
Distributed Asynchronous Algorithms for Multicast
Network Coding

Tracey Ho, Ben Leong, Ralf Koetter and Muriel Médard

Abstract— We propose distributed asynchronous algorithms
for network coding in multi-source multicast networks with cy-
cles. Our algorithms find an acyclic subset of connections between
links, and set up a network code over these connections. They
offer advantages in terms of link usage and coding complexity
over previous distributed algorithms based on random coding,
while requiring modest additional coordination.

I. I NTRODUCTION

The distributed randomized network coding approach of [1],
[2], [3] provides a simple distributed way to do network coding
on a given set of links for multi-source multicast. Each link
transmits a random linear combination, in a finite field, of data
received from incident incoming links. This approach, which
codes maximally over all available capacity and involves
minimal coordination among network nodes, can be viewed
as lying at one end of a spectrum trading off coordination
overhead against resource usage and the degree/complexityof
network coding. At the other end of the spectrum, centralized
approaches and synchronous/iterative decentralized techniques
have been proposed for finding good network coding solutions
that optimize resource usage [4], [5].

This paper considers decentralized asynchronous techniques
that represent a start in bridging the gap between these
extremes. Such approaches are potentially useful in various
practical scenarios, such as wireless ad hoc or sensor networks.
We note that network coding is primarily useful in scenarios
where network capacity is a limited or costly resource; where
network capacity is plentiful, routing approaches presenta
reasonable alternative.

One significant practical issue is dealing with cycles in
networks. Many existing works generally assume that an
acyclic graph is given, or centrally construct an acyclic sub-
graph [6] or related graph [7]. This allows use of a burst-
oriented [8], pipelined [6] or batched [3] approach which
involves buffering information at interior network nodes in
order to code them with other incoming information from the
same batch. An alternative for cyclic networks is to take a
continuous coding approach [9], [2] where information from

Tracey Ho is with Bell Laboratories, Murray Hill, NJ 07974, e-mail:
trace@mit.edu. This work was done while a postdoctoral scholar at the
Coordinated Science Laboratory, University of Illinois.

Ben Leong is with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139,
e-mail benleong@csail.mit.edu

Ralf Koetter is with the Coordinated Science Laboratory, University of
Illinois, Urbana, IL 61801, e-mail:koetter@csl.uiuc.edu

Muriel Médard is with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, e-
mail: medard@mit.edu

�
�

�
�

�
�	

?
�

�
�	�
@

@
@R�

�
��
@

@
@I

-

6

�
�

�
�

�
��

Src 1

Rcv 1

Src 2

Rcv 2

Fig. 1. An example of a multicast connection problem in whichno acyclic
subgraph is sufficient to accommodate the desired connections: all four links
of the cycle in the middle of the network must be used.

different time periods is combined at intermediate nodes,
and memory is needed at the receivers for decoding what is
essentially a convolutional code. Both specifying and decoding
the code are more complex than in the acyclic case. Another
possibility proposed for cyclic networks is for a node that is
part of a cycle to subtract off its previous contribution to data
returning to it along the cycle [10]. This requires a node to
know what it has contributed to data on its incoming links,
which makes it more suited to centralized scenarios.

The simpler burst/batch approach requires anacyclic net-
work code, i.e. one which does not include a directed cycle
of links each transmitting data that is a function of data on its
predecessor in the cycle, possibly coded together with other
inputs. For some network connection problems, such as those
in Figure 1, there is no valid acyclic network code. However,
such examples seem to be the exception rather than the norm;
for instance, in the case where every link in the network
has equal capacity in both directions, we do not know of an
example in which coding over cycles is needed.

