
Evaluation of Set-based Queries with Aggregation
Constraints

Quoc Trung Tran, Chee-Yong Chan, and Guoping Wang
Department of Computer Science, School of Computing

National University of Singapore
{tqtrung, chancy, wangguoping}@comp.nus.edu.sg

ABSTRACT
Many applications often require finding a set of items of in-
terest with respect to some aggregation constraints. For ex-
ample, a tourist might want to find a set of places of interest
to visit in a city such that the total expected duration is no
more than six hours and the total cost is minimized. We re-
fer to such queries as SAC queries for “set-based with aggre-
gation constraints”queries. The usefulness of SAC queries is
evidenced by the many variations of SAC queries that have
been studied which differ in the number and types of con-
straints supported. In this paper, we make two contributions
to SAC query evaluation. We first establish the hardness
of evaluating SAC queries with multiple count constraints
and presented a novel, pseudo-polynomial time algorithm
for evaluating a non-trivial fragment of SAC queries with
multiple sum constraints and at most one of either count,
group-by, or content constraint. We also propose a heuris-
tic approach for evaluating general SAC queries. The ef-
fectiveness of our proposed solutions is demonstrated by an
experimental performance study.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms

Keywords
Set-based query, aggregation constraints

1. INTRODUCTION
Many database applications often require finding a set

of items of interest with respect to some aggregation con-
straints. As an example, consider the following database
relation which stores information about places of interest:
POI(name, price, hour, type, city). Here, name refers to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

place of interest located in city with a ticket fee of price
dollars, hour refers to the recommended duration to spend
at that place (in hours), and type refers to the category of
the tourist place (e.g., museum, park). Suppose that Alice
plans to find a tour package of places to visit from POI
that satisfies the following requirements: (R1) all places are
located in NY city, (R2) the total price is between $300
and $400, (R3) the expected duration is no greater than
10 hours, and (R4) the number of distinct types of places
is maximized (to maximize diversity). Observe that Alice’s
request involves a simple filtering constraint, R1, and three
aggregation constraints: two sum constraints (R2 and R3)
and a count constraint, R4, to be maximized. The query’s
result consists of a collection of matching packages where
each package is a set of places of interest that satisfy the
four requirements.

Besides the “global” aggregation constraints illustrated by
the above example, another very useful type of aggregation
constraints are “local” group-by aggregation constraints that
specify an aggregation constraint on specific subgroup(s) or
all subgroups of the qualified sets, where a subgroup is de-
fined with respect to an attribute list and optionally specific
attribute values. As an example of a group-by count con-
straint on a specific group, Alice could require that there
must not be more than two museum places in a matching
package. In contrast, an example of a group-by sum con-
straint that is specified on each group is when Alice requires
that the total visit duration to places of the same type does
not exceed four hours.

Yet another useful type of set-based constraints are con-
tent constraints to specify the presence of certain attribute
values (or tuples) in each qualified set. As an example, Al-
ice could specify that each matching package must contain
a visit to “Central Park”.

We refer to such set-based queries with any combina-
tion of aggregation, group-by, and content constraints as
SAC queries. The usefulness of SAC queries is evidenced
by the variants of SAC queries (with different restrictions
on the number and types of constraints permitted) that
have been studied: OPAC queries for business optimization
problems [4], student course planning in the CourseRank
project [2], and item recommendations in shopping applica-
tions [1].

While SAC queries have many useful applications, the queries
may not be easily expressed using SQL due to the fact
that the qualified sets generally have different cardinalities
and the maximum cardinality of the sets is data-dependent.
More importantly, even when such complex queries can be

expressed and evaluated by SQL engines, their performance
can be very poor as demonstrated by our experimental re-
sults. Indeed, the evaluation of general SAC queries involving
any combination of aggregation, group-by aggregation, and
content constraints is an NP-complete problem. Although
a number of polynomial [2] and pseudo-polynomial time [4,
5] algorithms have been developed for evaluating simpler
fragments of SAC queries, most of the proposed evaluation
techniques are heuristic methods for more general SAC query
fragments [1].

Contributions. We make two key contributions to the
study of SAC query evaluation by addressing two open is-
sues. First, there is the question of whether there exists
other non-trivial fragments of SAC queries that can be eval-
uated in polynomial/pseudo-polynomial time. Currently,
there are two fragments of SAC queries that are known to
be amenable to efficient evaluation. First, SAC queries with
one count constraint and at most one group-by count con-
straint, where the attribute(s) in the count and group-by
constraint are the same, can be evaluated in polynomial
time [2]. Second, SAC queries with any number of sum con-
straints and at most one group-by sum constraint can be
evaluated in pseudo-polynomial time [5]. An open question
that arises from this fact is: what is the complexity of eval-
uating SAC queries with more than one count constraint or
with a combination of sum and count constraints? In this
paper, we address this issue by first establishing that even
for SAC queries with only two count constraints, the eval-
uation problem is already an NP-complete problem in the
strong sense. Given this negative result for multiple count
constraints, we next show that for the SAC query fragment
with any number of sum constraints and at most one of
either count, group-by, or content constraint, the evalua-
tion problem has pseudo-polynomial time complexity, and
we present a dynamic programming approach to evaluate
this non-trivial SAC query fragment. Our second contribu-
tion is the proposal of a heuristic for evaluating general SAC
queries with any combination of sum, count, group-by, and
content constraints. The heuristic tries to find a solution
that satisfies all the specified constraints but may return
an approximate solution that meets only some of the con-
straints.

2. SAC QUERIES
A Set-based query with Aggregation Constraints (or SAC

query for short) can be expressed in terms of two compo-
nents, Q = (Qbase, Cans). Qbase, which is the base query
of Q, is a conventional relational query that retrieves a set
Sbase of tuples, which serves as the base data for the SAC

query. Cans is a set of aggregation/group-by/content con-
straints such that each subset Sans ⊆ Sbase that satisfies all
the constraints in Cans is a result of the SAC query Q.

The basic aggregation constraint in Cans is a numeric con-
straint of the form “X op c”, where X is some expression (to
be described), op is one of the standard comparison opera-
tors (=,≤,≥, <, >), and c is a non-negative integer constant.
The constraints permitted in Cans are of the following five
types:

(1) A sum constraint is a constraint on the sum of some
attribute Ai in Sans, denoted by sum(Ai) op c.

(2) A count constraint is a constraint on the number
of distinct values of a subset A′ of the attributes in Sans,

denoted by count(A′) op c. When A′ is a candidate key
attribute of Sans, the count constraint becomes a cardinality
constraint.

