
SliceSort: Efficient Sorting of Hierarchical Data

Quoc Trung Tran
∗

UC Santa Cruz
tqtrung@soe.ucsc.edu

Chee-Yong Chan
National University of Singapore

chancy@comp.nus.edu.sg

ABSTRACT
Sorting is a fundamental operation in data processing. While
the problem of sorting flat data records has been extensively
studied, there is very little work on sorting hierarchical data
such as XML documents. Existing hierarchy-aware sorting
approaches for hierarchical data are based on creating sorted
subtrees as initial sorted runs and merging sorted subtrees
to create the sorted output using either explicit pointers
or absolute node key comparisons for merging subtrees. In
this paper, we propose SliceSort, a novel, level-wise sort-
ing technique for hierarchical data that avoids the drawbacks
of subtree-based sorting techniques. Our experimental per-
formance evaluation shows that SliceSort outperforms the
state-of-art approach, HErMeS, by up to a factor of 27%.

Categories and Subject Descriptors
H.2.4 [System]: Query processing

Keywords
Hierarchical Data, Slicesort, Sorting

1. INTRODUCTION
Sorting is a fundamental operation in data processing and

techniques to optimize sorting “flat” data have been exten-
sively studied for both main-memory and external memory
contexts [7, 6]. However, there is very little work on sorting
hierarchical data such as XML documents [9, 8]. In a fully
sorted hierarchical document, the list of child nodes of every
non-leaf node is sorted according to some given criteria (e.g.,
the key of the child node or some function of the contents
in the subtree rooted at the child node). As a simple ex-
ample, Figures 1(b) and (c) show an unsorted and a sorted
hierarchical data, respectively, where the nodes are sorted
alphabetically by their key values given by the node labels.

∗The work was done when the author was at National Uni-
versity of Singapore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Hierarchical sorting has application in the archival of sci-
entific data, which is predominantly stored in hierarchical
data formats. To archive a new data version, an efficient
approach is to first sort the new data and then merge it
with the existing data version [8, 9].

Example 1. Consider the archival approach proposed in [3]
to store multiple versions of hierarchical data. Figure 1(a)
shows an example archived document, V1-2, that consists of
two data versions. Each node in the document has a node
label (e.g., /, A, B) and either an explicit version tag (in-
dicated by “t = ...”) or an implicit version tag. A node’s
version tag indicates in which version(s) of the document
the node is present; for example, node “A” is present in only
version 1, node “B” is present in only version 2, and the root
node “/” is present in both versions 1 and 2. A node without
an explicit version tag has an implicit tag that is inherited
from its parent node. For example, nodes “E” and “F” both
inherit the version tag from its parent node “A” and they are
all present in only version 1; while node “G” inherits its ver-
sion tag from node “B” and appears only in version 2. Note
that the document V1-2 is hierarchically sorted based on the
lexicographical order of its node labels: the child nodes of
the root node are sorted with node “A” preceding node “B”,
and the child nodes of node “A” are sorted with node “E”
preceding node “F”.

Consider a new version of the document V3 (shown in
Figure 1(b)) to be merged into the archived document V1-2.
An efficient approach to merge the documents is to first sort
V3 into V ′

3 (shown in Figure 1(c)) and merge them using a
synchronized traversal of the pair of sorted documents [3].
The merged archived document is shown in Figure 1(d). 2

Another application of hierarchical sorting is in change
detection of XML documents, which is useful to control the
changes in a warehouse with a large volume of XML docu-
ments [8]. Detecting changes in such an environment serves
many purposes such as versioning, querying the past, and
monitoring the changes [4, 5, 10]. Earlier works on change
detection in XML documents (e.g., [4, 5, 10]) operate on un-
sorted documents that are assumed to be entirely resident in
main memory. However, the state-of-the art approaches that
can operate on large, disk-based data are based on sorted
documents [8].

Hierarchical sorting is also useful for processing batch up-
dates to an existing sorted XML document. The idea is to
sort the batch of updates and merge it with the existing
document [9, 8].

