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Abstract—Peer-to-peer file-sharing protocols, such as BitTor-
rent, have been widely used to improve the performance and
scalability of file distribution systems. In this paper, we study
the performance of peer-assisted file distribution systems with
heterogeneous peers. Based on a measurement study of BitTorrent
on PlanetLab, we made two key observations: (i) there is a
fixed pattern in the utilization of the available bandwidth over
the course of a download, and (ii) peers enjoy an amount of
service that is commensurate with their contribution. Building
on these insights, we developed an analytical model to estimate
the download time for each class of peers in a well-provisioned
peer-assisted file distribution system based on BitTorrent. Our
model accurately predicts the download time and achieves an
average error rate of 16.5% for heterogeneous swarms up to 150
nodes in size. We demonstrate how it can be used to estimate the
server capacity for achieving a specific quality of service in a large
heterogeneous swarm.

I. INTRODUCTION

As the size of the content distributed online increases, peer-

to-peer (p2p) file-sharing protocols like BitTorrent (BT) have

been adopted to augment traditional client-server file distribu-

tion systems. In such systems, the goal is to distribute files from

a server to multiple clients in the shortest possible time. Peer-

assisted systems improve the scalability and performance of

content distribution because they utilize the upload bandwidth

of the downloading clients to improve the overall available

bandwidth of the system. However, distributed and uncoordi-

nated p2p algorithms like BitTorrent are not entirely efficient

in utilizing the available bandwidth of the system and allow

clients to obtain service without offering equivalent service

in return [19]. While managed architectures [18] and pricing

mechanisms [17] have been proposed to address these issues,

we believe that the popularity of BT and the availability of its

numerous implementations make it an attractive choice for file

distribution. Hence, there is a need to develop a better model

for the performance of BT in the context of a peer-assisted file

distribution architecture.

Previous work on p2p algorithms has focused mainly on

systems in steady-state [11], [23]. While the steady-state as-

sumption is reasonable for file-sharing systems since peers stay

in the system and continue to share the file after they complete

the download, this steady-state assumption may be not realistic

for file distribution systems where peers download the file as

fast as possible and then leave. A flash crowd, where there is a

sudden large surge in the number of users, often occurs when a

new file is available for download. For a content distributor, the

challenge is to ensure that the system has sufficient resources to

cope with this sudden surge of users. Normal system behavior

resumes when the system reaches steady-state.

To simulate the flash crowd scenario, we model the swarm

as a closed system. Our goal is to predict the average download

times for different classes of peers in a heterogeneous swarm. It

is inherently difficult to model a heterogeneous system and such

models are often difficult to solve in closed form. Nevertheless,

we adopt a heterogeneous model because a homogeneous model

is insufficient to accurately predict the characteristics of real

systems [16].

In this paper, we analyze the performance of a heterogeneous

bandwidth peer-assisted file distribution system based on BT.

Our first observation from the measurement of PlanetLab [5]

experiments is that bandwidth utilization is not constant over

time and has a step-like profile towards the end of the download.

Our second observation is that BT is relatively fair in distribut-

ing the upload capacity of the system among classes of peers

with different upload bandwidths. From these two observations,

we develop an analytical model for estimating the download

time of each class of peers in a well-provisioned system.

Our analysis is based on the utilization of available band-

width. In our previous work we showed that the utilization of

available peer bandwidth, ρ, is less than one and is not constant

over time for homogeneous p2p swarms in flash crowds [2]. We

build on our earlier work by observing the bandwidth utilization

of heterogeneous swarms running BT on PlanetLab [5]. We

found that the evolution of ρ over time is characterized by

three phases, which we term startup, maximum utilization and

end-game. While the first two phases are similar to that for a

homogeneous system, the last end-game phase has a step-like

profile, with each step corresponding to the departure of the

class of peers with the highest bandwidth. This behavior can

be explained by the clustering phenomenon previously observed

in BT systems [12]. We also show that clustering contributes

to a proportional fair allocation of the available bandwidth to

different classes of peers.

To complete our performance study, we develop an analytical

model to estimate the average download time experienced by



each peer class by considering the utilization of available peer

bandwidth. Furthermore, we capture in our model the effect of

clustering in a heterogeneous swarm and analyze the impact of

this phenomenon on the service received by each class of peers.

