Issues in Peer-to-Peer Networking:
a Coding Optimization Approach

Christopher S. Charig Tracey Hd, Michelle Effros’, Muriel Médard, and Ben Leonty

* Department of Electrical Engineering, California Ingti#wf Technology, Pasadena, CA 91125, USA
T Research Laboratory of Electronics, Massachusetts utsstitf Technology, Cambridge, MA 02139, USA
¥ School of Computing, National University of Singapore, géipore 117417, Republic of Singapore
E-mail: {cswchang, tho, effrg@caltech.edu, medard@mit.edu, benleong@comp.nusgedu.s

Abstract—In this paper we consider a linear optimization
approach for studying download finish times in peer-to-peer
networks that allow but do not require coding. We demonstrate
that using the network coding framework simplifies analysis even

in scenarios where the optimal solution does not require coding.

For example, we use the network coding framework to disprove
the claim of Ezovski et al. that in the absence of coding, the
sequential minimization of file download times minimizes the

average finish time over all users. We also use this framework

to study the effect of requiring reciprocity, a typical feature

of incentive-compatible protocols. Lastly, we show that for a
dynamically changing network scenario, coding can provide a
robust and optimal solution that outperforms routing.

I. INTRODUCTION

solution for minimizing the Min-Min finish time in the uplink
sharing model. They further claim that following the Min4Mi
strategy minimizes the average finish time over all routing
strategies.

In Section IV, we use a counterexample to disprove
Ezovskiet al’s claim that the Min-Min strategy minimizes the
average finish time. Like7], [8], we assume that all peers stay
in the system after completing their own downloads. We @eriv
our counterexample using the linear programming approéch o
Wu et al. from [9]. We also extend the LP to study the effect
of a reciprocity constraint. Finally, we show that codingca
improve robustness to unexpected network changes.

Our investigations underscore two benefits of the network

Peer-to-peer (P2P) file distribution algorithms are arvecticoding framework. First, the framework makes the problem of

field of research in both academid][and industrial P]
settings. P2P algorithms are desirable for their scatgbi

finding optimal solutions tractable; even when routing sefi
to obtain the optimal performance, finding the optimal nogti

single content provider (server) to thousands of users. PgRyvide robustness in dynamically changing network scenar
systems achieve these benefits by exploiting the bandwidthjgs

the peers.
While network coding has been applied to P2P systems Il.

to improve robustness and maximize throughp8}, [the . . .
performance gain of network coding over routing in a P2P We use the uplink sharing model &{ The nework is fully

system remains a topic for further research.4h) Peb et al. connected, and the upload capacity of each node (including

. . T . .~ all peers and the server) is initially the only constrainte W
consider the dissemination of multiple messages using €[gos

. . discuss the system performance in terms of download finish
based protocol, showing that in annode network, network _ : . . o N
. . S times when there is a single server with a finite file to distieb
coding speeds message dissemination from tielog(n))

for uncoded schemes to tin®@(n) for random linear coding. tr;)eg}gglple peers. We consider the following performance

PRELIMINARIES

In [5], Mundinger and Weber introduce an uplink sharing

model that assumes a fully connected network where eactt) Min-Min Finish Time:The Min-Min finish time strategy

peer is constrained only in its upload capacity. 6h Chiu et

al. show that network coding does not increase multicast
throughput in this scenario. Y], Mehyaret al. investigate a
few small networks of this type, studying optimal stratediar
minimizing (a) the finish time of the last peefb) the average
finish time over all users; an¢:) the Min-Min finish time,
which sequentially minimizes the finish time of the remagnin
peer with the highest upload capacity until all peers finfeirt
downloads. In 8], Ezovski et al. present an optimal routing

This work has been supported by the Lincoln Lab from AFRL cactt
no FA8721-05-C-0002 and by Singapore Ministry of Educatioant R-252-
000-348-112.

sequentially minimizes the finish time of the remaining
node with the highest capacity. Precisely, Tetbe the
finish time for thei*” node when nodes are ordered from
largest to smallest upload capacity. Then the Min-Min
strategy is the strategy that achieves

(File Size

: min T} (Server Upload Capacity (1)
T; 2 min{T,|T; = T},Vj < i}

The optimization is over all possible routing or coding
schedules that satisfy the nodes’ uplink capacity con-
straints.