As such, we investigate decentralized techniques for obtain-
ing acyclic network codes. Our approach restricts considera-
tion to a subset oflink connections (i.e. pairs of incident links
such that the data on one link influences that on the other)
of the graph that does not include cycles, and then finds a
network coding solution involving a subset of the chosen link
connections, if such a solution exists. We assume a network
model in which reverse channels exist on each link, allowing
downstream nodes to communicate control information to

upstream nodes. The basic elements of our approach are:
Stage A
• an acyclic subset of link connections is found
Stage B
• upstream nodes communicate to downstream nodes what

information is available along various paths using the
chosen link connections

• downstream nodes request information accordingly from
selected upstream nodes

• intermediate nodes transmit appropriate information in
response to requests

Our approach for Stage A uses a Bloom filter [11], [12] to
keep track efficiently of the links traversed by data forming
part of the linear combination on each link. We compare, by
simulation on random geometric graphs, the resulting multicast
capacity with the multicast capacity of the original graph.
Preventing cycles in network coding is more complicated than
preventing cycles in routing because in network coding, the
same data may need to be carried over multiple paths in
different linear combinations. As an illustration of this,we
compare our algorithm with a simpler algorithm that uses
distance vectors to disallow cycles.

Stage B sets up an acyclic network code on the set of link
connections found in Stage A. We present an approach that
finds a valid network code, if one exists on the given link
connections, with error probability decreasing exponentially
in the length of the code. We show that the control overhead
is proportional to the number of receivers and links.

These ideas characterize a class of distributed asynchronous
algorithms that maintain a feasible multicast solution, while of-
fering a compromise between coordination overhead and per-
formance. The additional communication overhead compared
to the completely distributed approach of [1] is reasonable,
while the savings in link usage and amount of coding are
potentially quite significant in some networks.

Our algorithm also allows for some flexibility in the choices
of links and network code to be made according to some ob-
jective. However, achieving an optimal solution is complicated
by the fact that in some cases, such as that of Figure 2,
optimizing some objective for one receiver conflicts with
optimizing it for another. It is interesting to note that while
network coding allows different receivers in a multicast session
to share links without affecting each others’ rate, this does
not extend to other objectives such as delay or network code
complexity. In such scenarios, optimal allocation of network
resources requires a global objective function combining dif-
ferent receivers’ objectives. Trading off optimally between the
objectives of two receivers at an intermediate node may depend
on the availability of other paths to those receivers and the
trade-offs along those paths. We do not address optimization
issues fully in this paper, but note that our approach provides
a potentially useful framework upon which various policies,
e.g. based on pricing, may be imposed to achieve different
network objectives.

II. M ODEL

The linear network coding model we use is from [9]; we
give a brief description here. The network is modeled as

f f

f

f

f f? ?

@
@

@@R

@
@

@@R

�
�

��	

�
�

��	

?

�

J
J
J
J

J
J
J

J
J
Ĵ

1 2

4
5 5

Src 1 Src 2

Rcv 1 Rcv 2

Fig. 2. An example of a network where optimizing delay for receiver conflicts
with optimizing delay for another. The labels on each link represent the delay
of that link; delay of unlabeled links is 1. To optimize delay, each receiver
separately will choose to use the bottleneck link in the middle of the network.
For the batch approach, optimizing delay for receiver 1 affects delay for
receiver 2 since data from source 1 must be delayed at the bottleneck link to be
combined with data from source 2. For the continuous approach, optimizing
delay for receiver 2 affects delay for receiver 1 since data from source 2 is
combined with newer data from source 1, which cannot be decoded at receiver
1 until the data from source 1 arrives separately.

a directed graph of unit capacity links, and one or more
unit rate sources are located at various nodes. This gives
rise to an elegant and simple mathematical framework for
network coding, without sacrificing generality, as links of
larger capacities can be modeled as parallel links between the
same nodes, and sources of higher rate can be modeled as
multiple sources at the same node.

We denote by(v, w) a directed link fromorigin nodev to
destination nodew, and denote byo(l) andd(l) the origin and
destination nodes respectively of a linkl.

