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ABSTRACT
The publish-subscribe paradigm is an effective approach for
data publishers to asynchronously disseminate relevant data
to a large number of data subscribers. A lot of recent
research has focused on extending this paradigm to sup-
port content-based delivery of XML data using more ex-
pressive XML-based subscription specifications that allow
constraints on both data contents as well as structure. How-
ever, due to the heterogeneous data schemas used by differ-
ent data publishers even for data in the same domain, an
important challenge is how to efficiently and effectively dis-
seminate relevant data to subscribers whose subscriptions
might be specified based on schemas that are different from
those used by the data publishers. In this paper, we exam-
ine the options to resolve this schema heterogeneity problem
in XML data dissemination, and propose a novel paradigm
that is based on data rewriting. Our experimental results
demonstrate the effectiveness of the data rewriting paradigm
and identifies the tradeoffs of the various approaches.
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1. INTRODUCTION
The ubiquity of XML data and the effectiveness of the

content-based pub/sub-based paradigm of delivering rele-
vant information has led to a lot of interest in content-based
dissemination of XML data [2, 7, 8, 11, 19]. In the pub/sub
environment, an overlay network of application-level routers
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(or message brokers) is used to asynchronously forward doc-
uments generated by data publishers to relevant data sub-
scribers (or consumers) based on matching the document
contents against the consumers’ subscriptions. Fig. 1(a)
shows a schematic diagram of the key components in a typi-
cal content-based router. An incoming XML document D is
first parsed by an event-based XML document parser which
generates basic events corresponding to the relevant docu-
ment tokens (i.e., start-/end-element tags, attributes, and
values). The parsed events are used to drive the matching
engine which relies on an efficient index (e.g., [2, 7, 14]) on
the subscriptions to quickly detect matching subscriptions in
its routing table; D is then forwarded to neighboring routers
and local subscribers with matching subscriptions.

Existing work on XML data dissemination (e.g., [2, 7, 14]),
however, are all implicitly based on a homogeneous schema
assumption where both the data published by different pub-
lishers as well as the users’ subscriptions share the same
schema. However, since the data publishers in a pub/sub
system are autonomous and independent, they generally do
not use the same schemas even when their published data
are related and belong to the same domain (e.g., product
catalogues). Consequently, if a user’s subscription is based
on the schema of a specific publisher (say P ), then while the
user can receive relevant documents from P that match his
subscription, it is very likely that his subscription will not
match relevant data from another publisher P ′ if the data
schemas used by P and P ′ are different. Thus, the effec-
tiveness of the pub/sub systems in pushing relevant data to
consumers becomes diminished in the presence of heteroge-
neous data schemas.

For example, consider a user Alice who is interested in in-
formation on papers authored by “John”, and has specified
the following XPath subscription (based on the schema from
some publisher P0): /author[name = “John”]/paper/title.
Consider the two XML documents D1 and D2 in Fig. 1(b)
that are published by two different publishers P1 and P2. Al-
though both documents describe papers authored by “John”
and should be of interest to Alice, existing pub/sub systems
would not have delivered these relevant documents to Alice
because her subscription fail to match the data due to the
difference in the schemas used by P0, P1, and P2.

In this paper, we address the problem of how to improve
the effectiveness of XML data dissemination in the pres-
ence of heterogenous data schemas [20]. For simplicity
and without loss of generality, we assume that all the pub-
lished data are of the same domain such that it is possible
to use a single global schema to resolve the structural con-
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flicts among different publishers’ schemas (of the same do-
main). Our problem and proposed techniques can be easily
extended to the general case by first partitioning the col-
lection of publishers’ schemas into groups of schemas with
similar domains, and then generating a global schema for
each group of related schemas.

Note that our heterogeneous data dissemination problem is
different from the more well-known data integration problem
[16, 28, 6, 29]. In data integration, the focus is on how
to query multiple data sources with different schemas. In
contrast, the problem that we are addressing is on how to
compare a published data against a collection of queries (i.e.,
subscriptions) to identify the matching queries given that
the data and queries are based on different schemas. Thus,
a fundamental difference between these two problems, which
are related by the presence of schema heterogeneity, is that
the integration problem belongs to a single-query-multiple-
data scenario while the dissemination problem belongs to a
single-data-multiple-queries scenario.

To better appreciate the difference between the two het-
erogeneous schema problems and motivate our solution, let
us consider how to apply the query rewriting idea in data
integration problem to solve the heterogeneous data dissem-
ination problem. The first step is to resolve the structural
conflicts in the collection {S1, S2, · · · , Sn} of different pub-
lishers’ schemas to generate a global schema Sg which is
then made available to users to specify their subscriptions.
Then, each“global”subscription qg (which is based on global
schema Sg) is rewritten into a set of local subscriptions
{q1,q2,· · · ,qn}, where each qi is based on a local schema Si.
To enable efficient matching a published data (conforming to
some local schema Si, i ∈ [1, n]) against local subscriptions
based on Si, an index Ij is constructed for each collection of
subscriptions based on local schema Sj , j ∈ [1, n]. Fig. 1(c)
illustrates the above approach which is referred to as the
query rewriting approach (QRA). For each incoming data
D` (based on some local schema S`), the matching engine
only needs to compare D` against the appropriate set of
local subscriptions via index I`.

The query rewriting approach, however, suffers from two
drawbacks. First, the scalability of the approach is limited
as each input subscription needs to be rewritten into one
subscription for each local schema. This increases the space
overhead for storing and indexing the expanded set of local
subscriptions at each router. Note that although the in-
put global subscriptions are not used directly for document
matching, these subscriptions will still need to be maintained
for generating new rewritings whenever a new local publisher
schema is added (or changed). Second, the approach also in-
curs a high update cost. Whenever a new data schema S′ is

introduced (by an existing or new publisher), it is necessary
to generate and install new subscriptions (for schema S′) at
each router by rewriting the global subscriptions registered
at each router to corresponding local subscriptions on the
new schema S′.