2) Min-Avg Finish TimeThe Min-Avg finish time strategy )
minimizes the average finish time over all users. If peers r, 1 ULy [
stay in the network until all downloads are completed, d't= m Z Zt’f
then peers finish in the order of highest to lowest upload =1
capacity as in the Min-Min strategy. To represent Min-Min as a linear function 6f we introduce

Both metrics can be applied either with or without recif‘1 weighting vector such thato; > ws > ... > wy, and set

. . . +~~~+ m +...+ m m . . . .
procity constraints. = [t wxbeten @w] The Min-Min objective

function is _

[1l. LINEAR PROGRAMMING FORMULATION T 1 & /
d't=— wj t
m 2 | 2t

Jj=1

Let vy and vy,...,v, denote the server and peers re- i=1
spectively in a single-servern-peer P2P network. Node Given this framework, the search for the most efficient

v € {vo,..., v, has uplink capacity:(v). All peers remain : : i
in the network after finishing their downloads. It is therefo ?l%vnfsacé:gc?ifgg ?r%?og:]zséslgf:é Egg\:\?nﬁ?;?]?s(t? tphrgb

always optimal for higher capacity peers to finish earllethimization variabled;(e) andz(e) represent the virtual flow

than lower capacity peers since their greater upload BPAGH nodei through edge: € £ and the total flow through edge

makes them more useful for serving other peers. We theref%re6 £, respectively. The virtual flowf;(¢) is the flow over

order the peers from highest to lowest upload capacity givi . , . ;
c(01) > o) > ++- > c(un). We describe each solution forrédgee that is useful to node. The LP is then given by

distributing a file of sizeF' from the server to the peers by t{rlin d’t
describing a sequence of phases. Each phase is a period i

which the upload strategies of all nodes are fixed—that is,’!" x(e) = fie), Vi€ {l,...,m}, Ve € &

in phaser each nodev € {uv,...,v,} allocates its upload x((va)mJ(.T))) )
capacity according to some fixed flow vector describing the T m) Ste, Vot eV, vr<1
proportion of nodev’s upload capacity used to upload data {7 ’
to each of the users ifivy, ..., vm} \ {v}. The duration of file) >0, Vje{l,...,m}, Vec& (2)
phaser equals the maximum over nodese {vy, ..., v, } Of " (r) ) ()
the total flow from node in phaser divided by the uplink D@0 =Y (w7 w)
capacity of nodey. To make this precise, we represent a full ) )
solution with I phases by the following time-expanded graph. F ifr=1

_ () () ()1 (1) -~ M _ .
LetV = {vy’,v;"’,...,um’ }2_1, wherev,”’ represents node =¢ —F ifi=0,7=1,.,Vj€{l,...,m}
v; in phaser € T = {1,...,I}. Let &€ denote the set of edges 0 otherwise

inthe time-expanded graph. Secontains two types of edges:_l_he first constraint sets the total flow on each edge to the

« Transmission edge = (UET?:%(/T)) corresponds 10 the maximum among all virtual flows over the edge; this value
transmission fromy; to i Wéthl?) the 7" phase. suffices for multicast network coding bylf]. The second
« Memory edgee = (v;"’,v;"") corresponds to the constraint requires that the duration of each phase be the
accumulation of received information from previous timenaximum, over all nodes, of the time required for nadeo
steps. Memory edges have infinite capacities. deliver its flow for the given phase; we calculate this valae a
Each transmission edge exists within a single phase. Eahk total flow out of node divided by the upload capacity of
memory edge crosses from one phase to the next. Ag]in [v. The third constraint requires that all flows be non-negativ
[8], we assume continuous data flow and allow each nodeThe last constraint guarantees the conservation of flowlat al
forward data immediately upon recéiptFurther, each node nodes in the network.

can transmit data to multiple nodes simultaneously. In [9], the LP is stated without an explicit proof. We provide
Since there always exists an optimal strategy with< a proof in the extended version of this pap&@][
m [10], we setl = m and treate”, 7 € {1,...,m} as the

sink nodes of the time-expanded graph. ket (¢1,...,t,) IV. MIN-MIN vS. MIN-AVG FINISH TIMES

denote the vector of phase durations. Pgefinishes its  In this section, we show by example that routing algorithms

download in thej*" phase, so its finish time i5; = >°7_, t,. achieving Min-Min finish times do not necessarily minimize

