
Efficient Skyline Maintenance for Streaming

Data with Partially-Ordered Domains

Yuan Fang1 and Chee-Yong Chan2

1 Institute for Infocomm Research, Singapore⋆. yfang@i2r.a-star.edu.sg
2 National University of Singapore. chancy@comp.nus.edu.sg

Abstract. We address the problem of skyline query processing for a
count-based window of continuous streaming data that involves both
totally- and partially-ordered attribute domains. In this problem, a fixed-
size buffer of the N most recent tuples is dynamically maintained and
the key challenge is how to efficiently maintain the skyline of the sliding
window of N tuples as new tuples arrive and old tuples expire. We iden-
tify the limitations of the state-of-the-art approach STARS, and propose
two new approaches, STARS+ and SkyGrid, to address its drawbacks.
STARS+ is an enhancement of STARS with three new optimization tech-
niques, while SkyGrid is a simplification STARS that eliminates a key
data structure used in STARS. While both new approaches outperform
STARS significantly, the surprising result is that the best approach turns
out to be the simplest approach, SkyGrid.

1 Introduction

Due to the usefulness of skyline queries in identifying interesting data points
and its conceptual simplicity, there is a lot of research attention on how to
efficiently process skyline queries. Given a set of tuples S, a skyline query (with
respect to a collection A of attributes of interest) returns the subset of S (the so
called “skyline”) that are dominating with respect to A. Specifically, a tuple tx
dominates another tuple ty iff tx is better than or equal to ty in every attribute
in A, and is strictly better in at least one such attribute. Thus, the skyline of
S, which consists of all tuples in S that are not dominated by any tuple in S,
represents the subset of the most interesting points (with respect to A).

Using the popular example of a tourist who is looking for a hotel that is
both cheap as well as close to the city, the “skyline” hotels that are of interest
to the tourist are the hotels not dominated by any other hotel, where a hotel hx

dominates another hotel hy if it satisfies the following conditions: (1) hx.price ≤
hy.price, (2) hx.distance ≤ hy.distance, and (3) at least one of the inequalities
in (1) and (2) is strict.

Much of the early work on skyline queries are in the context of attributes
with totally-ordered domains (as illustrated by the skyline hotel example), and

⋆ Part of this work was done when the author was a student at National University
of Singapore.

focuses on query processing in offline environment where a skyline result is
computed in response to a query on a disk-resident dataset (e.g., [5, 8, 6]). Recent
research effort has shifted towards query processing in online environment, where
a skyline result is dynamically maintained for a long-standing skyline query over
continuous streaming data [10, 12].

The key challenge for the streaming data environment is how to efficiently
update the skyline for a sliding window of tuples. There are two models for
the sliding window length N in streaming data applications. In the time-based
window model, N represents the lifespan of each tuple in some number of time
units. Each arriving tuple ti has an arrival time-stamp si and expires after si+N

time units. Thus, the skyline is computed over all non-expired tuples and is
updated whenever a new tuple arrives or an existing tuple expires [12]. In the
count-based window model, the skyline is maintained for the most recent N tuples
[10]. Thus, the skyline is updated whenever a new tuple arrives, and the arrival
of the new tuple may also cause the oldest existing tuple to expire if there are
already N tuples before the new arrival.

Several recent work on skyline queries have broadened the scope to include
categorical attributes with partially-ordered domains in both offline [2, 9] as well
as online [10] environment. Categorical attributes are more general than numer-
ical attributes as the dominance relationships among the domain values for a
categorical attribute are based on a partial ordering instead of a total ordering.

In this paper, we address the problem of skyline query processing for a
count-based window of continuous streaming data that involves both totally-
and partially-ordered attribute domains. In this problem, a fixed-size buffer of
the N most recent tuples is dynamically maintained and the key challenge is
how to efficiently maintain the skyline of the sliding window of N tuples as new
tuples arrive and old tuples expire. The state-of-the-art approach for this skyline
problem is the STARS method [10], which is based on two key data structures:
a multi-dimensional grid to organize the tuples in the buffer, and a geometric
arrangement structure to organize the skyline tuples.

There are many interesting applications that require dynamic skyline mainte-
nance of streaming objects in our setting. Consider an Internet search webservice
that continuously accepts search requests from users, where each search request
is associated with various categorical attributes of interest such as the search
language, geographical region of the request, and the browser software and op-
erating system used. The webservice can define a partial order over the attributes
indicating its preferences of the search requests it wants to track. The system will
then filter out and maintain a subset of recent interesting search requests, which
can be exploited to study trends for better search results. Another application
in news services is illustrated in [10].

In this paper, we make the following contributions. We identify the limi-
tations of the STARS method and propose two new approaches, STARS+ and
SkyGrid, to address its drawbacks. STARS+ is an enhancement of STARS with
three new optimization techniques, while SkyGrid is a simplification STARS that
completely eliminates a key data structure used in STARS. While both new ap-

proaches outperform STARS significantly, the surprising result is that the best
approach turns out to be the simplest approach, SkyGrid, which outperforms
both STARS and STARS+ by up to a factor of 3 and 2.1, respectively.