Another different direction taken to address the problem
of schema heterogeneity is to apply query relaxation tech-
niques (e.g., [23, 3]). This can be viewed as a schema-
independent query rewriting approach where a query is “re-
laxed” to multiple queries without relying on knowledge of
data schemas but based on making local structural changes
to parts of the query. The motivation for this line of work is
to enable retrieval of approximate answers to a query and it
is often used in combination with some ranking and pruning
mechanism during query evaluation at run-time to control
the number of relaxed queries generated. However, it is un-
clear how this technique can be effectively applied to the
context of the data dissemination problem since the num-
ber of queries registered at each router is large which makes
run-time relaxation of a large set of queries a challenging
problem. Alternatively, another possibility is to try to pre-
compute the relaxed queries offline; but in the absence of
the run-time data, it is unclear how the relaxed queries can
be generated efficiently and in a controlled manner without
a large set of relaxed queries being produced.

In this paper, we present a novel paradigm to solve the
heterogeneous data dissemination problem that is based on
the principle of data rewriting, which is called DRA for data
rewriting approach. The conceptual idea of DRA is as fol-
lows. First, the collection of local schemas from the publish-
ers is integrated to form a global schema Sg which is then
made available to users to specify their subscriptions. Un-
like QRA, our DRA does not require query rewriting which
means that only the input global subscriptions are indexed
at each router. For each incoming data D` (conforming to
some local schema S`) to a router, our DRA rewrites D` to
Dg (Dg may not be materialized here) such that the evalu-
ation of subscriptions is actually conducted against Dg.

In contrast to QRA, our proposed DRA is more effective
for the heterogeneous data dissemination problem because
pub/sub systems are typically characterized by two proper-
ties : (1) the number of subscriptions at each router is large
(which limits the scalability of QRA); (2) the data being
disseminated is relatively small (which incurs only a small
processing overhead for data rewriting). Thus, our propose
DRA has three key advantages: it is space-efficient as it only
stores the registered global subscriptions; it is also update-
efficient as additions and changes to local schemas do not
require updating of registered queries at the routers; and it
is also time-efficient as the overhead of data rewriting is low



and the matching of the document against a (non-expanded)
set of queries is fast.

To the best of our knowledge, this is the first paper that
addresses the heterogeneous data dissemination problem for
XML data. The only related work that addresses data het-
erogeneity in a pub/sub systems is a recent demonstration
paper [21] that is focused on simple subscription queries
(based on attribute-value pairs) and resolves only attribute
names heterogeneity by enhancing the matching engine with
semantic ontologies.

Organization. The rest of this paper is organized as fol-
lows. Section 2 presents our novel data rewriting framework.
We discuss implementation issues for the various approaches
in Section 3. Section 4 discusses related work; and our ex-
perimental results are presented in Section 5. We conclude
our paper in Section 6.

2. DATA REWRITING FRAMEWORK
In this section, we present our new framework to solve

the heterogeneous data dissemination problem by using data
rewriting techniques. It is important to emphasize that our
data rewriting framework is orthogonal to the specific tech-
niques for schema integration and mapping in Section 2.3
and can be combined with other techniques as well.

2.1 System Architecture
We use S` to denote some publisher’s local schema, and

Sg to denote a global schema integrated from a collection of
local schemas of the same domain. We use D` (resp., Dg)
to denote a document conforming to schema S` (resp. Sg).

Similar to existing pub/sub systems, we have a mediator
agent (MA) that serves as a coordinator between the data
publishers and routers [9, 4]. Besides collecting schemas
from publishers and registering queries for users, the MA is
also responsible for resolving the structural conflicts among
various schemas to generate a global schema. The MA
creates a schema mapping, denoted by M`,g, for each lo-
cal schema S` that is integrated to a global schema Sg.
A schema mapping M`,g is essentially a data transforma-
tion specification that enables an input document D` to be
mapped into an output document Dg that preserves the ap-
propriate information content of D`. The details of schema
mappings used in this paper are discussed in Section 2.3.
The mediator agent will distribute the schema mapping M`,g

to each router. The router will leverage the M`,g, i.e. the
data transformation specification, to rewrite each incoming
document.

Once a collection of documents that conform to a new
schema have to be published, the data publisher should reg-
ister the new schema to the mediator agent at first. The
mediator agent takes charge of generating the mapping be-
tween the new schema and the global schema, and tries to
keep the global schema stable. It may happen that the global
schema has to be refined sometime, then the mediator agent
will adjust the schema mapping for other local schemas cor-
respondingly and will distribute a new version of schema
mappings to each router.

In this paper, our data subscriptions are based on a com-
monly used and expressive fragment of XPath that uses only
the child (“/”) and descendant (“//”) axes. The node test for
each XPath step can be either an element name or a wildcard
“*”. Nested XPath expressions are allowed as predicates.

2.2 Data Rewriting Approaches
In the following, we give an overview of the proposed three

data rewriting approaches. It is important to note that sim-
ilar to the conventional approach and QRA, the data rewrit-
ing approaches also deliver the original document D` (and
not Dg) from the publishers to the users. The purpose of
rewriting D` to Dg is to enable the document to be matched
against the global subscriptions. Delivering the original doc-
ument to users is important as it enables users to verify the
integrity of the received documents if the documents have
been digitally signed [26, 13].

2.2.1 Static Data Rewriting (SDR)
In the static data rewriting (SDR) approach (illustrated

in Fig. 2(a)), each published data D` is rewritten to Dg

statically (but only once) by the MA. The advantage of em-
ploying the MA to rewrite the data is that the publishers are
shielded from the details of the schema mappings and rewrit-
ing processing; this requires each publisher to first forward
D` to the MA for the rewriting before the MA forwards the
transformed data to the routers for dissemination.

