
Beyond Autograding: Advances in Student Feedback Platforms
 John DeNero (moderator) Sumukh Sridhara
 University of California, Berkeley University of California, Berkeley
 EECS Department EECS Department
 Berkeley, CA 94720 Berkeley, CA 94720
 +1 (415) 203-1943 +1 (510) 642-1042

 denero@cs.berkeley.edu sumukh@berkeley.edu

 Manuel Pérez-Quiñones Aatish Nayak Ben Leong
 UNC Charlotte Carnegie Mellon University National University of Singapore
 College of Computing and Informatics College of Engineering School of Computing
 Blackburg, VA 24060 Pittsburgh, PA 15213 Singapore 117418
 +1 (704) 687-8553 +1 (848) 702 1830 +65 6516 4240

 perez.quinones@uncc.edu aatishn@andrew.cmu.edu benleong@comp.nus.edu.sg

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

Keywords
Computer science education, automatic grading, autograders
1. SUMMARY
Automatic grading of programming assignments has been a feature
of computer science courses for almost as long as there have been
computer science courses [1]. However, contemporary autograding
systems in computer science courses have extended their scope far
beyond performing automated assessment to include gamification
[2], test coverage analysis [3], managing human-authored feedback,
contest adjudication [4], secure remote code execution [5], and
more. Many of these individual features have been described and
evaluated in the computer science education literature, but little
attention has been given to the practical benefits and challenges of
using the systems that implement these features in computer
science courses.
The goal of this panel is to answer common questions about how
these extensions to autograding affect courses in practice. Should
courses build their own submission and grading systems from
scratch, or is there real benefit to using an existing platform? Are
the platforms available today only applicable to specific courses?
Are some features only appropriate in CS 0 and CS 1 courses? What
aspects help most with scaling to large enrollments? What features
are difficult to deploy or confusing to students? What are past
mistakes from which the community can learn?

This panel brings together perspectives from the developers of
feature-rich platforms used by multiple courses. The panelists will

highlight recent research in extending autograder platforms to
address related problems in CS pedagogy, as well as tips for
choosing a platform and using it for the first time.
2. SUMUKH SRIDHARA

OK – okpy.org
OK is an open source autograding system developed at UC
Berkeley. It is used by the CS1 course (CS 61A) as well as four
other Computer Science courses at UC Berkeley. OK supports
programming projects by providing an automated tutor, a
submission system, autograding, human-authored code review, and
detailed analytics. As students progress through an assignment,
snapshots of their in-progress work are captured and stored by the
OK server along with data about passing tests and student progress.
The local OK client manages project submission and exposes a
variety of debugging aids for students while server-side
autograding runs secret tests in sandboxed Docker containers for
grading purposes.

The use of OK has made a large impact on the scalability of CS
61A to over 2,500 students per year. Debugging assistance features
have reduced the amount of instructor time spent answering
clarificatory questions [6].

The ability to collect in-progress work has yielded a large amount
of data for instructors and researchers that was previously
inaccessible when only a single final submission per student was
collected. In a single offering of a 1,400 person course, OK
collected over 3 million snapshots. For a single assignment, OK
collected an average of 349 snapshots per student [7]. This data is
used to provide instructors with reports about exactly how far along
students are in the assignment, how long students are spending on
each question, and common wrong answers.
Researchers have used the data from OK to integrate automatic
composition feedback, targeted conceptual hints, and dynamically
generated code fixes into the OK system.
Sumukh Sridhara has been a lead developer of courseware for CS
61A and the OK system at UC Berkeley, as well as head of the
course teaching staff. He is currently a graduate student in the UC
Berkeley EECS department.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author. Copyright is
held by the owner/author(s).

SIGCSE’17, March 8–11, 2017, Seattle, WA, USA
ACM 978-1-4503-4698-6/17/03

DOI: http://dx.doi.org/10.1145/3017680.3017686

3. MANUEL PÉREZ-QUIÑONES
Web-CAT – web-cat.org

Web-CAT's modular architecture is what makes it unique among
other grading systems [8]. It can be used in courses to simply collect
assignments, which can be submitted via the web or directly from
various IDEs. Web-CAT can also be configured to grade
assignments and provide feedback to the student. The grading can
be done based on instructor provided test cases. Where Web-CAT
really excels is having part of the student's grade based on how well
students test their own code. Web-CAT is very flexible allowing
many of its features to be configured on an assignment-by-
assignment basis. It is stable and robust, and it is being used in more
than 50 universities. Web-CAT is language independent; it uses a
plugin architecture allowing programs in Java, C++, Scheme,
Prolog and others languages to be graded automatically. As a
research tool, Web-CAT has been used to explore automated
feedback, semi-automated identification of bugs, gamification of
feedback, and providing motivational hints.
Dr. Manuel A. Pérez-Quiñones has been affiliated with Web-CAT
development since its inception. He worked closely with the lead
designer of Web-CAT, Dr. Stephen Edwards, in grants,
publications, and research. He used Web-CAT in many courses in
the undergraduate program at Virginia Tech and has given
workshops about Web-CAT at multiple universities and at
SIGCSE. He is currently Associate Dean of the College of
Computing and Informatics at the University of North Carolina at
Charlotte.
4. AATISH NAYAK