Hierarchical sorting is also useful in the evaluation of or-
der by clause in XPath [1] and XQuery [2] that allows the

/

t = [1 – 2]

A

t = [1]

B

t = [2]

E F G

V1-2 /

AB

H FG

V3

(a) Archived document (b) New document
(versions 1 and 2) (version 3)

/

A B

F H G

V'3

/

t = [1 – 3]

A

t = [1,3]

B

t = [2-3]

E

t=[1]
F G

V1-3

H

t=[3]

(c) Sorted new document (d) Updated archived document
(version 3) (versions 1 to 3)

Figure 1: Merging XML documents

results of queries to be output in a specific order. This clause
sorts the sequence of result XML fragments, but does not
recursively sort the fragments themselves. However, with
the help of DTDs, hierarchical sorting can be expressed in
XPath and XQuery using explicitly specified nested order
by clause. The hierarchical sorting can provide an efficient
algorithm for processing such queries.

A straightforward method to sort hierarchical XML data
is to flatten the XML tree into a file of flat records so that
conventional sorting methods can be applied to sort this
derived format [9]. In this approach, each XML node is
represented by an absolute key, which is formed by the con-
catenation of the local keys of all nodes along the path from
the root node to this node, and the collection of XML nodes
are sorted based on their global absolute keys. Although
this approach is easy to implement, it has very poor perfor-
mance as it is sorting the nodes globally using their absolute
keys instead of exploiting the hierarchical structure of the
input data to sort each collection of sibling nodes locally. To
address the limitation of this naive approach, two hierarchy-
aware approaches, NeXSort [9] and HErMeS [8], have recently
been proposed. Both of these methods are based on a two-
phase approach: the first phase creates sorted runs each of
which is a sequence of one or more sorted subtrees, and the
second phase merges the sorted runs to produce the final
sorted output. A subtree is referred to as sorted iff the list
of child nodes of every non-leaf node belonging to this sub-
tree is sorted according to the given criteria.

In NeXSort, each sorted run consists of a single sorted
subtree, and explicit pointers are used to link the sorted
subtrees to maintain the parent-child relationships for par-
ent and child nodes that are stored in different sorted runs.
By exploiting these explicit pointers, the final sorted output
is produced using a depth-first traversal of the sorted runs by
following the appropriate pointers. Thus, the second phase
of NeXSort essentially merges all its single-subtree sorted

runs in one pass by a depth-first traversal of its sorted runs
(starting from the sorted run containing the root node) with
the help of the pointers to sorted child subtrees. In contrast
to NeXSort, HErMeS is a generalization of the well-known ex-
ternal merge-sort technique. Sorted runs are created using
a hierarchy-aware replacement selection algorithm such that
each sorted run is a sequence of sorted subtrees, and each
data node is associated with an absolute key represented in
a compressed form. The sorted runs are iteratively merged
in the second phase to form the sorted output.

In summary, the two existing hierarchy-aware approaches
are both based on creating sorted subtrees as initial sorted
runs and merging sorted subtrees to create the sorted out-
put. The merging of two subtrees requires locating in one
subtree the parent node of the root node of the other sub-
tree. Whereas NeXSort performs the merging by using ex-
plicit pointers, HErMeS merges based on comparing absolute
node keys.

In terms of performance, HErMeS was shown to outperform
NeXSort [8]. The drawback of NeXSort is that as each sorted
run consists of only a single sorted subtree, there are many
more sorted runs created in the first phase, and the merging
of these sorted runs in the second phase using the explicit
pointers incurs a lot of random disk I/Os. For HErMeS, its
drawback is the overhead incurred for manipulating absolute
node keys.

In this paper, we propose a novel approach, named Slice-

Sort, that does not require using explicit pointers or global
absolute keys for sorting hierarchical data. Instead, Slice-
Sort sorts in a top-down, level-by-level manner by using only
local node keys. Given any two nodes at the same level in a
hierarchical document, the relative ordering of the two nodes
can be determined as follows: if the nodes are sibling nodes
(i.e., they have the same parent), then the two nodes are
ordered based on their local node keys; otherwise, the nodes
are ordered based on the relative ordering of their parent
nodes.
SliceSort sorts data in three phases. In the first phase,

SliceSort reorganizes the pre-order-formatted input XML
document into “slices”, where each slice corresponds to the
data at a level in the document. SliceSort essentially scans
the input document in depth-first order, and transforms
and stores the data in a breadth-first ordered format. In
the second phase, each slice (starting from the top slice) is
sorted using the well-known external merge-sort algorithm;
the nodes at each slice are ordered using their local node keys
as well as the relative ordering of their parent nodes. In the
third phase, SliceSort performs a depth-first traversal of
the sorted slices to transform them to the sorted, pre-order-
formatted document.

Our paper makes the following contributions.

