
Hydra: A Massively-Multiplayer Peer-to-Peer
Architecture for the Game Developer

Luther Chan, James Yong, Jiaqiang Bai, Ben Leong, Raymond Tan
National University of Singapore

ABSTRACT
We present the design and implementation ofHydra, a peer-to-peer
architecture for massively-multiplayer online games. By support-
ing a novel augmented server-client programming model witha
protocol that guarantees consistency in the messages committed
when nodes fail, existing game developers can realize the bene-
fits of a peer-to-peer architecture without the burden of handling
the complexities associated with network churn. Our key contribu-
tion is the development of a programming interface that is intuitive
and easy to use, and that can be supported transparently at the net-
work layer. We have implemented a prototype of Hydra and we
demonstrate that our proposed architecture is practical bydevelop-
ing two games under the Hydra framework: a simple “capture the
flag” tank game and a squad-based real-time strategy (RTS) game.
Our experience in developing these games suggests that our pro-
posed programming model is suitable for game development. Our
preliminary experiments also show that Hydra imposes only asmall
message overhead and is thus scalable.

1. INTRODUCTION
Massively-multiplayer online games have been a huge commer-

cial success in recent years. Existing deployments of such games
have been built on a server-client architecture, even as some have
claimed that such centralized architectures are inherently unscal-
able [20]. This claim has been shown to be untrue by Blizzard’s
World of Warcraft, which has some 8.5 million players globally as
at March 2007, approximately 500,000 players online at any one
time, and servers supporting several thousand players simultane-
ously [6].

Nevertheless, we believe that it is still worthwhile to develop
a peer-to-peer architecture for such games because by exploiting
the bandwidth and computational capabilities of the clienthosts,
their deployment costs can be significantly reduced and in some
cases, their performance improved with reduced latencies.For this
reason, there have been a large number of proposals of peer-to-peer
architectures for networked games [18, 4, 16, 23, 15, 5].

Our key insight is that the server-client model is well-understood
and works well. Therefore, instead of forcing game developers to
have to think differently when developing their games for a peer-
to-peer environment, our approach is to support the server-client

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors.
NetGames ’07 September 19–20, 2007, Melbourne, Australia

model transparently, thereby insulating game developers from the
complexities of network churn in such an environment.

In this light, we adopt a new approach inHydra, our network
architecture for peer-to-peer massively-multiplayer games. Instead
of addressing issues of efficient event delivery and multicast over-
lays, Hydra seeks to provide a simple augmented server-client pro-
gramming model to the game developer and implements a set of
protocols to support the required interface. We hide the complex-
ities associated with the recovery from node failures (i) byimpos-
ing some conditions on how the game application should process
incoming messages, (ii) by having the game application provide an
interface to the network layer for the checkpointing and restoration
of application game state, and (iii) by providing basic guarantees
on consistency in message delivery without using locks [1] or con-
currency control [10].

Also, we understand that it is probably infeasible to deploycom-
mercial games on a purely peer-to-peer architecture because for all
practical purposes, such games will require support for billing and
persistent storage. We believe however that this is not a concern be-
cause it is not difficult to implement such functionality in aseparate
centralized system and have the basic peer-to-peer game integrate
with these functions into a hybrid architecture [20].

The key contribution of our work is in the development of a pro-
gramming interface that is intuitive and easy to work with. We
demonstrate that our proposed architecture is practical byimple-
menting two games over Hydra: a simple “capture the flag” tank
game and a squad-based real-time strategy (RTS) game. Our expe-
rience in developing these games suggests that our proposedpro-
gramming model is suitable for the game development. Our prelim-
inary experiments show that Hydra imposes only a small message
overhead and is thus scalable.

The remainder of this paper is organized as follows: in Section 2,
we provide a review of existing and related work. In Section 3, we
describe the programming model and interface of the Hydra archi-
tecture and in Section 4, we describe how we support that interface.
Our evaluation results are presented in Section 5. Finally,we dis-
cuss future work in Section 6 and conclude in Section 7.

