adversarial packek with a genuine packet
ps, SO the adversary knows, , t,,, vy, , vp, andv,, = 0. Since a decoding set consists of packets with linearlypeddent
coefficient vectors, the adversary knows thgt andt,, are linearly independent. Suppose also that the adverssy ot
observe the contents of any packets dependepioiihus, the distribution of,,,, conditioned on the adversary’s information
and any potential valugyv,, for v,,, is uniform overF;\{kt,, : k € F,}. Also, packetg; andp, are secrecy-dependent.

Consider a decoding s& containing one or more secret packets. Choosing an apptegracket ordering, we can express
[Tp|Vp] in the form

A+B;, |V,
[Tp|Vp]=| CA+By | Vs |, (2)
B3 Vs
where for any given values dB; € F;i*", V; € IFZI'X(””C), i =1,2,3, andC € F;2**1, the matrix A € F;'*" has a

conditional distribution that is uniform over all valueg fwhich T'p is nonsingular. The first; + s, rows correspond to secret
packets, and the first; rows correspond to a set of secrecy-independent packets.0 if there are no secrecy-dependencies
among the secret packetsTh

This notion of secret packets provides the most generabchenization of the conditions under which the scheme sd=xe
For a given network topology, a requirement on the numbeeofexy-independent secret packets received at the sinkecan
translated into constraints on the subsets of links/padket adversary can observe and/or modify. For instancefafrnation
is sent onn parallel paths from a source to a sink node, then the numbseagcy-independent secret packets is the number
of linearly independent packets received on paths that ereloserved or controlled by the adversary.

Note that we allow each packet of the decoding set to be ctdupith an independent adversarial packet, as long as at
least one of the packets has been formed as a linear continaith some secret packet.

3This definition of a secret packet is conservative as it dagslistinguish between packets with a nonuniform conditiatistribution and packets that are
fully known to the adversary. Taking this distinction intocaunt would make the analysis more complicated but woukbime cases give a better bound on
detection probability.



I1l. M AIN RESULTS

In the following theorem, we consider decoding from a setaxdkets that contains some non-genuine packet, which causes
the decoded packets to differ from the original exogenowketa. The first part of the theorem gives a lower bound on
the number of equally likely potential values of the decogadkets— the adversary cannot narrow down the set of pessibl
outcomes beyond this regardless of how it designs its adsiatpackets. The second part provides, for a simple paohjab
hash function, an upper bound on the proportion of potedBabding outcomes that can have consistent data and hassyal
in terms ofk = [g] the ceiling of the ratio of the number of data symbols to h&ghbols. Larger values fdr correspond
to lower overheads but lower probability of detecting aneadarial modification. This tradeoff is a design parameteittie
network.

Theorem 1:Consider a decoding s& containing a secrecy-independent subset;aecret (possibly non-genuine) packets,
and suppose the decoding set contains at least one nomgepatket.

a) The adversary cannot determine which of a set of at lgastl)®* equally likely values of the decoded packets will be
obtained at the sink. In particular, there will be at leaspackets such that, for each of these, the adversary cantestrdee
which of a set of at least — 1 equally likely values will be obtained.

b) Let : IF’; — F, be the function mappingzy, ..., xx), x; € Fg, to

z/J(xl,...,xk):x%+...+xl,§+l, 3)

wherek = [g] Suppose the function; mapping the data symboals, . .., z4 to the hash symbolg,, ..., y. in an exogenous
packet is defined by

Yi = Y(@G—npt1s--Ti) Yi=1,...,c—1
Ye = 1/J($(C,1)k+1, e ,J/'d).

Then the probability of not detecting an error is at m élj;—l g
Corollary 1: Let the hash functiony; be defined as in Theorem 1b. Suppose a sink obtains more-thaokets, including
a secrecy-independent set ofsecret packets, and at least one non-genuine packet. Ifitkedsecodes using two or more

S
decoding sets whose union includes all its received packeta the probability of not detecting an error is at m élg—l .

Example:With 2% overheadX = 50), symbol length=7 bitss = 5, the detection probability is at least 98.9%; with 1%
overhead ¥ = 100), symbol length=8 bitss = 5, the detection probability is at least 99.0%.

IV. DEVELOPMENT, PROOFS AND ANCILLARY RESULTS
A. Vulnerable scenarios

Before analyzing the scenario described in the previoutiose; we first point out when this approach fails to detect
adversarial modifications.

First, the sink needs some way of knowing if the source stomssmitting, otherwise the assumption of no shared secret
information results in the adversary being indistinguidedrom the source. One possibility is that the source eitf@smits
at a known rate or is inactive, and that the sink knows at whsrit should be receiving information on various subséts o
incoming links when the source is active. If the adversamyniable to reproduce those information rates, e.g. becauses
not control the same part of the network as the source, thesittk knows when the source is inactive.

Second, if the adversary knows that the genuine packetsveecat a sink have coefficient vectors that lie in some
dimensional subspacd’ C [y, the following strategy allows it to control the decodingteame and so ensure that the
decoded packets have consistent data and hash values.