Information is transmitted as vectors of bits. Linear coding1

is carried out on vectors of lengthu in the finite fieldF2u . The
processY (j) on a link j is a linear combination ofinputs of
nodev = o(j), i.e. processesXi generated atv and processes
Y (l) on incident incoming linksl. This is represented by the
equation

Y (j) =
∑

{i : Xi generated atv}

ai,jXi +
∑

{l : d(l) = v}

fl,jY (l)

whereai,j ∈ F2u , fl,j ∈ F2u . An illustration of linear coding
at a network node is given in Figure 3.

In the distributed randomized network coding of [1], vari-
ables ai,j , fl,j are chosen uniformly at random fromF2u .
The receivers need only know the overall linear combination
of source processes in each of their incoming signals. This
information can be sent through the network as a vector, for
each signal, of coefficients corresponding to each of the source
processes, updated at each coding node by applying the same
linear mappings to the coefficient vectors as to the information
signals. A randomly chosen network code is successful if each

1which is sufficient for multicast [8]

hv

@
@R

Y (1) �
�	

Y (2)

?
Y (3) = a1,3X1 + f1,3Y (1)

+f2,3Y (2)

Fig. 3. Illustration of linear coding at a node.

receiver obtains as many linearly independent combinations as
the number of source processes. This enables it to decode each
source process.

III. A LGORITHM DESCRIPTIONS AND ANALYSIS

We describe below a two-stage approach for setting up an
acyclic multicast network code in a distributed, asynchronous
fashion. The first stage algorithm, which sets up an acyclic
set of connections on a given network, is not guaranteed to be
optimal, and its performance evaluation is deferred to the next
section on simulations. For the second stage, which finds a
network code on the set of connections found by the first stage,
we provide analytical bounds on overhead and probability of
success.

Since the second stage uses the output of the first stage,
they must initially be carried out sequentially. Subsequently,
both stages or just the second can be run at intervals, to deal
with network changes, or to see if a better network code
can be found. To distinguish the control messages associated
with different runs of the algorithms, the control messagesare
labeled with run numbers.

A. Choosing an acyclic set of connections

We consider the following cycle-preventing algorithm which
sets a boolean variableb(l, l′) for each pair (l, l′) of incident
links, a one indicating that data froml can feed intol′, and
a zero indicating that the connection is disallowed. Control
messages are initiated at the sources and transmitted on all
their outgoing links. These messages are transmitted through-
out the network and combined with other such messages
at intermediate nodes. Each messagem contains an epoch
number which is initially zero, a vector of distances in hops
from each source inm (i.e. sources of messages that have
been combined to formm), and a list of all links traversed by
messages that have been combined to formm. The list of links
can be stored reasonably efficiently using a Bloom filter [11],
[12].

All the boolean variables are initially set to zero. A node
receiving a control message on a linkl checks its list, and, for
each incident outgoing linkl′, sets to one the variableb(l, l′)
if l′ is not in the list andd(l) is at least as many hops away
from some source inm than o(l). At regular intervals, with
a 50% jitter, each node combines and sends control messages
received during the last interval whose boolean variables allow
them to be sent on each outgoing link, by combining their
distance vectors appropriately and taking the bitwise OR of
their Bloom filters.

Whenever a node changes its coding coefficients, it incre-
ments the epoch numbers of its messages by some random
amount. A node ignores received messages with lower epoch
numbers. A node receiving a message with a higher epoch
number sets the epoch numbers of its own messages to match
this higher number. This mechanism helps to prevent local
oscillations by ensuring that a node will accept an input
from a neighboring node only after it has taken into account
its local changes; we increment the epoch numbers by a
random amount instead of a constant amount so that it is
highly unlikely for two neighboring nodes to simultaneously
increment the epoch number and not have at least one party
realize that the other has made a change.

A simple approach we investigate for comparison uses only
distance vectors. In this approach, a link is allowed to transmit
a signal containing an input from sources only if its origin
node is nearer (in terms of hop count) to thes than its
destination node, or, if they have the same hop count, if the
origin node has a smallerid.