The rest of this paper is organized as follows. In Section 2 we review the
STARS algorithm. We present two new approaches, STARS+ and SkyGrid, in
Sections 3 and 4, respectively. In Section 5, we present an experimental evalua-
tion of the proposed algorithms. Finally, Section 6 concludes the paper. Due to
space constraint, all proofs are omitted.

2 Overview of STARS Approach

In this section, we give an overview of the STARS approach [10], which is the
state-of-the-art algorithm for the skyline problem that we are addressing in this
paper and the basis of our STARS+ approach.

The STARS approach, which is based on the count-based sliding window
model, maintains a fixed-size buffer of N tuples and updates the skyline of the
N most recent tuples as new tuples arrive and old tuples expire. Whenever a
new tuple tin arrives and the buffer is already full with N tuples, the oldest
tuple tout in the buffer is expired and tin becomes part of the skyline if it is
not dominated by any other tuples in the buffer. Moreover, if tout was a skyline
tuple, then it is possible for some of the non-skyline tuples in the buffer to be
promoted to become skyline tuples. Specifically, for each non-skyline tuple t in
the buffer, if t is exclusively dominated by tout (i.e., tout is the only skyline tuple
that dominates t), then t is promoted to a skyline tuple.

To avoid unnecessary dominance comparisons, STARS minimizes the set of
tuples in the buffer by discarding irrelevant tuples from the buffer. A tuple t in
the buffer is classified as irrelevant if it is dominated by a younger tuple t′ (i.e.,
t′ arrives later than t). The reason is that since t′ will only expire after t, t is
guaranteed to be dominated by at least one tuple throughout its remaining lifes-
pan in the buffer which means that t can never be promoted to a skyline tuple.
Thus, any tuple t that is dominated by a newly arrived tuple tin is irrelevant
and can be immediately discarded from the buffer. STARS refers to the buffer
containing only relevant tuples as the skybuffer.

The skyline maintenance algorithm in STARS, which is invoked whenever a
new tuple arrives, is shown in Fig. 1. The algorithm has the following inputs: SB

is the buffer of relevant tuples (skybuffer), S ⊆ SB is the set of skyline tuples,
tin is the newly arrived tuple, and tout is the oldest tuple to be expired.

The key operations in the maintenance algorithm can be classified into the
following three types of queries. (1) D-query: Given a tuple t, return the set of
buffer tuples that are dominated by t; (2) S-query: Given a tuple t, determine
whether t is dominated by any skyline tuple; and (3) P-query: Given a skyline
tuple t that expires, return the set of buffer tuples that are promoted to skyline
tuples due to the expiry of t. In Fig. 1, a D-query is used in steps 2 and 4,
an S-query is used in step 1, and a P-query is used in step 8. Note that a P-
query can be evaluated in terms of a D-query and multiple S-queries: given an

Algorithm: SkylineMaintenance (SB, S, tin, tout)

Input: SB is the skybuffer.
S ⊆ SB is the skyline.
tin is the newest (arriving) tuple.
tout is the oldest (expiring) tuple.

1) if tin not dominated by any tuple in S then
2) Remove tuples dominated by tin from S;
3) Insert tin into S;

endif
4) Remove tuples dominated by tin from SB;
5) Insert tin into SB;
6) if tout is in S then
7) Remove tout from S;
8) P = {t ∈ SB :

t is exclusively dominated by tout};
9) Insert tuples in P into S;

endif
10) Remove tout from SB.

Fig. 1: Skyline maintenance framework of STARS

a b

c d e

f g h

(a) DAG for D

gh f de c b a

a

b

c

de

f

gh

�

?

•

• •

×

(b) Skybuffer grid

Fig. 2: Skybuffer organization

-

6
Y

X

t3

t2
t1

tq

Fig. 3: Skyline organization

expiring skyline tuple t, a D-query is first used to find the set of tuples T that
are dominated by t, and then for each tuple t′ in T , an S-query is used to check
if t′ is exclusively dominated by t.

To efficiently support the core operations (i.e. D-queries and S-queries) for
skyline maintenance, the STARS approach organizes the buffer tuples and skyline
tuples using two key data structures.

Multi-dimensional Grid. Suppose the skyline is computed wrt d attributes,
A1, · · ·Ad. STARS organizes the tuples in the buffer using a d-dimensional grid,
where the ith dimension corresponds to attribute Ai. The objective is to map
and store each tuple into a grid cell to support efficient D-queries.

To enable this mapping, the partially-ordered domain of each categorical at-
tribute is linearized into a total ordering by a topological sort of the attribute
domain’s partial order. More specifically, the partially-ordered domain of a cat-
egorical attribute is represented by a directed acyclic graph (DAG), where each
vertex in the DAG represents a domain value, and each edge represents the
dominance relationship between two attribute values that cannot be be inferred
by transitivity such that a value v is better than v′ iff there exists a directed
path from v’s vertex to v′’s vertex in the DAG. Let r(v) denote the rank of the
vertex corresponding to value v in a topological sort of the DAG. It follows that
if r(v) > r(v′), then v cannot dominate v′. However, if r(v) < r(v′), then either
v dominates v′ or the two values are incomparable.