(3) An optimization constraint is specified to maxi-
mize/minimize an aggregated value, and there are two forms
of optimization depending on whether the aggregated value
is bounded. A bounded optimization constraint is of the
form “opt (agg(X)) op c”, and an unbounded optimization
constraint is of the form “opt (agg(X))”. Here, opt is ei-
ther minimize or maximize; agg is an aggregation operator
(sum, count); X is either a single attribute (if agg is sum
or count) or a sequence of attributes (if agg is count); and
op is an non-equality comparison operator. As an exam-
ple, the constraint maximize(sum(Ai)) ≤ c is a bounded
optimization constraint on sum(Ai), while the constraint
maximize(sum(Ai)) is an unbounded optimization constraint
on sum(Ai).

(4) A group-by constraint is of the form groupby(A′, agg,
B′) op c, where A′ and B′ are subsets of attributes in Sans,
and agg is an aggregation operator (i.e., sum or count). The
constraint requires that if Sans is partitioned into groups of
tuples having the same values for attribute(s) A′, then each
group must satisfy the aggregation constraint agg(B′) op c.
In addition to this basic form of group-by constraint where
the same count/sum constraint (i.e. c) is applied to each
group, it is also possible to specify individual count/sum
constraint for each group by explicitly listing the desired
values of c’s using the form: groupby(A′ = vi, agg, B′) op ci.

(5) A content constraint is of the form contain(A′, V),
where A′ is a subset of attributes in Sans, and V is a set of
tuple values (of the same arity as the number of attributes
in A′). The constraint requires that the projection of Sans

on A′ must contain the set of tuples V .
In this paper, the SAC query fragment that we study al-

lows Cans to contain at most one group-by constraint. For
other types of constraints, Cans can contain any number of
them1. Furthermore, the domain of the attribute involved in
a sum or optimization constraint must contain non-negative
values. For simplicity and without loss of generality, cardi-
nality constraints are treated as a form of sum constraints
(i.e., summing on a virtual attribute with a value of 1 for
each tuple); therefore, we will not explicitly discuss cardi-
nality constraints in this paper.

Since the problem of evaluating a SAC query is very hard
in general, we focus on finding some answer for a given SAC

query and leave the problems of ranking and/or finding top-
k answers for SAC queries as part of our future work. We
will use the tour package database illustrated in Figure 1 as
our running example.

Example 1. Our example SAC query in the introduction
can be expressed as follows: The base query Qbase corre-
sponds to the SQL query: SELECT * FROM POI WHERE
city = “NY”, and the aggregation constraints are specified as
follows: (R2) sum(price) ≥ 300, sum(price) ≤ 400; (R3)
sum(duration) ≤ 10; and (R4) maximize(count(type)).
The additional local group-by count, local group-by sum, and
content constraints discussed are specified, respectively, as
follows: groupby(type = museum, count, ∗) ≤ 2, groupby(type,
sum, duration) ≤ 4, and contain(name,“Central Park′′).

2

1Note that when there are multiple optimization constraints,
the query becomes a skyline query.

name price hour type city
t1 L1 50 2 museum X
t2 L2 70 3 park X
t3 L3 40 1 theatre X
t4 L4 25 2 museum Y
t5 L5 90 4 museum Y
t6 L6 20 1 shopping Z

Figure 1: Running Example: Place of Interest (POI)
relation

3. MULTI-SUM SAC QUERIES
With the exception of two fragments of SAC queries, namely,

SAC queries with one count constraint and at most one group-
by count constraint [2] and SAC queries with any number of
sum constraints and at most one group-by sum constraint [5],
most of the proposed techniques for evaluating more general
SAC queries are heuristic solutions [1]. This raises the inter-
esting open question of what is the complexity of evaluat-
ing SAC queries with more than one count constraint or SAC
queries with a combination of sum and count constraints.

To address this issue, we first establish the following re-
sult on the evaluation of SAC queries with multiple count
constraints; the proof is given elsewhere [6].

Theorem 1. Consider a SAC query Q where Cans con-
tains exactly two count constraints on two distinct attributes.
The problem of evaluating Q is NP-complete. 2

Given the above negative result for SAC queries with mul-
tiple count constraints, we next ask the question of whether
SAC queries with at most one count constraint can be effi-
ciently evaluated. In this section, we show that for the SAC

query fragment with any number of sum constraints and at
most one of either count, group-by, or content constraint,
the evaluation problem has pseudo-polynomial time com-
plexity, and we present a dynamic programming approach to
evaluate this non-trivial SAC query fragment. Our dynamic
programming approach can also evaluate SAC query that in-
cludes any number of sum constraints and one count, one
group-by, and one content constraint, where the attribute(s)
used in these constraints are the same.

3.1 DP: Conceptual Approach
In this section, we present a novel, pseudo-polynomial

time algorithm, termed DP, for evaluating SAC queries with
any number of sum constraints and at most one of either
count, group-by, or content constraint. For convenience, we
refer to this SAC query fragment as multi-sum SAC queries.

To simplify the presentation, we first explain how DP eval-
uates a simpler subset of multi-sum SAC queries with mul-
tiple sum and a single count constraints, and then briefly
discuss the generalization of DP to solve the general multi-
sum SAC queries in Section 3.3.

For simplicity and without loss of generality, we explain
the evaluation for a SAC query Q = (Qbase, Cans) where Cans

contains the following two constraints on two attributes A
and B and the domain of A contains integer values2.

• Sum maximization constraint: maximize(sum(A)) ≤
K, and

2If the domain of A contains real values, DP approximates
the real values by integer values.

city hour type

P1





t1 X 2 museum
t2 X 3 park
t3 X 1 theatre

P2

{
t4 Y 2 museum
t5 Y 4 museum

P3

{
t6 Z 1 shopping

SV1 = {1, 2, 3, 4, 5, 6}
SV2 = {2, 4, 6}
SV3 = {1}

(a) Sbase (b) SV -sets

Figure 2: Partition POI using city attribute

• Count constraint: count(B) = m.

Let ` denote the number of distinct B attribute values in
Sbase. Recall that Sbase is the set of base data retrieved by
the base query Qbase. DP is based on the following two-phase
dynamic programming approach.

First, DP partitions Sbase using the B attribute into `
partitions P1, · · · , P`. For each partition Pi, DP derives
SVi = {V ∈ [1, K] | ∃ Ps,i ⊆ Pi s.t.

∑
t∈Ps,i

(t.A) = V }.
We say that a value V ∈ SVi is the representation of a
set Ps,i ⊆ Pi iff

∑
t∈Ps,i

(t.A) = V . Note that in general,

V can represent more than one set Ps,i; however, DP only
records one set Ps,i that V represents. This task is a subset-
sum problem that can be solved using dynamic program-
ming.

In the next step, DP selects m SVi sets and one value
from each selected set SVi so that the summation of these
selected values is maximized and does not exceed K. This
task can be solved using dynamic programming. Without
loss of generality, assume that the selected sets in this step
are SV1, · · · , SVm; and the corresponding value selected
in each SVi is vi, i ∈ [1, m]. Since each vi represents a
subset Ps,i ⊆ Pi, DP unions these Ps,i, i ∈ [1, m], as the
final answer Sans. Clearly, Sans has count(B) = m, as each
Ps,i “contributes” a distinct B value. Furthermore, Sans has
sum(A) maximized without exceeding K because

∑m
1 (vi)

is maximized and does not exceed K.

