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Abstract
Geographic routing is of interest for sensor networks be-

cause a point-to-point primitive is an important building
block for data-centric applications. While there is a signifi-
cant body of work on geographic routing algorithms for two-
dimensional (2D) networks, geographic routing for practi-
cal three-dimensional (3D) sensor networks is relatively un-
explored. We show that existing 2D geographic routing
algorithms like CLDP/GPSR and GDSTR perform poorly
in practical 3D sensor network deployments and describe
GDSTR-3D, a new 3D geographic routing algorithm that
uses 2-hop neighbor information in greedy forwarding and
2D convex hulls to aggregate node location information.
We compare GDSTR-3D to existing algorithms, including
CLDP/GPSR, GDSTR, AODV, VRR and S4, both in a real
wireless sensor testbed and with TOSSIM simulations to
show that GDSTR-3D is highly scalable, requires only a
modest amount of storage and achieves routing stretch close
to 1.
Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-

work Protocols; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—wireless com-
munication
General Terms
Algorithms,Performance

Keywords
3D geographic routing, sensor networks, GDSTR

1 Introduction
There is a significant body of work on geographic routing

algorithms for two-dimensional (2D) networks [1,10,15,17,
18]. Geographic routing is of interest for sensor networks
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because a point-to-point primitive is an important building
block for data-centric applications [8, 21, 25]. They are typi-
cally more scalable than alternatives because by exploiting
geometric information on the network topology, they can
guarantee packet delivery with less storage [10]. Typically,
the storage required is proportional to node density, and this
makes them practical for implementation in sensor operat-
ing systems like TinyOS, which does not support dynamic
memory allocation.
More recently, there have been a number of practical de-

ployments of three-dimensional (3D) sensor networks [3, 7,
9], and also a corresponding interest in geographic routing
algorithms for 3D networks [4, 5, 19]. However, to the best
of our knowledge, the 3D geographic routing algorithms pro-
posed are mainly only of theoretical interest because they
are designed to work with special topologies like unit ball
graphs (UBGs).
In this paper, we show that existing 2D geographic rout-

ing algorithms like CLDP/GPSR [10, 11] and GDSTR [17]
perform poorly in practical 3D sensor network deployments
and build upon GDSTR to develop a 3D geographic routing
algorithm that works well in a practical 3D sensor network
deployment. We highlight two key observations from our
work.
One, geographic routing in 3D topologies is intrinsically

harder than routing in 2D topologies [4], since greedy for-
warding tends to encounter more local minima in general 3D
topologies. Surprisingly, we found that the simple strategy
of extending greedy forwarding by using 2-hop neighbor in-
formation significantly improves the greedy forwarding suc-
cess rate for 3D networks and thereby improves geographic
routing performance.
Two, it is not entirely straightforward to extend existing

2D geographic routing algorithms to implement a 3D ge-
ographic routing algorithm because three-dimensional data
structures are complicated to implement and costly to both
store and compute. Among the previously proposed 2D algo-
rithms, GDSTR [17] which uses 2D convex hulls is a natural
candidate for extension to three dimensions because it is the-
oretically oblivious of dimensionality. However, we found
the naive approach of replacing 2D convex hulls with 3D
convex hulls to be impractical. 3D convex hulls require sig-
nificantly more storage and are much more computationally
costly, since in addition to the points on the hull, auxiliary



data structures are needed to support operations with them.
Also, the CC2420 radio used by many sensor nodes supports
only packets up to 127 bytes in size and the cost of transmit-
ting 3D hulls can be prohibitive.
We found that we can extend GDSTR to three dimensions

by approximating 3D convex hulls with two 2D hulls and still
achieve excellent routing performance for 3D networks. Our
new algorithm, which we call GDSTR-3D, forwards packets
greedily as long as it can find a neighbor closer to the desti-
nation than the current node. If the packet ends up in a local
minimum, the node then attempts to forward the packet to
a neighbor that has a neighbor closer to the destination than
itself. If this fails, GDSTR-3D switches to forwarding the
packet along the edges of a spanning tree which aggregates
the location of the nodes in its subtrees using two 2D convex
hulls.
We show in both testbed experiments and TOSSIM sim-

ulations that GDSTR-3D is able to guarantee packet deliv-
ery and achieve hop stretch close to 1. GDSTR-3D also
scales well for networks of up to 3,200 nodes, and has
smaller memory and maintenance bandwidth requirements
compared to other point-to-point routing algorithms like
AODV, VRR and S4 for large networks. Given these proper-
ties, we believe GDSTR-3D is an attractive choice for rout-
ing in large 3D wireless sensor networks. For small sensor
networks, any of the existing routing algorithms would prob-
ably suffice.
The remainder of this paper is organized as follows: in

Section 2, we provide a review of existing and related work.
In Section 3, we describe GDSTR-3D and its implementa-
tion in TinyOS. We present our experimental results on the
Indriya wireless sensor testbed [3] in Section 4 and our sim-
ulation results on TOSSIM in Section 5. Finally, we discuss
our work in Section 6 and conclude in Section 7.

2 Related Work
Geographic routing algorithms were first proposed for

ad hoc wireless networks because it was believed that they
would be able to guarantee the delivery of packets using only
local information [1, 10]. The original proposals used two-
dimensional coordinates and are based on face routing [14]
(originally called Compass Routing II), including GFG [1],
GPSR [10], GPVFR [18] and the GOAFR+ family of algo-
rithms [15]. The correctness of these algorithms depended
on certain assumptions on the network graph, which were
unfortunately typically violated in practical networks, ren-
dering them infeasible in practice [26].
Kim et al. developed the Cross-Link Detection Proto-

col (CLDP) [11, 13] which can planarize arbitrary network
graphs correctly. Unfortunately, it turns out that planariza-
tion is an extremely costly process [17]. A lazy variant
of CLDP that only performs the planarization on-demand
helps in some scenarios [13], but it does not change the fact
that planarization is still costly when required, especially for
three-dimensional graphs. Also, it does not help that face
routing algorithms are sensitive to the face-change rule [12].
An efficient face-change rule does not guarantee correctness,
while a correct face-change rule typically requires the com-
plete exploration of a face and is therefore extremely costly.