Both the Min-Avg and Min-Min objective functions can bethe average finish time. This contradicts Claim 1 8h [

described as linear functions of vectbr For Min-Avg, let A counterexample with five peers is shown in Fig.The

d= [z m=1 L] Then the Min-Avg objective function source has upload capaci2, and each peer has upload

is capacity8. We use the LP2) to find optimal flow solutions for

Min-Avg and Min-Min. We then show that routing is sufficient

'This simplifying assumption is not realistic in practice sinaodes tq achieve the optimal solutions in both cases. We prove the

typically cannot send out data until they receive at leasioakbof a certain . . . . .. .

size. As a result, optimal download times achieved using thisahgive ~EXIStENCE _Of an optimal routing §0|u“0n by e>$pI|C|tIy |4ibg

lower bounds on the download times that can be achieved irigeac the identities of the flows (see Fig). The labeling procedure



File size: 256, Upload capacity for the server 32)pload capacities for all peers 8
(A peer stays after completing download)

(b) Min-Min finish time solution: Finish times {®.615, 12, 15.039, 18.120} and average finish:t26355

Fig. 1. Optimal flow solutions for a P2P network wishpeers and upload capacity constraiate) = 32 andc(i) = 8, i € {1,...,5}. Each graph shows
a single phase. Edges are labeled with the total amount of flomgahe edge in that phase. Recall thadenotes the duration of thé" phase. Min-Avg
scheduling (a) has smaller average finish time than Min-Miredaling (b). The main difference comes from the bold link in.red

Fig. 2. A routing realization of the optimal network codingw®mn from Fig. 1. Each edge carries the same amount of information as the condisgy
edge from Fig.1. Edges are labeled with the identity of the information beframsmitted. The correctness of the first two phases is easgrify. In the
later phasesCy C C, D> C D, D3 C D, E3 C E\ Ea, B4 C E can be any subsets satisfying causality. The other data flows, Z, U, W are from
nodes that have the entire file.

is simplified by noting that by th&” time step, the first peers scheduling, pees sends data to peetsand2 only. For Min-
each have all of the data. As a result, for ftie 1)* phase, we Avg scheduling, pees sends data to peets2, and3 (the bold
only need to check if peerfis+-2,i+3, ..., m can send distinct link in red in Fig. 1(a)). Sending data to pe@rdelays peer
data to peer + 1. In this example, the average finish time’s finish time in the second phase but significantly reduces
for Min-Avg is less than that of the Min-Min solution, whichthe duration of the third phase.

contradicts Claim 1 in§]. Let M be the maximal number of
users that can finish in thebtttleneck timg F'/c(0). In [8],
the authors tried to prove Clain by first showing that it
is necessary to minimiz& " 7; in order to minimize the

We observe empirically that the Min-Avg and Min-Min
strategies can differ for networks with more thdnpeers.
For most randomly generated capacity values, the differenc

oY m between the finish times resulting from the two strategies is

average finish timg_;_, 7. HOVX?X?“ the counterexample inp ;616 byt small. When the peers all have the same upload
Fig. 1 shows that minimizing_;_, " T is not necessary for capacities, the gap increases with the number of peers. The
minimizing >_;~ | T;. difference between the finish times of Min-Avg and Min-Min

In the example of Fig.l, the main difference betweenis 0.032% for the 5 peer example in (Figl), and0.171% for
the two strategies occurs in the first phase. For Min-Mian example with 10 peers, all with capacity constraint



This example illustrates the power of the network codin 1 Source and 5 Peers with File 256, ULcap=[16,8,6/4;2:32]
framework for routing problems. Finding an optimal routing T
solution directly is often extremely difficult. Using thevgh
LP, we can find an optimal coding solution in polynomia
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time. In some cases, applying our labeling strategy to tl o **° ftay(“:';;fA‘i\g)) 1
. . . —4A— Leave IN—Avg,

resnltlng cod_mg_solutlon aI_Iows us '.[0 dem_onstrate that ti 15k _ _ _ Stay (Min-Min) |1

optimal solution is also achievable with routing alone. ~ & — Leave (Min-Min)

V. RECIPROCITY CONSTRAINTS

[N
&
T
I

Reciprocity is a concept used in incentive-compatible pr
tocols to encourage users to operate in a manner that bene
the entire network. In this section, we show how the L
approach can be used to study the effect of reciprocity. T
goal of reciprocity constraints is to encourage peers ngni

Minimum average finish time
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the network to help in distributing information to other tse 0 o1 02 03 Rg-c‘i‘pmci?y-ionstg-n‘ip 07 08 09 1
A number of simple models for reciprocity are possible. Fc.
example, one model of reciprocity sets a reciprocity cantsta (a) Heterogeneous Capacities
p € [0, 1] and imposes the constraint thatshould send t@,
approximately the same amount of informationvasends to 155 _ 1 Source and S Peers with File 256, ULcap=[8:8:8:8:8:32]
v; in each phase—more precisely, the two flows should diffi Stay (Min-Avg)
by at most a factop. The reciprocity constraint can be appliec 15|| 5 Leave (Min-Avg) i
to virtual flows as Sl
— B8 — Leave (Min—Min)

1451

pfi(0 07 < £ 07047 < fi(0l7 0l
or to actual flows as

px( (7—) (T)) < x(ng)’UET)) <T( (T) (‘F)).