Example 2. Assume a user wants to find a package of
places to visit from POI with the following two constraints:
(1) maximize(sum(hour)) ≤ 7, and (2) count(city) = 2.
DP first partitions Sbase into three partitions, P1 to P3, using
city attribute, as shown in Figure 2(a). DP then derives the
corresponding three sets, SV1 to SV3, shown in Figure 2(b).
For instance, v1,5 = 5 ∈ SV1, since v1,5 represents for the
subset P1,s = {t1, t2}; i.e.,

∑
t∈P1,s

(t.hour) = 5.

In the next step, DP selects SV1 and SV2; and chooses
5 ∈ SV1 and 2 ∈ SV2 where their summation is maximized
and does not exceed 7. Since 5 represents for the set P1,s =
{t1, t2} and 2 represents for the set P2,s = {t4}, DP unions
P1,s and P2,s to return Sans = {t1, t2, t4}. Note that Sans is
not the only solution; another possible solution is {t4, t5, t6}.

2

3.2 DP: Algorithm
We now elaborate on the details of DP for evaluating a

SAC query involving two attributes A and B as given in
Section 3.1. For simplicity and without loss of general-

ity, let the domain of the B attribute values in Sbase be
dom(B) = {1, 2, · · · , `}3.

For each b ∈ dom(B), let Sb
base and S≤b

base be a subset
of Sbase defined in Equations 1 and 2, respectively. Let
E[1 · · · `, 1 · · ·K] be a two-dimensional matrix, where each
cell E[b, V] is a boolean value defined in Equation 3. Each
row E[b, .] is a subset-sum problem that can be solved with
a time complexity of O(K|Sb

base|). Therefore, the entire ma-
trix E can be constructed in O(K|Sbase|).

Let D[1 · · · `, 1 · · ·m, 1 · · ·K] be a three-dimensional ma-
trix, where each cell D[b, d, V] is a boolean value defined in
Equation 4.

Sb
base = {t ∈ Sbase | t.B = b} (1)

S≤b
base = {t ∈ Sbase | t.B ≤ b} (2)

E[b, V] = true iff ∃ S ⊆ Sb
base s.t.

∑
t∈S

(t.A) = V (3)

D[b, d, V] = true iff∃ S ⊆ S≤b
base s.t. |πB(S)| = d ∧

∑
t∈S

(t.A) = V

(4)
DP can find a solution if there exists a maximum value

Vmax ≤ K such that (1) D[`, m, Vmax] = true, and (2) for
every value V > Vmax, D[`, m, V] = false. We have the
following recurrence relation:

D[b, d, V] = D[b− 1, d, V] ∨
∃ V ′ ∈ [1, V] s.t. (E[b, V ′] = 1 ∧ D[b− 1, d− 1, V − V ′] = 1)

The recurrence relation indicates that D[b, d, V] can be
derived from either (1) D[b− 1, d, V] if we do not select any
tuples from Sb

base, or (2) D[b− 1, d− 1, V − V ′] if we select
a subset of tuples S′ from Sb

base with
∑

t∈S′(t.A) = V ′.
The computation of each D[b, d, V] requires at most V

look up operations on the corresponding row E[b, .] in the E
matrix. Thus, the time to build matrix D in the worst case
is O(m`

∑K
V =1(V)) = O(K2m`).

Deriving Sans. In addition to the main matrix D, DP

uses another matrix DTrace[`, m, K] that has the same di-
mensions as D to derive Sans. Each cell DTrace[b, d, V]
is set to either (1) a value 0 if D[b, d, V] is derived from
D[b − 1, d, V], or (2) a value V ′ > 0 if D[b, d, V] is derived
from D[b− 1, d− 1, V − V ′] and E[b, V ′].

To derive a set of returned tuples Sans, DP first determines
the maximum value Vmax ≤ K such that D[`, m, Vmax] =
true. There are two cases to consider:

• If DTrace[`, m, Vmax] = 0, then Sans is the set of tuples
that makes D[`− 1, m, Vmax] = true.

• Otherwise, if DTrace[`, m, Vmax] = V ′, then Sans is
the union of the set of tuples that makes D[`− 1, m−
1, Vmax − V ′] = true and the set of tuples that makes
E[`, V ′] = true.

The technique to derive a set of tuples that makes E[`, V ′] =
true follows a standard procedure for solving the subset-sum
problem. We briefly describe this procedure in the following.

3In general, we can easily map an arbitrary set of ` values
into the set {1, 2, · · · , `}.

Assume that S`
base = {t1, · · · , ty}. To compute E[`, .], DP

builds a two-dimensional matrix F [1 · · · y, 1 · · ·K] with the
following recurrence equation:

F [i, V] = F [i− 1, V] ∨ F [i− 1, V − ti.A]

DP maintains another matrix, denoted as FTrace[1 · · · y, 1 · · ·K],
that has the same dimensionality as F . Each FTrace[i, V]
keeps track of how F [i, V] is derived; i.e., FTrace[i, V] is set
to either (1) false if F [i, V] is derived from F [i − 1, V]; or
(2) true, otherwise.

To find a subset S` of tuples that make E[`, V] = true,
DP traces from FTrace[y, V]. If F [y, V] = false, then S` is
the set of tuples that makes F [y − 1, V] = true. Otherwise,
if F [y, V] = true, then S` is the union of {ty} and the set of
tuples that makes F [y − 1, V − ty.A] = true.

Complexity. The space complexity of DP is O(K|Sbase| +
Km`) to keep the matrices for the recurrence relations in the
main memory. The time complexity of DP is the summation
of the following three components: (1) partitioning Sbase

based on B attribute (denoted by Tpart), (2) computing E
matrix, and (3) computing D matrix. To partition Sbase

based on the B attribute, Greedy augments the base query
with an ORDER BY clause on B and evaluates this derived
query to obtain the set of partitions of Sbase. Thus, Tpart

is the time to execute the derived query on the DBMS. The
time complexity of DP is, therefore, O(Tpart + K|Sbase| +
K2m`).

Approximation version of DP. When K and/or ` is large,
the space required by DP might exceed the available main
memory. In these cases, DP needs to reduce the space re-
quirement by scaling down the domain values of the at-
tribute used with the sum constraint (i.e., A attribute) by
some factor cf; thus, K will be replaced by K/cf. The so-
lution of DP is approximate in these cases.

