Revisiting Radiometric Calibration for Color Computer Vision

Hai Ting Lin1 Seon Joo Kim1,2 Sabine Süsstrunk3 Michael S. Brown1
1School of Computing, National University of Singapore 2UIUC Advanced Digital Sciences Center, Singapore 3École Polytechnique Fédéralé de Lausanne

Goal
Is a camera an accurate light measuring device?
i.e. Can a pixel value of an sRGB output be transformed to a physically meaningful value?
- traditional radiometric calibration framework: \(i_x = f(e_x) \)

Observations
More than 10,000 images from 33 cameras.

New Imaging Model

\[
\begin{align*}
T &= T_\text{org} T_\gamma T_\text{org} T_\rho T_e T_x \\
E &= E_\text{org} E_\gamma E_\text{org} E_\rho E_i T_e T_x \\
\end{align*}
\]

\[
\begin{pmatrix}
i_x \\
i_g \\
i_b \\
\end{pmatrix} = f(h) \begin{pmatrix}
E_x \\
E_g \\
E_b \\
\end{pmatrix}
\]

\(h: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \)

based on several image-RAW pairs,
- \(f^{-1} \) & \(T^{-1} \) are computed using less saturated points
- \(h^{-1} \) is computed with scatter point interpolation via radial basis func.

Results
Linearization error (\(f^{-1} \) only)

Photo-refinishing application (extension)

Input images Our results Camera images Photoshop Color transfers between cameras