1. We introduce a novel technique, SliceSort, for sorting
hierarchical data. In contrast to existing hierarchy-
aware sorting methods which rely on subtree-based
sorted runs, SliceSort employs a top-down, level-wise
sorting technique to avoid the drawback of subtree-
based sorting (Sections 2 &3).

2. We conduct a performance evaluation study to com-
pare SliceSort and the state-of-the-art method, HEr-
MeS. Our results indicate that SliceSort outperforms
HErMeS by up to a factor of 27% (Section 4).

2. HIERARCHICAL SORTING WITH SLICE-
SORT

The input to the hierarchical sorting problem is a tree-
structured XML document Tin where the tree nodes are or-
ganized in a pre-ordered format. The output is a sorted
XML document Tout (also in pre-ordered format) that is de-
rived from Tin such that for each internal node in Tout, all
its child nodes are ordered based on some sort key.

In general, the sort key for a node n can be an arbitrary
function of the contents of the subtree rooted at n (e.g., size
of subtree in terms of number of nodes). For simplicity of
presentation, in this paper, we assume that each node n is
associated with a “local” key, denoted by key(n), which is
a string value that is stored as one of the node’s attributes
in the input document Tin. Thus, given two sibling nodes n
and n′ in Tin, the subtree rooted at n precedes that at n′ in
Tout if and only if key(n) precedes key(n′) lexicographically.
We will discuss how SliceSort can handle more general sort
keys that can be derived dynamically at run-time in Sec-
tion 2.4. We use payload(n) to denote any other attribute
values and textual contents associated with node n.

In this paper, we use h to denote the height of Tin; thus,
Tin has h+1 levels of nodes, where the root node is at level
0 and the last level of leaf nodes is at level h. We will use the
term “tree” and “hierarchical document” interchangeably.
SliceSort consists of three phases. In the first phase,

SliceSort flattens Tin into “slices”, L0, · · · , Lh, where each
slice Li corresponds to the nodes at level i in Tin. In the
second phase, the slices are sorted top-down starting from
L0 to Lh; each slice is sorted using the established external
merge-sort algorithm. Finally, in the third phase, Slice-
Sort performs a depth-first traversal of the sorted slices to
stitch them together to produce Tout. In the following, we
elaborate on the three phases assuming that all the data and
structures can be stored in the main memory. We consider
memory management issues in Section 3.

2.1 Phase 1: Flattening Tree into Slices
In the first phase, SliceSort transforms the pre-order-

formatted Tin into a level-wise representation containing h+
1 slices of data. Each slice, denoted by Li, is a sequential
list of all the nodes at level i in Tin. The ordering of the
nodes in Li are consistent with their ordering in Tin: a node
n precedes another node n′ in Li if and only if n and n′

are at level i in Tin such that n precedes n′ in the pre-
order traversal of Tin. SliceSort creates the h+1 slices by
performing a single sequential scan of Tin: as each node is
encountered in the pre-order traversal scan of Tin, the node
is appended to slice Li, where i is the level of the node.

To maintain the hierarchical structure of the data, the
slices are created such that the parent-child relationships
in Tin are preserved by recording some additional informa-
tion in the slices. Specifically, for each slice, each node is
assigned a unique integer identifier, denoted by id(n), rep-
resenting its sequential rank in the slice. That is, if n is
the jth node in a slice, then id(n) = j. For each node n,
we also record the identifier of its parent node, denoted by
parid(n)1. Thus, each node n in a slice is represented by a
quadruple (parid(n), key(n), id(n), payload(n)); and the in-
formation in the slices can be used to reconstruct Tin. Note
that the parid(n) of a node n is easily derived by simply us-

1For the root node nroot of Tin, parid(nroot) = 0.

ing a stack to maintain the identifiers of the ancestor path
of nodes of the current node being processed in Tin.

2.2 Phase 2: Sorting Slices
The second phase sorts the slices created by the first phase.

Let L′

i denote the sorted slice Li, i ∈ [0, h]. The idea of
SliceSort is that once all the slices have been sorted, Tout

can be generated by stitching the nodes in the sorted slices
together based on their parent-child relationships. There-
fore, given two nodes n and n′ in slice Li, n precedes n′ in
Tout if and only if n precedes n′ in L′

i.
It follows that we can define the hierarchical sorting of

Tin in terms of the level-wise sorting of the slices as follows.
Given two nodes n and n′ in slice Li, n precedes n′ in L′

i if
one of the following conditions holds:

C1. n and n′ are sibling nodes and key(n) precedes key(n′);
or

C2. n and n′ have different parent nodes (given by p and
p′, respectively) and p precedes p′ in L′

i−1.