Face routing algorithms are also typically not very efficient
at finding the shortest path around a routing void because
they do not have access to sufficient information to decide
on the direction of void traversal [18].
Leong et al. developed GDSTR [17] to address the is-

sues with both face routing and the costs of CLDP planariza-
tion. The key idea is to use two distributed spanning trees
rooted at opposite ends of the network to “approximate” a
planar graph. When greedy forwarding fails, GDSTR pro-
vides delivery guarantees by effectively performing a depth-
first search (DFS) on these trees. The search is highly effi-
cient because each node in the tree aggregates information
on all its children using a convex hull, thereby allowing the
search tree to be pruned efficiently. While one tree is suffi-
cient for correctness, the use of two trees provides GDSTR
with two alternative paths when it needs to route around a
void and sufficient hints to pick the right path. GDSTR was
shown to perform better than other existing face routing al-
gorithms like GPSR and GOAFR+ for 2D networks [17]. In
this paper, we extend GDSTR to three dimensions using two
2D convex hulls to aggregate node locations, instead of using
3D hulls.
There has also been other recent attempts to extend 2D ge-

ographic routing algorithms to three-dimensional networks.
Durocher et al. [4] proved that there does not exist a deter-
ministic local routing algorithm for 3D networks that guar-
antees delivery of messages. To address this issue, Flury and
Wattenhofer proposed a randomized geographic routing al-
gorithm called Greedy Random Greedy (GRG) routing [5]
for UBG networks that is based on random walk. They
showed that if d is the length of the optimal path between a
given pair of source and destination nodes, then the expected
length of the route obtained by any randomized or even de-
terministic routing algorithm is given by W (d3). While a
random walk might be of theoretical interest, it is clearly not
practical. In fact, their results show that GRG incurs mes-
sage overhead greater than flooding for sparse networks be-
tween 2,000 and 5,000 nodes in size. Liu et al. proposed
a three-dimensional analog to face routing called Greedy-
Hull-Greedy (GHG) routing [19], based on network hulls
constructed with partial unit Delaunay triangulations. Like
planarization, the distributed computation of Delaunay tri-
angulations is a hard problem [16] and so GHG is not likely
to be usable in practical networks with arbitrary topologies.
Closely related to our work are geographic routing algo-

rithms based on non-Euclidean coordinate systems, includ-
ing VPCR [21], LCR [23], BVR [6], and S4 [20]. VPCR
is based on polar coordinates, is not as efficient as geo-
graphic routing algorithms and incurs significant overhead
under node and network dynamics. The others use coordi-
nates based on landmark nodes (beacons). The major draw-
back is that they typically need to maintain a large number
of beacons (about 30 to 40) to achieve routing performance
comparable to geographic routing algorithms and they either
have to resort to flooding when packets end up at local min-
ima [6] or maintain O(

√
n) state [20], where n is the network

size. If the addressing is based on hop counts to beacons,
i.e. BVR, it is a practical concern for existing sensor net-
works because the IEEE 802.15.4-compliant CC2420 radio



hardware buffer is only 127 bytes in size and the addressing
would take up most of the packet. S4 assumes the avail-
ability of a location service to map destination nodes to the
corresponding beacon node.
Caesar et al. developed VRR [2], a routing algorithm

based on distributed hash tables. To route to its successors
on the virtual ring, a node sets up and maintains forwarding
entries to its successors and predecessors along multi-hop
physical paths. As a result, a node has routing table entries
for paths towards its neighbors in the ring and also for the
nodes on the paths between them. VRR greedily forwards a
packet towards the node with the closest ID to the destination
ID in the routing table. The routing state per node is roughly
O(

√
n). For a large network, O(

√
n) can be quite significant

and there are concerns over the message overhead required
to maintain the state.

3 GDSTR-3D
There are many challenges in extending and implement-

ing GDSTR for 3D sensor networks. First, because TinyOS
does not support dynamic memory allocation, we need to
pre-allocate memory for all the routing state that need to be
stored per node. Second, the CC2420 radio supports only
packets up to 127 bytes in size and has a limited data rate.
Thus, it is not practical to transmit 3D convex hulls with a
large number of vertices. Third, existing sensor motes like
the TelosB motes [27] have limited DRAM and flash mem-
ory. Finally, the precision of floating point operations is lim-
ited, which might lead to inaccuracies in the numerical com-
putations.
GDSTR forwards packet greedily until a local minimum

is encountered. When a packet ends up in a local minimum,
GDSTR uses hull trees to route the packet around the void in
a deterministic way. A hull tree is a spanning tree where each
node has an associated convex hull that contains within it the
locations of all its descendant nodes in the subtree rooted at
the node. GDSTR switches back to greedy forwarding once
it finds a neighbor closer to the destination than the local
minimum.
GDSTR-3D differs from GDSTR as described in [17] in

the following ways:
1. Aggregation with two 2D convex hulls instead of one.
In GDSTR, a 2D convex hull is used to aggregate the
locations of the nodes in a subtree; in GDSTR-3D, two
2D convex hulls are used to approximate a 3D convex
hull.

2. Two-hop greedy forwarding. GDSTR forwards pack-
ets greedily like other 2D geographic routing algo-
rithms [1, 10, 15, 18]. GDSTR-3D uses two-hop in-
formation for greedy forwarding. While this requires
slightly more storage in the nodes, it does not incur
much additional maintenance overhead since existing
sensor nodes already have to broadcast their neighbor
information for bidirectional connectivity checks.

3. Limit on hull tree fanout. In GDSTR, the number of
child nodes in the hull trees is not limited. Because
TinyOS does not support dynamic memory allocation,
the maximum fanout for GDSTR-3D has to be fixed at

compile time. This change might increase the depth of
the hull trees in some situations. In theory, such a limit
can also cause some nodes to be disconnected, but with
a sufficiently dense network, such a scenario is unlikely
to arise in practice when the maximum fanout is suffi-
ciently large.

4. Conflict hulls not implemented. In addition to its con-
vex hull, each node in GDSTR also maintains informa-
tion about the set of convex hulls, known as conflict
hulls, that intersect with its own convex hull. GDSTR-
3D does not implement this conflict hull optimization to
reduce storage costs. The key drawback of not imple-
menting the conflict hull optimization is that undeliv-
erable packets would always be forwarded to the root,
thereby increasing the load on the root nodes. We do
not expect to have a significant number of undeliverable
packets in practice. Furthermore, there is a simple op-
timization to address the overhead from undeliverable
packets, which is for the root to send a packet to the
source and the intermediate nodes to inform them that
a given destination is undeliverable so that the undeliv-
erable packets are dropped. In other words, this should
not be an important concern in practice.

3.1 Routing Algorithm
In this section, we provide a detailed description of the

GDSTR-3D routing algorithm.
GDSTR-3D first attempts to forward packets greedily, i.e.

to the neighbor whose coordinates is strictly closer to the
destination node in Euclidean distance than the current mini-
mum. The current minimum is defined as the node among all
the nodes previously visited by a packet that is closest to the
destination, i.e. we will set the current node as the current
minimum of a packet if it is closer to the destination than
the existing current minimum. In GDSTR-3D, a node also
records the one-hop neighbor information broadcast by its
neighbors, so if none of its immediate neighbors is strictly
closer to the destination, it will attempt to forward the packet
instead to the neighbor that has a one-hop neighbor that is
closer to the destination than the current minimum. Tree
forwarding is guided by the convex hull information in the
nodes and is guaranteed to find the destination if it is reach-
able. GDSTR-3D switches back to greedy when it finds a
neighbor that is strictly closer to the destination than the cur-
rent minimum.
The key insight in GDSTR (and GDSTR-3D) is that the

convex hulls of the nodes uniquely define a routing subtree
that must contain the destination node, if the packet is de-
liverable. The routing subtree is defined as the subtree com-
prising of all the nodes in the network whose hulls contain
the coordinates of the destination node. If a packet is not
deliverable, the routing subtree will be a null tree.
Tree Traversal. When a packet ends up in a local mini-

mum, it switches to tree forwarding mode by picking a suit-
able routing tree between the two available trees. It has been
shown that by picking the tree with a root nearer to the des-
tination, GDSTR is typically able to pick the more efficient
way to route around a void and achieve good routing perfor-
mance [17].
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Figure 1. Overview of GDSTR tree traversal.