2. RELATED WORK
There have been a number of proposals for supporting peer-to-

peer networked games and, in general, the focus of these proposals
has been on the synchronization of game state across hosts, typi-
cally using a DHT substrate. Knutsson et al. proposed the useof the
Scribe publish-subscribe system [7] (based on the Pastry DHT [21])
to support a simple model of a massively-multiplayer game [18].
Bharambe et al. likewise developed Mercury [4], a DHT-like rout-
ing protocol for multi-attribute range queries. They claimthat be-
cause massively-multiplayer games have less stringent latency re-

quirements than first-person shooters (FPS), the multi-hoplatency
arising from the underlying DHT lookups is acceptable and they
validate their system through simulations. There has also been a
number of other DHT-based proposals in the literature [16, 23, 15].

Bharambe et al. subsequently came to the conclusion that “lookups
in DHTs can be too slow for finding required replicas” for interac-
tive games like Quake II and thus developed Colyseus, a scheme to
perform speculative fetching based on locality and predictability in
data access patterns [5]. They evaluated Colyseus by running ex-
periments with a modified Quake II FPS engine and demonstrated
that the load per node is lower than that for a centralized server
architecture.

In addition to peer-to-peer approaches, there are a number of
other distributed architectures for peer-to-peer games. Cronin et al.
proposed amirrored architecture, which is a hybrid peer-to-peer
and server-client architecture [8]. Rhalibi et al. proposed a sim-
ilar architecture implemented on JXTA where a DHT is used as
the underlying communication substrate and validated it byimple-
menting a game called “Time Prisoners” [20]. Assiotis et al.also
proposed an architecture with multiple servers each responsible for
one region of the virtual game world [1]. The focus on their work
however is in achieving efficient event delivery, replication consis-
tency and liveness, and not on fault tolerance. Our work differs
from these works because our focus is on developing a program-
ming interface that can be supported transparently at the network
layer, instead of designing a network architecture for efficiency or
reliability. Optimal Grid [17], is a project that attempts to achieve
a similar goal, but in a Grid environment.

There are several proposed architectures fordistributed virtual
environments (DVEs) andcollaborative virtual environments (CVEs).
DVEs, like DIVE [11] and MASSIVE [13], were designed mainly
for local use and supported only a small number of participants.
CVEs differ from DVEs in that they focus on the collaborationbe-
tween avatars [3, 14]. None of these proposals address the specific
needs of modern multiplayer games and they typically assumethe
availability of IP multicast, like the distributed multiplayer game
MiMaze [19].

3. PROGRAMMING MODEL
Existing networked games tend to be locality-based, which means

that the virtual game world can be divided naturally into regions. In
fact, Hydra assumes that the game world is divided into disjoint re-
gions that are each managed by a single server. The client will
connect to the respective server that manages the region of the vir-
tual world in which the player’s avatar is currently residing. Clients
can only interact with other clients that are connected to the same
server. For games that require a smooth transition between two re-
gions, it is the responsibility of the game application to manage the
transition.

Hydra only delivers messages to the servers for the clients,it
does not actually manage the connections; all connections are man-
aged at the application layer by the game servers. The movement
of a player’s avatar from the region managed by one server to that
managed by another requires either the client to transfer its con-
nection from one server to the other, or to establish simultaneous
connections to both servers.

In this section, we define the interfaces for the game clientsand
servers, and the programming model that a game server is expected
to conform to in order to preserve correctness.

3.1 Game Client Interface
The network interface is relatively straightforward for the game

client: it can send either reliable or unreliable messages over UDP

to a game server, which is specified by a unique identifier and not
an IP address. Unreliable messages are each sent once on a best-
effort basis, while reliable messages are retransmitted until they
are successfully delivered. Hydra provides no ordering guarantees
for the reliable messages, but ensures that message ordering is pre-
served for unreliable messages. Unreliable messages that end up at
the server after later messages have been executed are simply dis-
carded. We are considering adding support for a blocking RPC-like
interface for the client.

3.2 Game Server Interface
The game server is implemented on the assumption that it is

solely responsible for a region of the virtual world. Messages are
delivered by Hydra to the server in a priority queue that sorts in-
coming messages from the clients in a partial ordering. The mes-
sages are sorted in ascending order according to a discrete times-
tamp, called atick, assigned by Hydra. The server will pop mes-
sages off the queue and process them, and the manner in which
the messages are processed must adhere to three conditions in or-
der for Hydra to guarantee that the game application is consistent
following the recovery of a failed node.

I. Simulation Pause. The Hydra system maintains a current tick
count that the game application may access withgetTick(). The
server should pause its simulation if the tick count of the messages
at the top of the queue is larger than the current tick count, i.e.
implement the following pseudocode in its simulation loop:

tick now = getTick();
while (now < currentTick) {

yield();
now = getTick();

}
currentTick = now;

Process messages from queue with tickt ≤ now.