Minimum average finish time

Lemmal shows that the two definitions are equivalent sinc
fi(i,5) = x(i,4) for all 4,5. A variety of other definitions
of reciprocity are possible. One alternative way to mod
reciprocity is to set a limit on the absolute difference besw
the cumulative amount sent in each direction. Since both T 03 o7 o5 o5 o7 o5 o9 1
these constraints are linear, either one can be added tarthe Reciprocity constant p

The examples that follow use the first model.

(b) Homogeneous Capacities
Lemma 1. For any P2P file distribution network there eX|stsF

3. The minimum average finish time versus reciprocity cortgt Recall
an optimal solution in which 9 9 procity otz

that p = 0 means no reciprocity, and = 1 means a strict reciprocity. The
() () ) (1) o graphs plot average finish times of Min-Avg and Min-Min schigdy for (a)
fi(v; ) Uj ) = x(v; » U5 ) forall (4,5), 7 heterogeneous (Upload capacities: se’2rand peers(16, 8, 6, 4, 2}) and
(b) homogeneous (Upload capacities: seB&and peers) upload capacities.
By Lemmal, definitions of reciprocity in terms of; (4, j)

and those in terms of(i, j) are always equivalent.

i (r) (1) (T) () (™)
Proof: For a given flow solution, we consider two caseg¥hich fj(%‘) ﬂéj) ) < @y, J "). since (v]”, v;') =
1) £07 07 < 2™ vy and 2) 0% oy = maxk fk( ",v;7), there exists somé # j for which

J ) ’J

a(w", J(T)) For the first case, we partition the total flow/x (v, v"”) w(w” 0{7). since (v}, v\”) >
x(va),vJ(.T)) into the portion that contains the virtual flow;(v,” , jT) the given solution sends:(v{”,v\”)) —
£ ,va>) and the part that does not. Note that the sed; (v, . J(T ) bits from peerv; to peerv; for use by peer

ond part contains information that is linearly dependent dn but all of these bits are linearly dependent on bits already
information already received at peey. As a result, node; known to peem As a result we can remove these redundant
can serve any node, that relies on this information without z(v; 2 j ) fi(v @7 v; ) linearly dependent bits fromz
sending this part of the transmission. The following argnmetg v; (r) leaving the rest of the solution unchanged. ™

makes this precise. _ When considering incentive-compatible mechanisms such
We wish to ShOW that there eX'StS an optimal solutiogs reciprocity where non-altruistic peers leave upon cempl

such that f; (v, ](T)) = w(Um ") for all 4,j. SUp- tion, there is an inherent design tension between optimizin

pose that an optimal solution has an ec(gé , ;T)) for individual and average finish times, in that average finisteti



File size: 256, Upload capacity for the server : 32Jpload capacities for peers : {16, 8, 6, 4, 2} (MirA\vg Scheduling )

£,=2.286 1,=2.960
(a) Peers Staying : Finish times {8, 10.286, 12,846605, 19.011} and average finish time: 13.109

@ 168.02 @ 217.43
13.47
@ 10.50 @ @

t,=10.6667, £=0 =3.368 t,=5.251 £=6.795
(b) Peers Leaving : Finish times {10.667, 10.667035, 19.286, 26.081} and average finish time148.