3.3 DP: Generalization
The DP approach can be generalized to evaluate multi-sum

SAC queries when Cans includes more than one optimization
constraint. The idea is to build a matrix for the dynamic
programming technique similar to D and find all the “sky-
line” values in this matrix. In particular, assume Cans in-
cludes (n + 1) constraints: maximize(sum(Ai)) ≤ Ki for
i ∈ [1, n], and count(B) = m. DP builds a (n+2)-dimensional
matrix D[1 · · · `, 1 · · ·m, 1 · · ·K1, · · · , 1 · · ·Kn]. To derive a
result set Sans, DP finds all“skyline”cellsD[`, m, V1, · · · , Vn] =
1 such that there does not exist any tuple of values (V ′

1 , · · · , V ′
n)

where (1) D[`, m, V ′
1 , · · · , V ′

n] = 1, (2) V ′
i ≥ Vi, for all

i ∈ [1, n], and (3) at least one of V ′
i is strictly greater than

Vi.
Similarly, the DP approach can be generalized to solve

multi-sum SAC query when Cans includes any number of sum
constraints and at most one of either content or group-by
constraint. The idea is also based on a two-phase dynamic
programming approach. In the first phase, DP partitions
Sbase using attribute(s) for the content or group-by con-
straints and derives SV -sets for each partition of Sbase with
respect to the content or group-by constraints. The second
phase manipulates the derived SV -sets to compute the an-
swer set. The details are given elsewhere [6].

4. GENERAL SAC QUERIES
In this section, we examine the evaluation of general SAC

queries involving any combination of aggregation, group-by,
and content constraints. By Theorem 1, it follows that this
evaluation problem is NP-complete. We therefore present a
heuristic solution, termed Greedy, to evaluate general SAC
queries. An answer set computed by our heuristic could be
suboptimal in the sense that the answer set does not satisfy
all the required constraints.

For ease of presentation, our discussion is organized into
three cases from the simplest to the most general case.

4.1 Count Constraints
We first discuss the simplest scenario where all the con-

straints in Cans are count constraints. For simplicity and
without loss of generality, we consider a SAC query with
two count constraints: count(Bi) = mi, i ∈ [1, 2], where
m1 ≤ m2. Our Greedy heuristic is based on the following
result.

Lemma 1. If there exists a subset Scount ⊆ Sbase that
has count(B1) = m1 and count(B2) ≥ m2, then there ex-
ists a subset Sans ⊆ Scount that has count(B1) = m1 and
count(B2) = m2.

Proof of Lemma 1. Given a subset Scount ⊆ Sbase that
has count(B1) = m1 and count(B2) ≥ m2, we first pick m1

arbitrary tuples in Scount that have m1 distinct B1 values to
put into Sans. The number of distinct B2’s values in Sans

is currently not greater than m1 and therefore is also not
greater than m2, since our assumption is m1 ≤ m2. We then
need to insert some tuples from (Scount−Sans) into Sans to
increase the number of distinct B2’s values in Sans into m2.
This task is accomplished by performing m2 − |πB2(Sans)|
steps. In each step, we pick a tuple in (Scount − Sans) to
insert into Sans in such a way that the number of distinct
B2’s values in the resultant Sans increases by 1. 2

Using Lemma 1, Greedy will derive a set Scount ⊆ Sans

that has count(B1) = m1 and count(B2) is as large as pos-
sible. The rationale is that if Scount has count(B2) ≥ m2,
then we can derive Sans from Scount satisfying all the con-
straints. The details of Greedy are as follows.
Greedy first partitions Sbase using the values of B1 at-

tribute, and performs m1 iterations to insert m1 partitions
of Sbase into Scount. At each iteration, Greedy considers all
potential partitions in Sbase, and chooses the “best” parti-
tion to insert into Scount such that the resultant Scount has
the largest number of distinct B2’s values. After m1 itera-
tions, there are two cases to consider. If |πB2(Scount)| ≥ m2,
Greedy derives Sans based on Lemma 1 such that Sans sat-
isfies all the count constraints from Scount. Otherwise, if
|πB2(Scount)| < m2, Greedy returns Sans = Scount as an ap-
proximate result that does not satisfy the count constraint
on B2.

Complexity. The space complexity of Greedy is O(|Sbase|),
since in the worst case, Greedy stores all distinct B2 values
in the main memory. The time complexity of Greedy is
O(Tpart + Talg), where (1) Tpart is the time to partition
Sbase based on B1 attribute, and (2) Talg is the time to
derive Scount and then Sans. Similar to DP, Greedy also
augments the base query with an ORDER BY clause on
B1 and evaluates this derived query to obtain the set of
partitions of Sbase. We have Talg = m1|Sbase|, since Greedy

performs m1 iterations and basically scans all tuples in Sbase

in each iteration.

Example 3. Consider a user who wants to find a tour
package consisting of places of interest from two different
cities and with three different types of activities. Greedy first
derives a set Scount that has count(city) = 2 and count(type)
as large as possible. For this task, Greedy partitions Sbase =
POI into three partitions using city attribute, as shown in
Figure 2(a). In the first iteration, Greedy selects partition
P1 to put into Scount, since P1 contains the largest number of
distinct type values. In the second iteration, Greedy selects
P3 to put into Scount, since P3 increases the number of dis-
tinct type values in Scount the most. Note that Greedy does
not select P2, since it does not help to increase count(type)
in Scount. Thus, Scount = P1 ∪ P3 = {t1, t2, t3, t6}.

Since Scount has count(type) = 4, Greedy can derive the
exact answer for this case. Using Lemma 1, Greedy first se-
lects t1 ∈ P1 and t6 ∈ P3 to put into Sans for count(city) = 2
in Sans. Finally, Greedy puts t2 into Sans. Thus, Sans =
{t1, t2, t6}. 2

Generalization. The other cases of count constraints in-
volving inequality comparison operator can be reduced to
the case of count constraints with equality operator. For in-
stance, if the constraints are count(B1) ≤ m1 and count(B2) ≥
m2, we can use the above solution to find sets of tuples satis-
fying count(B1) = x and count(B1) = y for 0 ≤ x ≤ m1 and
m2 ≤ y ≤ |B2|, where |B2| denotes the number of distinct
B2’s values in Sbase.

When there are more than two count constraints, assume
these constraints are count(Bi) = mi, i ∈ [1, k] with mk =
maxk

i=1(mi). As before, Greedy partitions Sbase using B1,
· · · , Bk−1 attributes. At each iteration, Greedy selects one
partition from Sbase to insert into Sans such that: (1) the
constraints on B1, · · · , Bk−1 can still be satisfied in the
sense that count(Bi) ≤ mi for i ∈ [1, k − 1], and (2) the
number of distinct Bk values in the resultant Sans is the
largest. Greedy terminates the iteration when none of par-
titions satisfies both of these conditions.

4.2 Count & Sum Constraints
In this section, we consider the more complex scenario

when there is a combination of count and sum constraints.
For simplicity and without loss of generality, we consider a
SAC query with two constraints: (1) maximize(sum(A)) ≤
K and (2) count(B) = m.

Our Greedy heuristic tries to satisfy the “easier” type of
constraints before considering the“harder”constraints. Specif-
ically, Greedy considers the constraints in the following or-
der: count, sum, and finally the optimization constraint.