The adversary ensures that the sink receiwegenuine packets with linearly independent coefficient eecin 1/, by
supplying additional such packets if necessary. The adwe@so supplies the sink with— w non-genuine packets whose

coefficient vectorg,, ..., t._,, are not inW. Lett,_,1,...,t,. be a set of basis vectors fé¥, and letT be the matrix
whoseith row is t;. Then the coefficient vectors of thepackets can be represented by the rows of the matrix
I|0
Sk

whereK is a nonsingular matrix iff’;’>*. From (5), we have
1|0 - A
] ™[]
- ][Il 0 \
_ 1
W ] |5
=T [_V ] :

Since the adversary knov and controlsV, it can determinéVI.




B. Byzantine modification detection

We next consider the scenario described in Section I, wherendversary designs its packets without knowing the cisite
of one or more secret packets the receiver will use for dexpdind prove the results of Section IIl.

We first establish two results that are used in the proof ofoféma 1. Consider the hash function defined in (3). We call a
vector (z1,...,xx11) € FET! consistenif 41 = ¢(z1, ..., 21).

Lemma 1:At most k + 1 out of theq vectors in a set

{ut+v: yeF},

whereu = (uy,...,ugs+1) IS a fixed vector inIF’;’“l andv = (v1,...,v,41) is a fixed nonzero vector iﬂF’;“, can be
consistent.
Proof: Suppose some vectar+ v is consistent, i.e.

Upr1 +Yorg1 = (w1 +yv1)2 + 4 (up +yor) L (4)

Note that for any fixed value ofi and any fixed nonzero value of, (4) is a polynomial equation i of degree equal to
1+ k, wherek € [1, k] is the highest index for which the corresponding is nonzero, i.evp #0,v =0V K > k. By the
fundamental theorem of algebra, this equation can have at me k < 1 + k roots. Thus, the property can be satisfied for
at mostl + k values of~. [ ]

Corollary 2: Let u be a fixed row vector irfy andY a fixed nonzero matrix inFZX(k“). If row vectorg is distributed
uniformly overF7, then the vecton + gY is consistent with probability at m0§t‘g—1.

Proof: Suppose theth row of Y, denotedy;, is nonzero. We can partition the set of possible valuesgfauch that
each partition consists of all vectors that differ only i #ith entry g;. For each partition, the corresponding set of values of
u+ gY is of the form{u’ + g;y; : g; € F,}. The result follows from Lemma 1 and the fact thitis uniformly distributed
overF,. ]

Proof of Theorem 1We condition on any given values &;,V;,< = 1,2,3, andC in (2). Writing A’ = A + B, Tp
becomes

AI
C(A/ —B1)+B;
B3
From (1), we have
A’ i _ [V,
CA'-Bi))+B, | M = V,
B3 L V3
A/ i _ [ vV,
—-CB;+B; | M = Vy — CV;,
B; ] L V3
which we can simplify to
A - Vi
LN 2
by writing
’_ _CB1+B2 1 V2 _CVI
] e[ e
!
Since the determinant of a matrix is not changed by adding Bipteuof one row to another row, an% B/ } is obtained

from Tp by a sequence of such operations, we have

A, . . .
[ B/ } is nonsingular= Tp is nonsingular.

AI
BI

The condition that the decoding set contains at least onegeonine packet corresponds to the condiﬂés? # 0. We
consider two cases. In each case we show that we can patti@oset.A such that at most a fractioé’%l) of values
in each partition give decoding outcom&4 + M with consistent data and hash values. The result then fslisiwce the

conditional distribution of values within each partitiosn uniform. _
Case 1:V), # 0. Let v; be some nonzero row &}, andb; the corresponding row dB’. Thenb;M = v;,.

Thus, matrixA’ € IF;**" has a conditional distribution that is uniform over the.detf values for which is nonsingular.



We first partition.A into cosets
Ap={An+r"b;: reF}n=12..x

where
Al
= o
This can be done by the following procedure. Any elemenafan be chosen aA ;. MatricesA,, As, ..., A, are chosen
sequentially; for eacln = 2,...,x, A,, is chosen to be any element df not in the cosetsA,,,n < m. Note that this forms

a partition of 4, since the presence of some elemeirt two sets4,, and.A,, , n < m, implies thatA,, is also inA,,, which
is a contradiction. It is also clear that each coset has|gize r € F§1}| =q°.

For each such coset,,, the corresponding values ®f satisfy, from (5),

Th. | .~
e[

Vs
An r Vl — I‘TVZ'
R A
-1
= An A\ —I‘TVZ'
we ][
—1
wherer € Fot. LetU be the submatrix consisting of the first columns of B7 . SinceU is full rank, we can find a
setJ C {1,...,r} of s; indexes that correspond to linearly independent row& ok et [ U, | U, ] be thes; x r submatrix

of { %’,‘ } consisting of rows with indexes irY. Consider the corresponding rows ®f -+ M, which can be expressed in

the form
M + UV, — Uir'v; + Uy V) (6)

where M 7 is the submatrix ofM consisting of rows corresponding to st Since U; is non-singular by the choice of
J, UirT takes potentially any value ifi;'. Thus, the set of potential values for each row of (6), for gnen value of
My, A,,B’, V1, Vi, v; and the other rows, is of the forfu+~v; : v € F,} whereu is a function oM 7, A,,, B’, V1, V5.
Applying Lemma 1 yields the result for this case.