In this way, the scales of the grid on each dimension is bucketized into as
many buckets as the number of domain values. Thus, each tuple t = (a1, · · · , ad)
is mapped into the cell given by 〈r(a1), · · · , r(ad)〉. To find the set of buffer
tuples that are dominated by t (i.e., evaluate a D-query), STARS only needs
to consider tuples t′ = (a′

1, · · · , a′
d) that are located in the cells satisfying the

following range query wrt t: r(a1) ≤ r(a′
1),· · · , and r(ad) ≤ r(a′

d). Additionally,
many cells satisfying the range query are false positives and can be pruned as
well. Thus, the grid organization enables STARS to eliminate many unnecessary
dominance comparisons against tuples that cannot be dominated by t. To make
the method scale to a large number of attributes or large attribute domains,
STARS introduces techniques to control grid granularity by grouping multiple
values into the same bucket. We use Fig. 2 (from [10]) to illustrate this.

Example 1. Consider the domain D of a categorical attribute consisting of the
values {a, · · · , h} that are organized into the partial order depicted in Fig. 2(a).
A possible topological sort is a, · · · , h, which can be grouped into six buckets,
each indicated by a dotted box in Fig. 2(a). A grid to organize a 2D dataset on
D × D is depicted in Fig. 2(b). Consider a tuple t that is mapped to the cell
marked × in Fig. 2(b). The dotted region in Fig. 2(b), which corresponds to the
range query wrt t, represents the set of cells that could contain tuples dominated
by t. Note that among the nine cells in the region, only the three cells marked •
are candidate cells; the remaining six cells are false positives that cannot contain
tuples dominated by t, which can be eliminated as well. 2

Geometric Arrangements. To efficiently support S-queries, STARS organizes
the skyline tuples using a geometric arrangement of lines that maps skyline
tuples onto a 2D plane. For this mapping, STARS needs to first choose two of
the attributes (say Ai and Aj) among the attributes of interest for the skyline
computation. Then each skyline tuple t = (a1, · · · , ad) is represented by a line
y = r(ai)·x−r(aj) in the 2D plane, where ai and aj are t’s values for attributes Ai

and Aj , respectively. Based on this geometric line arrangement, two tuples t and
t′ are incomparable if the intersection point (xI , yI) of their line representations
has xI < 0. STARS uses the doubly-connected-edge-list (DCEL) data structure
[4] to represent the positive half (wrt the x-axis) of the line representation of
each skyline tuple. Using DCEL, STARS is able to efficiently evaluate an S-
query wrt a tuple t by retrieving the lines that intersect with t’s line in the
positive half of the x-axis. In this way, many skyline tuples incomparable to t

are pruned. Moreover, evaluating an S-query is progressive as it can terminate
once an intersecting skyline tuple is found. We use the example (from [10]) shown
in Fig. 3 to illustrate this concept.

Example 2. Suppose there are three skyline tuples t1, t2, and t3. Their line rep-
resentations are shown as labelled in Fig. 3. Consider an S-query wrt a tuple
tq, which is represented by the line as labelled in Fig. 3. Using DCEL, t3 is the
first line found to intersect with tq, and a dominance comparison is performed
to check if tq is dominated by t3. If so, then the the evaluation of the S-query
completes; otherwise, the next line that intersects tq is t2 and a dominance com-
parison between t2 and tq is performed and so on. Observe that t1 is pruned as
it intersects with tq at the point (xI , yI) where xI < 0. 2

3 STARS+ Approach

In this section, we present three optimization techniques to improve the per-
formance of STARS. We refer to this optimized variant as STARS+. The first
technique reduces the number of S-queries required for evaluating P-queries.
The second technique introduces auxiliary structures to improve the evaluation
of D-queries. The third technique optimizes the line arrangement technique to
improve the evaluation of S-queries. Our experimental results show that STARS+

significantly outperforms the unoptimized STARS.

3.1 Dominating Tuple (DT) Optimization

In the STARS approach, each P-query (step 6 in SkylineMaintenance algo-
rithm) to find the tuples that are exclusively dominated by an expiring skyline
tuple is evaluated in terms of one D-query and multiple S-queries, which incurs
a rather high computation overhead. One way to speed up a P-query evaluation
is to reduce the number of S-query evaluations.

One approach to reduce the the number of S-query evaluations is to keep
track of the number of tuples that dominate each tuple. This idea is referred to
as the “eager approach” [12] in contrast to the non-optimized “lazy approach”.
Specifically, each tuple t is associated with a counter, denoted by t.counter,
which represents the number of skyline tuples that dominate t. When t first
arrives, t.counter is initialized to the number of skyline tuples that dominate t.
Subsequently, whenever a skyline tuple tout expires, for each tuple t dominated by
tout, t.counter is decremented by one to indicate that t is dominated by one fewer
tuple due to the expiry of tout. Clearly, if t.counter > 0, we can conclude that t is
not exclusively dominated by tout without requiring a S-query evaluation. While
the advantage of the eager approach is that a P-query can be evaluated with
significantly fewer S-queries, the drawback is that the initialization of t.counter

requires the entire skyline to be scanned when t arrives. In fact, the performance
of the eager approach was shown to be worse than the lazy approach [12].