In order words, the simulation must process incoming messages in
the main queue no faster than the current tick. If the currenttick
does not change, the game simulation will be paused indefinitely.

II. Simulation Determinism. The network interface for the
game server is similar to that for the game client: a server may also
send either reliable or unreliable messages to its clients over UDP.
However, the messages that a server sends to its clients should also
be synchronized with the simulation at the server. The assumption
is that the server will process incoming messages in batchesaccord-
ing to their ticks and that messages will only be sent at boundary
between ticks, i.e. if a message is sent by the server after all the
messages with tickt have been popped off the queue and all the
messages with tickt + 1 are still on the queue (and hence not yet
processed), then the outgoing message is the message correspond-
ing to the simulation state after all the incoming messages with tick
t have been processed.

The simulation should also be deterministic, i.e. if the virtual
game world is in a stateS before processing a batch of the messages
with tick t, the new state of the game worldS ′ and all the messages
that are sent after processing the batch of messages should be de-
terministic and dependent only on the contents of the processed
messages with tickt. While most games will require some form
of randomization, this requirement for simulation determinism can
easily met with the use of pseudo-random number generators and
pre-determined seeds.

III. Load/Save Interface. The game server must also support a
method to checkpoint and save its internal state to an outputstream
and a corresponding method to initialize its state from an input
stream. While this requirement may seem a little out of placefor a

Global
Tracker

Client Proxy

Slice

Hydra ServerHydra Server

Slice
Backup

Client

Figure 1: Hydra system architecture.

persistent game world, many existing single-player games do sup-
port some form of load/save functionality hence this requirement is
not unreasonable. Like outgoing messages, a checkpoint is to be
taken at boundary points where all the messages with tickt have
been processed and before any with tickt + 1 are processed.

If the simulation application fails to adhere to these conventions,
Hydra cannot guarantee that in the event of a failover, the state of
the game will necessarily be consistent. Our experience in devel-
oping games under the Hydra framework has convinced us that the
three conditions described above are unobtrusive and can easily be
satisfied by a game developer.

4. SYSTEM ARCHITECTURE
Due to space constraints, we are only able to provide a brief

overview of the Hydra system architecture in this section. While
Hydra is a peer-to-peer distributed system and each Hydra node has
both client and server functionality, the client and servermodules
are described separately for clarity. The various components of the
Hydra system are shown in Figure 1.

The client module of the Hydra system consists of two compo-
nents: the game client and theclient proxy. The game client is
a typical client that is oblivious to the Hydra system, except for
the fact that instead of sending messages directly to the network,
it sends messages through the proxy; similarly, instead of reading
directly from the network, incoming messages for the game client
are offered by the client proxy in a priority queue similar tothat at
the server.

The game servers, as described in Section 3.2, are implemented
as components calledslices, each managing the game state for a
specific region of the virtual game world. Since it is possible for
a single host to manage several regions of the virtual game world
simultaneously when the number of clients is small, multiple slices
may be contained in a component called theHydra server. Each
Hydra node consists of a client module and a Hydra server.

Like all peer-to-peer systems, there is a rendezvous node that is
queried whenever a new node joins the system. This component
is called theglobal tracker. In addition to acting as the point of
contact for new nodes, the global tracker keeps track of the servers
and slices in the system. Since slices are addressed by unique slice
identifiers (sliceIDs), the global tracker is queried when a client
proxy or server needs to determine the IP address and port corre-
sponding to the server(s) hosting slices for a specific sliceID. We
have currently implemented the global tracker as a simple server
application. The global tracker can also be implemented as adis-
tributed system with a DHT [21].

4.1 Hydra in Operation
To recover from node failures, each slice is replicated a number

of times (determined by the degree of redundancy required).One
copy (usually the original) is theprimary slice, while the remaining
replicas are calledbackup slices. The primary slice together with
the set of backup slices is referred to as aslice instance.

Instead of sending messages directly to the network, a game
client will forward its messages to a client proxy. The client proxy
maintains a tick count (“message tick”) that is incrementedat reg-
ular intervals (currently150 ms in our implementation) and tags
outgoing messages with the message tick. A tagged outgoing reli-
able message is multicast to all the servers hosting the primary and
backup slices while an outgoing unreliable message is only sent to
the primary slice. The client proxy resolves the IP addresses and
ports of the hosting Hydra servers by querying the global tracker.