B. Setting up a network code

1) Overview: As outlined in the introduction, there are
three main components for this stage:

• upstream nodes communicating to downstream nodes the
availability of information along various paths. This en-
tails describing not only connectivity to various sources,
but also the available capacities. Compared to describ-
ing network topology exactly, less overhead is incurred
by providing only partial information in the form of
coefficient vectors formed by random network coding,
calledadvertisement vectors. Advertisement vectors that
are linearly independent indicate the availability of link-
disjoint paths to sources; those with linear dependencies
are likely to share a bottleneck link.

• downstream nodes requesting information from upstream
nodes. Each receiver initiates a set of requests which
are propagated upstream along disjoint paths found using
advertisement vectors. Information requested by one re-
ceiver may be useful to another; requests are propagated
upstream only as far as needed to obtain useful informa-
tion. A node seeking an input whose coefficient vector is
linearly independent of a setO of vectors specifies this
using a vectorv in the nullspace ofO. A vector whose dot
product withv is nonzero is independent of the vectors
in O,2 and is termedcomplementary to v.

• intermediate nodes transmitting appropriate information
in response to requests. A nodev transmits on each of
its outgoing linksl a random linear combination of a
subset of its inputs. The subset is chosen so as to satisfy
requests received onl.

Differences in the details of the algorithm give rise to
variants that have different overheads, delay to obtaininga
solution, and worst-case performance bounds. In our algorithm
description below, we will distinguish in particular three
variants 1, 2 and 3 at those points in which they differ. The

2This is similar to the approach used by [6] to test if a vector is independent
of a given set of vectors.

best bounds on worst-case overhead and delay are obtained for
variant 1; variants 2 and 3 proceed with decreasing degrees of
caution and generally obtain solutions faster, but at the risk of
requiring more work in the worst-case.

2) Detailed description: Each node stores, for each of its
incoming incident links, an advertisement vector and acur-
rent vector, and possibly a number ofreduced advertisement
vectors associated with particular receivers. For simplicity
of exposition, we consider each source process to arrive
at its corresponding source node via a virtual link, whose
advertisement vector is the unit vector with a single nonzero
entry at the position corresponding to the source index.

The advertisement vectora(l) of each linkl is is formed at
its origin node as a random linear combination, specified by
randomly chosen coefficientsfA

i,l, of the advertisement vectors
of its incoming incident links

u(l, β) =
∑

i:d(i)=o(l)

fA
i,la(i),

and is communicated to its destination node. Within one run
of the algorithm, the advertisement vector of a link is updated
if and only if the advertisement vector of one of its incident
incoming links has changed. Since the algorithm is run on
an acyclic set of link connections, the advertisement vectors
will stabilize as long as the time scale of network topology
changes is long compared to the time scale of advertisement
vector updates.

A reduced advertisement vectoru(l, β) is set in the course
of the algorithm for (link, receiver) pairs(l, β) such thatl
is in the setQ(β) of links traversed by requests fromβ.
Otherwise, for l /∈ Q(β), u(l, β) is set or updated if the
reduced advertisement vectoru(l′, β) of an incident incoming
link l′ is set or updated, according to:

u(l, β) =
∑

i:d(i)=o(l)

fA
i,lw(i, β), (1)

wherew(i, β) = u(i, β) if u(i, β) has been set, orw(i, β) =
a(i) otherwise.

The algorithm builds a network coding solution by modi-
fying the current vectors. The current vector of each link is
initialized to the all-zero vector, and is updated in response
to requests and whenever the current vector of any incoming
incident link has changed. The current vectors set by the
algorithm give the linear combinations of data to be sent on
each link in the network coding solution.

We denote byA(L) and C(L) the set of advertisement
vectors and current vectors respectively of links in a setL.