The packet is first forwarded up the tree until it reaches the
routing subtree. Because the routing subtree must contain
the root of the tree by construction, the packet will either
reach a node on the routing subtree, or reach the root and is
found to be undeliverable. Once the packet reaches a node on
the routing subtree, we record this node as the anchor node.
Tree traversal is simply a systematic traversal of the routing
subtree using a right-hand rule, as illustrated in Figure 1.
Sketch of Correctness. Because the distance of the cur-

rent minimum to the destination is always strictly decreasing
in greedy forwarding, greedy forwarding is guaranteed to be
loop-free. By construction, if a packet is deliverable, the des-
tination node must be a leaf on the routing subtree and so if
greedy forwarding is unable to deliver the packet, the deliv-
ery can be guaranteed by traversing the entire routing subtree
systematically.
Packet State. Each GDSTR-3D data packet contains the

following state information:
• mode: current forwarding mode (Greedy/Tree),
• nmin: the node that is the current minimum,
• nanchor: the anchor node of the tree traversal, and
• root: tree identifier for the chosen forwarding tree.

mode indicates the currently used forwarding mode for the
packet, namely greedy or tree. nmin is the node at which the
packet switches from greedy to tree mode. It is used to de-
termine when to switch back to greedy forwarding. nanchor
is the first node on the routing subtree encountered by the
packet in tree forwarding mode. It is used to determine
whether a packet is deliverable. root is the unique identi-
fier of the tree which is currently used by the packet in tree
forwarding mode.
Formal Description. The following is a detailed descrip-

tion of the GDSTR-3D routing algorithm. In the hull trees,
each intermediate node maintains a fixed ordering of its child
nodes.

Algorithm(GDSTR-3D).When a node v receives
a packet p for destination t from a neighbor node
u:
1. Termination condition:

• v is the destination t, the packet is deliv-
ered.

• p is undeliverable, if:
– v is the root of the hull tree and its
hull does not contain the destination
t; or

– p.anchor = v and:
∗ v is the root of hull tree and u is the
last child node with a hull contain-
ing t; or

∗ u is the parent of v.
2. Check for switch to Greedy mode: If
p.mode = Tree and there is at least one 1-
hop or 2-hop neighbor whose distance to t is
strictly less than p.nmin, then:
• Set p.mode to Greedy.
• Reset p.nanchor and p.root to NULL.

If p.mode is Greedy go to step 3, otherwise
go to step 5.

3. Greedy mode:
• Set p.nmin to the current node v if v
is strictly closer to the destination or if
p.nmin is NULL.

• If there exists a 1-hop or 2-hop neigh-
bor w that is strictly closer to t than
p.nmin, then forward p to w if w is a 1-
hop neighbor, or forward p to a 1-hop
neighbor connected to w.

4. Switch to Tree Forwarding mode: Packet
has reached a local minimum. Set p.mode to
Tree.

5. Set tree information on p: If p.root is set,
continue to step 7. Otherwise, set p.root to
the root of the tree closest to t and go to step
6.

6. Find routing subtree and set anchor: If
p.anchor is set, continue to step 7. Other-
wise,
• if v is a leaf node forward p to its parent
in the tree with root p.root;

• if v’s hull contains the destination t, set
p.nanchor to v and forward p to the first
child whose hull contains destination t;

• Else forward p to v’s parent node in the
tree with root p.root.

7. Tree Forwarding: v will choose the next
hop based on its relationship with u.
• If u is v’s child:

– Forward p to the parent if u is the
last child of v that has a hull con-
taining the destination t.

– Otherwise, forward p to the next
child after u that has a hull contain-
ing the destination.



• If u is v’s parent, forward to the first
child with a hull containing the destina-
tion if such a child exists. Otherwise,
forward p back to u.

3.2 Hull Tree Construction
The construction of hull trees is done in two phases: tree

building and convex hull aggregation.
In phase one, root nodes are elected for each hull tree.

The root election process in GDSTR-3D is the same as that
for the 2D version, i.e. pick the nodes with minimum and
maximum x-coordinates (using the y and z coordinates to
break ties). Each node broadcasts its view of the root and
when a node learns of a new node with a smaller (or larger)
x-coordinate, it updates its view and broadcasts the new in-
formation. Eventually all the nodes will come to a consensus
on the two root nodes.
Each node picks the neighbor that has the minimal hop

count to the root for the tree as its parent. Ties are broken
by picking the node with the smaller distance to the root.
In our implementation of GDSTR-3D, we bound the storage
requirement by limiting the maximum number of children of
each node to 5, with a simple handshake mechanism.
3.3 Aggregation of Node Coordinates
In phase two, the coordinates of the nodes in the tree are

aggregated up the hull tree. Each node maintains informa-
tion about the hulls of its child subtrees and transmits its hull,
which is a region containing the locations of all the nodes in
its subtree, to its parent node for each tree. Since GDSTR-3D
uses two hull trees, each node will send separate aggregation
unicast messages to its parent nodes for each tree. This mes-
sage contains the identifier of the root node of the tree and the
coordinates of the vertices of its hull. Where necessary, the
size of the transmitted convex hull is reduced with the hull
point reduction technique described in [17] to fit the hull into
the message.
GDSTR uses 2D convex hulls. A straightforward exten-

sion to three dimensions would be to use 3D convex hulls.
It turns out that the implementation of 3D hulls in TinyOS
is not very practical. Auxiliary data structures like faces and
edges are needed to support operations like aggregation and
membership testing. This takes a lot of memory and incurs
high computational complexity.
We observed that the hulls are used to aggregate the coor-

dinates of the nodes in a subtree for quick membership test-
ing. In this light, we found that it is sufficient to use 2D
convex hulls to approximate a 3D hull by projecting nodes
onto orthogonal 2D planes. This process can be done in the
xy, xz and yz planes. We found that using 2D convex hulls in
two of these three planes was sufficient to achieve good per-
formance, so GDSTR-3D uses two 2D convex hulls in each
hull tree. We also investigated the use of a sphere to perform
the aggregation, but we found that a sphere does not work
well for sparse networks.
4 Evaluation on 3D Sensor Network Testbed
We evaluated GDSTR-3D by comparing it to AODV [22],