To satisfy the count constraint, Greedy can select an ar-
bitrary subset Scount ⊆ Sbase that has |πB(Scount)| = m.
Observe that the more tuples that Scount has, the more
flexibility we have to select a subset of tuples from Scount

to satisfy other constraints. Thus, Greedy finds Scount that
has the cardinality as large as possible among all possible
Scount’s. For this task, Greedy partitions tuples in Sbase

based on their B’s values, and chooses m partitions that
have the largest cardinalities to form Scount.

To satisfy the sum constraint, Greedy partitions tuples
in Scount based on their B attribute values, and selects the
tuple that has the smallest A value in each partition of Scount

to insert into Sans. If
∑

t∈Sans
(t.A) > K, it implies that

any other subset of Scount will not satisfy both the count

and sum constraints; therefore, Greedy returns Sans as an
approximate result in this case.

Finally, Greedy handles the optimization constraint by
adding some tuples from (Scount − Sans) into Sans. This
task is a subset-sum problem: select a subset of tuples from
(Scount−Sans) that has max(sum(A)) ≤ K−∑

t∈Sans
(t.A).

It is important to note that we cannot add any tuples from
(Sbase−Scount) into Sans since it would increase the number
of distinct B values in Sans and violate the count constraint.

Complexity. The space complexity of Greedy is O(K|Scount|)
to maintain the matrix for dynamic programming in the last
step. The running time of Greedy is O(Tpart +TSSP) where:
(1) Tpart is the time to partition Sbase using B attribute and
select m partitions that have the largest cardinalities, and
(2) TSSP is the running time of the solver for the subset-
sum problem in the last step of Greedy. For Tpart, Greedy
augments the base query with the following: a GROUP BY
clause on B, an ORDER BY clause on COUNT (∗), and a
LIMIT clause to select the top-m highest cardinality par-
titions. For TSSP , Greedy uses the conventional pseudo-
polynomial algorithm to solve subset-sum problem. Thus,
TSSP = O(K|Scount|).

Example 4. We reconsider Example 2 and use Greedy to
solve the problem that finds a package having count(city) =
2 and maximize(sum(hour)) ≤ 7. Greedy first partitions
Sbase using city attribute, and derives Scount = P1 ∪ P2,
which has the largest cardinality from all possible Scount’s.

To satisfy the sum constraint, Greedy selects t3 ∈ P1 and
t4 ∈ P2, which has the smallest hour value to put into Sans.
Thus, we have

∑
t∈Sans

(t.hour) = 3.
For the optimization constraint, Greedy will select some

tuples from Scount − Sans = {t1, t2, t5} that have
maximize(sum(hour)) ≤ 4 to put into Sans. Thus, Greedy
will put t5 into Sans.

In summary, Sans = {t3, t4, t5} and the solution of Greedy
is turned out to be optimal in this case. 2

Generalization. The described algorithm can be general-
ized for cases where Cans consists of any number of count
and sum constraints, similar to the generalization described
in Section 4.1. For instance, consider the situation with
count constraints on attributes A1, · · · , Ak and sum con-
straints sum(Bi) < Ki, for i ∈ [1, `]. Greedy first uses the
described algorithm in Section 4.1 to derive Scount that sat-
isfies the count constraints. At the end of this step, we can
view Scount as being partitioned into n partitions using at-
tributes A1, · · · , Ak. In the next step, Greedy selects one
tuple in each partition of Scount to put into Sans. The key
point is how to select one tuple from each partition so that
Sans satisfies the sum constraint. Observe that if every se-
lected tuple t in each partition has t.Ai < Ki/n, for i ∈ [1, `],
then these selected tuples together will satisfy all the sum
constraints. Thus, our Greedy heuristic selects one tuple in
each partition that satisfies the largest number of conditions
“t.Ai < Ki/n” to put into Sans.

4.3 General Case
In the general case when Cans includes any combination of

constraints, Greedy also follows the“easier-to-harder-constraint”
principle so as to allow for more flexibility to satisfy all the
constraints. In particular, Greedy considers the constraints
in the following order: (1) content constraints, (2) count con-
straints, (3) sum constraints, and (4) group by together with

optimization constraints. The absence of any constraints
(e.g., count) allows Greedy to skip the corresponding step
(e.g., skip the second step for count constraints). The de-
tails are given elsewhere [6].

5. BOUNDED SAC QUERIES
We now switch our attention to a special fragment of SAC

queries, referred to as bounded SAC queries. A bounded SAC

query has a bounded cardinality constraint to bound the
cardinality of the qualified sets. As a simple example, Alice
might be interested only in tour packages containing at most
four places to visit. Bounded SAC queries are of interest be-
cause they can be processed using two existing approaches.
In this section, we briefly describe these techniques, namely
DirectSQL and MS, and compare these techniques against
our proposed DP and Greedy in Section 6.

Since bounded SAC queries can be expressed directly using
SQL, the first alternative evaluation method, denoted by
DirectSQL, is to use relational database engines. Consider
a SAC query Q with Qbase as “SELECT ∗ FROM R” where
there is a cardinality constraint in Q that sets the cardinality
of qualified sets to a value k. Assuming that the key of
relation R is an attribute id, Q can be expressed using SQL
as follows:

SELECT ∗
FROM R p1, · · · , R pk

WHERE p1.id < p2.id AND p2.id < p3.id AND · · ·
AND pk−1.id < pk.id AND qualification

Here, qualification refers to the predicates that repre-
sent the remaining constraints in Cans. Thus, each qualified
set is returned as a tuple in the query’s result. We now
explain how to translate the various types of constraints in
Cans into SQL predicates.

Content constraint. For each content constraint of the
form content(A, v), DirectSQL needs to ensure that at least
one instance pi of R contains a tuple t that has t.A = v. The
constraint can be expressed by the following SQL predicate:
(p1.A = v or · · · or pk.A = v).

Sum constraint. A sum constraint of the form sum(A) < K
can be simply translated into the predicate: (p1.A + · · · +
pk.A < K).

Count constraint. For a count constraint on an attribute A,
we need to count the number of distinct values among p1.A,
· · · , pk.A. This can be achieved by using SQL’s case con-
struct to map each pi.A value to either 0 or 1 and compar-
ing the sum of the mapped values against the desired count
value. Specifically, each pi.A is mapped to 1 if the value
of pi.A is not equal to any of the preceding pj .A values,
j < i; otherwise, it is mapped to 0. For example, the count
constraint “count(A) = m” is translated as follows:

(1 +
(case when p2.A 6= p1.A then 1 or 0 end) + · · · +
(case when pk.A 6= p1.A and · · · and pk.A 6= pk−1.A
then 1 or 0 end)) = m

Group-by constraint. Group-by constraints are trans-
lated similarly as count constraints using the case construct.
For example, consider the group-by constraint groupby(A,
agg, B). For each pi.A, i ∈ [1, k], the translation considers
other pj .A, j 6= i, that has pj .A = pi.A and performs the
aggregation function agg on B attribute w.r.t. the tuples of
pi and pj .