Based on the above recursive sorting definition, SliceSort
sorts the slices in a top-down manner by sorting Li before
Li+1. For L0, the sorting is trivial since L0 consists of only
the root node of Tin. For L1, since all the nodes are sibling
nodes (their parent is the root node of Tin), they are sorted
based simply on condition C1. For the general case of Li,
i > 1, the sorting of Li may need to take into account the
ordering of the nodes in L′

i−1 due to condition C2.
To facilitate the checking of the ranks of the nodes in the

sorted slices, SliceSort creates a mapping table, denoted
by MTi, during the sorting of Li to L′

i. Given the rank of a
node n in Li, MTi returns the rank of n in L′

i. Each MTi

is created during the final merging pass to generate L′

i: as
each node n is output to L′

i, we set MTi[id(n)] = j, where
id(n) and j are the ranks of n in Li and L′

i, respectively.

2.3 Phase 3: Stitching Sorted Slices
At end of the second phase, all the slices have been sorted.

Since the ordering of the nodes in each L′

i is equivalent to
the ordering of nodes at level i in Tout, all that remains
to be done in the third and final phase of SliceSort is to
stitch together the nodes in the sorted slices based on their
parent-child relationships to produce Tout organized in pre-
order format. This is achieved by essentially performing a
depth-first traversal of the sorted slices.

For each sorted slice L′

i, we first initialize a cursor to point
to the first node of L′

i. We refer to the node pointed by the
cursor in L′

i as the current node in L′

i and denote it by ni.
The depth-first traversal of the sorted slices is performed by
visiting the current nodes in them in a top-down manner.
The traversal first visits the root node n0 in L′

0 and outputs
n0 to Tout. The traversal then recursively visits n1 and so
on. In general, whenever the traversal visits a node ni, it
first checks whether ni is a child node of ni−1 based on the
parid information. If ni is a child of ni−1, then the traversal
outputs ni to Tout and recursively visits ni+1. Otherwise,
if ni is not a child of ni−1, then it means that the entire
subtree rooted at ni−1 has been output to Tout. In this case,
if ni−1 is not the last node in L′

i−1, then the cursor in L′

i−1 is
updated to point to the next node in L′

i−1 and the traversal
then recurses by visiting the new ni−1; otherwise, if ni−1

is the last node in L′

i−1, then it means the entire subtree

rooted at ni−2 has been output to Tout and we recursively
check if ni−2 is the last node in L′

i−2 and so on. The depth-
first traversal (and hence also SliceSort) terminates once
all the nodes in the sorted slices have been visited and output
to Tout.

2.4 Handling General Sort Keys
Our discussion of SliceSort has so far assumed that the

sorting criteria is based on the local keys associated with
the nodes in the input tree. It is straightforward to adapt
SliceSort to other sorting criteria that is based on the con-
tents of the subtree rooted at each node. Examples include
(1) the total size (in bytes) of the subtree, (2) the number
of nodes in the subtree, (3) the height of the subtree. To
handle such general sorting criteria, SliceSort only needs
to modify slightly its first phase. Specifically, for each node
n that is encountered in the pre-order traversal, SliceSort
maintains n in a data stack and updates its sorting value
during the traversal of its subtree. After the entire subtree
rooted at n has been visited, SliceSort appends n together
with its derived sorting value into the corresponding slice
and removes n from the data stack. The maximum number
of nodes to be maintained in the data stack is bounded by
the height of the input tree.

Note that the two existing hierarchy-aware approaches
(NeXSort and HErMeS) can also be adapted to handle such
general sorting criteria by inserting a node into an initial
sorted run only after the subtree rooted at the node has
been traversed.

3. MEMORY MANAGEMENT
In our simplified discussion of SliceSort in the previous

section, we have assumed that all the data and structures
can be stored in main memory. Clearly, this assumption
does not hold when the input data is large. In this section,
we explain how SliceSort manages memory to sort large
data files. Let B denote the total number of memory pages
allocated for sorting.