Once D` has been rewritten to Dg, both D` and Dg are
forwarded together to the network of routers for dissemina-
tion. Since the subscriptions stored in each router are based
on the global schema Sg, Dg is used for matching against
the subscriptions to detect matching subscriptions and de-
cide to which router(s) the data needs to be forwarded next;
D` (possibly with an attached digital signature for verifica-
tion of data integrity) is forwarded to any matching local
subscribers at a router.

One advantage of SDR is that it is a non-intrusive ap-
proach that can be easily implemented. However, the trade-
off is that the amount of data that is being forwarded is
roughly doubled compared to the conventional approach.

2.2.2 Dynamic Data Rewriting (DDR)
To avoid the transmission overhead of SDR, an alterna-

tive strategy is for each router to forward only D` but the
tradeoff is that each router now needs to rewrite the data
D` dynamically. We refer to this approach as dynamic data
rewriting (DDR) approach. Note that DDR does not mod-
ify D` and also does not physically materialize Dg. Instead,
the rewriting of D` to Dg is performed dynamically as D`

is being parsed. Specifically, the parsed events from D` are
used to generate parsed events corresponding to Dg which
are matched against the subscriptions, and D` is then for-
warded to any matching routers/subscribers. It should be
pointed out that in DDR, the original document is parsed
only once, where the rewriting of data is conducted during
the evaluation of subscriptions.

We have proposed two dynamic data rewriting approaches
based on where the data rewriting is performed.

NDDR. The first option is to perform the rewriting out-
side of the matching engine by installing a new software
component, called the data rewriter, between the document
parser and matching engine as shown in Fig. 2(b). The data
rewriter essentially rewrites D` to Dg by intercepting the
sequence of events E` that is generated by the event-based
XML parser (as it parses the input document D`) and gen-
erating a modified sequence of events Eg to the matching
engine such that Eg is equivalent to the sequence of events
generated by parsing Dg. We refer to this approach as non-
intrusive dynamic data rewriting (NDDR) approach since it
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does not require making any changes to the existing XML
parser and matching engine components.

IDDR. The second option is to rewrite the data within the
matching engine itself as shown in Fig. 2(c); we refer to
this approach as intrusive dynamic data rewriting (IDDR)
approach as it entails making modifications to the matching
engine.

In order for a router R to perform data rewriting, R needs
to have access to the schema mappings generated by the
MA. There are two possible options for routers to access the
schema mappings. The first option is to let MA dissemi-
nate its generated schema mappings to all the routers during
an initialization process. This option is less space-efficient
since the schema mapping information is replicated in every
router; consequently, it is also more costly to maintain when
updates arise . The second option is for each published data
D` to be disseminated along with its appropriate schema
mapping M`,g as part of the data’s header information. In
contrast, by not replicating the schema mapping informa-
tion, the second option is more space- and update-efficient at
the cost of a slightly higher transmission overhead. Our ex-
perimental evaluations of these two options (for both NDDR
and IDDR) showed that the overhead of transmitting the
appropriate schema mapping together with the data does
not impact performance. For this reason, when we refer to
NDDR and IDDR approaches in the rest of this paper, the
second option of accessing schema mappings is assumed to
be used.

2.3 Schema Mapping
A schema mapping, denoted by M`,g, is a specification

that enables an input document D` (that conforms to a
source schema S`) to be transformed to an output document
(that conforms to a target schema Sg) such that the appro-
priate information content of D` is preserved in Dg. Each
schema mapping can be generated as part of the schema in-
tegration process. In this paper, we adopt a simple schema
mapping specification that consists of a tree representation
of the source schema (i.e. local schema) annotated with data
rewriting operators.

It is important to emphasize that the focus of this paper
is on using a data rewriting approach to solve the heteroge-
neous data dissemination problem and not on schema map-
ping per se. Thus, we have decided on a schema mapping
specification that is reasonably expressive that supports a
variety of data transformations (based on existing ideas [25,
28]) which is also amenable to an efficient implementation.
While we make no claim that our adopted mapping scheme
is complete, we believe it is sufficiently expressive as evi-
denced by its application in the THALIA benchmark [10].
It is important to note that our proposed data rewriting

paradigm is orthogonal to the actual choice of schema map-
ping specification and implementation.

We model an XML schema using a tree structure, called a
schema tree, where tree nodes represent element types and
tree edges represent element-subelement relationships. Each
node tree is optionally associated with a symbol (?, *, or
+) that represents the cardinality of the element that it
represents. For simplicity, we do not consider the union and
recursion constructs in our schema model. Note that even
though a XML schema typically has common substructures
and can be more concisely modeled as a graph, it is often
convenient to duplicate the common substructures to model
the schema as a tree [15] as this makes it easy to specify
different transformation operations to different instances of
the same substructure. An example schema tree for Sg is
shown in Fig. 3(a).

We represent a schema mapping M`,g by an annotated
schema tree of S`. Each node in the schema tree is an-
notated with a (possibly empty) sequence of data rewriting
operators (to be discussed shortly). With this schema map-
ping, we can transform an input data D` (conforming to S`)
to a data Dg (conforming to Sg that preserves the informa-
tion contents of D`) by traversing each element e in D` (in
document order) and applying the sequence of rewriting op-
erations associated with element e in the annotated schema
tree. The mechanism to generate M`,g will be discussed in
Section 2.3.2

2.3.1 Data Rewriting Operators
This section presents six basic data rewriting operators

that can express a wide variety of data transformations. The
example schema mapping M`,g shown in Fig. 3 is used as our
running example to illustrate the operators. We use E, E′,
or Ei to denote an element type, and child(E) to denote the
set of child subelement types of an element type E.