Autolab – autolabproject.com
Autolab is an open source course management and autograding
service started at Carnegie Mellon by Professor David O’Hallaron.
Since its inception, it has seen over 25 contributors and is now used
by the majority of computer science classes at CMU. Many courses
from other schools including University of Washington, Peking
University, Cornell University, among others use the service.
Autolab consists of two main components: a Ruby on Rails web
app, and Tango, a Python job processing server. The web app offers
a full suite of course management tools including scoreboards,
configurable assignments, PDF annotations, grade sheets, and
plagiarism detection. The job processing server accepts job
requests to run students’ code along with an instructor written
autograding script within a virtual machine.
Aatish Nayak serves as the project lead for Autolab. He works
closely with Professor O’Hallaron and three other developers. He
has used Autolab in many of his undergraduate courses and brings
a student perspective to the platform’s development. He is currently
a 4th year undergraduate in Electrical and Computer Engineering at
Carnegie Mellon University.
5. BEN LEONG

Coursemology – coursemology.org
Coursemology is an open source learning management system that
incorporates gamification elements to improve student engagement.
While not restricted to computer science courses, the platform has
been used in a variety of CS courses, including courses on data
structures, algorithms, introductory programming, and
programming methodology because it includes support for the
autograding of coding questions. Coursemology allows educators
to add gamification elements, such as experience points, levels,

achievements, to their classroom exercises and assignments.
Gamification has been shown to be effective in motivating learners
in curricular settings [9].
The Coursemology platform has a flexible design that does not
require instructors to have a programming background. In addition
to the gamification elements, Coursemology includes dashboards
to monitor student progress and homework submissions, and a
feed-like mechanism to allow students to communicate with
instructors and clarify concepts in a convenient and timely manner.
Dr. Ben Leong is an Associate Professor of Computer Science at
the School of Computing, National University of Singapore (NUS).
In addition to leading development of Coursemology, he is an
active member of the networking and distributed computing
research community.
6. REFERENCES
[1] Jack Hollingsworth. 1960. Automatic graders for programming
classes. Commun. ACM 3, 10 (October 1960), 528-529.
DOI=http://dx.doi.org/10.1145/367415.367422

[2] Alexandru Iosup and Dick Epema. 2014. An experience report
on using gamification in technical higher education. In Proceedings
of the 45th ACM technical symposium on Computer science
education (SIGCSE '14). ACM, New York, NY, USA, 27-32. DOI:
http://dx.doi.org/10.1145/2538862.2538899
[3] David Jackson and Michelle Usher. 1997. Grading student
programs using ASSYST. In Proceedings of the twenty-eighth
SIGCSE technical symposium on Computer science education
(SIGCSE '97), James E. Miller (Ed.). ACM, New York, NY, USA,
335-339. DOI=http://dx.doi.org/10.1145/268084.268210

[4] Dejan Milojicic. 2011. Autograding in the Cloud: Interview
with David O'Hallaron. IEEE Internet Computing 15, 1 (January
2011), 9-12. DOI=10.1109/MIC.2011.2
http://dx.doi.org/10.1109/MIC.2011.2

[5] Tommy MacWilliam and David J. Malan. 2013. Streamlining
grading toward better feedback. In Proceedings of the 18th ACM
conference on Innovation and technology in computer science
education (ITiCSE '13). ACM, New York, NY, USA, 147-152.
DOI=http://dx.doi.org/10.1145/2462476.2462506

[6] Soumya Basu, Albert Wu, Brian Hou, and John DeNero. 2015.
Problems Before Solutions: Automated Problem Clarification at
Scale. In Proceedings of the Second (2015) ACM Conference on
Learning @ Scale (L@S '15). ACM, New York, NY, USA, 205-
213.DOI=10.1145/2724660.2724679
http://doi.acm.org/10.1145/2724660.2724679
[7] Sumukh Sridhara, Brian Hou, Jeffrey Lu, and John DeNero.
2016. Fuzz Testing Projects in Massive Courses. In Proceedings of
the Third (2016) ACM Conference on Learning @ Scale (L@S
'16). ACM, New York, NY, USA, 361-367. DOI:
http://dx.doi.org/10.1145/2876034.2876050
 [8] Edwards, S. H., and Perez-Quinones, M. A. Web-cat:
automatically grading programming assignments. In ACM
SIGCSE Bulletin, vol. 40, ACM (2008), 328–328.

[9] Zachary Fitz-Walter, Dian Tjondronegoro, and Peta Wyeth.
2011. Orientation Passport: using gamification to engage university
students. In Proceedings of the 23rd Australian Computer-Human
Interaction Conference (OzCHI '11). ACM, New York, NY, USA,
122-125. DOI=http://dx.doi.org/10.1145/2071536.207