Receivers wait for the advertisement vectors to stabilize
before initiating requests. Each receiverβ first chooses a set
Tβ of incident incoming links whose advertisement vectors
form a full rank set.3

Associated with each linkl ∈ Tβ is a frontier link and a
frontier vector, which are initialized tol anda(l) respectively,

3If there is more than one such set, the choice can be made randomly or
according to various criteria, e.g. include the maximum number of incoming
links with independent current vectors. A possible extension would be for
advertisement vectors to be accompanied by other related information such
as prices or delays, which can be used to influence the choice of inputs.

and updated in the course of the algorithm as described below.
We denote byF(L) the set of frontier vectors corresponding
to links in a setL ⊂ Tβ .

Let Sβ be a subset ofTβ such thatC(Sβ)∪A(Tβ\Sβ) is a
full rank set. Requests are made on links inTβ\Sβ .4 β sends
requests one at a time, waiting each time for a response or
timeout before sending the next. The setSβ is updated with
each answered request.

Each request consists of a forwarding path, alink request
vector whose function is to select appropriate links on which
to forward the request, and asolution request vector used
in checking if the request has reached a link with useful
information. For a request made on some linkl ∈ Tβ ,

• the link request vector is any vector in the nullspace of
F(Tβ\{l}),

• the solution request vector is any vector in the nullspace
of C(Sβ) ∪ F(Tβ\({l} ∪ Sβ))

• the forwarding pathP (l) is extended with each successive
request onl, consisting of the path taken by the previous
request onl together with the frontier linkf(l).5

A request is forwarded directly to the end node of its forward-
ing path without processing at intermediate nodes.

A nodev receiving a request on a linkl1 checks its incoming
links to find acomplementary link l2 for the request, i.e. such
that w(l2, β) is complementary to the link request vector.
If the current vector ofl2 is complementary to the solution
request vector, the request is consideredanswered. An answer
message specifying the new frontier linkl2 and frontier vector
w(l2, β) are sent toβ. v setsu(l2, β) to the all zero vector, and
calculatesu(j, β) for each outgoing linkj /∈ Q(β) according
to (1). If j is a frontier link associated with some other link
in Tβ , the corresponding frontier vector is set tou(j, β) and
communicated toβ. Otherwise,u(j, β) is transmitted onj.
Each nodev′ that receives a reduced advertisement vector
u(l, β) on an incoming linkl stores its value and similarly
calculates and sends the reduced advertisement vector or
frontier vector for each of its outgoing linksj /∈ Q(β).

For variant 1, in finding a complementary linkl2, v checks
only incoming links that have not been previously checked in
response to requests from the same receiver. If the current
vector of l2 is not complementary to the solution request
vector, anupdate message specifying the new frontier link
l2 is sent toβ rather than an answer message. The reduced
advertisement vectors are updated as before.

In variants 2 and 3, if the current vector ofl2 is not com-
plementary to the solution request vector,v checks whether
l2 is the only complementary link for the request. If so, it
forwards the request upstream onl2. If there is more than
one complementary link for the request, an update message is
sent toβ and the reduced advertisement vectors are updated
as in variant 1; in variant 3, an additionaltemporary request
is sent upstream onl2. This temporary request has the same
link and solution request vectors as the original request, and is

4We assume that this algorithm is carried out on a directed acyclic set of
connections; note that requests are sent on each link in the opposite direction
to that of data flow on the link.

5Path information is added to a request as it is forwarded beyond f(l).

forwarded upstream by each successive node on an incoming
link complementary to the request, until one is found whose
current vector is complementary to the solution request vector.

In variants 2 and 3, a request may be forwarded by one
or more links beyond the existing frontier link before it is
answered with a new frontier link. LetP be the set consisting
of these links together with the new frontier link. As the
answer message is forwarded along the reverse of the path
taken by the request, for each linkl ∈ P , noded(l) setsu(l, β)
to the all zero vector and updatesu(j, β) for each outgoing
link j /∈ Q(β) as before.