We validate our model with measurements on PlanetLab and

show that it is able to accurately estimate the average download

times for different classes of peers, with an average error of

16.5%.

A main concern for file distribution systems is to provide

sufficient server upload capacity such that clients achieve a

minimum quality of service. Our model can be used to find

the server capacity that strikes a balance between bandwidth

costs and the specified download time experienced by peers.

The rest of the paper is organized as follows. In Section II,

we present an overview of the related work. In Section III, we

describe the key observations from the measurement results.

Based on these observations, we derived an analytical model

to estimate the download time of each class and validate it in

Section IV. In Section V, we demonstrate how our model can

be applied to estimate the required server capacity for achieving

a desired quality of service. Section VI concludes this paper.

II. RELATED WORK

Unlike previous work that propose new centrally coordinated

mechanisms [18] and new pricing mechanisms to incentivize

uncoordinated p2p schemes [17], we study the effectiveness

of using the popular BT algorithm directly for use in file

distribution. While the performance of BT has been studied

extensively as a file-sharing protocol [4], [10], [21], to the

best of our knowledge, we are the first to directly study the

performance of BT as a file distribution protocol. By file

distribution, we mean that we provide a server (BT seed) as a

constant source of data content for a set of clients that wish to

download a file by collaborating according to the BT protocol.

Most previous work on the performance analysis of BT

have also focused on homogeneous swarms [2], [11], [20],

[23], [25]. The work on swarms with heterogeneous upload

bandwidth typically models the systems at steady-state. While

estimates for the average download time of the system have

been proposed [10], [14], [16], the models are often difficult

to solve for complex cases with more than three classes of

peers [4], [6], [14] and it is hard to obtain the required

parameters to do the estimates for real systems. On the other

hand, the assumption of steady-state, with constant arrival

rate, is often unrealistic in the context of file distribution

because flash crowds are common [21], [25]. The few models

that have been proposed to study flash crowds show that the

protocol is scalable using branching processes [25] and that

a steady-state will eventually be reached [20]. In contrast, we

focus on modeling and validating with real measurements the

performance of systems with flash crowds and estimate the

download times for different number of classes.

In their work, Yang and Veciana [25] and Qiu and

Srikant [20] used the measure of effectiveness of file-sharing,

η, as an input parameter in their mathematical models. In

particular, they assume that a downloading peer’s contribution

to the service capacity is a fraction η of that of a peer that

has fully downloaded the file and they assume that the total

upload capacity of the peers is fully utilized at steady-state,

i.e. η = 1. However, we observed that this assumption does

not hold for a transient system, i.e. during a flash crowd.

Our measurements on PlanetLab reveal that the utilization of

available peer bandwidth is not a constant, but varies over time.

We model the utilization of available peer bandwidth and use it

to find the average download time expected by peers in different

classes.

It has been shown that in well-provisioned BT swarms,

peers tend to cluster with other peers that have similar upload

bandwidth [12], [13], [16]. Moreover, the clusters of peers with

higher upload bandwidths tend to contribute more to the swarm

than lower capacity clusters [12]. Misra et al. highlighted that

in a peer-assisted system, contributors should receive a fair

price for the provided resources [17]. Similarly, we analyzed the

service received by different classes of peers in a heterogeneous

swarm and found that BitTorrent offers a reasonably fair share

of the upload bandwidth to different classes of peers in the

context of file distribution.

The impact of server capacity on the performance of ho-

mogeneous peer-assisted systems has been studied using fluid

models [9], [22]. Various methods for server bandwidth allo-

cation among different swarms and peers have been shown to

improve performance both in the context of p2p streaming [24]

and content distribution [3], [8]. Other proposed methods, such

as content bundling [15] and dynamic allocation of peers among

swarms [8], have been proposed to improve the download time

and availability in p2p systems. Using our model, we analyze

the impact of multiple classes of peers on the required server

capacity to achieve a specific download time.

III. MEASUREMENT ANALYSIS

We investigated the performance of BitTorrent [7] as a file

distribution protocol by conducting measurement experiments

on PlanetLab [5]. In the process, we made two key observations:

(i) there is a fixed pattern in the utilization of the available

bandwidth over the course of a download, and (ii) peers

enjoy an amount of service that is commensurate with their

contribution.