Each slice also maintains a tick count (“slice tick”). Primary
slices will automatically increment their tick counts at a rate equal
to that for the proxy ticks. Backup slices do not increment their tick
counts automatically.

When a Hydra server receives a message from a client proxy, it
will route the message to the appropriate slice. How a slice handles
a message depends on (i) whether it is a primary or backup slice;
(ii) the type of the incoming message (reliable/unreliable) and (iii)
its current tick count compared to the message tick.

Primary Slice. If the receiving slice is a primary slice and the
message tick is greater than or equal to the slice tick, the message is
added to the priority queue for the game application. If the message
tick is less than the slice tick and if it is unreliable, the message is
discarded; if the message is reliable, its tick will be updated to the
current slice tick and added to the queue. All messages (reliable
or unreliable) that are added to the queue are also forwardedto the
backup slicesin order and reliably (i.e. retransmitted if necessary).
These forwarded messages also contain the previous slice tick (i.e.
current slice tick− 1).

Backup Slice. If the receiving slice for a reliable message from
a client is a backup slice, the message is put into a separate backup
queue instead of the priority queue for the game application.

When a backup slice receives a forwarded message from the pri-
mary slice, the message is put into the game application priority
queue. Since the forwarded messages contain information onthe
last slice tick of the primary slice, the current tick of the backup
slice is updated accordingly. In effect, the backup slices do not need
to increment their local slice ticks automatically becausethey are
“clocked” by the primary slice. Reliable messages in the backup
queue are flushed when a corresponding copy is received from the
primary slice.

Game Server Messages. While Hydra differentiates between
the primary and backup slices, all slices behave as if they are the
sole server for their instance and they will generate outgoing mes-
sages for the clients accordingly. Since messages are forwarded
through the Hydra server, the key difference is that outgoing mes-
sages from the primary slice will be forwarded to the clientswhile
the outgoing messages from the backup slices will be discarded.

Like clients, the slices may also send either reliable or unreli-
able messages over UDP. Because of simulation determinism,the
primary and backup slices will all generate the same outgoing mes-
sages with identical identifiers. The uniqueness of the identifier al-
lows clients to determine if a received message is a duplicate during
the recovery process for node failures (which occasionallygener-
ates duplicate server messages).

Synchronization. To synchronize messages between a client
proxy and a primary slice, they separately maintain a tick count
that increments at regular intervals (currently150 ms). The client

Client Proxy Client Proxy

Client Client

Slice
Backup

commit
Primary
Slice

Reliable messages

Unreliable messages

Figure 2: Flow of messages from client to primary and backup
slices.

proxy synchronizes with the primary slice when it first joins. To
synchronize with a primary slice, a client proxy sends a syncmes-
sage containing the timestamp of the system clock. Upon receiving
this sync message, the primary slice responds immediately with a
message that contains the received timestamp and its current tick.

When the client proxy receives the response message, it is able
to estimate the round trip time (RTT) to the primary slice. The time
taken for a message from the client proxy to reach the primaryslice
is assumed to be half the RTT. Since the tick interval is known, the
client proxy adjusts its message tick accordingly so that messages
will arrive “just in time” at the primary slice (i.e. have a message
tick that is one larger than the slice tick).

If the primary slice receives a message from a client proxy with
a message tick that is smaller or significantly larger than its current
tick, it will inform the client proxy to synchronize again.

4.2 Handling Node Failures
The details of the failover protocol are somewhat involved and

due to space constraints, we provide only a brief overview inthis
section. The general principle is that each slice instance,compris-
ing of a primary slice and its set of backup slices, is responsible for
ensuring that it is replicated appropriately and handles the failure
of nodes independently from other slice instances. When a primary
slice starts up, it is configured to generate a pre-determined number
of backup slices.

Creation of Backup Slice. Backup slices are created by the pri-
mary slice in a few steps. First, the primary slice queries the global
tracker to obtain a list of available servers. Then it contacts an
available server and requests for a backup slice of the appropriate
type to be created. Once this is done, the associated client proxies
are informed to forward packets to the newly created (empty)slice.
It also updates all existing backup slices with the new list of backup
slices. Concurrently, the primary slice obtains a checkpoint of the
current game state via the load/save interface and sends theinitial-
ization data to the newly created backup slice. Once the transfer
of the checkpoint data is completed, the backup slice synchronizes
with the primary slice so that it will be able to determine thetick of
the primary slice. The backup slice also executes the set of received
messages from the checkpoint to bring its simulation state up to the
current state.