Rename(E, E′): this operator renames E to E′. In Fig. 3,
the operator Rename(department, dept) is applied to rename
the department element in S` to dept in Sg. This operator
is used to resolve the naming conflict between two schemas
as one schema could define a department element with the
full name department and another schema could define it
with the short name dept.

ToElement(E, A): this operator converts an attribute A
of E to become a subelement of E such that the value of A
becomes the contents of the new element A. In Fig. 3, the
code attribute of course element in S` is converted to be a
new subelement named code of element course in Sg.

Insert(E, E1/E2/ . . . /Ek, S), S ⊆ child(E): this opera-
tor first moves each child subelement E′ of E, where E′ ∈ S,
to become a child subelement of Ek, where E1/E2/ . . . /Ek
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is a new path of elements. The entire subtree rooted at E1 is
then inserted to become a child subtree of E. Insert+(E, E1

/E2/ . . . /Ek) is a special case of the Insert operator that
is equivalent to Insert(E, E1/E2/ . . . /Ek, child(E)). In
Fig. 3, the operator Insert(course, schedule, {time, location})
is applied in S` to effectively group both the time and loca-

tion subelements of course to become subelements of a new
schedule element which is inserted as a new subelement of
course.

Upgrade(E, S), S ⊆ child(E): this operator “upgrades”
each child subelement Ei of E (together with the subtree
rooted at Ei), where Ei ∈ S, to become a sibling of E. Here
the element E should not be the root of the XML document.
Upgrade+(E) is a special case of the Upgrade operator that
is equivalent to Upgrade(E, child(E)). In Fig. 3, the oper-
ator Upgrade+(faculty) is applied in S` to move each child
subelement of faculty (only department element in this ex-
ample) to become a sibling element of faculty.

Downgrade(E, S, E′), S ⊆ child(E), E′ ∈ child(E) − S:
this operator “downgrades” each child subelement Ei of E
(together with the subtree rooted at Ei), where Ei ∈ S,
to become a child subelement of E′. In Fig. 3, the operator
Downgrade(course,{TAs},instructor) is applied in S` to move
the TA subelement of course to become a child subelement
of instructor (which is a child subelement of course).

Exchange(E, E′), E′ ∈ child(E): this operator swaps the
roles of E and E′ so that E becomes a child subelement of
E′. More specifically, the subtree rooted at E (excluding the
subtree rooted at E′) becomes a new child subtree of E′; and
the parent element of E becomes the parent element of E′.
In Fig. 3, the operator Exchange(author,article) is applied in
S` to swap their parent-child roles so that author becomes a
subelement of article. Note that the Exchange(E, E′) op-
erator can result in the data subtree rooted at E (excluding
the subtree rooted at E′) to be duplicated multiple times
when rewriting data. For example, if in some D`, one au-
thor has multiple articles, this author would appear multiple
times in Dg. In Dg, the information for an article with mul-
tiple authors will not be merged into one subtree. This is
because the Exchange operator is not a “group by” operator;
the latter is more a complex operator that requires some
notion of keys for grouping information which is outside the
scope of this work.

Discussion. Our proposed rewriting operators attempt
to balance the tradeoff between the expressiveness of the

rewriting and the efficiency of the rewriting implementa-
tion. Thus, we have focused on structural conflicts in het-
erogeneous schemas, and our proposed operators are able
to resolve all the schema heterogeneity scenarios mentioned
in [27]. Specifically, the Rename operator resolves name con-
flicts; the ToElement operator resolves attribute-subelement
conflicts; the Insert operator resolves generalization con-
flicts; the Upgrade/Downgrade operators resolve child-sibling
conflicts; and the Exchange operator resolves parent-child
conflicts.

2.3.2 Deriving Data Rewriting Operators
Given S` and Sg, M`,g can be computed in two steps.

Firstly, a schema matching is computed from S` to Sg using
some existing method (e.g., [17]). The schema matching
essentially specifies a 1-to-1 mapping between the elements
of S` and Sg. An example of a schema matching between
S` and Sg is shown in Fig. 3 where the 1-to-1 mappings
are indicated by the dotted lines. Next, the sequence of
rewriting operations associated with each element e in S`

(denoted by op(e)) is computed using the computed schema
matching and the following six rules.

Given an element e in S`, we use par(e) to denote the
parent of e in S`, and map(e) to denote the mapped element
of e in Sg.

Rename Rule: If the labels of e and map(e) are different,
then add Rename(e, map(e)) to op(e).

ToElement Rule: If e has an attribute attr such that
map(attr) is a child of map(e) in Sg, then add ToElement

(e, attr) to op(e).

Insert Rule: If map(par(e)) is an ancestor of map(e) in
Sg and for each element ei ∈ p, where p is the path from
map(par(e)) to map(e), there is no element in S` that is
mapped to it, then add Insert(par(e), p, e) to op(par(e)).

Downgrade Rule: If e has a sibling element e′ such that
map(e′) is a child of map(e) in Sg, then add Downgrade

(par(e), e′, e) to op(par(e)).

Upgrade Rule: If e has a child element e′ such that map(e′)
is a sibling of map(e) in Sg, then add Upgrade(e, e′) to op(e).

Exchange Rule: If map(par(e)) is the child of map(e) in
Sg, then add Exchange(par(e), e) to op(par(e)).

The above rules are applied in two phases. In the first
phase, S` is traversed in preorder to update op(e) for each
visited element e using only the Exchange rule. Based on
those op(e), S` is transformed to S′`. In the second phase,



S′` is traversed in preorder to update op(e) for each visited
element e using only the remaining five rules. For each e
visited, the rules are applied in any order to update op(e)
if the rule conditions are satisfied. The application of the
Exchange rule needs to be performed first before the other
rules to avoid the ambiguity on other operators caused by
the Exchange operator. Fig. 3(b) shows the derived opera-
tors based on the schema mapping M`,g illustrated in Fig. 3.