In BT, the peers in a swarm cooperate to download large files,

initially stored at a central location (seed), by simultaneously

downloading and uploading different parts of the file from other

peers, as well as directly from the seed. A file is divided into

chunks, called blocks, and multiple blocks form a piece. A new

peer connects to a tracker to obtain a list of active peers and

their list of blocks. A peer downloads the first blocks from

other peers and from the seeds. After the download is com-

pleted, BT peers can decide to stay in the swarm and become

seeds, or leave the system. A mechanism called choke/unchoke

regulates the exchange of blocks among peers, where each node

attempts to upload blocks to the peers that offered it the best

download rates during the last download interval. A number of



unchokes are chosen based on the best download rates, while

one unchoke, called an optimistic unchoke, is randomly chosen

from the pool of requests the peer received.

In our measurement study on PlanetLab, each experiment

involves a tracker, a client that acts as the initial seed (which

remains throughout the experiment) and clients that act as peers.

The peers join the system at approximately the same time and

a peer will leave the system immediately once its download

is complete. This mimics a file distribution scenario where the

clients are only interested in downloading a file and not in

helping other clients with their downloads. Since the upload

capacity of nodes on PlanetLab is unknown, we cap the upload

bandwidth for different classes of peers and the seed using the

default capping mechanism provided in BT to facilitate our

analysis of the results. Because PlanetLab nodes are limited

to uploading about 8 GB of data daily, we set the file size to

100 MB, and worked with swarms with up to 150 nodes and

a maximum upload bandwidth of 256 kBps.

A. Utilization of Available Peer Bandwidth

Previous modeling work [20] claimed that the effectiveness

of BT at utilizing available bandwidth can be approximated as

one in steady-state. In our previous work [2], we found that for

a homogeneous system in a flash crowd (transient state), the

utilization of available bandwidth is not uniformly equal to one

but varies with time.

Definition 1. Utilization of available peer bandwidth, ρ, is

defined as the ratio of the effective upload bandwidth to the

total upload capacity of peers in the system.

In Fig. 1, we plot the evolution of ρ over time for a

heterogeneous system with 100 nodes divided equally between

two classes on PlanetLab. The upload bandwidths of slow peers,

fast peers and server are 64 kBps, 128 kBps and 256 kBps, re-

spectively. We found that the bandwidth utilization in a hetero-

geneous system, similar to a homogeneous system [2], consists

of three main phases, namely, startup, maximum utilization and
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Fig. 1. Plot of ρ against time, t, for 100-node BT swarm with two classes.

end-game. For this example, the startup phase is from 0 s to

100 s; the maximum utilization phase is from 100 s to 775 s,

and the last (end-game) phase is from 775 s to 2500 s. After

doing more than 100 experiments with different configurations

on PlanetLab, we observed that during the maximum utilization

phase, ρ is close to one, so BitTorrent is indeed a good protocol

for file distribution.

The key difference between homogeneous and heterogeneous

systems lies in the end-game phase. The nodes in a homo-

geneous swarm tend to finish their downloads and leave the

system at approximately the same time. In a heterogeneous

swarm, the end-game portion contains steps which correspond

to the departure of the faster peers. In Fig. 1, we can see that

a step occurs at around 1,000 s.

To better understand the utilization of the available system

bandwidth as a download progresses, we represent the data in a

slightly different form by plotting ρ as a function of K, the total

number of blocks downloaded in the system. This is shown in

Fig. 2. Since the number of file blocks downloaded by the peers

depends on the time elapsed from the start of the download

and on the number of peers, we believe that K captures the

evolution of the system better than time. If N is the total

number of peers in the system and M is the number of blocks

in the downloaded file, all the peers would have downloaded

the file when K reaches MN . Therefore the total number of

blocks, K, can be normalized by dividing it by NM .