CLDP/GPSR [10, 11], GDSTR [17], S4 [20] and VRR [2]
on Indriya [3], a wireless sensor network testbed deployed
at the National University of Singapore. On Indriya, we had

31

29

30

2737

35
36

32

34 33 25

28

23

26

18

17
10

65

16

20411522

14 9

7

3

2

19 12 8

131121

24

(a) Level 1

50

48

49

51
53

44

38

43 40 42 45

47 75
68

60
69 61 65

6364
66

73

77
79

80

71

76
72

70

46

41

55

57 59

58 54

39

78

67

56 74

52

81

62

(b) Level 2

105

106
107 100

104

93

82 87
86

94102

85
92
84 97

8983

91 88 98

95

103

123

124

120 125 126

113

112

110
111119

115

116 117
114 12299

96

90

121

109118101 108

127

(c) Level 3
Figure 2. Node locations on different floors of the Indriya
testbed.

access to 120 TelosB [27] sensor motes deployed on three
levels of a building. The node locations for the testbed are
shown in Figure 2. Each mote has a TI MSP430 processor
running at 8 MHz, 10 KB of RAM, internal and external
flash memories of size 48 KB and 1 MB respectively, and a
Chipcon CC2420 radio operating at 2.4 GHz with an indoor
range of approximately 20 to 30 meters.
Since we implemented GDSTR-3D, it was relatively easy

to modify it to obtain GDSTR (without conflict hulls). The
source codes for CLDP/GPSR, S4 and VRR were obtained
from the respective authors. The implementation of AODV
used was taken from the source code distribution of VRR [2].
Because the sources were in TinyOS v1.x, we had to port
them to TinyOS v2.x. Care was however taken to ensure that
bugs were not introduced in the porting and in the process,
some minor bugs in AODV and VRR were identified and
fixed.
For S4, we used

√
n beacons, where n is the network size,

because this achieves a good balance between the storage
cost of the routing state and the performance according to
Mao et al. [20]. We also enable the scoped distance vec-
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Figure 3. Plot of average node degree against network
size on Indriya.

tor (SDV) and reliable broadcast. For VRR, AODV and
CLDP/GPSR, we used the default settings in the code by
the authors. For GDSTR, we used two trees and limited the
maximum number of children for each node to 5.
To evaluate the performance of these algorithms, we ran

experiments with connected subsets of nodes. First, we
started with only sets of randomly-chosen nodes on Level
1; next, we used randomly-chosen nodes on both Levels 1
and 2; finally, we used randomly-chosen nodes distributed
across all three levels. Experiments were repeated with 5
random subsets of nodes for each network size. The aver-
age densities of the resulting network topologies are shown
in Figure 3. The average node degree falls slightly for 90
nodes because it turns out that the network topologies are
less dense when 90 nodes are distributed over three floors,
compared to 75 nodes distributed over two floors.
For the geographic routing algorithms, GDSTR-3D,

GDSTR, and CLDP/GPSR, coordinates were assigned to
the nodes based on their actual physical locations. Because
GDSTR and CLDP/GPSR are 2D algorithms, they ignore the
z (height) coordinate and work only with the x and y coordi-
nates.
In each experiment, we booted up the nodes sequentially

and let the algorithms converge for 15 minutes, which we
found was more than sufficient for the tested algorithms, ex-
cept VRR, for which we had to wait for 50 minutes. Next,
we routed packets between randomly chosen source and des-
tination pairs for another 45 minutes. For VRR, since the
convergence is significantly slower, we let it run for 10 min-
utes. For S4 and GDSTR, we sent one data packet every 200
ms. For VRR, we sent one data packet per second to use
the same parameter settings as the original paper [2]. For
CLDP/GPSR, we also sent one data packet per second since
it usually incurs a larger hop stretch and each packet stayed
in the network for a longer time, thereby increasing the prob-
ability of collisions.
AODV was evaluated somewhat differently because it is

a reactive protocol. Our current implementation of AODV is
also naive; when a node receives a packet for which it does
not have a path cached, the packet is dropped and a route
request is sent. So, for the first 15 minutes, we randomly se-
lected source and destination pairs using a fixed random seed
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and routed the packets between those pairs at a rate of one
packet every second to fill the route caches. For the next 45
minutes, we used the same random seed and routed packets
between the same pseudo-randomly picked source and des-
tination pairs to measure routing performance.
4.1 Success Rate
In Figure 4, we plot the packet delivery rates for the var-

ious algorithms. These numbers exclude link-level losses,
which are inevitable in a practical setting.
We observed that as the nodes are spread across more lev-

els, the greedy forwarding success rate drops steeply from
90+% to about 40%. This fits with our intuition that routing
in three dimensions is harder than routing in two dimensions.
It was however quite surprising that by simply using 2-hop
neighbor information, we can achieve a greedy forwarding
success rate of approximately 95% even when nodes from
all three levels are used.
As expected, GDSTR-3D, GDSTR and S4 are able to

achieve 100% packet delivery success rates. While CLDP
achieves a delivery success rate of 100% when all nodes are
in the same level of the building, delivery failures are experi-
enced when the nodes are spread across two or more levels.
These losses are likely caused by the faulty first-intersection
face change rule used by CLDP/GPSR [12]. The success
rate of AODV is also close to 100%, because we routed the
packets during the first 15 minutes to fill the route caches.
We found that the success rate of VRR is less than 100%

in our experiments because the link failure detection pro-
tocol implemented does not always work. In particular, in
the VRR implementation, a link is disabled if the percentage
of received packet falls below a threshold, and re-enabled
when the reception ratio is greater than it, using an exponen-
tially weighted moving average (EWMA) filter. However,
our testbed has a fair number of lossy links, where the packet
losses vary over time. Link quality oscillations might then
trigger the frequent setup and tearing down of paths, causing
packet losses.
Also, VRR seems to be highly sensitive to its configu-

ration parameters. In our evaluations, we used the default
parameters that came with the VRR source code. It was not
clear how the parameters ought to be tuned. The parameters
include (i) the join interval, which specifies how often a node
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Figure 5. Plot of hop stretch for GDSTR with different
settings on Indriya.