3. IMPLEMENTATION ISSUES
In this section, we discuss the implementation issues for

our two dynamic data rewriting approaches.

3.1 Non-intrusive Dynamic Data Rewriting
In NDDR (Fig. 2(b)), the key component being intro-

duced is the data rewriter which is responsible for generating
parsed events for Dg from the parsed events of D` thereby
giving the matching engine the illusion that it is matching its
global subscriptions against Dg. In this way, we can avoid
changing the complex matching engine component.

Cached-Tree. To dynamically rewrite the data, the data
rewriter needs to change the sequence of the parsed events.
Some events can be forwarded to the matching engine im-
mediately while some events have to be delayed until other
events happen. For those events that are to be delayed, the
data rewriter uses a tree structure, called a cached-tree, to
store them in main memory. Each element in the document
corresponds to one node in the cached-tree, which records
the element’s name, attributes and content value (if any). If
an element ei is the subelement of element ej in the docu-
ment, then the node corresponding to ei is a child node of
the node corresponding to ej in cached-tree.

For each event start element E received by the data rewriter,
the rewriter will initiate the sequence of rewriting opera-
tions associated with element E in M`,g. The complexity
and therefore the cost of a rewriting operator depends on
whether the operator is blocking or non-blocking. An oper-
ator is classified as non-blocking if the effect of its rewriting
can be pipelined by the data rewriter (in the form of a parsed
event for Dg) to the matching engine immediately. Rename,
ToElement, Upgrade+ and Insert+ are non-blocking oper-
ators. An operator is classified as blocking if the effect of
its rewriting requires the cached-tree to temporarily buffer
some parsed events. The data rewriter informs the match-
ing engine about a batch of events from the cached-tree once
some further event is parsed. Exchange , Insert, Upgrade
and Downgrade are blocking operators.

Handling non-blocking operators. For each parsed event
from the XML parser, the data rewriter can simply pipeline
the event to the matching engine. For example, given an el-
ement E with the Rename(E, E′) operator, on receiving the
start-tag for E, the data rewriter immediately forwards the
start-tag for element E′ to the matching engine; similarly,
on receiving the end-tag for E, the end-tag for E′ can again
be immediately pipelined to the matching engine. Given an
element E with the ToElement(E, A) operator, on receiving
the start-tag for E, the rewriter firstly extracts the attribute
A and the value of A (denoted as val(A)). Then the rewriter
pipelines the start-tag for element E to the matching engine.
After that the rewriter forwards the start-tag of element A
to the matching engine followed by the val(A) as the content
of A, and finally the end-tag of element A to the matching

engine; on receiving the end-tag for element E, the data
rewriter just immediately forwards the end-tag for element
E to the matching engine.

Handling blocking operators. On the other hand, if the
associated rewrite operation for an element E is blocking,
then the data rewriter needs to cache some relevant parsed
events within the cached-tree.

Exchange(E, E′): On receiving the start-tag of element E,
the data rewriter creates a cached-tree TE and starts to
cache the parsed events within the subtree rooted at E into
TE . Subsequently, when the start-tag for element E′ is re-
ceived by the data rewriter, the parsed events within the sub-
tree rooted at E′ will be cached into another cache-tree TE′ .
When the end-tag for element E′ is received, the caching
into TE′ ends and the caching into TE resumes. Finally,
when the end-tag for element E is received, the caching for
TE also ends. The data rewriter then traverses the tree TE′

in preorder sequence, and for each node N in TE′ , the start-
tag of N is forwarded to the matching engine when the node
is visited for the first time; and the end-tag of N is issued
to the matching engine when the traversal traces back from
the node. After issuing the end-tag for E′, the tree TE is
then traversed and processed.

Insert(E, E1/E2/ . . . /Ek, S): On receiving the start-tag
of element E, the data rewriter immediately forwards the
start-tag of E to the matching engine. Meanwhile, the data
rewriter creates a cached-tree TE rooted at node E1 with a
child path E2/ . . . /Ek. For each following start-tag of el-
ement E′ which is the subelement of E, the data rewriter
checks whether E′ ∈ S. If E′ ∈ S, the parsed events within
the subtree rooted at E′ is cached into TE as the child sub-
tree of Ek; otherwise, the data rewriter simply pipelines the
event to the matching engine. When the end-tag of E is
received, the data rewriter traverses TE and issues the cor-
responding events to the matching engine in the same way as
the Exchange operator. Finally, the data rewriter forwards
the end-tag of E to the matching engine.

Upgrade(E, S): On receiving the start-tag of element E
from the parser, the data rewriter forwards it to the match-
ing engine immediately. For each element E′ which is the
subelement of E and E′ ∈ S, the data rewriter caches the
parsed events within the subtree rooted at E′ into a cached-
tree TE′ . The caching ends when the end-tag of element
E′ is received. On receiving the end-tag of element E, the
data rewriter first forwards the end-tag of E to the matching
engine, and then it traverses the set of cached-tree TE′ and
issues the corresponding events to the matching engine.

Downgrade(E, S, E′): When the start-tag of element E′ is
received, the data rewriter creates a cached-tree TE′ to cache
the subtree rooted at E′. When the start-tag of element e,
where e ∈ S, is received, the parsed events within the sub-
tree rooted at e will be cached into another cached-tree Te

by the data rewriter. These cached elements could be is-
sued to the matching engine when the end-tag of element
E is received. The data rewriter then traverses TE′ in pre-
order and forwards the corresponding events to the match-
ing engine. Before forwarding the end-tag of element E′,
the data rewriter traverses Te to forward the events in Te to
the matching engine. Finally, the end-tag of E′ is forwarded
followed by the end-tag of E to the matching engine.

By judiciously caching the appropriate subtrees and block-
ing the output of parsed events, this ensures that the correct



parsed events are output corresponding to the effect of dif-
ferent blocking operations.