Table # Tuples
adult 45222

part 200000
supplier 10000

track 10000000

Table 1: Sizes of Test Data sets (number of tuples)

Optimization constraint. An optimization constraint is
translated essentially by sorting the query’s result based on
the aggregated attribute value and retrieving only the first
tuple by using SQL’s ORDER BY and LIMIT constructs.

For bounded SAC queries where the set cardinality is con-
strained to be a fixed value (e.g., count(place) = 4), a second
alternative evaluation method is to apply a recently pro-
posed technique MS [8]. The MS technique was actually de-
signed for solving a more general problem, specifically find-
ing preference sets (with multiple optimization constraints)
over fixed-cardinality sets of items. However, the technique
there can be used to evaluate bounded SAC queries as well.
Further comments on MS are given in Section 7.

6. EXPERIMENTAL STUDY
In this section, we study the effectiveness and the effi-

ciency of our proposed techniques to evaluate SAC queries.
The algorithms compared include the dynamic programming
approach, DP, that evaluates SAC queries with any number of
sum constraints and at most one count, content, or group-by
constraint; and Greedy, a heuristic approach for evaluating
general SAC queries with any combination of constraints. In
addition, we also compare DP and Greedy against two other
methods for bounded SAC queries: (1) a direct approach
using SQL queries, denoted by DirectSQL, and (2) the ap-
proach MS proposed in [8].

We used three real data sets for the experiments: Adult4,
TPCH (with a database size of 1GB), and a music data set
containing 10, 000, 000 songs and 500, 000 artists5. We used
four test queries on Adult data set (Q1 to Q4), two queries
(Q5, Q6) on TPCH data set, two queries (Q7, Q8) on the
music data set, and another two queries Q′1 and Q′′1 that
differ slightly from Q1. Among these queries, Q1 - Q3 and
Q5 - Q8 are multi-sum SAC queries, Q4 is a general SAC query,
and Q′1 and Q′′1 are bounded SAC queries. The test data and
queries are given in Tables 1 and 2, respectively. The third
column in Table 2 shows the number of tuples in the query
result of the base query of each SAC query.

We used PostgreSQL 8.3 for our database system, and
all algorithms (DP, Greedy, DirectSQL, and MS) were coded
using C++ and compiled with GNU C++ compiler. Our
experiments were conducted on a dual-core, 2.33GHz PC
running Linux with 3.25GB of RAM and a 250GB hard disk.

6.1 Comparison between DP and Greedy

This section compares DP and Greedy to evaluate SAC

queries in terms of the quality of computed results and
the running time. Both methods are applicable for all test
queries except for query Q4, which is a general SAC query
that consists of all kinds of constraints supported in this pa-
per and cannot be handled by DP. We report the running

4http://archive.ics.uci.edu/ml/datasets/Adult
5http://musicbrainz.org/

times of these methods to return one result set for each test
query.

Quality of Computed Results. We measured the quality
of a query result evaluation in terms of two metrics: (1) the
number of query constraints that are satisfied by the com-
puted result, and (2) the aggregate value returned for the
optimization constraint. For all of our test queries, both DP

and Greedy can find solutions that satisfy all the required
constraints. Thus, we compare the quality of computed re-
sults for these test queries using the ratio between the ag-
gregated value returned by DP over the aggregated value re-
turned by Greedy, referred to as relative aggregated value of
DP over Greedy. Since the optimization constraint in queries
Q1 to Q8 is maximization, the higher the relative aggregated
value of DP over Greedy, the better the solution of DP is in
comparison with Greedy. The relative aggregated value of
DP over Greedy for queries Q1 to Q8 are given in the second
column in Table 3.

For queries Q1 to Q3, which involve small relations, DP re-
turned optimal solutions while Greedy returned high-quality
solutions; i.e., the aggregated values returned by Greedy are
around 3% lower than the optimal values by DP.

Query Q4 is an example of a general SAC query that con-
tains all kinds of constraints supported in this paper and DP

cannot handle. Thus, the DP result for Q4 is not shown in
Table 3. For this query, Greedy can find one set of tuples
that satisfies all the constraints.

For queries that involve large data sets (Q5 to Q8), since
the constructed matrices for the dynamic programming are
too large to fit in the main memory, DP used its approxi-
mation version to scale down the domain values of the at-
tributes used with the aggregated constraints (e.g., length,
retail price attributes). For Greedy, with the heuristic strat-
egy, Greedy first selected a set of tuples satisfying the count
constraints, thus reducing the number of tuples to be con-
sidered by dynamic programming for the sum optimization
constraints. Therefore, the solution of Greedy can be better
than DP in these cases. In fact, the results of Greedy for
Q5 and Q6 are slightly better than DP. For queries Q7 and
Q8, both the number of involved tuples (3727521 tuples) as
well as the number of distinct values of the attribute associ-
ated with the count constraint (270352 and 2003678 values,
respectively) are large. Here, Greedy returns much better
quality result than DP for Q7 and Q8. The aggregated val-
ues returned by Greedy are around 1.5 - 3.5 times larger
than the ones by DP and are nearly equal to the maximum
aggregated values required by the queries.

To study how far the aggregated values returned by Greedy

and DP are from the optimal solutions, we varied the bounds
on the aggregate values of queries Q1 and Q8. We report the
results on queries Q3 and Q7 in Figure 3 (the same trends are
observed for other queries). For Q3, we vary the bounded op-
timal value from the set {500, 1000, 2000, 3000, 40000, 320000}.
For Q7, we vary the bounded value from the set {6×106, 12×
106, 18×106, 24×106, 30×106}. The results again show that
when the matrices constructed by dynamic programming
can fit in the main memory, the optimal value returned by
DP is slightly better than Greedy. In contrast, when the ma-
trices cannot be fit in main memory, the solution of Greedy is
better than DP. For all cases, the optimal values obtained by
Greedy are very close (e.g., more than 95%) to the bounded
optimal values, which indicates that Greedy returns high
quality solutions.