Failure of Backup Slice. Since the primary slice communicates
directly with the backup slices periodically via a reliablechannel,
the failure of a backup slice will soon be detected followinga time-
out. When a backup slice fails, a primary slice simply creates a new
backup slice to replace the failed backup slice.

Failure of Primary Slice. A backup slice expects to receive
committed messages from the primary slice periodically andhas
its tick clocked by the messages sent by the primary slice. Since
the backup slice is synchronized with the primary slice, it is able

to determine the tick of the primary slice. When the tick of the
backup slice is too far behind the tick of the primary slice, it will
check with the clients if the primary slice has timed out. If the
majority of the clients respond that the primary slice has timed out,
the primary slice is declared to have failed. The leader election
protocol is started and one of the backup slices takes over asthe
primary slice and uses the messages in its backup queue to bring
its simulation state up to date. The simulation resumes at the tick
the failed primary slice would be if it had not failed. While the
unreliable messages sent by the clients during the failoverperiod
will be lost, the reliable messages in the backup queue will still be
committed.

Failures of the game clients are handled by the game application
and not Hydra, though there is some state associated with theclient
proxies that is maintained at the servers and Hydra will perform
some basic house keeping. The handling of client failures can be
left to the game developers because it is an issue that they already
have to deal with at present and it almost always requires some
action at the application layer.

4.3 Load Balancing
We have only implemented the basic Hydra architecture and failover

protocol. A key factor that affects Hydra’s feasibility as aplat-
form for massively-multiplayer games is scalability. To some ex-
tent, Hydra delegates the responsibility for scalability to the game
developer. It is up to the game developer to divide the game world
into separate regions so the expected load on each slice (i.e. number
of clients connected) will not be excessive, or to implementsome
form of admission control. Scaling is achieved not by increasing
the number of connections per slice, but by increasing the number
of slices for the game world.

That said, it is our intention to explore some further optimiza-
tions for improving Hydra’s scalability and we plan to implement
the following two optimizations in the near future:

1. Dynamic Broadcast Tree. The primary slice often has to
broadcast a message to all the clients connected to it and the
number of messages scales linearly with the number of con-
nected clients. A straightforward way to improve the scal-
ability of this broadcast is to organize the connected clients
into a dynamic broadcast tree [22].

2. Server Migration. Networks are often heterogeneous. Hence,
if we can identify the higher-bandwidth nodes and have such
nodes host the primary slices, we will be able to support more
client connections. The same approach can also be adopted
to migrate a primary slice to a node that has the best latencies
to the set of connected clients.

5. EVALUATION
To demonstrate the practicality of the proposed architecture, we

implementedTankie, a simple “capture the flag” game where play-
ers control tanks with the goal of collecting a flag and bringing it
back to a home base. In addition, there are some obstacles in the
game world that can be destroyed and tanks can also destroy other
tanks.

In addition to a playable client, which allows a human player
to control a tank and play the game, we also have a number of
bot agents available that are able to play the game relatively well1.
1The code base for Tankie was used in a class assignment for the
introductory AI class at the National University of Singapore. In
the assignment, the students were tasked to implement an agent
to play the game. The two best-performing agents out of the 19
submissions for the class were used in our experiments.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12 14 16

Game Packets Received
Game Packets Sent

Number of Nodes

P
ac

ke
tr

at
e

(p
ac

ke
ts

/
s
)

Figure 3: Plot of game packets received and sent by a client.

Tankie was used for the preliminary performance evaluationof Hy-
dra.

5.1 Experiment Setup
We ran our experiments on six Pentium 4 PCs running Linux ker-

nel version 2.6.20 and connected with a switch. We ran between 3
and 15 separate instances of the Tankie client with one node ran-
domly chosen to host the primary slice and the client instances dis-
tributed over the six machines.

Each experiment was conducted as follows: clients are started
incrementally at 5 second intervals. At 2 minutes, a backup slice
is created on one randomly chosen node by the primary slice. At 7
minutes, the client instance hosting the primary slice is killed. Once
this failure is detected, the backup slice will initiate therecovery
protocol and take over as the primary slice. Two minutes later, at
approximately 9 minutes, the new primary slice will in turn create
another backup slice on another randomly chosen node. We end
the experiment at 14 minutes.