3.2 Intrusive Dynamic Data Rewriting
Among the three data rewriting approaches, IDDR (Fig. 2(c))

is the most complex to implement as it is an intrusive ap-
proach that necessitates modifying the matching engine so
that it integrates both the dynamic rewriting functionality
as well as the subscription matching functionality. To re-
alize this dual functionality efficiently, the matching engine
actually maintains partial matchings of subscriptions based
on the assembled fragments of Dg that are rewritten from
the parsed events of D`. In this way, we do not need to first
materialize the rewritten data Dg before the subscription
matching can commence.

To understand why matching in IDDR becomes more com-
plex than the conventional matching in SDR and NDDR,
note that the matching engine works by maintaining partial
matches of subscriptions as the document is being parsed
and the parsed events are being incrementally processed.
Once a start-tag for an element E is encountered, the match-
ing engine updates any partial matchings with the new el-
ement E at the current context; and once an end-tag for
element E is encountered, the matching engine eliminates
the partial matchings that are guaranteed to not lead to
any complete matchings. The matchings of the elements
and the elimination of partial matchings are based on two
basic properties of conventional event-based XML parsers:
(1) once the start-tag event for an element E is received,
all the ancestor elements of E must necessarily have been
parsed; and (2) once the end-tag event for an element E is
received, all the descendant elements of E must necessar-
ily have been processed. Based on the first property, the
matching engine can detect all the partial matchings involv-
ing element E for the start-tag event for E; and based on
the second property, when end-tag event for element E is
encountered, the matching engine can safely eliminate all
partial matchings that entail the matchings in the subtree
rooted at E.

However, the above two properties that facilitate the up-
dating of partial matchings are no longer applicable for IDDR
for two reasons. Firstly, some elements in Dg may have
been parsed earlier than their ancestor elements. For ex-
ample, the operator Downgrade(E, S, E′) will move the sub-
tree rooted at Ei, where Ei ∈ S to become a child sub-
tree of E′. Consequently, element Ei may precede element
E′ in the document such that the start-tag of Ei is output
by the parser before the start-tag of E′. This means that
the matching engine has to process Ei without its ances-
tor element E′. Secondly, when the end-tag of element Ei

is encountered, it may happen that not all of Ei’s descen-
dants in Dg have been parsed. Consider again the operator
Downgrade(E, S, E′). When element E′ precedes element
Ei, where Ei ∈ S in the document, the end-tag for E′ is
reported by the parser before element Ei which should be
the descendants of E′. The operators Exchange(E, E′) and
Insert(E, E1/E2/ . . . /Ek, S) face this issue as well.

To handle this complexity, the integrated matching engine
therefore maintains two types of partial matchings. Given
a start-tag for element E, if all its ancestors have already
been parsed, then the partial matchings detected for E are
confirmed. We call such partial matchings as confirmed par-
tial matchings; otherwise, if some of its ancestor elements

have yet-to-be-parsed, the partial matchings detected by el-
ement E cannot be determined. We call such matchings
as potential partial matchings. The matching engine main-
tains both confirmed partial matchings and potential partial
matchings that are detected for E. Once an element that is
relevant to the potential partial matchings has been parsed,
the matching engine uses this element to verify the potential
partial matchings. The successfully matched potential par-
tial matchings are handled in the same way as the confirmed
partial matchings. To handle the second problem that the
descendant elements of an element E could be parsed af-
ter the end-tag of E, the matching engine continues to keep
the partial matchings that can be combined with the match-
ings from the descendant elements of E to generate larger
matchings. These partial matchings are eliminated once the
matching engine determines that all the descendants of E
have been processed.

l(a) Document D

@id = 2

Downgrade(b,{c,d},e)

dec

b

a

(b) Subscription query Q 
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/e

/d//c
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/a

Figure 4: IDDR Example

Example 3.1 Consider the document D` and query Q in
Figs. 4(a) and (b), respectively. Suppose that the operator
Downgrade (b, {c, d}, e) is to be performed on D`. When the
start-tag for element c is received by the matching engine,
the engine knows that element c should be matched under
element e, which has yet to be parsed. Thus, the matching
engine can only detect the partial matching /a/b/e//c as a
potential partial matching, which is shown by the path of
query nodes enclosed by the dashed region in Fig. 4(b). This
is because the matching engine does not yet know whether
the element e contains an attribute “id” with a value of 2.
Subsequently, when the start-tag of element e is parsed, the
potential partial matching /a/b/e//c is confirmed. When
the end-tag for element e is encountered, since the matching
engine knows that there might be some elements that need
to be downgraded as descendants of e, the partial match-
ings detected by e are still maintained. After processing the
start-tag of d, the complete matching of query Q is detected.
Notice that if Q had not been matched when the end-tag of
element b is encountered, the partial matchings detected by
element e can be eliminated since it is guaranteed that no
elements will be processed as descendant elements of e. 2

4. RELATED WORK
Many approaches have been proposed to address the ef-

ficient dissemination of XML data in pub/sub system by
exploiting some index structure on XPath expressions [2, 7,
8, 11, 19, 24]. However, they assume the context of homo-
geneous schema which is orthogonal to our work.

The only work that addresses the heterogeneous data dis-
semination problem that we are aware of is the demonstra-
tion paper [21]. The focus in that paper is on simple sub-
scriptions (based on attribute-value pairs) with attribute



name heterogeneity. Their solution uses semantic ontologies
within the matching engine to resolve the attribute name
heterogeneity. In contrast, our work addresses the problem
in the context of XML data with more complex XPath-based
subscriptions, and the scope of schema heterogeneity exam-
ined in our work is much broader involving both structural
heterogeneity as well as attribute name heterogeneity. Our
proposed approach is different from theirs.

