Uncovering a Hidden Wireless Menace: Interference from 802.11x MAC Acknowledgment Frames

Wei Wang, Qiang Wang, Wai Kay Leong, Ben Leong, and Yi Li School of Computing, National University of Singapore

RISING DEMAND FOR WIFI

RISING DEMAND FOR WIFI

WiFi hotspot market: Annual growth at **84%**

By the year of 2017

of total Internet traffic

Global WiFi Hotspot Market 2012-2016, by Research and Markets

Cisco Visual Networking Index forecast, 2012-2017

DENSE DEPLOYMENT OF ACCESS POINT

AP DENSITY MEASUREMENT

War-walking

WAR-WALKING

Eadenitifyeandwarzie and tom fiste Deich asea coample"

WiFi sniffer

WAR-WALKING

University campus

Residential area

Commercial area

AP DENSITY RESULTS

Scenarios	Median number of APs			
	Channel 1	Channel 6	Channel 11	Others
Commercial	6	6	9	< 1
University	8	6	5	< 1
Residential	9	15	10	< 4

INTERFERENCE MITIGATION

Current approaches:

 Regulate the tx power of the MAC Data frames from AP

Our key observation:

 MAC Acknowledgment frames from clients could also cause serious interference to neighbor cells

MAC ACK frames effectively <u>extend the</u> <u>interference range</u> of a hotspot

MEASURE THE IMPACT OF ACK INTERFERENCE

Experiment Setup

- Campus WLAN
 - Cisco AP (1140 series)
- Clients with Atheros adapters
 - 802.11a and 802.11n

POWER CONTROL OF ACK

POWER CONTROL OF ACK

<u>Key idea</u>

Gradually reduce the power of ACK, until the point just before the success rate of ACK starts decreasing.

Called Minimum Power for ACK (MinPACK)

Challenge

How can the ACK sender accurately estimate the success rate of ACK?

ESTIMATION OF ACK SUCCESS RATE

Feedback-based method

Accurate, but need to modify DATA sender!

ESTIMATION OF ACK SUCCESS RATE

Passive estimation method

Not perfect due to retx limit, but good enough in practice

PASSIVE ESTIMATION FOR BLOCK ACK

Problem: DATA sender could send any frame that has not been acknowledged

Solution: ACK sender maintains a history of frames received

More details in the paper

MINPACK PROTOCOL

EVALUATION OF MINPACK

Outline

- Gain of MinPACK
 - 11a vs. 11a in 20-node testbed
 - 11n vs. 11n in campus WLAN
 - 11a vs. 11n in campus WLAN
- Interaction with DATA power control
- Adaptation to client mobility

GAIN OF MINPACK

- 20-node outdoor 802.11a testbed
- Arbitrarily select 38 pairs of competing links, with UDP traffic

THROUGHPUT GAIN

Combined throughput, default power (Mbps)

THROUGHPUT GAIN

- MinPACK does no harm
- Median gain is 31%

Combined throughput, default power (Mbps)

THROUGHPUT GAIN

- MinPACK does no harm
- Median gain is 31%
- Passive method achieves similar performance to Feedback method

Combined throughput, default power (Mbps)

IMPROVEMENT OF FAIRNESS

MinPACK achieves better fairness for this link pair

IMPROVEMENT OF FAIRNESS

MinPACK achieves better efficiency for this link pair

IMPROVEMENT OF FAIRNESS

- Fairness is improved for most link pairs.
- Some link pairs have fairness and efficiency both improved.

POWER CONTROL OF DATA FRAMES IS NOT SUFFICIENT

MOBILITY

MOBILITY

CONCLUSION

- MAC ACK interference is common and serious
- MinPACK
 - Improve total throughput and/or fairness
 - Complementary to tx power control of DATA frames
 - Adaptive to mobility
 - Applicable to commercial hardware adapters

THANK YOU!

BACK-UP SLIDES

DISTRIBUTION OF ACK POWER REDUCTION

ACK is small, sent at low rate, and protected by EIFS

Number of ap for each channel or what? (make it clearer) How about other channels(ie. 2-5)?

Impact of mac ack interference: no need animation, add to next page at the corner, put 11/a and 11/n at the legend label, adjust color of the histogram, 'how does ' to 'how can'

Estimation of ack success rate: break up the animation, highlight the data sender is AP(hard to modify, put a pic here)

Passive estimation for block ack: 'the extra' to 'solution'

Evaluation of minpack: make the point direct to audience

Throughput gain: make lines darker, add animation to make it clearer

Distribution of ack power reduction: font problem to be fixed, power reduction important? Consider removing this slide

Power control of data frames is not enough: make it more natural to audience, use more solid pattern(hart to see), no need to say words at every step

Mobility: prepare for the doubt of c1 performance decrease, draw the location of c2 in the graph, draw the total throughput(prev vs. now)