Query Constraints Size
Q1 Qbase = π∗(adult); maximize(sum(edunum)) ≤ 5000; count(race) = 2 45222
Q2 Qbase = π∗(adult); maximize(sum(edunum)) ≤ 1000; groupby(nativecountry, count, ∗) ≤ 5 45222
Q3 Qbase = π∗(adult); maximize(sum(capitalloss)) ≤ 1000; 2 ≤ count(occupation) ≤ 4; 45222
Q4 Qbase = π∗(adult); maximize(sum(capitalloss)) ≤ 2000; count(nativecountry) = 2; count(race) = 2 45222

content(nativecountry, “United-States”); groupby(nativecountry, race, count, ∗) ≤ 2
Q5 Qbase = π∗(part); maximize(sum(retailprice)) ≤ 80000; count(brand) = 4 200000
Q6 Qbase = π∗σacctbal>0(supplier); maximize(sum(acctbal)) ≤ 150000; 8 ≤ count(nation) ≤ 10 9114
Q7 Qbase = π∗σlength>240000(track); maximize(sum(length)) ≤ 30000000; count(artist) = 5; 3727521

content(artist, “Bob Dylan”)
Q8 Qbase = π∗σlength>240000(track); maximize(sum(length)) ≤ 18000000; 4 ≤ count(title) ≤ 6; 3727521

content(title, “Jingles Bell”)

Q′1 Qbase = π∗σid≤60(adult); maximize(sum(edunum)) ≤ 50; count(race) = 2; count(∗) = x 60
Q′′1 Qbase = π∗σid≤500(adult); maximize(sum(edunum)) ≤ 1000; count(race) = 2; count(∗) = x 500

Table 2: SAC queries for experiments

Relative aggregated value Running time (secs)
Query DP/Greedy DP Greedy

Q1 1/1 7.7 7.5
Q2 1/1 10 10
Q3 1/0.97 2.3 1
Q4 - - 1
Q5 0.98/1 11 8
Q6 1/1 73 8
Q7 0.64/1 70 28
Q8 0.28/1 170 32

Table 3: Comparison between DP and Greedy

Cardinality value Q′1 Q′′1
4 0.8 0.56
5 1 0.65
6 1 0.71
7 1 0.75

Table 4: The relative aggregated value of Greedy over
the optimal solution

Running Time. The third and fourth columns in Table 3
show the running time comparison between Greedy and DP,
where Greedy runs 1.5 - 9 times faster than DP. The result
is expected since Greedy is a heuristic solution.

6.2 Comparing DP, Greedy, MS and DirectSQL

In this section, we compare our proposed methods (DP and
Greedy) against the direct approach that uses SQL queries,
denoted by DirectSQL, and the method MS proposed in [8]
for bounded SAC queries, which have a bounded cardinality
constraint to bound the cardinality of the qualified sets. For
this comparison, we used two queries Q′1 and Q′′1 , which are
variants of query Q1. The three methods (DP, MS, and Di-

rectSQL) are able to find the optimal results for both queries
Q′1 and Q′′1 .

First, we run these approaches for query Q′1 by varying the
set cardinality constraint value from 4 to 7; i.e., x ∈ [4, 7].
The Greedy approach returns rather good results; i.e., only
for the cardinality 4, the relative aggregated value of Greedy

 1

 10

 100

 1000

V
al

ue
 (

x
10

2)
(lo

g-
sc

al
e)

Q3

GrA
DP

Bounded value

 5

 10

 15

 20

 25

 30

V
al

ue
 (

x
10

6)

Q7

GrA
DP

Bounded value

Figure 3: Optimal values obtained by DP and Greedy

over the optimal solution is 0.8; for the other cases, Greedy
achieves the optimal aggregated values (the second column
in Table 4). In terms of the running time, as shown in
Figure 4(a), Greedy runs the most efficiently. For the other
three methods, DP runs faster than MS and much faster than
the direct approach (DirectSQL). Note that the number of
tuples selected by the base query in Q′1 is controlled to be
small (i.e., 60) so that the DirectSQL approach can complete
its evaluation within reasonable time. Observe that when
the set cardinality value increases, the running times of DP
and Greedy increase linearly; whereas the running times of
MS and DirectSQL increase exponentially.

Second, we increase the maximum sum value in Q1 to be
1000 and the number of selected tuples by the base query to
be 500 to scale up the size of the matrices built by DP and the

 0.1

 1

 10

 100

 1000

 10000

4 5 6 7R
un

ni
ng

 ti
m

e
(lo

g-
sc

al
e)

 in
 s

ec
s

Varying cardinality constraint value

DirectSQL
MS
DP

Greedy

(a) Q′1

 0.1

 1

 10

 100

 1000

 10000

4 5 6 7R
un

ni
ng

 ti
m

e
(lo

g-
sc

al
e)

 in
 s

ec
s

Varying cardinality constraint value

MS
DP

Greedy

(b) Q′′1

Figure 4: The running time comparison between DP,
Greedy, MS and DirectSQL

number of subsets to be considered by MS and DirectSQL.
We denote this new query by Q′′1 . For Q′′1 , DirectSQL cannot
finish in five hours, thus we do not record the results of
DirectSQL in Figure 4(b). The relative aggregated value of
Greedy over the optimal solution is in the range of 0.56 to
0.75 (the third column in Table 4). In terms of the running
time as shown in Figure 4(b), Greedy still runs the most
efficiently. DP runs much more efficiently than MS for this
query, since the number of subsets considered by MS is large.
For instance, for the case with cardinality = 6, the number
of subsets of size six considered by MS is 3800000 and the
running time is 5 minutes.

6.3 Summary
We have the following conclusions from our experimental

study:

• DP can find optimal solutions for multi-sum SAC queries
when its memory requirement is within the available
main memory with a trade-off of slower running time
compared to Greedy in the order of 1.5 - 9 times.

• The solutions found by Greedy have high quality and
are better than these by DP when the memory require-
ment of DP exceeds the available main memory. Fur-
thermore, Greedy runs very efficiently.

• For bounded SAC queries, both DP and Greedy run
much more efficiently than the direct method (Direct-
SQL) of using SQL queries and MS method proposed for
preferences involving fixed-cardinality sets [8].

content

count

0

count

1

Greedy

>= 2

group-by

0

group-by

1

 >= 2group-by

0

>= 1

other

DP/Greedy

none countKP [4,5]

none/sum

optimization

count(same)other

sum(same)/none

other

CR [2]

unbounded sum

Figure 5: Evaluation Strategies for SAC Queries

7. RELATED WORK
The related work can be classified into two categories:

work that are directly related to SAC queries [2, 4, 5] whose
relationship to our work (DP and Greedy) is captured by the
decision tree in Figure 5, and work that are related more
broadly to set-based queries [1, 3, 7, 8] which involved con-
straints different from SAC queries.

SAC Queries. Several variants of SAC queries that have
been studied differ in the number and types of constraints
permitted. These work together with our techniques can
be classified by the decision tree in Figure 5, where each
leaf node represents the best evaluation technique for the
fragment of SAC queries represented by the path of internal
nodes which specify the permitted constraints. Specifically,
“# contents”specifies the number of content constraints sup-
ported (0, 1, or≥ 2),“# count”specifies the number of count
constraints supported (0, 1, or ≥ 2), “group-by” specifies the
type of group-by constraints supported (count, sum, none)
and whether the attribute(s) used with group-by operators
are the same (indicated by “same”) or not (no explicit label)
with the attribute(s) used with the count constraints, and
“optimization” specifies the type of optimization constraints
supported (unbounded sum, other).