3.1 Phase 1: Creating Slices
In the first phase, memory needs to be allocated among

the input data Tin and the slices (L0, · · · , Lh). SliceSort

allocates one memory page for reading Tin and the remaining
memory pages (denoted by M pages) for storing the slices.
Let Bi denote the main memory buffer allocated for slice
Li, i ∈ [0, h], which has Mi pages; thus

∑h

i=0
Mi = M . As

SliceSort scans Tin, each data node at level i is appended
to Bi. Whenever Bi becomes full, SliceSort will flush Bi

to the disk file corresponding to slice Li.
SliceSort uses a simple heuristic to allocate the memory

for the slices such that each Mi is proportional to an esti-
mated size of Li. Assuming that the height of Tin is h, the
average size of a node is navg, and the average node fan-out
of Tin is f . The number of nodes in Li is estimated to be f i

and the size of Li is estimated to be f i×navg. The total size
of nodes in Tin is estimated to be size =

∑h

i=0
f i × navg.

Therefore, each Mi is max{1, ⌊ fi
×navg

size
×M⌋} pages.

The remaining issue is how are the values of h, navg, and
f estimated? To estimate h, SliceSort scans the first few
pages of Tin and estimates h to be the maximum length
of the root-to-leaf paths sampled. Similarly, to estimate
navg, SliceSort scans the first few pages of Tin and es-
timates navg to be the average size of all nodes sampled.

Since size ≤ M , the estimated value of f is derived to be

⌊(B
navg

)
1

h ⌋. In the event that h has been under-estimated,
SliceSort will dynamically reduce the buffer pages for the
allocated slices (flushing buffers if necessary) to create new
buffers for the additional slices using the same heuristic.

3.2 Phase 2: Sorting Slices
Since SliceSort relies on the well-known external merge-

sort algorithm for sorting slices, the memory allocation pol-
icy for the sorting is already taken care and optimized. How-
ever, there are two additional considerations sorting each Li:

1. the creation of the mapping table MTi during the final
merging pass (to be used for sorting Li+1), and

2. the use of the mapping table MTi−1 to create the ini-
tial sorted runs of L′

i.

Since the number of nodes in Li is known at the end of the
first phase, the storage required for MTi is known before
the start of the second phase. In this section, we discuss the
construction and usage of MTi when MTi cannot fit entirely
in main memory.

To construct MTi during the last merging pass of sorting
Li, we allocate one memory page P to store MTi and flush
P to disk when it becomes full. As each record is output to
the final sorted run of L′

i, we append an entry for the record
into P . Thus, in contrast to the main-memory resident MTi

discussed in Section 2.2, which is sorted in ascending order
of the rank of nodes in Li, the disk copy of MTi is ordered
in ascending order of the rank of nodes in L′

i.
To create the initial sorted runs of L′

i+1, we essentially
need to perform a foreign-key join of Li+1 and MTi to map
parid(n) of each node n in an initial sorted run to its rank in
L′

i. This can be achieved using an appropriate standard join
algorithm that is chosen in a cost-based manner. For exam-
ple, using the nested-loop join method, k memory pages will
be allocated for loading Li+1 (the “outer relation”) and the
remaining (B − k) pages will be allocated for loading MTi

(the “inner relation”). Thus, the size of each initial run is at
most k pages. To maximize the size of each initial run, k is
set to B − 1.

3.3 Phase 3: Stitching Sorted Slices
In the third phase, memory needs to be allocated for read-

ing in the sorted slices and writing the sorted output Tout.
Similar to the allocation principle for the first phase, Slice-
Sort allocates one page for writing Tout, and allocates the
remaining memory pages among the sorted slices L′

i such
that the size of the buffer Bi for each L′

i is proportional to
its size (which is known at the end of the second phase).

Thus, for each L′

i, SliceSort sequentially scans L′

i and
loads the pages of L′

i into Bi until the buffer Bi is full.
Whenever all the nodes in Bi have been output to Tout,
SliceSort will read into Bi the next sequence of pages
from L′

i.

4. EXPERIMENTAL STUDY
This section presents our experimental study to evaluate

the efficiency of our proposed SliceSort algorithm. We
compare SliceSort against state-of-the-art approach, HEr-
MeS, for sorting of hierarchical data.

Platform. Our experiments were conducted on a dual-
core, 2.33GHz PC running Linux 2.6.32-41, 32-bit with 3.75GB

 100

 200

 300

 400

 500

 600

16 18 20 22

R
un

ni
ng

 ti
m

e
(in

 s
ec

s)

Fan out

HErMeS

27%

22%

27%

18%SliceSort

Figure 2: Comparison of running time

of RAM, and a 250GB hard disk. Both SliceSort and HEr-

MeS were implemented in C++.

Data Sets & Parameters. To create input data sets, we
used the same data generator from [8] that generates input
XML documents. Each node in the generated tree has a ran-
domly generated character string as its label. Following [8],
we used the node label as its key value and set the payload
of a node to be empty.