In our experiments, the primary slice failure detection protocol
detects the failure of the primary slice in around 5 to 8 seconds.
Since we only created one backup slice, leader election among the
backup slices is unnecessary.

5.2 Results and Discussion
In Figure 3, we plot the number of game packets sent and re-

ceived by the client. We recorded the packets sent by the game
application and the control packets sent by Hydra separately. Sim-
ilarly, we plot the corresponding data for the Hydra server in Fig-
ure 4. The number of Hydra control packets in both cases is not
plotted in Figures 3 and 4 because they are significantly smaller
than the number of game application packets. The extra message
overhead imposed is typically less than 1%. While the numberof
messages sent by the primary slice seems to grow inO(n2) as ex-
pected since it broadcasts update messages to all the clients, we
can reduce the number of outgoing messages by using a dynamic
broadcast tree [22].

Since response time is critical for networked games, we also
measured the duration between when a game client sends a mes-
sage and when it receives a response to that message. We call this
thecommand response time. In Figure 5, we plot the command re-
sponse time for a client node in a 15-node experiment. The steady
state command response is approximately300 ms, which is suffi-
cient to support realtime strategy and role-playing games.

At 7 minutes, the failover introduces a period of around 5 to 8
seconds of lag when the unreliable messages sent by the clients are

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16

Game Packets Sent By Primary Slice
Game Packets Received By Backup Slice
Game Packets Received By Primary Slice

Number of Nodes

P
ac

ke
tr

at
e

(p
ac

ke
ts

/
s
)

Figure 4: Plot of game packets received and sent by a Hydra
server.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2 4 6 8 10 12 14

C
om

m
an

d
R

es
po

ns
e

T
im

e
(

m
s
)

Time (min)

Figure 5: Plot of command response time for a client node in a
15-node experiment.

lost. We believe that this is acceptable since existing games occa-
sionally suffer from lags that last between 30 seconds to a minute.

6. FUTURE WORK
Hydra is still work in progress. One of the key limitations we

faced in the current evaluation was access to only small number of
machines for running our experiments and we were thus limited to
15 nodes. We found that this was the maximum number of node
instances that could be run on the available hosts without causing
excessive performance degradation due to CPU overload. Ourplan
is to procure more machines for experimentation in order to evalu-
ate the performance of Hydra with more than 15 clients connected
to the same slice. We also plan to evaluate Hydra over a wide-area
network and evaluate the feasibility of introducing congestion con-
trol.

We are currently implementingSquad 101, a procedurally-generated
multiplayer real-time strategy (RTS) game, where each player con-
trols a small squad of soldiers, in a virtual landscape, thatfights
other factions for territory and resources. The game was imple-
mented in Java using the Irrlicht 3D Engine [12]. In Squad 101, the
game world is divided into sectors. Each faction in the game may
build structures in a sector and use it as a launching area forattacks
on other enemy sectors. Under the Hydra architecture, each sector
is implemented as a slice that may be hosted on different nodes.

We have several reasons for implementing Squad 101. First, we
hope to demonstrate that the programming model defined by Hy-
dra is sufficiently flexible for supporting a RTS game. Second, in
Squad 101, the squads are able move from sector to sector. This ef-
fectively translates to the migration of connections between slices
and thus we can use Squad 101 to test and develop the connection
migration interfaces. Third, with Squad 101, the size of theland-
scape is unbounded. Sectors are procedurally generated andso in
theory, there can be infinitely many sectors and therefore beable to
support a large number of players. Last but not least, we would like
to attract real players to play our game so that we can validate the
Hydra architecture in a “live” setting. At the time of writing, Squad
101 is still under development.

Finally, while cheat prevention is of significant interest for net-
worked games [2, 9], cheat prevention for the Hydra architecture
remains as future work.

7. CONCLUSION
There have been many proposals for implementing networked

games on peer-to-peer architectures [18, 4, 16, 23, 15, 5]. Game
developers are however not experts in distributed systems and they
should not be required to be experts on peer-to-peer algorithms.
Hydra seeks to bridge the gap between the research community
and the game developers. Our key contribution is the development
of a programming interface that is intuitive and easy to use,and
that can be supported transparently at the network layer. Inour
work, we have demonstrated that it is practical to provide necessary
infrastructural support to implement a massively-multiplayer game
in a distributed peer-to-peer architecture by adopting an augmented
server-client programming model.