In Fig. 3, we plot ρ against K(t) for another experiment with

150 nodes and three different classes of peers with different

upload bandwidths. In this experiment, the server capacity is

256 kBps, 30% of the peers are slow (64 kBps), 60% are

medium (128 kBps) and 10% are fast (192 kBps). Note that the

vertical lines in Figs. 2 and 3 correspond to the moments when

the first peers from the fastest remaining class in the system

leave the system. In Fig. 3, we observed two sub-phases, each

corresponding to peers from one class leaving the system. When

59% out of the total number of blocks are downloaded in the

system, the fast peers start leaving the system. Later, when 75%

of the blocks have been downloaded, the nodes with medium
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Fig. 2. Plot of ρ against K(t) for 100-node BT swarm with two classes.
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Fig. 3. ρ against K(t) for 150-node BT swarm with three classes.

upload capacity start leaving the system, leaving only the slow

peers.

These observations suggest that the end-game phase can

be approximated with a sequence of steps. We can explain

these steps with the observation that peers tend to cluster with

peers of similar upload bandwidths as highlighted by Legout et

al. [12]. In the ideal case, when clustering is perfect, they will

finish their downloads together and the steps would be clearly

defined. The number of steps matches the number of different

classes of peers and when they occur depends on the relative

bandwidths of the peers. The steps are delimited by the points in

time when peers from the fastest class finish their downloads

and start to leave the system. The value of ρ for each step

depends on the upload bandwidth of the peers remaining in the

system. While we noticed in our experiments that the steps in

the end-game phase are not clearly delimited, likely because of

asymmetries caused by the choke/unchoke policy and differing

network conditions among peers in the swarm, we show that

we are able to use steps to approximate the system performance

to good effect in Section IV-A.

B. Clustering and Sharing in File Distribution

Next, we investigated the impact of imperfect clustering on

the fairness of service distribution to peer classes. Due to

clustering, BT peers tend to upload blocks to other peers within

the same class and offer less service to peers outside their class.

Our analysis of the end-game phase for the systems reflected

in Figs. 1 to 3 confirms that peers tend to cluster with other

peers of similar bandwidth. The clustering is however imperfect

because there is always a chance that a peer might optimistically

unchoke a peer from another class.

Previous work shows that fast peers are the main contributors

to system service, by uploading more data by volume than

the slower peers throughout the download process [12], [16].

However, in the context of file distribution, the key question

is whether they also enjoy an amount of service that is com-

mensurate with their contribution. In our measurement study,

we observed that each class receives a percentage of service

that is close to the percentage of service offered by that class.

This insight allows us to conclude that BitTorrent achieves good

fairness when used for file distribution.

In analyzing the contribution versus the service received by

peers, it is important to distinguish between total system service

from peer-contributed service. Total system service includes the

server contribution, and slow peers that stay for a longer time

in the system would tend to receive more data from the server

over the total download period than faster peers. Therefore,

we exclude the server contribution from the system service

when we analyze the fairness of the distribution of the upload

bandwidth among the various classes of peers.

In Fig. 4, we plot the service variation (in terms of upload

and download rate) with the total number of blocks downloaded

in the system, for an experiment with 140 peers equally divided

into two classes with 64 and 128 kBps upload capacity. Since

we have a closed system, the total service offered by peers is

equal to the total service received, after excluding the server’s

contribution. Therefore, we normalize the cumulative upload

rate of each class with the total upload rate of the remaining

peers in the system. Similarly, the cumulative download rate

of each class is normalized with the total download rate of

the peers in the system. We plot these normalized upload

and download values, called normalized service, against the

normalized total number of blocks downloaded in the system,

K(t), in Fig. 4.

We observed that the service share received by each class is

comparable with the service share offered by that class. The

total upload service in the system is divided by the continuous

line between the slow class (shaded area) and the fast class

(white area) in Fig. 4. Similarly, the dotted line separates

the download service received by the slow and fast classes.

The “ideal” line for the normalized service is at 0.33 and

increases sharply to 1 when the fast peers leave the system.

The slow peers receive slightly more service than what they

contribute to the system, while fast peers receive slightly less.
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Fig. 4. Measured service enjoyed by the slow peers for swarm with 140 nodes
and two classes.



This observation is consistent in all our experiments.

The ideal line represents perfect fairness, i.e. where the

slow and fast peers contribute and receive service that is

exactly equal to their upload capacity. The ideal service line

is computed using the cumulative upload capacities of peers in

one class over the total capacity of the system (excluding the

server). We observe that the measured upload (contribution)

matches the ideal line, but in terms of measured download

(service), the slower peers consume slightly more than their

fair share.