The data generator allows the following three parameters
to be varied: the node label (i.e., key) length, the maximum
tree height, and node fan-out. The fan-out of each node
follows a uniform distribution ranging from 0 to a specified
maximum fan-out value.

Due to the space limit, we only present the results on
varying fan-out parameter; similar trends are also observed
for varying other parameters. We generated 4 data sets, D1

to D4, by setting height = 8, keylength = 10, and varying
fanout using the values 16, 18, 20, and 22. The buffer size
used in the experiments is 1000MB.

Metrics. The algorithms are compared in terms of their
end-to-end running time which includes the time to read
the input tree document, sort, and write the sorted docu-
ment into an output file. The dominant CPU operations in
both algorithms are the number of key comparisons, which is
counted as follows. For SliceSort, the number of key com-
parisons refers to the number of local node key comparisons.
The comparisons of parent node identifiers (during the sec-
ond phase) are excluded because the identifier comparisons,
which are integer value comparison, are much cheaper than
the XML node key comparisons, which are string value com-
parisons. For HErMeS, the key comparisons include both the
comparisons on local keys of nodes in the tree and abso-
lute keys because HErMeS needs to store the absolute keys
on sorted runs in some cases. Thus, a key comparison in
HErMeS is more expensive than that in SliceSort.

The dominant I/O operation of SliceSort and HErMeS is
the number of passes to read and write the entire document.

Results. Figure 2 compares the performance of SliceSort
and HErMeS as a function of the fan-out parameter (corre-
sponding to data sets D1 to D4). The results show that
SliceSort outperforms HErMeS in the order of 18% to 27%.

The second and third columns in Table 1 show the detailed

HErMeS SliceSort

CPU time (secs) 495 357
I/O time (secs) 34 74

#key comparisons 559× 106 395× 106

Table 1: Break down comparison on D4

breakdown of the running times for D4; we omit showing the
results for the other data sets as they exhibit similar trends.
Observe that although SliceSort incurred more I/O time
than HErMeS, the CPU time spent by SliceSort is much
smaller than that of HErMeS, resulting in SliceSort having
an overall better performance than HErMeS. Comparing the
number of passes required for sorting, HErMeS is more effi-
cient as it requires only two passes: one pass to read the
input tree to create initial sorted runs, and another pass to
merge the initial sorted runs to create the output tree. In
contrast, SliceSort requires one pass for each of its three
phases. However, the number of key comparisons in Slice-

Sort is much lower than that of HErMeS with SliceSort

incurring about 30% fewer key comparisons compared to
HErMeS. Furthermore, as explained, one key comparison in
SliceSort is less costly than that in HErMeS. Consequently,
the CPU time incurred by SliceSort is much smaller than
that of HErMeS.

5. CONCLUSION
In this work, we introduced a novel technique, Slice-

Sort, for sorting hierarchical data. In contrast to exist-
ing hierarchy-aware sorting methods which rely on subtree-
based sorted runs, SliceSort employs a top-down, level-
wise sorting technique to avoid the drawback of subtree-
based sorting. Our experimental performance evaluation
shows that SliceSort outperforms the state-of-art approach,
HErMeS, by a significant factor.

Acknowledgment We would like to thank the authors
of [8] for the code of HErMeS, and particularly Ioannis Kolt-
sidas for his help in answering our questions.

6. REFERENCES
[1] http://www.w3.org/tr/xpath20/.

[2] Xquery 1.0: An XML query language.
http://www.w3.org/tr/xquery/.

[3] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving
scientific data. ACM Trans. Database Syst., 29:2–42, 2004.

[4] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. In SIGMOD, pages 493–504, 1996.

[5] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in
XML documents. In ICDE, pages 41–52, 2002.

[6] G. Graefe. Implementing sorting in database systems. ACM

Comput. Surv., 38, 2006.

[7] D. E. Knuth. The art of computer programming, volume 3:

sorting and searching. 1998.

[8] I. Koltsidas, H. Müller, and S. D. Viglas. Sorting hierarchical
data in external memory for archiving. Proc. VLDB Endow.,
1:1205–1216, 2008.

[9] A. Silberstein and J. Yang. NeXSort: Sorting XML in external
memory. In In ICDE, pages 695–707, 2004.

[10] Y. Wang, D. J. Dewitt, and J.-Y. Cai. X-Diff: An effective
change detection algorithm for XML documents. In ICDE,
pages 519–530, 2003.