In addition, while Hydra is an architecture that was specifically
developed for massively-multiplayer online games, we believe that
the techniques described are more broadly applicable to a number
of peer-to-peer applications. In our description of Hydra above,
each slice instance in the Hydra system is described as a game
server object that manages one part of the game world. In practice,
we can also implement a chat service, an in-game email systemand
an in-game auction system each as a slice instance under the Hydra
framework. In fact, we believe that further work on the Hydrasys-
tem will provide us with insights on enabling server migration and
load balancing for a large class of peer-to-peer distributed applica-
tions.

8. REFERENCES
[1] M. Assiotis and V. Tzanov. A distributed architecture for

MMORPG. InProceedings of NetGames ’06, page 4,
October 2006.

[2] N. E. Baughman and B. N. Levine. Cheat-proof playout for
centralized and distributed online games. InINFOCOM,
pages 104–113, 2001.

[3] S. Benford, C. Greenhalgh, and D. Lloyd. Crowded
collaborative virtual environments. InProceedings of the
SIGCHI conference on Human factors in computing systems,
pages 59–66. ACM Press, 1997.

[4] A. Bharambe, M. Agrawal, and S. Seshan. Mercury:
Supporting scalable multi-attribute range queries. In
Proceedings of SIGCOMM 2004, August 2004.

[5] A. Bharambe, J. Pang, and S. Seshan. Colyseus: A
distributed architecture for multiplayer games. In
Proceedings of NSDI 2006, 2006.

[6] Blizzard Inc. World of Warcraft.
http://www.warofwarcraft.com.

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure.IEEE Journal on Selected Areas in
communications (JSAC), 2002.

[8] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An efficient
synchronization mechanism for mirrored game architectures.
In Proceedings of NetGames ’02, pages 67–73, New York,
NY, USA, 2002. ACM Press.

[9] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky, U. Sammapun,
I. Lee, and C. Tsarouchis. Is runtime verification applicable
to cheat detection? InProceedings of the NetGames ’04,
August 2004.

[10] S. Ferretti and M. Roccetti. Fast delivery of game events with
an optimistic synchronization mechanism in massive
multiplayer online games. InProceedings of ACE ’05, pages
405–412, New York, NY, USA, 2005. ACM Press.

[11] E. Frécon and M. Stenius. Dive: a scaleable network
architecture for distributed virtual environments.Distributed
Systems Engineering, 5(3), November 1998.

[12] N. Gebhardt, T. Alten, C. Stehno, G. Davidson, A. F. Celis,
and J. Goewert. Irrlicht engine.

[13] C. Greenhalgh. Awareness-based communication
management in the MASSIVE systems.Distributed Systems
Engineering, 5(3), November 1998.

[14] C. Greenhalgh and S. Benford. Supporting rich and dynamic
communication in large scale collaborative virtual
environments.Presence: Teleoperators and Virtual
Environments, 8:14–35, February 1999.

[15] T. Hampel, T. Bopp, and R. Hinn. A peer-to-peer architecture
for massive multiplayer online games. InProceedings of
NetGames ’06, page 48, October 2006.

[16] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. InProceedings of
NetGames ’04, August 2004.

[17] J. Kaufman, T. Lehman, G. Deen, and J. Thomas.
OptimalGrid – autonomic computing on the grid, June 2003.

[18] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. InProceedings of
IEEE INFOCOM’04, March 2004.

[19] E. Lety, L. Gautier, and C. Diot. Mimaze, a 3D multi-player
game on the internet. InProceedings of the 4th International
Conference on Virtual System and Multimedia, volume 1,
pages 84–89, November 1998.

[20] A. E. Rhalibi and M. Merabti. Agents-based modeling fora
peer-to-peer MMOG architecture.Computers in
Entertainment, 3(2):3, 2005.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems.Lecture Notes in Computer Science, 2218:329–350,
2001.

[22] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito. A
distributed event delivery method with load balancing for
MMORPG. InProceedings of NetGames ’05, pages 1–8,
October 2005.

[23] A. P. Yu and S. T. Vuong. MOPAR: a mobile peer-to-peer
overlay architecture for interest management of massively
multiplayer online games. InProceedings of NOSSDAV
2005, pages 99–104, June 2005.