The fairness in service distribution is strictly related to the

share ratio of each class [1], [10]. By share ratio, we refer to

the fraction of offered service (upload) to the received service

(download). If all peers received service that is equal to their

contributions to the system, the share ratio would be one. In this

work, we are interested not only in the share ratio for individual

peers, but the share ratio for a class of peers.

Definition 2. The class share ratio for a class of peers is

defined as the ratio of the cumulative data uploaded by all

the peers in that class to the cumulative data downloaded by

these peers, excluding contributions from the server.

In Fig. 5, we plot the class share ratio for the slow peers

in a swarm with 100 peers with two classes of peers and a

server capacity of 256 kBps as the proportion of slow peers

(64 kBps) against fast peers (128 kBps) varies. Ideally, the share

ratio should be one to ensure fairness between classes. Our

results show that the slow peers achieve a share ratio smaller

than one, though the share ratio increases when the proportion

of slow peers increases. When the fraction of slow peers is

small, the slow peers do get somewhat more service than their

corresponding contributions to the system. Intuitively this leads

to shorter download times for them when the proportion of slow

peers in the swarm is smaller. On the other hand, fast peers can

expect longer download times.
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Fig. 5. Measured class share ratio against the proportion of slow peers for a
100-node swarm.

IV. ANALYTICAL MODELING

In this section, we present our analytical model for hetero-

geneous swarms. We model the utilization of available peer

bandwidth according to the three phases we observed in our

measurement study [2] and incorporate the clustering behavior

among the peers with similar upload bandwidth. With this

model, we can then estimate the download time for each class

of peers in the system. We validate our model against PlanetLab

experiments with more than 100 nodes.

The model of utilization of available peer bandwidth in Fig. 6

is the key to estimating the download time of each class. As

discussed in Section III-A, ρ increases rapidly during the startup

phase to a level ρ0, and stays there for the maximum utilization

phase. Finally, it decreases in a step-like manner corresponding

to the departure of peers from each class.

We can estimate the download time for each class of peers

if we can accurately estimate the times taken by each step. To

do so, we also consider the clustering phenomenon observed

for BT nodes. In our model, we assume that the fastest peers

unchoke only peers from the same class for the deterministic

unchokes and that peers are picked at random for the optimistic

unchokes and uniformly divided among the various classes of

peers.

A. Model

We model a system with a flash crowd by assuming that it

is a closed system consisting of a large number of peers, N ,

that arrive approximately at the same time. All peers attempt

to download the same file, which is divided into M blocks

of size B. The file is first made available at the seed which

has an upload capacity Cs. Since upload capacity is limited

in a closed system, we assume that the download bandwidth

is unconstrained and that peers do not free-ride. Peers that

download the file are divided into classes, with each class

having piN peers with ci upload bandwidth. There are r + 1
classes with decreasing upload bandwidth (numbered from 0 to

r). Class 0 is the fastest class of peers.

To estimate the download times expected for each class (Ti,

for i = 0, · · · , r), we need to model the number of blocks that

optimal

Startup Maximum utilization End−game

Normalized K(t)

model

actual

ρ

ρ0

ρr

α β0

1

1

Fig. 6. Proposed model of ρ.



have been downloaded in the system by that time. We estimate

K for each discrete time interval, ∆t, using ρ(t). In a closed

system, assuming that the upload bandwidth of the server is

fully utilized, the dynamics of the total number of blocks is

given by:

K(t+∆t) = K(t) +
Cs

B
∆t+

ρ(t)

r
∑

i=0

pici

B
∆t (1)

where

r
∑

i=0

piciN is the total upload capacity of all peers in the

system. We denote

r
∑

i=0

piciN with C.

As shown in Fig. 6, there are three distinct phases in our

model: the startup phase from 0 to α, the maximum utilization

phase from α to β0 and the end-game phase from β0 to 1.

As observed from measurement, the end of a step corresponds

to the fastest class finishing the download during the end-

game phase. The parameters α, βi and ρi, for i = 0, · · · , r,

define the ρ curve. In this model, we assume the maximum

utilization value (ρ0) is one. While this is not entirely accurate

in practice, our measurement results in Section III-A suggest

that this approximation is good enough. We show next how to

estimate these parameters and the download time for each class.