Each nodev maintains, for each link(v, v′) on which
it receives requests, a setI((v, v′)) of incident incoming
links. Each answered request or temporary request that passes
through (v, v′) is associated with the complementary link
chosen byv in response to the request; the union of these
incoming links for all receivers formsI((v, v′)). The current
vector of link (v, v′) is a random linear combination of the
current vectors of links inI((v, v′)).

When β gets an answer or update message on a linkl ∈
Tβ , it waits for potential updates of other current and frontier
vectors. If it gets an update message, it sends a new request on
l. If it gets an answer message, it checks whether the current
vector of l is linearly independent ofC(Sβ). If so, it adds
l to Sβ and proceeds to send requests in similar fashion on
links in Tβ\Sβ . If, however, the current vector ofl is linearly
dependent onC(R) for someR ⊂ Sβ , the receiver chooses a
link l′ ∈ R whose frontier vector has weight greater than one.
l replacesl′ in Sβ , and a new request is made onl′.

In a dynamically changing network, nodes may leave or fail
in the middle of the algorithm, and a request formed using
outdated advertisement or current vectors may time out or
be answered with an error message.Reset messages, which
reset u(l, β) to a(l) for each l ∈ P (l), and resetf(l) to
l, may be used to clear algorithm state for linksl ∈ Tβ

whose advertisement vectors have changed owing to network
changes. The setsTβ andSβ may also have to be changed.
Policies may also be set for renewal and clearing of requests,
particularly if multicast group membership changes frequently.

3) Analysis:
Lemma 1: The algorithm maintains the invariant that the

pathsP (l), l ∈ Tβ , for each receiverβ are part of a feasible
flow solution from the sources toβ, unless the network
changes during the run of the algorithm.

Proof: We show by induction that the invariant above
holds, and that the frontier vectors ofβ at any stage correspond
to advertisement vectors on a modified network in which links
in P (l), l ∈ Tβ , have been removed.

Note that a set ofr links with independent advertisement
vectors must be connected byr link-disjoint paths to ther
sources. Ther links in the setTβ form such a set, which
gives the base case for induction.

Assume that the induction hypothesis holds up to some point
in the algorithm, and that linkl is the next complementary
link chosen in response to a request fromβ. Sincew(l, β) is
complementary to the link request vector, it is independentof
the other frontier vectors, and there exist disjoint paths from
l and the other frontier links to the sources that do not go

through links inP (l), l ∈ Tβ . The procedure for updating
reduced advertisement vectors upon choosingl is equivalent
to removingl from the network. This completes the induction.

Theorem 1: Given a feasible problem on a static acyclic
connection graph, the algorithm finds a solution with proba-
bility at least(1 − d/q)2ν with at mostνd requests, whereν
is the number of network links,d is the number of receivers
and q is the size of the finite field in which coding is done.
Variant 1 carries out at most3νd tests for complementary
vectors, while variant 2 carries out at most(Γ + 2)νd such
tests, whereΓ is the maximum in-degree of a node.

Proof: The randomly chosen advertisement vectors form
a full rank set at every receiver with probability at least
(1 − d/q)ν , by the random coding result of [1]. Given a
successful set of advertisement vectors, by Lemma 1, the
algorithm then finds a set of disjoint pathsP (l), l ∈ Tβ from
β to the sources, unless the receiver obtains a full rank set
of inputs before this happens. By coding randomly over the
union of the paths formed for each receiver, a valid solution
is found with probability at least(1 − d/q)ν [1]. The overall
success probability is thus(1 − d/q)2ν .

In a static network, each link is tested for being comple-
mentary to a request at most once for each receiver, since a
link that is not complementary to a request cannot be part of
a valid flow solution through pathsP (l), l ∈ Tβ , and thus will
not be complementary to subsequent requests. Thus, the total
number of such tests is at mostνd for variant 1, andνdΓ for
variant 2.