The use of query rewriting techniques for querying het-
erogeneous data is a well studied area [16, 28, 6, 29]. As
discussed in the introduction, applying the query rewriting
idea to solve the heterogeneous data dissemination problem
has low space-efficiency and high update cost due to the dif-
ferent nature of the problems (single-query-multiple-data vs
single-data-multiple-queries).

In terms of work on data translation, an early work by
Milo and Zohar [18] uses rules derived from schema map-
ping to perform data translation. Their focus is on trans-
lating data from one format to another (e.g., from SGML to
OODB). Thus most of their rules are proposed to address the
difference of schema definitions for the various data formats,
which is not the case in our work. While there are other ap-
proaches that address the data transformation problems [22,
12, 5], these approaches would require an document to be
parsed twice due to the separate data transformation and
query evaluation procedures.

Su et. al [25] introduce a set of transformation opera-
tors at the schema level to measure the transformation cost
for mapping one schema to another. Some of their opera-
tors, such as fold and unfold, which do not affect the query
matching results, are not relevant for our problem; their
transformations do not address the parent-child structural
conflicts handled by our exchange operator.

5. PERFORMANCE STUDY
To demonstrate the effectiveness of our proposed data

rewriting approaches, we conducted extensive experiments
to compare these approaches. Our results show that IDDR
and NDDR outperform SDR under various conditions.

5.1 Experimental Testbed
We experimented using both the NS2 network simulator

[1] (extended with application code for content-based rout-
ing) as well as a real network (denoted as real). For types
of topology, we used both linear and tree structures (a com-
plete binary tree with four levels and a total of 15 routers)
for the network topology. The bandwidth of network is var-
ied from 10, 50, 100 (Mbps). For our experiments on the
real network, we used a linear topology consisting of four
computers connected in a LAN.

Data Sets. We used the THALIA benchmark [10], which
contains 40 similar XML schemas representing various uni-
versity course catalogs. Based on the collection of similar
XML schemas, we manually created a global schema and a
schema mapping between each local schema and the global
schema. The breakdown of the total number of rewriting
operators used by our schema mappings for the 40 local
schemas are as follows: 89 Rename, 31 Insert, 17 ToEle-

ment, 6 Upgrade, 3 Downgrade, and 2 Exchange. Observe
that among the 148 rewriting operators used for the schema
mappings, about 72% of these operators are non-blocking
(i.e., Rename and ToElement).

Documents were generated using the THALIA benchmark
for each of the 40 schemas. We vary the size of data sets
from 10K, 20K, 40K to 1M where a data set size of x actually
represents a size in the range [x, x + 10KB).

Subscriptions. The XPath queries were generated using
the XPath generator in [8], where the maximum number of
steps is set to be 8; the probability of wildcard ∗ and the
probability of nested paths are both set to be 0.2.

Algorithms and Metric. We studied the performance for
SDR, NDDR and IDDR. We use the approach XTrie [7] as
the matching engine at each router; however, note that the
specific matching engine used is orthogonal to our proposed
data rewriting approach so long as the matching engine can
be enhanced for the IDDR approach.

The performance metric used is the average response time
(ms), which is defined as the average time for a document to
be delivered to all relevant users. The average response time
(denoted by T ) is comprised of two components: (1) query-
ing time (denoted by Tq) which is the CPU time incurred
for parsing the document, dynamically rewriting the docu-
ment (for NDDR and IDDR), and matching the document
against the queries; and (2) transmission time (denoted by
Tt), which is the time incurred for transmitting data in the
network. Thus, T = Tq + Tt. In the following ,we use the
stacked barcharts to show the average response time T and
its two components, i.e. Tq and Tt.

Our experiments were conducted on a 3GHz Intel Pentium
IV machine with 1GB main memory running Windows XP,
and all algorithms were implemented in C++.

5.2 Experimental Results
Comparison of different approaches. The middle bars
in Fig. 5(a) compare the performance of different approaches
by setting λ = 50Mbps and D = 20K. Firstly, it shows that
the dynamic data rewritten approaches (i.e. NDDR and
IDDR) outperforms the approach SDR. NDDR obtains sim-
ilar querying time with SDR, which means that the addi-
tional cost for dynamic data rewriting in NDDR is trivial.
The amount of data transmitted in SDR is about twice of
the amount in NDDR and IDDR, thus SDR incurs much
larger Tt. Therefore, the performance of SDR is outper-
formed by NDDR and IDDR. NDDR and IDDR have the
same Tt. However, due to the complicated matching algo-
rithm in IDDR, it incurs slightly larger Tq. Thus NDDR
achieves better performance than IDDR.

Effect of the bandwidth, λ. We demonstrate the ef-
fect of network bandwidth in Fig. 5(a) by decreasing λ from
100Mbps, 50Mbps, to 10Mbps. As λ decreases, the com-
ponents of Tt for each approach grow. The effect of λ to
NDDR and IDDR is the same, since they transmit same
amount of data. SDR deteriorates faster as the decreasing
of λ, since the amount of data transmitted in SDR is twice
of NDDR and IDDR. For λ = 100Mbps, the component of
Tt is very small. When λ = 50Mbps, the component of Tt

takes a small part of the response time. However, when λ =
10Mbps, the component for Tt takes a large part of response
time, especially for SDR that Tt is about 78% of the response
time. Thus as λ decreases, the improvement of NDDR over
SDR increases from 12% at λ = 100Mbps to 41% at λ =
10Mbps. The internet develops fast in recent years, however
the bandwidth is still the critical resource, which makes SDR
not suitable for small bandwidth environment.