Where ρi is the value of ρ after all the peers in class i have

left the system, we can model ρ(t) as follows:

ρ(t) =



















ρ0
K(t)
αMN

, K(t) ≤ αMN

ρ0, αMN < K(t) ≤ K(T0)

ρi, K(Ti−1) < K(t) ≤ K(Ti),

i = 1, · · · , r

(2)

We note that ρi decreases proportionally according to the

upload bandwidth of the peers that have left the system as

follows:

ρi =



















ρ0, i = 0

ρ0(1−

i−1
∑

j=0

pjcj

C
), i = 1, · · · , r

(3)

Using ρ(t) in Equation (1) and solving using differential

equations, we obtain:

K(t) =



















Cs

C
αMN
ρ0

(e
C
B

ρ0
αMN

t − 1), t ≤ tα

αMN + Cs+ρ0C
B

(t− tα), tα < t ≤ T0
Cs+ρiC

B
t+ εi, Ti−1 < t ≤ Ti,

i = 1, · · · , r

(4)

where εi are the constants of integration. As K(t) is a contin-

uous function, the values for εi are derived as follows:

εi =















αMN −
Cs+ρ0C

B
tα, i = 0

i
∑

j=1

(ρj−1 − ρj)C

B
Tj−1 + ε0, i = 1, · · · , r

(5)

Using the K(t) equation, we can derive tα and Ti, for i from

0 to r:

tα =
B

C

αMN

ρ0
ln(

C

Cs

ρ0 + 1) (6)

Ti = (K(Ti)− εi)
B

Cs + ρiC
, i = 0, · · · , r (7)

Because peers from class i finish the download and leave

the system at Ti, Equation (7) gives us an estimate of Ti.

However, this estimate is based on α and K(Ti), which are still

unknowns. Note also that in our derivations up to this point,

we have not invoked the characteristics of the underlying BT

protocol. It turns out that α and K(Ti) are dependent on the

actual p2p protocol employed in the system. For BitTorrent, we

need to model α and K(Ti) by taking into account observations

about the choke/unchoke mechanism that regulates the trading

of file blocks among the peers.

Choke and Unchoke in BitTorrent. In BT, peers start to

upload data blocks to other peers only after they have received

at least one piece, consisting of S blocks. Maximum utilization

is achieved after all the peers have each downloaded at least

one piece, initially from the server (seed), and are able to

unchoke and upload to Q other peers. In this light, we use a

conservative estimate and assume that maximum utilization is

reached when the total number of blocks uploaded in the system

is approximately NQS, where N is the number of peers in the

system. This provides us with an estimate of α for BT:

NQS = αMN ⇒ αBT =
QS

M
(8)

This suggests that α is independent of the server bandwidth

and the number of nodes. This is because BT has an optimistic

unchoke mechanism (one optimistic unchoke out of a total of

Q unchokes) that allows peers to download blocks from one

another, and not only from the server.

Where i is the class of the fastest peers remaining in the

system, we model the number of blocks downloaded in the

system by time Ti. Due to clustering, we assume that the fastest

class unchokes only peers from the same class (except the

optimistic unchokes). Moreover, the fastest class takes up a

fair share of the optimistic unchokes:
pi

∑r

j=i pj
out of the total

r
∑

j=i

cj

Q
pjN optimistic unchokes in the system. On the server

side, we assume that it offers equal upload bandwidth to all

peers in the system. This is consistent with our measurements.

The time taken for the fastest class of peers to download piMN

blocks is:

∆ti =
piMNB

r
∑

j=i

cj

Q
pjN

pi
r

∑

j=i

pj

+ Q−1
Q

piciN + Cs
pi

r
∑

j=i

pj

(9)



During this time, peers in the other classes are downloading

blocks. We estimate the number of blocks downloaded by the

whole swarm by time Ti. The data downloaded by peers in

other classes in ∆ti, denoted by ∆κi:

∆κi = ∆ti × (

r
∑

j=i

cj

Q
pjN

r
∑

j=i+1

pj

r
∑

j=i

pj

+

Q− 1

Q

r
∑

j=i+1

pjcjN + Cs

r
∑

j=i+1

pj

r
∑

j=i

pj

) (10)

Finally, we can compute K(Ti), the total number of blocks

downloaded in the system by time Ti.