will try to set up virtual paths, (ii) the probe timeout, which
specifies how often a path will expire if a node is waiting for
repair, (iii) the first join interval, which specifies how long
we should wait before the link state stabilizes and (iv) some
other parameters for the link quality estimation. In the origi-
nal VRR paper [2], the success rate was reported to be 100%
for 67 nodes. In our experiments, VRR also achieves ap-
proximately 100% success for networks with 70 nodes, but
it does not perform quite as well when the number of nodes
is significantly larger or smaller.
4.2 Hop Stretch
We define hop stretch as the ratio of number of hops in the

path between two nodes achieved by a routing algorithm to
the number of hops in the shortest path between them. This
is a measure of routing efficiency.
First, we investigated how the hop stretch varied for dif-

ferent variants of GDSTR. We investigated the effect of three
factors: (i) 2D versus 3D; (ii) different coordinate aggrega-
tion methods; and (iii) 1-hop greedy forwarding versus 2-hop
greedy forwarding. For coordinate aggregation, we com-
pared the use of a sphere to 2×2D convex hulls and 3×2D
convex hulls. The results are shown in Figure 5.
As expected, GDSTR-2D performs worst, even though it

guarantees packet delivery. We applied GDSTR-2D by pro-
jecting the coordinates onto the xy-plane, and this means that
greedy forwarding is unable to exploit height information.
Two nodes that are close in the projection on the xy-plane
may not be spatially close to each other in 3D networks.
What is surprising however is that GDSTR-3D with one-hop
greedy forwarding is not significantly better. This is perhaps
best explained by the greedy forwarding success rates in Fig-
ure 4. One-hop greedy forwarding has a high likelihood of
ending up in a local minimum. On the other hand, GDSTR-
2D with two-hop greedy forwarding improves hop stretch
significantly for larger network sizes.
The best results were obtained for GDSTR-3D with two-

hop greedy forwarding. The aggregation method seems to
have very little effect since two-hop greedy forwarding al-
ready has a high success rate. However, we show in the next
section that the aggregation method matters for low density
networks.
In Figure 6, we compare the routing performance of
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Figure 6. Plot of hop stretch for various algorithms on
Indriya.

GDSTR to CLDP/GPSR, S4, VRR and AODV. It is clear
from these results that CLDP/GPSR is ill-suited for routing
in 3D, though incorporating 2-hop greedy forwarding can
likely improve its performance significantly for Indriya. S4
generally performs quite well; however, since the beacon se-
lection is random and the network is small, routing first to the
beacons might result in one or two additional hops, thereby
leading to a larger than optimal stretch.
The hop stretch of GDSTR-3D is very close to 1. AODV

also achieves a hop stretch close to 1 for small networks but
the stretch increases for larger networks. Because AODV
maintains routing tables by route discovery and updates the
table when a better route is discovered, it is not surprising
that the hop stretch is good since the Indriya is relatively
small and the maximal diameter is 5 hops.
The hop stretch of VRR is interesting. It is close to 1 for

networks with 60 and 75 nodes. However, like what we ob-
served in Section 4.1 for success rates, hop stretch is higher
in networks that are significantly larger or smaller. We sus-
pect that this has something to do with the tuning of the pa-
rameters for VRR but we have not been able to verify this
hypothesis.
4.3 Size of Compiled Binaries & Source Code
The sizes of the compiled binaries and the lines of code

for the implementations of the algorithms studied are shown
in Table 1. The size of the compiled binaries is an important
consideration for a practical sensor network because existing
sensor motes have limited memory. For example, the TelosB
mote [27] has only 48 KB of flash memory for the executable
binary. From these figures, it is clear that we do not have
a lot of memory left to add more features for most of the
algorithms. S4 assumes that availability of a location service.
Given that the S4 binary takes up 43 KB out of 48 KB of the
executable memory, it would be a challenge to fit a location
service in the remaining 5 KB of memory.
The number of lines of code required to implement each

algorithm, while not exactly an accurate or robust metric,
provides us with an indication of the relative complexities of
the algorithms investigated.
While reactive algorithms like AODV have typically been

regarded to be unscalable, the figures in Table 1 suggests that
for small sensor networks with cache-friendly traffic patterns



Table 1. Relative sizes of algorithms investigated.
Algorithm Compiled Binary Lines of

Size (KB) Code
GDSTR-3D 39.5 2,757
GDSTR [17] 33.8 2,641

CLDP/GPSR [10,11] 47.5 2,500
S4 [20] 43.2 3,997
VRR [2] 45.1 4,135
AODV [22] 21.1 1,294

and delay-insensitive applications, AODV can be an attrac-
tive option, given its relative simplicity compared to the other
existing point-to-point routing algorithms.
5 Simulation Results
While our experiments on the Indriya sensor network

testbed provides us with insights on the performance of ge-
ographic routing in a practical setting, testbed experiments
have limitations. The most obvious limitation is that of scale.
Indriya has only 120 nodes. Few testbeds have more than
several hundred nodes.
Moreover, while we can obtain a range of network topolo-

gies by selecting subsets of the available nodes to work with,
it is difficult for us to adjust the density of the network to
study its impact on geographic routing. In this light, we
conducted a set of simulation experiments on TOSSIM, a
simulator for TinyOS, in order to study (i) the effect of net-
work density, and (ii) the performance and costs of various
algorithms as we scale up to larger networks. In our sim-
ulations, we used an ideal radio channel and consider only
application-level losses and ignore all link-level (collision)
losses. We ignored the link losses since our evaluations in
the Indriya testbed already incorporates the effects of link
losses and our goal in this section is to compare the basic
algorithmic behavior of GDSTR-3D to other routing algo-
rithms.
Since CLDP/GPSR performs poorly in terms of rout-

ing stretch and packet delivery success rate and it incurs
high message overhead due to its periodic probing, we take
GDSTR (2D) [17] as the representative 2D geographic rout-
ing algorithm in our simulation experiments. We com-
pare GDSTR-3D to GDSTR-2D, AODV [22], S4 [20], and
VRR [2].
In addition to packet delivery success rates and routing

performance, we also attempt to quantify the costs of the var-
ious algorithms in terms of storage and message overhead.
The error bars shown for the plots in this section are for 95%
confidence intervals.
5.1 Effect of Network Density
To study the effect of network density, we generated 200-

node connected random topologies within a fixed 3D cubic
space of 2,000×2,000×2,000 and varied the network den-
sity by varying the radio range. Fifty different networks were
generated for each density.
We used a simple radio model: we choose a fixed radio

range for all nodes and two nodes can communicate if and
only if they are within radio range. Nodes are added at ran-
dom in the cubic space and we ensure that the topologies
generated are connected by removing nodes that are not con-

 0

 0.2

 0.4

 0.6

 0.8

 1

 4  6  8  10  12  14  16

3D, 2-hop
3D, 1-hop
2D, 2-hop
2D, 1-hop

G
re
ed
y
fo
rw
ar
di
ng
su
cc
es
sr
at
e

Average node degree
Figure 7. Plot of greedy forwarding success rate against
network density.