For each link added toQ(β), at most two tests for comple-
mentarity of current vectors are carried out, one at the frontier
link and one atβ. The total number of such tests is at most
2νd.

Each request finds at least one complementary link. Thus,
each receiver sends at mostν requests.

IV. SIMULATIONS

We are still in the process of implementing the Link Re-
quest algorithm described in Section III-B in our event-driven
simulator. We have however carried out some simulations
of our Bloom-filter-based algorithm for choosing an acyclic
set of connections (Loop Free), comparing it to a simple
algorithm based solely on distance vectors (DistanceVector).
Descriptions of these algorithms are given in Section III-A.

We generated several hundred random geometric networks
of moderate size (15 to 50 nodes) with two to four randomly
placed sources and up to eight randomly placed receivers. Any
two nodes within a specified range are connected by a unit
capacity link in each direction; the ranges are chosen so that
connected networks are obtained. The average degree of the
nodes in our networks range from 6 to 9.

We measured the success rate of the two algorithms, i.e. the
probability that a particular sink obtains a full rank set of
inputs with random linear coding, given that there exists a
feasible code for the network (there may be no acyclic code
for the network, but we do not have an efficient algorithm for

determining this). We use a relatively small finite field sizeof
29. Our simulation results are shown in Figure 4.

Our results demonstrate that it is progressively more difficult
to find a feasible acyclic set of connections as the number
of sources are increased. Nevertheless, our Bloom-filter-based
algorithm outperforms the distance-vector-based algorithm,
with the performance gap increasing with the number of
sources and network nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50

Size

Loop Free - 2 Sources
Distance Vector - 2 Sources

Loop Free - 3 Sources
Loop Free - 4 Sources

Distance Vector - 3 Sources
Distance Vector - 4 Sources

D
e

co
di

ng
S

uc
ce

ss
R

a
te

Fig. 4. Plot of success rate against network size (number of nodes) for
random graphs.

V. CONCLUSION

We have presented distributed asynchronous algorithms for
obtaining low-complexity acyclic network coding solutions for
multicast on cyclic graphs. Our algorithms improve on existing
distributed randomized network coding in that they can saveon
link usage and can operate on cyclic graphs without requiring
convolutional decoding, bringing such approaches closer to
practical use.

Acknowledgments

We would like to thank the anonymous reviewers for their
comments which helped greatly to improve the presentation
of the paper.

REFERENCES

[1] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros,“The
benefits of coding over routing in a randomized setting,” inProceedings
of 2003 IEEE InternationalSymposiumon Information Theory, June
2003.

[2] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” inProceedingsof 41st Annual Allerton Conference
on Communication,Control, andComputing, October 2003.

[3] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in
Proceedingsof 41st Annual Allerton Conferenceon Communication,
Control, andComputing, October 2003.

[4] D. Lun, M. Medard, T. Ho, and R. Koetter, “Network coding with a
cost criterion,” MIT LIDS TECHNICAL REPORTP-2584, 2004.

[5] Y. Wu P. A. Chou and S.-Y. Kung, “Minimum-energy multicast in
mobile ad hoc networks using network coding,”submittedto the IEEE
Transactionson Communications, 2004.

[6] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,”IEEETransactionson InformationTheory, Submitted July
2003.

[7] R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung, “Networkinformation
flow,” IEEE Transactionson Information Theory, vol. 46, pp. 1204–
1216, 2000.

[8] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Transactionson Information Theory, vol. 49, pp. 371–381, 2003.

[9] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactionson Networking, October 2003.

[10] C. Fragouli and E. Soljanin, “Information flow decomposition for
network coding,” submittedto the IEEE Transactionson Information
Theory, 2004.

[11] B. H. Bloom, “Space/time trade-offs in hash coding withallowable
errors,” Commununicationsof the ACM, vol. 13, no. 7, pp. 422–6, July
1970.

[12] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” in Proceedingsof 40th Annual Allerton Conferenceon
Communication,Control, andComputing, 2002.