K(Ti) =















i
∑

j=0

pjMN +
∆κi

B
, i = 0, · · · , r − 1

MN, i = r

(11)

B. Validation

We validated the average download time of each class

predicted by Equation (7) with experiments on PlanetLab. We

ran experiments with more than 100 nodes with two, three and

five classes of peers of different upload bandwidths. We ran 80

experiments with two classes of peers (64 and 128 kBps) with

the number of nodes varying from 100 to 150, 20 experiments

with three classes (64, 128, and 192 kBps) with 150 nodes and

16 experiments with 150 nodes divided among five classes (16,

32, 64, 128, and 192 kBps). The server bandwidth was fixed

at 256 kBps. The proportion of peers in each class was varied

to cover the range between 0 and 1.

Table I shows the errors we obtained when comparing the

values from our model to the measured values from the exper-

iments. We found that the errors for the two-class experiments

are smaller than those for the three- and five-class experiments.

On average, the errors for the two- and three-class experiments

are less than 15% and this suggests that our model accurately

predicts the expected download times for each class. The errors

we obtained for the five-class experiments are higher because

of the small number of peers in each class. The small difference

TABLE I
ERRORS IN ESTIMATING THE DOWNLOAD TIME.

No. of Error (%) for each class (kBps) Avg.

classes 16 32 64 128 192 error

2 - - 9.6 11.9 - 10.7

3 - - 15.8 5.6 18.1 13.1

5 26.4 33.6 12.1 26.4 30.5 29.5

in bandwidth among the classes also results in less precise

clustering, which is a situation that is not fully captured in

our model. Due to practical constraints on PlanetLab, we were

not able to perform experiments with a larger number of peers

and high upload bandwidth.

The inaccuracies in our estimates can be explained by real

network conditions in which our experiments were run and the

less than ideal share ratio described in Section III-B. Due to

the network conditions, peers might experience delays that are

not captured by our model. Moreover, we could improve the

accuracy of our estimates by accounting for the smaller-than-

one share ratio for the class of slow nodes.

Fig. 7 shows the impact of the proportion of slow peers on the

download time of each class for a swarm with 100 nodes and

a server bandwidth of 256 kBps. The lines represent the values

predicted by our model, while the dots correspond to actual

measurements. As shown by the dotted line, the download time

for the slow peers (64 kBps) is affected more significantly

than the download time of the fast peers (128 kBps) by the

proportion of slow peers in the swarm. When the proportion

of slow peers is increased, the download time for slow peers

increases considerably, while that for the fast peers remains

almost constant.

Our model seems to slightly overestimate the download time

for the slow peers. The error is bigger for the fast peers, and our

model slightly underestimates the average download time. This

trend can be explained by the fact that the share ratio is slightly

in the favor of the slow peers. The accuracy of the download

time estimates for the fast peers when there is a large proportion

of slow peers is lower because the clustering phenomenon is

less pronounced. This leads to larger download times than those

predicted by the model.

Fig. 8 shows the impact of the upload bandwidth of the slow

peers on the download time of each class in a 100-node system

with a 256 kBps server capacity and fast peers with 128 kBps

upload capacity. Due to clustering, the download time of the fast

peers is independent of the bandwidth of the slow peers. On

the other hand, the download time of the slow peers sharply
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Fig. 7. Download time when varying the proportion of slow peers.
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Fig. 8. Download time when varying the upload bandwidth of slow peers.

increases for small values of the upload bandwidth. This is

expected, since the 50% of fast peers tend to cluster and finish

faster, leaving just the slow peers to complete in a longer time.

The dots represent the measured average download times for

our experiments on PlanetLab. The error is larger for small

values of the upload bandwidth of the slow peers. In this case,

the slow peers benefit more when they get unchoked by the fast

peers, even though they reciprocate the service and unchoke the

fast peers. The investigation of the impact of bandwidth on the

share ratio is left as future work.