Querying Time
Transmission Time

SD
R

ID
D

R

N
D

D
R

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

100Mbps
Bandwidth

50Mbps 10Mbps

  100

SD
R

N
D

D
R

ID
D

R

N
D

D
R

ID
D

R

SD
R

  80

  60

  40

  20

  0

(a) Effect of λ, D = 20K, N = 4

Querying Time
Transmission Time

N
D

D
R

40K20K10K
Document Size

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

N
D

D
R

ID
D

R

SD
R

N
D

D
R

ID
D

R

SD
R

ID
D

R

SD
R

  70

  60

  50

  40

  30

  20

  10

  0

(b) Effect of D, λ = 50Mbps, N = 4

Querying Time
Transmission Time

ID
D

R

N
D

D
R

SD
R

ID
D

R

N
D

D
R

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

Linear,Edge
Topology

Linear Tree Linear,Real

  60

ID
D

R

SD
R

N
D

D
R

SD
R

N
D

D
R

ID
D

R

SD
R

  50

  40

  30

  20

  10

  0

(c) Effect of T , D = 20K

Querying Time
Transmission Time

N
D

D
R

ID
D

R

N
D

D
R

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
(m

s)

Cardinality of the repeated subtree
42 6 8

  60

N
D

D
R

ID
D

R

ID
D

R

N
D

D
R

ID
D

R

  50

  40

  30

  20

  10

  0

(d) Intrusive VS. Non-intrusive Approaches, λ =
50Mbps, D = 20K, N = 4

Figure 5: Experimental Results

Effect of the document size, D. Fig. 5(b) shows the
performance by varying D from 10K, 20K, 40K to 1M, while
λ = 50Mbps. As D increases, the average response time for
all approaches increases due to larger Tq and Tt. We observe
the performance gap between NDDR and IDDR becomes
slightly larger, since larger documents have more affected
on IDDR due to the more complicated matching algorithm
in IDDR. It also shows that the improvement of NDDR over
SDR becomes larger as D increases, from 20% at D = 10K to
25% at D = 40K. Similarly, the improvement of IDDR over
SDR also increases. The reason is that larger documents
incur larger transmission delay in SDR. The results for 1M
dataset are omitted here since its average response time is
much larger than other datasets, which is not suitable to be
shown in the same chart. We observe that the trends from
10K to 40K also keeps at D = 1M , that is the improvement
of NDDR over IDDR is 10%, and over SDR is 28%.

Effect of #subscription per router, P . We performed
an experiment to vary P from 1000 to 2000 to 4000, while
the result is not shown here. As P increases, Tq for all
three approaches increase correspondingly. The increasing
of querying time for NDDR and SDR is the same, thus the
performance gap between NDDR and SDR keeps the same.
However, due to its complicated matching algorithm, the
increasing of Tq for IDDR is larger NDDR and SDR, thus
improvement of NDDR over IDDR becomes larger.

Effect of the network topology. This section studies the
effect of the network topology on the performance. Firstly,
we test the case when only leaf router (the router with-
out the downstream router) has the subscriptions from the

users. The results are shown by second cluster of bars in
Fig. 5(c). The transmission to the leaf router incurs larger
delay compared with upstream routers. Thus the perfor-
mance gap between NDDR (also IDDR) and SDR becomes
larger. Then, we show the results on the Tree topology using
the third group of bars in Fig. 5(c). Compared with Linear,
the Tree topology has more routers as the leaf routers. As
aforementioned, queries on leaf routers incur larger Tt, thus
the performance margin between NDDR (as well as IDDR)
and SDR becomes larger.

Results on the real network. We also experimented on
a real network Real as described in Section 5.1. The forth
group bars in Fig. 5(c) show the results on Real. As we
known, the bandwidth in the LAN is usually large. The
bandwidth in the LAN we used is more than 50Mbps. We
can see that the performance of all approaches on Real have
similar trends with the performance of them on NS2 with λ
= 50Mbps. NDDR achieves the best performance among all
approaches. It proves that the simulation using NS2 mea-
sures the performance well.

NDDR vs. IDDR. The previous results show that IDDR
is slightly outperformed by NDDR since IDDR makes the
matching algorithm more complicated. However, in some
situation, IDDR is more efficient than NDDR by sharing
the processing of repeated subtrees. For example, opera-
tor Exchange(N1, N2) makes the subtree rooted at N1 be
repeated at the subtree rooted at N2 if the cardinality of
element N2 in document is larger than 1. In this exper-
iment, we select the document that contains the operator
Exchange(N1, N2) and vary the cardinality of N2 (denoted



as r) from 2 to 8 in the step of 2. We observe that when
n = 2, NDDR is better than IDDR due to the complicated
matching in IDDR. However, when n = 4, IDDR starts to
outperform NDDR, and as n increases, the improvement
of IDDR over NDDR becomes larger. The reason is that
in IDDR, the processor is aware of the data rewriting, and
knows that same subtree rooted at N1 is repeated under each
N2, thus IDDR shares the processing of the subtree rooted
at N1. As n increases, the improvement of IDDR by sharing
the repeated subtree becomes larger, which compensates the
performance loss due to complicated matching algorithm.

5.2.1 Discussion
Based on our experimental results, we have the following

observations on the efficiency of various approaches. First,
to disseminate schema mapping M`,g as the data’s header in-
formation incurs little overhead, and this approach is space-
and update-efficient. To compare among IDDR, NDDR and
SDR, SDR does not perform well due to the transmission of
additional data, especially when the bandwidth is small or
the number of hops to subscribers is large. Moreover, IDDR
does not scale well as the number of subscriptions or the
size of documents increases since it complicates the match-
ing algorithm. Generally speaking NDDR achieves the best
performance, and we have measured that the memory usage
in NDDR of most documents is around 5% of the document
size, which is small enough. However, IDDR performs bet-
ter than NDDR when there are many duplicated subtrees in
the rewriting of D` to Dg.

6. CONCLUSIONS
In this paper, we have introduced the heterogeneous data

dissemination problem for XML data and have proposed a
novel paradigm based on the principle of data rewriting to
address the problem. We have explored several architectural
options and their tradeoffs for this new approach. Our ex-
perimental results show that the non-intrusive dynamic data
rewriting approach has the overall best performance.
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