To avoid the overhead of the eager approach, we adopt a “semi-eager” ap-
proach for STARS+ that simply associates each tuple t with a single skyline
tuple, denoted by t.dt, that dominates t. The knowledge about this dominating
tuple t.dt is available virtually “for free” as part of the S-query issued to check
if t is a skyline tuple when t arrives; thus, only a minor modification to the
S-query evaluation procedure is needed to return a skyline tuple that dominates
t when t is not a skyline tuple. Subsequently, whenever a skyline tuple tout ex-
pires, for each tuple t dominated by tout, if t.dt is not equal to tout, then t is not
exclusively dominated by tout and we save the cost of an S-query to determine
this. However, if t.dt is equal to tout, an S-query is invoked to check if there is
another skyline tuple (besides tout) that dominates t. If there is indeed another
tuple t′ that dominates t, then we update t.dt to be t′ and conclude that t is not
exclusively dominated by tout.

The following result shows that our proposed DT optimization can signifi-
cantly reduce the number of S-queries to be evaluated for a P-query.

Theorem 1. Suppose that a newly arrived tuple t in the skybuffer is dominated
by all the existing skyline tuples. Let s denote the number of the skyline tuples.
If no new skyline tuple is encountered, then with the DT optimization, the total
expected number of S-queries that are executed (to check if t should be promoted)
due to the expiry of the s skyline tuples is bounded by Θ(ln s). In contrast, the
total number of such S-query evaluations for the lazy approach is s.

3.2 Empty Cell (EC) Optimization

Recall that in STARS, a D-query wrt a tuple t is evaluated by examining all tuples
in each candidate cell within the region specified by a range query wrt t. We
observe that many candidate cells are empty, particularly for high-dimensional
data as the number of grid cells grows exponentially with data dimensionality.
Consequently, a large overhead is incurred in examining empty cells.

To get an idea of the sparsity of the grid cells, let us consider a d-dimensional
dataset and a buffer size of N tuples. Assuming the attribute values are inde-
pendent, the average number of tuples in the skybuffer is given by O(lnd N) [7].
Let the granularity of each grid dimension be g (i.e., each dimension scale has

g buckets). Then, the number of tuples per grid cell is given by ρ = lnd N
gd . For

high-dimensional data, ρ is often very small (e.g., ρ = 0.022 when N = 105, d = 4
and g = 30).

To reduce the overhead of examining empty grid cells when evaluating D-
queries in a d-dimensional grid, the Empty Cell (EC) optimization technique
maintains d − 1 additional structures, termed index grids, to keep track of the
number of tuples in the grid. Each index grid Ci (1 ≤ i ≤ d−1) is i-dimensional,
having the same scales as the first i dimensions of the original grid. All the cells
in Ci have an initial value of 0. When a tuple is added to or removed from the
buffer, EC-Indexing in Fig. 4(a) is invoked to update the index grids. During the
evaluation of a D-query, the candidate cells are examined by enumerating the cell
coordinates in a systematic manner: for each prefix of the d-length enumeration,
STARS+ invokes EC-Checking in Fig. 4(b) to check if the enumeration for the
current prefix can be terminated due to an empty region. If a true value is
returned, STARS+ terminates further enumeration for the current prefix and
backtracks.

Example 3. For a 3D grid, two index grids C1 and C2 are maintained. All of
their cells are initialized to 0. Suppose a tuple is added to the buffer at 〈2, 5, 3〉.
Then C1〈2〉 and C2〈2, 5〉 are updated to 1. A D-query evaluation starts enumer-
ating the candidate cells to be examined with the enumeration prefix 〈1〉. Since
C1〈1〉 = 0, STARS+ terminates further enumeration with this prefix, and back-
tracks to the next prefix 〈2〉. Since C1〈2〉 6= 0, STARS+ continues the enumeration
with the next dimension to consider 〈2, 1〉. Since C2〈2, 1〉 = 0, STARS+ termi-
nates further enumeration with 〈2, 1〉 and backtracks to 〈2, 2〉. Since C2〈2, 2〉 = 0,
STARS+ continues backtracking until 〈2, 5〉. 2

When a D-query evaluation is enumerating a prefix with i dimensions, there

is a probability of pi = kgd−i

that the enumeration will backtrack, where k is

Alg. (a): EC-Indexing (〈k1, k2 . . . kd〉, e)

Input: 〈k1, k2 . . . kd〉 are the coordinates
in the skybuffer grid, where a tuple
is added or removed.
e indicates an add or remove event.

1) for i = 1 to d − 1 do
2) if e is “add” then
3) Increase Ci〈k1, k2 . . . ki〉 by 1;
4) else

/* e is “remove” */
5) Decrease Ci〈k1, k2 . . . ki〉 by 1;

endif
endfor

Alg. (b): EC-Checking (〈k1, k2 . . . km〉)

Input: 〈k1, k2 . . . km〉 (1 ≤ m < d) is the
coordinates prefix in the skybuffer
grid, enumerated in a D-query.

Output: a boolean indicating if all cells with
coordinates prefix 〈k1, k2 . . . km〉
are empty.

1) for i = 1 to m do
2) if Ci〈k1, k2 . . . ki〉 is 0 then
3) return true

endif
endfor

4) return false

Fig. 4: Empty Cell (EC) optimization

the average probability that a cell is empty. Therefore, a D-query evaluation
with EC is expected to examine a fraction λ of the candidate cells, where λ =
∏d−1

i=1 (1 − pi) =
∏d−1

i=1 (1 − kgd−i

) ≤ 1 − kg. Suppose k = 0.99 and g = 30, then
λ < 0.26. As d or g increases, k approaches 1, and so EC becomes more effective.