Case 2.V, =0, i.e. Vo — CV; = V3 = 0. ThenV; # 0, since otherwis&’; = V, = 0 and Vp = 0 which would
contradict the assumption that there is at least one nonigemacket.

We partition A such that each partition consists of all matricesdirthat have the same row space:

An={RA, : ReF;! defR) #0}, n=1,2,...,x

where .
81—
: Al
|A,| = " —q'), x= -
This can be done by choosing any elementfofis A;, and choosingA,,n = 2,...,x sequentially such thaA,, is any
element of4 not in A4,,,m < n. _
For eachA,,,n =1,..., %, the corresponding values ®f satisfy, from (5),
RA, |- | Vi
ey
A, ][RV
e[
-1
v A, R_1V1
welw ] M
A —1
Let U be the submatrix consisting of the first columns of B’} . We can find an ordered sgt = {i1,...,4s, : i1 <
... <ig} C{1,...,r} of s; indexes that correspond to linearly independent ronof.et U ; andM s be the submatrices

of U and M respectively consisting of the rows corresponding t¢7. ThenU 5 is nonsingular, and the value of the matrix
representation of the corresponding decoded packets fisronty distributed over the set

{My +R'V,: R € F3%*1, de(R’) #0}. @)



Let v be the rank ofV;. Consider a set of linearly independent rows o¥,. Denote byZ the corresponding set of row
indexes, and denote by 7 the submatrix ofV; consisting of those rows. We can write

Vi=LVz
whereL € For>” has full rankv. We defineRz = R’L, noting that
R;V:=R'LV: =RV,

and thatRz is uniformly distributed over all matrices ifi;' *” that have full rank. Thus, (7) becomes

{MJ +R7zVz: Rr € Fglxy, rankKRz) = I/} . (8)
Denote byry,...,r,, the rows ofRz, and byR,, the submatrix ofRz consisting of its firstz rows. We consider the rows
sequentially, starting with the first rowi. Forn =1,..., sy, we will show that conditioned on any given valueRf, 1, the

probability that thei,,th decoded packeé¥!;, + r,, V7 is consistent is at moéfqr—l.

Case A:R,,_; has zero rank. This is the casenif=1, orif n >1 andR,,_; = 0.

Suppose we remove the restriction réRk) = v, so thatr,, is uniformly distributed ovef;. By Corollary 2,m;, +r,Vz
would have consistent data and hash values with probabﬂityost%. With the restriction raniRz) = v, the probability of
r, being equal td is lowered. Since the corresponding decoded panket+ r,, V7 is consistent for,, = 0, the probability
that it is consistent is less tha(rf“;—l).

Case B:n > 1 andR,,_; has nonzero rank.

Conditioned onr,, being in the row space dR,,_1, r,, = gR,,_1 Whereg is uniformly distributed oveiFj;*l. SinceVz
has linearly independent rowR,,,_1 Vz # 0, and by Corollary 2, the corresponding decoded packet

m;, +r,Vz =m;, +gR, 1Vz

is consistent with probability at moﬁt;r—l.
Conditioned onr,, not being in the row space @&,,_;, we can partition the set of possible values fgrinto cosets

{r+gR,_1: g€ ]Fgfl}
wherer is not in the row space dR,,_1; the corresponding values of thigth decoded packet are given by
{min +rVz+ an—IVZ 1 ge ngl} .

Noting as before thaR,,_1Vz # 0 and applying Corollary 2, thé,th decoded packet is consistent with probability at most
ktl =
Proof of Corollary 1: Suppose two or more different sets of packets are used fayditeg. If not all of them contain

at least one non-genuine packet, the decoded values othtaimma different decoding sets will differ: sets containingly
genuine packets will be decodedd, while sets containing one or more non-genuine packetsnaill This will indicate an
error.

Otherwise, suppose all the decoding sets contain at leastnon-genuine packet. Lef denote the set of secrecy-
independent packets. Consider the decoding sets in tumutidg by s, the number of unmodified packets frofhin the
ith decoding set that are not in any gek i. Conditioned on any fixed values of packets in sgts 4, there remains;

Si .
secrecy-independent packets in tkie decoding set, and we have from Theorem 1 that at most a % of decoding
outcomes for set have consistent data and hash values. Thus, the overalbfraaf consistent decoding outcomes is at most

e\ 2% (1) -
q q ’
V. CONCLUSION

This paper has described an information theoretic appré@cHetecting Byzantine modifications in networks emplayin
random network coding. Byzantine modification detectiopadality is added by augmenting each packet with a smallikflex
number of hash symbols; this overhead can be traded off stghie detection probability and symbol length. The hashtmls
can be obtained as a simple polynomial function of the databsys. The only necessary condition is that the adversarial
packets are not all designed with knowledge of the randone caefficients of all other packets received by the sink nodes
This approach can be used in conjunction with higher ovetisehemes that are activated only upon detection of a Bymanti
node.
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