nected and repeating the process until the required number
of nodes (200) is reached.
In each experiment, we sent a packet between every pos-

sible pair of source and destination nodes, for a total of
200× 199 = 39,800 packets for each experiment. For each
simulation, we boot the nodes sequentially and sent one
packet every 500 ms over a period of 20,000 s for each net-
work.
Like in Section 4, AODV was evaluated somewhat differ-

ently from the other algorithms for the simulations because
it is a reactive algorithm. While most algorithms were given
15 minutes to converge prior to the sending of the data pack-
ets, for AODV, packets were routed between source and des-
tination pairs chosen with a random seed to fill the AODV
route caches during this initial 15 minutes. The same ran-
dom seed was subsequently used to generate the data pack-
ets to measure routing performance. We also do not plot the
storage and overhead for AODV against the other proactive
algorithms because it is not meaningful to do so.
5.1.1 Greedy Forwarding Success Rate
In Figure 7, we plot the greedy forwarding success rates

for different network densities and for different forwarding
strategies in the studied topologies. In particular, we plot the
greedy forwarding success rates using 3D coordinates and
using 2D projections onto the xy-plane, with local informa-
tion of either one- or two-hop neighbors.
We can see that 3D greedy forwarding with 2-hop neigh-

bor information achieves the highest greedy success rate,
followed by 3D greedy forwarding with 1-hop neighbor in-
formation. There is a gap between these two strategies for
average node degree below 12; above average node degree
12, 1-hop greedy forwarding is sufficient to achieve almost
100% forwarding success. From these results, it is also clear
that with 2-hop greedy forwarding in 3D, the choice of ge-
ographic routing algorithm is not important for dense net-
works since greedy forwarding alone is often sufficient for
packet delivery.
Another key observation is that even though forward-

ing success rates for 2D projections will improve with net-
work density, greedy forwarding success seems to be capped
asymptotically at approximately 80% even with 2-hop neigh-
bor information. This suggests that 2D routing is not suffi-
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Figure 8. Plot of hop stretch against network density.

cient to achieve good performance, even for dense 3D net-
works.
5.1.2 Routing Performance
Figure 8 compares the hop stretch achieved by various

algorithms across different densities.
For GDSTR-3D, we also investigated the effect of ag-

gregating coordinates using three different data structures:
2×2D convex hulls, 3×2D convex hulls, and a sphere. Our
results show that the hop stretch of GDSTR-3D (2×2D)
is almost the same as GDSTR-3D (3×2D). As expected,
GDSTR-3D (sphere) has a higher hop stretch than GDSTR-
3D using 2D convex hulls because a sphere aggregates the
node locations less compactly than 2D convex hulls, and this
results in a higher false positive rate during tree traversal.
This effect is less pronounced for densities higher than 8 be-
cause of the high greedy success rates of around 95%. Be-
cause greedy forwarding success rates are significantly lower
when forwarding using the 2D projection than that when us-
ing 3D coordinates, GDSTR-2D performs poorly for 3D net-
works.
The stretch for S4 is comparable to GDSTR-3D. In fact,

S4 achieves better stretch for node densities below 7, while
GDSTR-3D has better performance above this threshold.
They show opposite trends: the hop stretch for GDSTR de-
creases with increasing density, while the hop stretch for S4
increases with increasing density. This is because GDSTR-
3D benefits significantly from the higher greedy forwarding
success rates at higher network densities. When the net-
work density is higher, the optimal routing path is closer to a
straight line; the beacons used by S4 are unlikely to lie on the
line connecting the source and the destination and therefore
S4 would incur some extra hops. For low density networks,
greedy forwarding has a much higher likelihood of ending
up in a local minimum and invoking the more expensive tree
forwarding mode.
VRR performs quite poorly, and achieves a stretch around

1.6 (though it is somewhat independent of network density).
We suspect that if the parameters for VRR were tuned appro-
priately, it might be possible to improve the routing perfor-
mance, though we did not manage to determine how to better
tune VRR despite trying many different parameter settings.
AODV performs somewhat better and achieves stretch be-
tween 1.2 and 1.3.
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Figure 9. Plot of average storage requirement against
network density.

5.1.3 Storage Cost
In Figure 9, we plot the average storage required per node

against network density. The storage incurred by GDSTR
consists mainly of the tree information, especially hull in-
formation of child nodes stored by each parent node. It is
quite clear that among the variants of GDSTR, GDSTR-3D
(3×2D) which stores three 2D convex hulls per node will
require the most storage followed by GDSTR-3D (2×2D)
and GDSTR-2D. GDSTR-3D (sphere) needs to store only
the center and radius of its spherical hull and so incurs the
least storage among the four. In general, the storage cost for
GDSTR increases linearly as the network density increases
since with increased densities, there are more neighbors.
S4 requires the least storage, mainly because it does not

use floating point values. The storage for VRR is compara-
ble to GDSTR-2D and the storage requirement also increases
with network density. All the algorithms are relatively com-
pact and on average requires less than 600 bytes of storage
for 200-node networks for the range of network densities in-
vestigated.
It turns out that the storage requirement is not uniform

among all the nodes and so we also plot the maximum re-
quired storage per node in Figure 10. In fact, the maximum
storage required per node is the key factor that determines
whether an algorithm can be deployed in a practical network.
Note that the TelosB motes only have 10 KB of RAM. The
maximum storage in VRR is about 2 to 6 times the aver-
age node storage, while the maximum storage for the rest is
about 2 to 3 times the average storage. None of the algo-
rithms requires more than 1,500 bytes of storage across the
range of densities studied.
We did not include the storage of AODV in these figures,

since the average storage required by AODV is dependent
on the traffic pattern, and the maximum storage required is
merely the size of the cache. For a 200-node network, stor-
age is most definitely not a major concern. Even in the worst
case where we allocate 200 entries for the cache, the total
storage is only 1,000 bytes (since each entry is 5 bytes in
size).
5.1.4 Control Traffic Overhead
We define the message overhead as the number of mes-

sages sent per node before an algorithm converges. We de-
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Figure 10. Plot of maximum storage requirement against
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Figure 11. Plot of control traffic overhead required for
convergence per node in number of packets against net-
work density.

fine convergence as the state when all the nodes in the topol-
ogy have gathered enough information required by the rout-
ing algorithm so that no further state updates are necessary.
We measured message overhead in terms of the number of
messages sent per node as shown in Figure 11 and the total
bandwidth consumed per node for those messages as shown
in Figure 12. Note that these numbers do not include the pe-
riodic stayalive messages where nodes broadcast their views
of their known neighbors. Such messages are needed to al-
low the nodes to check for bidirectional connectivity and to
react to node failures.
For GDSTR, the root information is propagated from the

root node to the leaf nodes and hull information is aggre-
gated from the leaves to the root. Hence, the number of mes-
sages sent per node is dependent mainly on the depth of the
spanning tree formed, which depends on the diameter of the
network and the position of the root node. There is there-
fore little difference in the number of messages that needs
to be sent for stabilization between the different variants of
GDSTR. Different hull aggregation methods will however
affect the size of the messages and the difference in band-
width requirements between the various GDSTR variant is
shown in Figure 12.
Using 3×2D convex hulls requires almost twice as much

bandwidth as spheres and GDSTR-2D. That said, the band-
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Figure 12. Plot of control traffic overhead required for
convergence per node in bytes against network density.