The overhead incurred by EC is low. The cost to update the index grids
when a tuple is added or removed is O(d) which is negligible since d is usually
small. The space overhead for each index grid Ci is O(gi); thus, the total space
requirement of O(gd−1) is insignificant relative to the O(gd) space requirement
of the original grid.

3.3 Geometric Arrangement (Minmax) Optimization

Our third optimization concerns the geometric arrangement technique for evalu-
ating S-queries. In STARS, the two attributes used for line mapping are selected
arbitrarily when data dimensionality is higher than two. To assess the perfor-
mance impact of the choice of the attribute pair, we conducted an experiment
to compare the performance of skyline maintenance for every possible attribute
pair and found that the performance gap between the best and worst pair can
exceed 20%. Thus, the choice of the attribute pair for the mapping is important
but there is no clear heuristic that can be used to optimize this selection. An-
other drawback of STARS is that it utilizes only two attributes for the mapping.
Intuitively, using more attributes is likely to provide better pruning power as
more information about the data is being exploited.

We present an enhanced variant of the line mapping, termed Minmax, that
utilizes all attributes. Consider a d-tuple t = (a1, · · · , ad). Minmax maps t

to the line y = C · x − D, where C = max(r(t.a1), · · · , r(t.ad)) and D =
min(r(t.a1), · · · , r(t.ad)). The following result establishes its correctness.

Theorem 2. Let l1 and l2 represent the two lines mapped from two d-tuples t1
and t2 based on Minmax, respectively. If l1 and l2 intersect at the point (xI , yI)
where xI < 0, then t1 and t2 are incomparable.

4 SkyGrid Approach

In this section, we present a more extreme approach to optimize STARS by ac-
tually eliminating the use of the geometric arrangement technique for S-queries.
Instead, all skyline maintenance operations are performed using only the grid
data structure. To distinguish between the skyline and non-skyline tuples in the
buffer, each tuple is associated with a single bit that is set to true iff the tuple
is a skyline tuple. We refer to this new approach as SkyGrid.

The simplified skyline maintenance framework for SkyGrid is shown in Fig. 5.
Clearly, using only a single data structure in SkyGrid simplfies the skyline main-
tanance operations. Recall that for both STARS and STARS+ (refer to Fig. 1),
if tin is a skyline tuple, we need to update two structures with the following
operations: (1) remove the line representations of any skyline tuples that are
dominated by tin (step 2); (2) insert the line representation of tin (step 3); (3)
remove the tuples in the buffer that are dominated by tin (step 4); and (4) insert
the tin into the buffer (step 5). In contrast, for SkyGrid, if tin is a skyline tuple,
only the grid structure needs to be updated with the following operations (refer
to Fig. 5): (1) insert tin into the buffer (step 3); and (2) remove the tuples in
the buffer that are dominated by tin (step 4).

The simpler skyline maintenance operations in SkyGrid results in better per-
formance. In STARS+, the cost of inserting or removing the line representation
of a skyline tuple in the geometric arrangement is O(s) using DCEL, where s is
the number of skyline tuples [4]. In contrast, for SkyGrid, the cost for promoting
a tuple into the skyline is only O(1) (by marking a skyline status bit).

Algorithm: SkylineMaintenance+ (SB, tin, tout)

Input: SB is the skybuffer.
tin is the newest (arriving) tuple.
tout is the oldest (expiring) tuple.

1) if tin not dominated by skyline tuples in SB then
2) Mark tin as “skyline”;

endif
3) Insert tin into SB;
4) Remove tuples dominated by tin from SB;
5) Remove tout from SB;
6) if tout was marked as “skyline” then
7) P = {t ∈ SB :

t is exclusively dominated by tout};
8) Mark tuples in P as “skyline”;

endif

Fig. 5: Simplified skyline maintenance framework

gh f de c b a

a

b

c

de

f

gh

�

?

× ⋆ ⋆

⋆

⋆

⋆

⋆

⋆

⋆

Fig. 6: S-query in SkyGrid

To support S-queries, SkyGrid can simply find the candidate cells in a similar
way as in D-queries, but in the opposite direction. Specifically, SkyGrid only needs
to consider d-tuples t′ = (a′

1, · · · , a′
d) that are located in the cells satisfying the

following range query wrt t = (a1, · · · , ad): r(a1) ≥ r(a′
1),· · · , and r(ad) ≥ r(a′

d).
The following example illustrates this idea.

Example 4. Consider the domain D depicted in Fig. 2(a). A grid to organize a
2D dataset on D × D is depicted in Fig. 6. Consider a tuple t that is mapped
to the cell marked × in Fig. 6. The dotted region in Fig. 6, which corresponds
to the range query wrt t, represents the set of cells that could contain tuples
dominating t. The actual candidate cells for the S-query are marked by ⋆. 2

Next, we compare the pruning potential of STARS+ and SkyGrid. As S-query
is progressive in both, we ignore the progressiveness. Assuming independent at-
tribute values, the following result states the expected pruning ratio of STARS+.

Theorem 3. STARS+ (utilizing the Minmax mapping) is expected to prune fewer
than half of the number of skyline tuples in an S-query evaluation.