Fig. 4. Optimal Min-Avg flow solutions for a network with hetgreneous capacities case and a strict reciprocity constk&e consider both (a) the case
where peers stay after completing download and (b) the caseewgeers leave the network after completing download. A itkout an arrow denotes a
bidirectional link that has the same amount of flow in each timac Without the reciprocity constraint where peers stagt eave after completing download,
the average finish times ai®.517 and 15.756, respectively. Note that peérand2 finish at the same time in the first phase for (b).

can be improved by delaying the completion time for fast peer VI. ROBUSTNESSBENEFIT OFCODING
so that they continue to contribute upload capacity. We simp
note that for any given objective function and ordering afge  In this section, we show that network coding can improve
finishing, we can use the LP formulatio®) vith the following the P2P networks robustness against unforeseen eventasuch
additional linear constraint—requiring all outgoing flowsrhh  changes in upload capacity, changes in connectivity, oesod
a peer that completed its download to be zero after its finighining or leaving the network unexpectedly.
time: For instance, consider the following scenario with a file of
Zm((vi(f), vgf))) < C(vzgf)) —0, vvzgf) eV, i<r<I size256, a server of capacit$2, aqd 6 peers.whose cgpacit.ies
(3) are{16,8,8,8,8,8}. For the static case without reciprocity,
we obtain an optimal flow solution from2)( and find a
Figure 3 shows Min-Avg and Min-Min finish times for corresponding routing solution, as described in Sedib(see
example heterogeneous and homogeneous P2P networksTith 5). Now suppose that the network follows an optimal
both examples the upload capacity of the servesds The solution up to the fourth phase, when an unexpected event
upload capacities for the peers &, 8, 6,4,2) in the het- occurs. By then, the fastest three peers have finished their
erogeneous network an(B,8,8,8,8) in the homogeneous downloads. As a result, these peers have the complete fde, an
network. Results for reciprocity coefficients varying frain We treat them as part of an augmented server. This effegtivel
to 1 are included, where = 0 means no reciprocity, and increases the server's capacity fréfa to 64. In the optimal
p = 1 means strict reciprocity (i.e;(e) = x(¢’) for all pairs). routing solutiony" andv" use phase to send tas{") some
Reciprocity constraints are applied to all nodes exceptter of the data that; andvg received from the server in previous
server. phases. (The relevant flows are highlighted in red in Biy.
As expected, the minimum average finish time increasébe rest of the data is sentabff) by the server. Therefore,(l4
as p increases. We note, however, that in these exampleggeives directly from the source some of the same infoonati
increasing reciprocity from0 to 1 increases the minimal that v§4) and vé4) have previously received from the server.
average finish times for Min-Min and Min-Avg strategies byBefore the fourth phase, botly andwvg receive data only from
less thanl0%. In Fig. 4, we show an optimal Min-Avg flow the server and only in the first phase. In a routing solution,
solution for a sample case with a strict reciprocity € 1) the server can only time share between sending information
and hetherogeneous upload capacities and peers (a) staknmwn to vs and information known tay and information
(b) leave the network after completing their downloads.  known to both. In contrast, in a network coding solution, the

()
v;



File size: 256, Upload capacity for the server 32)pload capacities for peers {16, 8, 8, 8, 8, 8}
(A peer stays after completing download)

t4'=2.6263
(Interruption)

(Original)

Fig. 5. Optimal flow graph for the example of Sectiwh for both coding and routing. Note that in this case,and vy finish at the same time in the
first phase (the second phase has zero duration). In the s&ttvork, the duration of the fourth phase2i§967s. Note that neithews nor v can send the
whole data that were received from the server in the first @ifaghlighted in red). Instead, the server (including sg¢ethould compensate by sending the
repeated data. Before the end of the fourth phas#, at 12.4038s, an interruption occurs. Until themy receives the repeated data, the amount.56637.

TABLE |
FINISH TIMES FOR EACH CASE(SERVER CAPACITY IS DECREASED Td.1) VII. CONCLUSION

In this paper, we apply a linear programming approach

EiriFTime oo Cl%d(')%g Rougggsg‘a'f) RO“tg‘??éXVOFSt) based on network coding to analyze download finish times
Finish Time ofvs || 38.19 2052 63.04 in a P2P network. We disprove the claim i8] [that Min-
Avg. Finish Time || 16.27 21.25 30.25 Min scheduling achieves the minimum average finish time for
* Finish times for the first 3 peers are same for all cases. routing. We also investigate the effect of reciprocity gsthe

LP. Lastly, we show that coding can provide a robust optimal
_ o solution, outperforming routing in dynamically changingtn
server can send linear combinations of these subsets of gy scenarios. Ultimately, we expect that the LP can be used
data. , . to gain insights into how to design practical P2P algorithms
Now suppose that at time & (73, T4), the connectivity be- 50 1o predict how different factors will affect the straeey

tween the augmented server and the(gamaingz)g peers dexregss can be used in practice and the resulting performance.
greatly, and, probabilistically, either;™ or vs~’ leaves the

system. Without prior knowledge of which peer will leave the REFERENCES
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