width overhead at 2,000+ bytes per node is relatively small.
Since GDSTR-3D (2×2D) shows similar performance as
GDSTR-3D (3×2D), with a lower storage requirement
and message overhead, we will only compare GDSTR-3D
(2×2D) with other algorithms in the subsequent sections.
The requirements for VRR and S4 are slightly higher than

that for GDSTR-3D. AODV is a reactive protocol while other
algorithms are proactive. The control overhead of AODV is
dependent on the traffic pattern and the cache size, hence it
is not meaningful to plot the control overhead of AODV for
comparison with the other algorithms. Our key observation
from these experiments is that the overhead for all the proac-
tive algorithms studied is somewhat independent of network
density.
5.2 Scaling Up
To investigate how various algorithms performed for large

network sizes, we generated random topologies from 50 to
3,200 nodes in size. For the network sizes 200 and smaller,
we used a 2,000× 2,000× 2,000 cubic space, while for
larger network sizes, we used a 3,000×3,000×3,000 cubic
space. By varying the radio range appropriately, we gener-
ated two sets of networks: low density networks with aver-
age node degree around 7 and high density networks with
average node degree 16. For each network size, we ran the
experiments on 50 random topologies. On each topology,
we forward approximately 40,000 packets, where each node
will send an equal number of packets to randomly-selected
destinations. The source nodes send the packets in sequen-
tial order, i.e. no two source nodes will send packets at the
same time. One data packet is sent every 500 ms over a pe-
riod of 20,000 s for each network. As before, we compared
GDSTR-3D to AODV, GDSTR-2D, VRR and S4.
5.2.1 Greedy Forwarding Success Rate
To characterize the network topologies studied, we plot

the greedy forwarding success rates when using 2D/3D co-
ordinates and either one- or two-hop neighbor information in
Figures 13 and 14. For low density networks, it is clear that
greedy forwarding becomes a harder problem as the network
size scales up. Two-hop greedy forwarding helps somewhat,
but is not sufficient to achieve 100% packet delivery. When
the network density is sufficiently high (at average node de-
gree 16), it is possible to achieve greedy forwarding success
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Figure 13. Plot of greedy forwarding success rate against
network size for low-density networks (average node de-
gree 7).
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Figure 14. Plot of greedy forwarding success rate against
network size for high-density networks (average node de-
gree 16).

rates close to 1 with 3D greedy forwarding, which means that
any 3D geographic routing algorithm will work very well. It
is also clear from these results that the use of 2D coordinates
(projections onto xy-plane) is definitely a bad idea for large
networks independent of network density.
5.2.2 Routing Performance
In Figure 15, we compare the hop stretch for different

routing algorithms with respect to network size for low den-
sity networks (average node degree 7). Under such a sce-
nario, S4 achieves the best and uniformly good stretch as
the network size scales up. GDSTR-3D achieves compara-
ble results, though the stretch seems marginally higher. The
performance gap between GDSTR-3D using 2-hop greedy
forwarding and GDSTR-3D using only 1-hop greedy for-
warding increases with network size. The stretch for 1-hop
greedy forwarding remains under 1.5 even at 3,200 nodes.
The stretch for GDSTR-2D even with 2-hop greedy forward-
ing is extremely high as the network size scales up. GDSTR-
2D with 1-hop greedy forwarding achieves an even worse
stretch, thereby demonstrating that it is indeed infeasible to
apply 2D geographic routing algorithms on large 3D net-
works.
The stretch for VRR is significantly higher than that for

GDSTR-3D and S4 and it gets worse with larger network
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Figure 15. Plot of hop stretch against network size in low-
density networks (average node degree 7).
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Figure 16. Plot of hop stretch against network size in
high-density networks (average node degree 16).

sizes. When the network size increases, both the size of the
VRR virtual ring and the number of hops in each virtual VRR
link increases. Because it is quite unlikely that a virtual path
will lie on the optimal path between a source and destination
pair, the increase in the number of hops in the virtual links
increases the stretch.
In Figure 16, we plot the hop stretch for different routing

algorithms with respect to network size for high density net-
works (average node degree 16). There is only one line for
GDSTR-3D because the performance for 1-hop and 2-hop
greedy forwarding are indistinguishable (due to high greedy
forwarding success rates). We find that GDSTR-3D achieves
stretch very close to 1. S4 is marginally worse (though less
than 1.2). The stretch for both GDSTR-3D and S4 remain
uniformly low even as the network size scales up. In con-
trast, the stretch for GDSTR-2D and VRR get significantly
worse as the network size scales up.
From Figures 15 and 16, we observe that AODV also

achieves relatively good hop stretch independent of network
size. The simulations for AODV for large networks how-
ever took significantly longer to complete than the other al-
gorithms, most likely because of large amounts of traffic gen-
erated by the flooding of the route requests.
To address potential concerns that the generated unit ball

graphs are not representative of real 3D sensor network
topologies, we repeated this experiment with a set of topolo-
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Figure 17. Plot of hop stretch against network size with
multiple obstacles (average node degree 10).

gies with obstacles. The networks with obstacles were gen-
erated by scattering at random approximately

√ n
50 cross-

shaped obstacles in n-node topologies. Each cross consists
of three perpendicular planar squares intersecting in the mid-
dle. The width of the crosses were 14 of the region width for
all network sizes. The effect of these obstacles is to cut off
communication between nodes where the line-of-sight inter-
sects an obstacle. For consistency, we varied the radio range
of the nodes to ensure that the average node degree remains
at 10 for the range of network sizes studied. As shown in
Figure 17, the stretch for GDSTR-3D remains low and is be-
tween that for the sparse (average node degree 7) and dense
networks (average node degree 16) with no obstacles. The
stretch for both AODV and VRR seem to be unaffected by
obstacles and remain low and independent of network size.
Overall, the performance of GDSTR-3D, AODV and VRR
are comparable.
5.2.3 Storage Costs
The maximum storage requirement per node for low den-

sity networks is shown in Figure 18. We omit the corre-
sponding graph for high density networks because the trends
are similar. From these results, we find that the storage cost
of GDSTR-3D increases very slightly with increasing net-
work size and this trend seems to hold true for all the differ-
ent aggregation methods. The maximum storage required for
2×2D hulls remains below 1,000 bytes even for 3,200-node
networks. The storage cost for S4 grows somewhat faster
than GDSTR, but it still remains less than 2,000 bytes for
3,200-node networks. In contrast, the storage cost for VRR
is significantly higher.
The asymptotic behaviors stem from how each algorithm

stores the information required for routing. GDSTR only
needs to store information about the neighbor and the aggre-
gated convex hull, hence it requires almost constant storage
space (though the hulls do tend to get larger as the network
size increases). S4 needs to store the route to each of the
beacons and the nodes inside the same cluster. Since the
number of beacons grows in the order of O(

√
n), the storage

cost grows in the order of O(
√
n) as well.