On the other hand, we expect SkyGrid to be able to prune more skyline tuples.
While a formal computation is difficult as it depends on data domains, we can
obtain an estimation. The evaluation of an S-query wrt to a tuple t examines
a fraction

∏d

i=1 ki of all the cells as candidates, where ki ∈ [0, 1] is the fraction

of buckets dominating t on each dimension. Hence (1 −
∏d

i=1 ki) of the cells are
pruned. For high dimensional data with a reasonable value of ki (e.g., d > 2 and
ki < 0.7), the estimated number of cells (and hence tuples) that are pruned is
more than half.

To further improve performance, SkyGrid also incorporates both the DT and
EC optimizations of STARS+. Note that we can use two sets of EC index grids
for the buffer and skyline, respectively. In this way, when evaluating an S-query,
SkyGrid identifies candidate cells by utilizing only the index grids for the skyline.
This avoids the need to examine most candidate cells that contain no skyline tu-
ples, thereby reducing the number of skyline status bits that have to be checked.

In terms of space requirement, the cost for STARS+ is O(s2) using DCEL
to organize s skyline tuples as a geometric arrangement [4]. In contrast, since
SkyGrid organizes the skyline tuples as part of the skybuffer, no additional space
is required. However, each tuple in SkyGrid requires a skyline status bit, so an
extra O(sb) space is needed, where sb is the size of the skybuffer. When s is
reasonably large, STARS+ incurs a higher space overhead than SkyGrid.

5 Experimental Evaluation

5.1 Experiment Settings

In our experiments, we generated synthetic partially-ordered domains following
the approach in [10]. Each domain is modeled as a DAG and is characterized by
the parameters (m, h, c, f), where m is the number of vertices, h is the height
of the DAG, c ∈ (0, 1] is the fraction of the vertices at the next level that are
connected to a vertex, and f refers to the type of DAG which is either “t” for
tree-like or “w” for wall-like DAG. We refer to an attribute domain by these
parameters; for instance, (500, 8, 0.3, t).

We generated four 4-dimensional datasets shown in Table 1, where each col-
umn corresponds to one dataset and the ith row corresponds to the domain for

the ith attribute; d-dimensional datasets, where d ∈ {2, 3}, are generated from
Table 1 by simply considering only the first d rows of the table. For each algo-
rithm being evaluated, we ran it on each of the four datasets, and report the
average performance over the four datasets (unless stated otherwise).

For each data domain, we also considered three different distributions: (1)
independent, where the attribute values of the tuples follow a uniform distribu-
tion; (2) correlated, where a tuple that is good in one attribute also tends to be
good in other attributes; (3) anti-correlated, where a tuple that is good in one
attribute tends to be bad in at least one other attribute [1, 5, 11].

Table 1: Synthesized sets of data domains

Dataset I Dataset II Dataset III Dataset IV
(250, 7, 0.3, t) (120, 7, 0.2, t) (100, 10, 0.1, w) (500, 8, 0.3, t)
(180, 6, 0.6, t) (120, 7, 0.2, t) (100, 10, 0.2, w) (500, 8, 0.3, t)

(180, 20, 0.3, w) (120, 5, 0.2, t) (100, 10, 0.4, w) (500, 8, 0.3, t)
(90, 4, 0.2, t) (120, 5, 0.2, t) (100, 10, 0.8, w) (500, 8, 0.3, t)

Table 2: Skyline sizes

Dim Corr Indep Anti
d = 2 240 25 45
d = 3 395 480 418
d = 4 636 3779 4444
d = 5 1298 12363 15875

The number of data dimensions, denoted by d, was varied from 2 to 4. Table 2
shows the skyline sizes for datasets with domain (500, 8, 0.3, t) on each attribute,
using a 100K buffer with different data distributions. Note that datasets with
partially-ordered domains have much more skylines than totally-ordered datasets
since two tuples are more likely to be incomparable [1, 11]. For independent or
anti-correlated datasets, the size of the skylines becomes very large once d ≥ 5;
therefore, finding conventional skylines for d ≥ 5 becomes less interesting [3].

Furthermore, we varied buffer sizes from 10K to 1M. Lastly, we chose g = 20
as the default grid granularity if it is not stated.

All the algorithms were implemented using Java. The experiments were con-
ducted on a 3.0GHz PC with 3GB of main memory running Windows OS.

5.2 Evaluating STARS+ Optimizations

In this subsection, we evaluate the effectiveness of each of the three optimizations
DT, EC and Minmax that are introduced for STARS+.

Dominating Tuple. STARS+ utilizes DT to improve the performance of P-
queries. Figure 7 shows the average time per P-query evaluation without DT

(normalized wrt with DT)3. DT clearly improves the evaluation of P-queries, up
to 2.3 times faster. The speed-up is greater when the skyline is larger, which is
often caused by a larger buffer, particularly when d = 4. For d ∈ {2, 3}, we notice
a non-monotonous speed-up wrt buffer size. On lower dimensional datasets, the
skyline sizes are much smaller. Their skylines soon become “saturated” (i.e., no
longer growing and maybe shrinking due to randomness in data) when the buffers
become larger. Hence, when the buffer increases beyond the saturation point,
their skyline sizes become non-monotonous, resulting in the non-monotonicity
of the performance speed-up by DT. When d = 4, the saturation point is well
beyond 1M, so we only observe an improving speed-up.