KP refers to the classic knapsack problem techniques [5]:
Given a set of items where each item j has a profit pj and a
weight wj , the goal is to select a subset of items such that
its total profit is maximized and its total weight does not ex-
ceed an input capacity value. A variant of KP was studied
in [4] for solving optimization under parametric aggregation
constraints (OPAC) query, which takes the following as in-
puts: (1) a relation R(A1, · · · , An, P), (2) a set of parametric
sum-aggregation constraints of the form sum(Ai) ≤ ci with
ci as a parameter, and (3) a sum optimization constraint
sum(P) to be maximized. Given a parameterized OPAC
query, [4] proposed an algorithm to construct indices to effi-
ciently provide approximate answers with guarantee bound
on its accuracy for any instantiated OPAC query with spe-
cific values for the parameters in the sum constraints.

A second variant of KP, which corresponds to the frag-
ment of SAC queries with multiple sum and a single group-
by-sum constraints, is the multiple-choice Knapsack prob-
lem [5]. This is useful in budgeting applications to select a

set of projects to be funded such that the total cost for all
projects is bounded by some limit, the total cost for projects
belonging to the same department is bounded by another
limit, and the total project profit is maximized. This prob-
lem can be solved in pseudo-polynomial time using a two-
step dynamic programming approach [5] which is similar to
our proposed DP. However, the formulation of the second
dynamic programming stage in our DP is more complicated,
since DP needs to take into account the count/content con-
straints, which [5] does not consider.

Another related work is the CourseRank (CR) project [2]
which is motivated by course planning applications. CR
considers constraints of the form “take at least a and at
most b courses from a set Si”, where a and b are non-negative
integers and Si is a set of related courses (e.g. CS courses),
and each course is associated with a use-preference score.
For example, a student might be required to complete 2
or 3 courses from a given set of six math courses. Given
such constraints, CR finds a set of courses that satisfies all
requirements such that the number of selected courses is
equal to some given value and the total score of the selected
courses is maximized. A polynomial-time algorithm based
on maximal flow was proposed for the CR problem [2].

Set-based Queries. There are also several work on set-
based query evaluation [1, 3, 7, 8] but they differ from our
work due to the types of constraints supported in the queries
and/or the focus of the evaluation problem.

A related work, which is motivated by online shopping
applications [1], examines the problem of recommending a
set of “satellite items” (e.g., case, speaker) related to a given
“center item” (e.g., iPhone). Given a budget B and a cen-
tral item, [1] finds (approximately) all maximal sets of satel-
lite items associated with the central item such that the
cost of each maximal set does not exceed the given bud-
get B. Different from [1], we do not consider “maximal set”
constraints, which will make the problem of evaluating SAC

queries even harder. However, SAC queries support other
constraints (e.g., count, group-by, content) which [1] does
not handle.

The work on making composite recommendations of a set
of items is studied in [7], where each item is associated with
both a rating value and a cost. The goal is to find the top-k
sets of items such that the total cost of items in each set
is no greater than a given budget, and a set with a higher
total rating value is more preferable. Note that when k = 1,
the problem setting is exactly the Knapsack problem. The
problem addressed there, however, is based on an evaluation
framework where the ratings of items are accessed via sorted
access from some external recommending parties, while the
costs of items are accessed via random access. [7] intro-
duced a 2-approximation solution and a greedy algorithm
to find top-k composite recommendations with the optimiza-
tion goal to minimize the total access cost.

The work in [3] finds an optimal subset of a set of tuples
according to a set preference, which is specified as either a
TCP-net or a scoring function on a collection of set proper-
ties. A set property is based on the number of tuples satisfy-
ing a certain predicate (e.g., the number of tuples satisfying
a predicate is greater than a given value). Two heuristic
search algorithms (based on branch-and-bound and Con-
straint Satisfaction Problem) were proposed in [3]. There
are two main differences between [3] and our work. First,
[3] focuses on cardinality constraint and does not support

other types of constraints considered in our work. Second,
the algorithms developed for each work are different from
the other.

Finally, there is also a recent related work on finding all
subsets of a given fixed-cardinality from a relation that sat-
isfy some user-specified preferences [8]. There are two main
differences between the work in [8] and ours. First, [8] deals
with sets of fixed-cardinality, whereas the sets retrieved by
SAC queries can have varying cardinality. Second, [8] allows
users to specify preferences over sets and the focus is on
computing the skyline query result. However, as explained
in Section 5, the technique in [8] can be applied to evaluate
SAC queries with a fixed set cardinality.

In summary, although several related work have examined
set-based queries or special fragments of SAC queries, our
work on DP is the first pseudo-polynomial time algorithm
for evaluating the non-trivial SAC query fragment with mul-
tiple sum and at most one of either count, group-by, or con-
tent constraint. Furthermore, our Greedy approach is the
first heuristic to evaluate general SAC queries with any com-
bination of count, sum, group-by, and content constraints.
The Greedy heuristic tries to find a solution that satisfies
all the specified constraints but may return an approximate
solution that meets only some of the constraints.

8. CONCLUSION
In this paper, we have examined the evaluation of set-

based queries with aggregation constraints (SAC queries),
which are very useful for many data retrieval applications.
We have presented two novel algorithms: DP, a pseudo-
polynomial time algorithm for evaluating a non-trivial frag-
ment of SAC queries involving multiple sum constraints and
at most one of count, group-by, or content constraint; and
Greedy, the first heuristic approach for evaluating general
SAC queries. The effectiveness of our proposed solutions was
demonstrated by an experimental performance study over
real data sets. As part of our future work, we plan to inte-
grate ranking/top-k pruning into SAC query evaluation.

Acknowledgements This research is supported in part by
NUS Grant R-252-000-453-112.

9. REFERENCES
[1] S. Basu Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu.

Constructing and exploring composite items. In SIGMOD, pages
843–854, 2010.

[2] B. Bercovitz, F. Kaliszan, G. Koutrika, H. Liou,
A. Parameswaran, P. Venetis, Z. M. Zadeh, and
H. Garcia-Molina. Social sites research through courserank.
SIGMOD Rec., 38(4), 2009.

[3] M. Binshtok, R. I. Brafman, S. E. Shimony, A. Martin, and
C. Boutilier. Computing optimal subsets. In AAAI, pages
1231–1236, 2007.

[4] S. Guha, D. Gunopoulos, N. Koudas, D. Srivastava, and
M. Vlachos. Efficient approximation of optimization queries
under parametric aggregation constraints. In VLDB, pages
778–789, 2003.

[5] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer, Berlin, Germany, 2004.

[6] Q. T. Tran, C.-Y. Chan, and G. Wang. Evaluation of set-based
queries with aggregation constraints. Technical Report
http://www.comp.nus.edu.sg/∼tqtrung/sac-tech.pdf, National
University of Singapore, August 2011.

[7] M. Xie, L. V. Lakshmanan, and P. T. Wood. Breaking out of the
box of recommendations: from items to packages. In RecSys,
pages 151–158, 2010.

[8] X. Zhang and J. Chomicki. Preference queries over sets. In
ICDE, pages 1019–1030, 2011.