V. APPLICATION: SERVER PROVISIONING

An important concern for file distribution systems is to offer

sufficient server capacity so that clients achieve a minimal

required quality of service. Unlike traditional client-server file

distribution systems, the peers in the system will also contribute

capacity, so the amount of server capacity required is not

necessarily directly proportional to the number of supported

clients. A content distributor needs to pay an ISP for the server

bandwidth and it is costly to over-provision. Ideally, the server

capacity allocated should be high enough to meet the quality

of service requirements, and yet not excessive. Moreover, the

unpredictability of flash crowds coupled with the heterogeneous

bandwidth of peers also affects the required server capacity.

We show how our model can be used to find a server

capacity that strikes a balance between maintenance costs and

providing the required quality of service. While a closed form

solution for the capacity of the server can be difficult to obtain

for a heterogeneous system, we use our model to estimate

the download time for different capacities of the server and

plot the server capacity against download time. Assuming the

existence of logs from previously served files with the estimated

upload bandwidth of the peers and their distributions in different

classes, we can plot this curve and estimate download times

(quality of service) as the server capacity varies.

In Fig. 9, we plot the estimated server bandwidth needed for a

specific download time for two swarms with 100 and 500 nodes.
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Fig. 9. Server bandwidth versus download time.

The nodes are equally divided into two classes with 64 kBps

and 128 kBps upload capacity. We assume the quality of service

requirements are expressed in terms of the maximum download

time for each class of peers. It is unreasonable to expect all

peers, regardless of their intrinsic upload bandwidth to finish at

the same time. Hence, we can infer the server capacity needed

for the slow class to finish in a specific time. For example, if

the slow peers are expected to finish in less than 700 seconds,

the server capacity needs to be at least 30 MBps for a system

with 500 clients.

Fig. 9 also shows the impact of swarm size on the server

capacity. The slow peers stay in the system longer than fast

peers, hence they benefit more from the upload capacity of the

server. Furthermore, Fig. 7 shows that our model overestimates

the download time for slow peers and underestimates that for

fast peers. Therefore, we expect that the actual values for the

average download times of each class of peers will be situated

between the slow and fast lines of each swarm in Fig. 9. Hence

our model bounds the performance expected for the whole

system.

In addition, we see that we need a considerable increase in

server capacity to achieve a small improvement in the download

time for the fast peers. This observation is especially important

for large swarms, because an increase in server capacity hardly

changes the download times for the fast peers, as shown in

Fig. 9. For small swarms, increasing the server capacity can

improve download times, but only up a certain point, i.e.

40 MBps in an 100-peer swarm.

Lastly, we can deduce from the model the server capacity

required to achieve similar download times for all peers regard-

less of bandwidth. For example, our model suggests that the

required server capacity is 90 MBps for the 500-node swarm

and 40 MBps for the 100-node swarm. This analysis can be

repeated with other system settings, such as server and peer

upload bandwidth, and file size, among others.



VI. CONCLUSIONS

Our measurement study of BitTorrent on PlanetLab shows

that the utilization of the available bandwidth of peers in a

heterogeneous system has a fixed pattern over the course of a

download and that peers enjoy an amount of service propor-

tional with their contribution. Unlike homogeneous systems,

the end-game phase for a heterogeneous swarm is a step-

like function that corresponds to the number of peer classes.

Moreover, although slower peers receive slightly more service

than their upload contribution to the system, their class share

ratio is close to that of a fair system.

Based on these insights, we developed an analytical model to

estimate the download time for each class of peers by modeling

the peer clustering during the end-game phase. We validated

our model with experiments on PlanetLab and showed that it

predicts the download time with an average error of 16.5%.

Overall, our results suggest that BT is a good algorithm for

peer-assisted file distribution and our model can be applied

to estimate the server capacity required to achieve a desired

quality of service. We observed that the server capacity has a

higher impact on the download time of slow peers, and reducing

the download time of fast peers in large swarms requires a

significant increase in server capacity and cost.

As future work, we will extend our model to investigate the

impact of the number of peer classes on class share ratio. The

model can also be extended by adding download bandwidth

constraints for peers. The accuracy of our model can be further

improved by modeling the service distribution policies of the

server, other incentive mechanisms, network connectivity and

conditions, among others.
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