3 To be fair, both used the same attribute pair for line mapping.

1.0

1.5

2.0

2.5

10K 20K 50K 100K 200K 500K 1M

T
im

e
(n

or
m

al
iz

ed
)

Buffer size

(a) Independent data

d = 2
d = 3
d = 4

1.0

1.5

2.0

2.5

10K 20K 50K 100K 200K 500K 1M

T
im

e
(n

or
m

al
iz

ed
)

Buffer size

(b) Anti-correlated data

d = 2
d = 3
d = 4

1.0

1.1

1.2

1.3

1.4

1.5

10K 20K 50K 100K 200K 500K 1M

T
im

e
(n

or
m

al
iz

ed
)

Buffer size

(c) Correlated data

d = 2
d = 3
d = 4

Fig. 7: Effectiveness of DT on P-query evaluation

Empty Cell. STARS+ utilizes EC to improve the performance of D-query eval-
uation. The average time per D-query without EC (normalized wrt with EC)3 is
shown in Fig. 8. There is negligible improvement when d = 2, as the number of
cells is small. However, when d > 2, EC becomes very effective. This is especially
so for correlated data, where the tuples distribute unevenly in the grid resulting
in more empty cells.

1.0

1.5

2.0

2.5

3.0

10K 20K 50K 100K 200K 500K 1M

T
im

e
(n

or
m

al
iz

ed
)

Buffer size

(a) Independent data

d = 2
d = 3
d = 4

1.0

1.5

2.0

2.5

3.0

10K 20K 50K 100K 200K 500K 1M

T
im

e
(n

or
m

al
iz

ed
)

Buffer size

(b) Anti-correlated data

d = 2
d = 3
d = 4

1

10

20

30

40

10K 20K 50K 100K 200K 500K 1M

T
im

e
(n

or
m

al
iz

ed
)

Buffer size

(c) Correlated data

d = 2
d = 3
d = 4

Fig. 8: Effectiveness of EC on D-query evaluation

Figure 9 compares the average evaluation time per D-query under varying
grid granularity. When the granularity is initially increased from a small value,
the performance of D-query evaluation both with and without EC improve due
to a finer grid. However, as the granularity increases beyond 20, the performance
without EC quickly deteriorates due to the rapid growth of the number of empty
cells. In contrast, with EC the performance degradation is less pronounced, as
most of the empty cells are pruned.

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50

T
im

e
(m

s)

Granularity

(a) (100, 5, 0.2, t)3, 100K buffer

 w/o EC
 with EC

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50

T
im

e
(m

s)

Granularity

(b) (100, 5, 0.2, w)3, 100K buffer

 w/o EC
 with EC

Fig. 9: Effect of grid granularity on D-query evaluation

Pruning Efficiency of Minmax. STARS+ utilizes Minmax to improve the sky-
line organization by pruning more skyline tuples in an S-query evaluation. Fol-
lowing [10], we define the pruning efficiency (PE) of an S-query as the fraction
of skyline tuples that require dominance comparison (i.e., that are not pruned).
Thus, smaller PE values are better. Figure 10 compares the PE of S-queries
for STARS, STARS+ and SkyGrid, where d = 4. For the performance results
of STARS, instead of arbitrarily choosing two attributes for line mapping, we
evaluated STARS with all possible attribute pairs, and present the performance
results corresponding to the best pair (STARS-Best) as well as the worst pair
(STARS-Worst) for comparison.

 0

 5

 10

 15

 20

10K 20K 50K 100K 200K 500K 1M

P
ru

ni
ng

 e
ffi

ci
en

cy
 (

%
)

Buffer size

(a) Independent data

 0

 5

 10

 15

 20

10K 20K 50K 100K 200K 500K 1M

P
ru

ni
ng

 e
ffi

ci
en

cy
 (

%
)

Buffer size

(b) Anti-correlated data

 0

 5

 10

 15

 20

10K 20K 50K 100K 200K 500K 1M

P
ru

ni
ng

 e
ffi

ci
en

cy
 (

%
)

Buffer size

(c) Correlated data

STARS-Worst STARS-Best STARS+ SkyGrid

Fig. 10: Pruning efficiency of S-query

The results reveal that there could be a performance gap between STARS-
Best and STARS-Worst. In Figs. 10(a) and (b), STARS+ not only closes the gap,
but also maintains a lead over STARS-Best. In addition, SkyGrid is much better
than STARS+ in terms of PE.

However, in Fig. 10(c) on correlated data, the PE of STARS+ is generally on
par with STARS-Worst. The reason is that the Minmax optimization in STARS+

is not effective on correlated data. Consider two tuples with correlated attribute
values that map to the lines l1 : y = C1 · x − D1 and l2 : y = C2 · x − D2,
respectively. If C1 > C2, it is likely that D1 > D2; therefore, it is also likely that
D1−D2

C1−C2
> 0, the x-coordinate where l1 and l2 intersect. By Theorem 2, the two

tuples are unlikely to be pruned. On the other hand, SkyGrid outperforms both
Minmax and STARS-Worst, but loses marginally to STARS-Best on buffers larger
than 50K. The reason is that tuples with correlated attribute values distribute
unevenly in the grid, resulting in less efficient S-queries. However, SkyGrid still
achieves the best overall performance despite this (see Section 5.3).