For VRR, each node maintains an entry for each virtual
path that includes the node. While DHTs typically maintain
onlyO(logn) routing entries per node, each VRR node main-

 0

 3000

 6000

 9000

 12000

 15000

 50  100  200  400  800  1600  3200

VRR
S4

GDSTR-3D (2x2D)
GDSTR-3D (sphere)

GDSTR-2D

M
ax
im
um
st
or
ag
e
pe
rn
od
e
(b
yt
es
)

Network size
Figure 18. Plot of maximum storage requirement against
network size in low-density networks (average node de-
gree 7).
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Figure 19. Plot of control traffic overhead required for
convergence per node in bytes against network size in
low-density networks (average node degree 7).

tains much more state than O(logn) since they are required
to also maintain entries for the virtual paths on which it is an
intermediate node. The number of virtual paths scales up sig-
nificantly with increasing network size and hence the storage
requirement also increases correspondingly. A contributing
factor for the increase in storage requirement between 200
and 400 nodes is that once we exceed 256 nodes, we need
two bytes instead of one to address each node.
5.2.4 Control Traffic Overhead
We plot the total bandwidth required per node to converge

for low density networks in Figure 19. Note that the lines
for GDSTR-2D and GDSTR-3D (sphere) are so close to the
x-axis that they are barely visible. As before, we omit the
corresponding graph for high density networks because the
trends are similar.
Among the algorithms investigated, GDSTR-3D incurs

the slowest rate of growth in maintenance bandwidth as the
network size n scales up. GDSTR-3D incurs a bandwidth
cost of approximatelyO(logn). The main source of the over-
head is the aggregation of hulls, where each update from
a child node will trigger an update message for the parent.
Hence, the cost increases with the depth of the tree, i.e. the
bandwidth cost has order of growth O(logn). These results
also show that for large networks, GDSTR-3D (2×2D) in-



curs a significant increase in maintenance bandwidth com-
pared to GDSTR-3D (sphere) and GDSTR-2D.
For S4, because each node needs to know its distance to

every beacon, the complexity grows with the number of bea-
cons, which has order of growth O(

√
n). There is a signif-

icant difference between the current implementations of S4
and GDSTR-3D. S4 attempts to aggregate messages from
multiple nodes before broadcasting an update; for GDSTR-
3D, a node sends out an update message immediately after
computing its hull using the latest update from a child node.
This implies that the aggregation algorithm for GDSTR-3D
can be further optimized to reduce the bandwidth require-
ment. Delaying the updates will however increase the con-
vergence time of the network, which is why we chose not to
implement this feature in our current implementation.
Compared to S4 and GDSTR-3D, VRR seems to incur

more message overhead. This is because the length of the
virtual paths are not fixed and can be arbitrarily long. Hence
in the construction and tearing down of the paths, we found it
difficult to select an appropriate timeout period. If the period
is too short, some of the paths might not have converged; if it
is too long, the algorithm would not be sensitive to topology
changes. As such, we cannot yet make a conclusive state-
ment about its scalability, though the signs seem to suggest
that it is less scalable than GDSTR-3D and S4.

6 Discussion
Comparing GDSTR-3D to VRR. We obtained the original

source code for VRR from the authors of [2]. We ported
the code to TinyOS v2.x and fixed a few minor bugs. From
studying the source code, it seems that there might be is-
sues with memory management and also with the current
link-layer implementation. In this light, it is possible that
we have not compared our algorithm to the “optimal” im-
plementation of VRR. Our results do however suggest that
VRR cannot achieve the same level of routing efficiency as
S4 and GDSTR-3D. This is actually not entirely surprising
since it is well-known that the virtual hops for DHTs do not
map well to physical proximity. Also because the VRR rout-
ing algorithm is a form of greedy forwarding, some amount
of inefficiency is to be expected since VRR does not natu-
rally exploit proximity information of the network topology
like S4 and GDSTR-3D.
It is worth noting that our goal is not to show that

GDSTR-3D is better than other point-to-point routing algo-
rithms. Instead, we merely wish to complete a comprehen-
sive survey of the major point-to-point algorithms proposed
thus far in order to better understand their tradeoffs in the 3D
sensor network setting. To the best of our knowledge, this
has not been done before.
Need for coordinates & coordinate resolution. Before

geographic routing algorithms can be used in a sensor net-
work, geographic (Euclidean) coordinates must be available.
For a small 100- to 200-node network, it might be possible
to assign coordinates manually. For large sensor networks
with thousands of nodes, manual coordinate assignment is
patently infeasible. A possible solution to the coordinate as-
signment problem is to use 3D virtual coordinates [28].
Geographic routing algorithms also require a coordinate

resolution service to map node identifiers to routing coor-
dinates. However, we note that even without a coordinate
resolution service, GDSTR-3D can be used for data-centric
applications that are tied only to the coordinates, provided
coordinates are available (either through manual assignment,
or by computation).
S4 faces a similar challenge since a location service that

maps the destination node to the nearest beacon also needs
to be available before S4 can be used for routing. In our
deployment, the S4 nodes obtain the coordinates of the des-
tination from a centralized location directory through a se-
rial port. Such a service would not be available in a typical
(non-testbed) deployment, and a distributed location direc-
tory similar to GHT [24] might be required.
Furthermore, S4 assumes that beacons are selected be-

forehand, i.e. the beacons are distributed evenly over the en-
tire network. However, if the network is turned on incre-
mentally, it might be necessary to re-elect the beacons and
initiate the coordinates of the nodes with respect to the bea-
cons again as the network grows. Since the flooding phase
can take more than 30 minutes, there are some feasibility
concerns over such an approach.
Towards a fairer comparison of point-to-point routing al-

gorithms. In summary, we believe that merely comparing
algorithms in terms of routing efficiency and costs is not suf-
ficient. Context and use case are also important.
While VRR and AODV might not be quite as efficient

as either GDSTR-3D or S4, they route on a flat namespace
which means that they can be used out of the box without
the need for a location service. To the best of our knowl-
edge, there is not much known about the cost of building a
location service (for S4) or a coordinate resolution service
(for geographic routing algorithms) for a sensor network. To
compare GDSTR-3D and S4 fairly to VRR and AODV, it
would be necessary to take into account the cost of such a
location service. We leave this as future work.

7 Conclusion
We have demonstrated that existing 2D geographic rout-

ing algorithms perform badly in 3D sensor networks and that
there is a need to exploit 3D coordinates for geographic for-
warding in such networks to achieve good performance. Fur-
thermore, the use of 2-hop neighbor information improves
greedy forwarding success rates at little cost, since the in-
formation is already contained in the periodic stayalive mes-
sages.
We present GDSTR-3D, a new geographic routing pro-

tocol for 3D networks that uses 2-hop neighbor information
during greedy forwarding to reduce the likelihood of local
minima, and aggregates 3D node coordinates using two 2D
convex hulls. We show in both testbed experiments and
TOSSIM simulations that GDSTR-3D is able to guarantee
packet delivery and achieve hop stretch close to 1. GDSTR-
3D also scales well to networks of up to 3,200 nodes and has
a smaller memory and maintenance bandwidth requirements
compared to VRR and S4 for large networks. Given these
properties, we believe GDSTR-3D is an attractive choice
for point-to-point routing in large three-dimensional wireless
sensor networks.
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