5.3 Evaluating Overall Performance

In this subsection, we compare the overall performance of STARS (both STARS-
Best and STARS-Worst), STARS+ and SkyGrid. To be fair to STARS and SkyGrid,
we also implemented in them the two optimizations of STARS+, DT and EC. Due
to space constraints, we only present the results for d = 4; similar trends are
observed for d ∈ {2, 3}.

Tuple update time. We measure the average time per tuple update, which cor-
responds to the time for one invocation of the SkylineMaintenance algorithm.
The results are presented in Fig. 11.

 0

 0.4

 0.8

 1.2

10K 20K 50K 100K 200K 500K 1M

T
im

e
(m

s)

Buffer size

(a) Independent data

 0

 0.4

 0.8

 1.2

10K 20K 50K 100K 200K 500K 1M

T
im

e
(m

s)
Buffer size

(b) Anti-correlated data

 0

 1

 2

 3

 4

 5

10K 20K 50K 100K 200K 500K 1M

T
im

e
(m

s)

Buffer size

(c) Correlated data

STARS-Worst STARS-Best STARS+ SkyGrid

Fig. 11: Comparison of tuple update time with DT and EC

The results for independent and anti-correlated data in Figs. 11(a) and (b)
reveal that SkyGrid achieves the best overall performance, followed by STARS+,
and lastly STARS. However, with large buffers, the performance gap between
SkyGrid and STARS+ narrows. The reason is that although the performance of
SkyGrid for P-queries is much better than STARS+, P-queries occur less fre-
quently with large buffers due to the decreased probability for an expiring tuple
to be a skyline tuple [10]. However, despite this, SkyGrid still performs better
than STARS+ by a clear margin with buffers as large as 1M. Note that SkyGrid

is still preferable in time-critical applications, where the cost of each individual
update is more important than the amortized cost. SkyGrid greatly improves the
otherwise very expensive tuple updates that involve a P-query.

On correlated data, as shown in Fig. 11(c), STARS+ is only marginally out-
performed by STARS, although the former performs poorly in PE. Tuples with
correlated attributes tend to distribute unevenly in the grid, resulting in less ef-
ficient D-queries. Thus, the performance of P-queries becomes a less dominating
factor in the overall performance. Also, skylines on correlated data are gener-
ally smaller, resulting in a lower frequency of P-queries. So the PE of S-queries
matters less to overall performance. This also explains why SkyGrid has the best
overall performance even though it is not so in terms of PE.

Figure 12 studies the effect of grid granularity on the average time per tuple
update of the three approaches with a 100K buffer. Observe that SkyGrid remains
the best approach under different grid granularities.

Space requirement. The memory usage of the three approaches is shown in
Table 3, with a 100K buffer on Dataset IV (d = 4). Clearly, SkyGrid uses the least
memory, as it requires little extra space for the skyline representation. On the
other hand, STARS+ and STARS require comparable amount of memory, since
they both use a geometric arrangement to organize the skyline. Also note that
the differences are insignificant on correlated data because of a smaller skyline.

0.0

0.5

1.0

1.5

2.0

20 35 50

T
im

e
(m

s)

Granularity

(a) Independent data

0.0

0.5

1.0

1.5

2.0

20 35 50

T
im

e
(m

s)

Granularity

(b) Anti-correlated data

0.0
0.1
0.2
0.3
0.4
0.5

20 35 50

T
im

e
(m

s)

Granularity

(c) Correlated data

STARS-Worst STARS-Best STARS+ SkyGrid

Fig. 12: Effects of granularity on tuple update time

Table 3: Memory usage

Corr Indep Anti
Skyline 636 3779 4444

Memory (MB)
STARS
-Worst 55 574 731
STARS
-Best 56 505 693

STARS+ 55 442 589
SkyGrid 54 55 55

6 Conclusion

In this paper, we have presented two new approaches, STARS+ and SkyGrid,
to compute skylines for streaming data that involves partially-ordered attribute
domains. Our experimental results show that both STARS+ and SkyGrid outper-
form the state-of-the-art STARS approach, with the surprisingly result that the
simplest approach, SkyGrid is the best approach.

References

1. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages
421–430, 2001.

2. C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computation of skylines with
partially-ordered domains. In SIGMOD, pages 203–214, 2005.

3. C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding
k-dominant skylines in high dimensional space. In SIGMOD, pages 503–514, 2006.

4. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.
5. D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an online

algorithm for skyline queries. In VLDB, pages 275–286, 2002.
6. K. C. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the skyline in Z order.

In VLDB, pages 279–290, 2007.
7. X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline compu-

tation over sliding windows. In ICDE, pages 502–513, 2005.
8. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm

for skyline queries. In SIGMOD, pages 467–478, 2003.
9. D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically-sorted skyline for

partially-ordered domains. In ICDE, 2009.
10. N. Sarkas, G. Das, N. Koudas, and A. K. Tung. Categorical skylines for streaming

data. In SIGMOD, pages 239–250, 2008.
11. K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation.

In VLDB, pages 301–310, 2001.
12. Y. Tao and D. Papadias. Maintaining sliding window skylines on data streams.

IEEE TKDE, 18(3):377–391, 2006.

