
Towards Neighborhood Window Analytics
over Large-Scale Graphs

Qi Fan1(B), Zhengkui Wang2, Chee-Yong Chan3, and Kian-Lee Tan1,3

1 NUS Graduate School for Integrative Science and Engineering,
Singapore, Singapore
fan.qi@nus.edu.sg

2 Singapore Institute of Technology, Singapore, Singapore
zhengkui.wang@singaporetech.edu.sg

3 School of Computing, National University of Singapore, Singapore, Singapore
{chancy,tankl}@comp.nus.edu.sg

Abstract. Information networks are often modeled as graphs, where the
vertices are associated with attributes. In this paper, we study neigh-
borhood window analytics, namely k-hop window query, that aims to
capture the properties of a local community involving the k-hop neigh-
bors (defined on the graph structures) of each vertex. We develop a novel
index, Dense Block Index (DBIndex), to facilitate efficient processing of
k-hop window queries. Extensive experimental studies conducted over
both real and synthetic datasets with hundreds of millions of vertices
and edges show that our proposed solutions are four orders of magni-
tude faster in query performance than the non-index algorithm, and are
superior over the state-of-the-art solution in terms of both scalability
and efficiency.

Keywords: Graph analytics · Graph window · Neighborhood
aggregation

1 Introduction

Information networks such as social networks, biological networks and phone-
call networks are typically modeled as graphs [4] where the vertices correspond
to objects and the edges capture the relationships between these objects. For
instance, in social networks, every user is represented by a vertex and the friend-
ship between two users is reflected by an edge between the vertices. In addition,
a user’s profile can be maintained as the vertex’s attributes. Such graphs contain
a wealth of valuable information which can be analyzed to discover interesting
patterns. For example, we can find the top-k influential users who can reach
the most number of friends within 2 hops. With increasingly larger network
sizes, there is an urgent need to develop effective and efficient mechanisms over
large-scale graph data.

Recent research on graph analytics focuses on discovering the global graph
properties and characteristics. To name a few, graph summarization [14] aims
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 201–217, 2016.
DOI: 10.1007/978-3-319-32049-6 13

202 Q. Fan et al.

to provide a compressed representation of a given graph based on its structure
and vertex/edge attributes, while graph aggregation [4,17,19] focuses on aggre-
gating the graph based on its vertex/edge attributes to discover the underlying
characteristics of large graphs.

In this paper, we study a new type of query that analyzes each vertex’s
local community (e.g., neighborhoods) in a graph. To each vertex, these local
communities (also referred to as windows in this paper) carry the most important
information that captures the vertex’s social influence and relations in the graph.
Unlike graph summarization and aggregation that discover the entire graph’s
property, graph window queries (GWQs) explore the underlying characteristics
of a small window related to each individual vertex. We identify one instantiation
of graph “windows”, namely k-hop window. We first demonstrate the k-hop
window semantics with the following example.

Example 1 (K-hop window). In social network scenario, it is of great interest
to summarize the most relevant connections to each user such as the neighbors
within 2-hops. Some analytic queries such as summarizing the related connec-
tions’ distribution among different companies, and computing age distribution
of the related friends can be useful. In order to answer these queries, collecting
data from every user’s neighborhoods within 2-hop is necessary.

A k-hop window forms a window for one vertex by using its k-hop neighbors.
In the Example 1, every user needs to gather data from his/her friends and
friends-of-friends. k-hop neighbors are important to one vertex, as these are the
vertices showing structural closeness as in Example 1.

To the best of our knowledge, existing graph databases or graph query
languages do not directly support our proposed GWQ. There are two major
challenges in processing GWQ. First, we need an efficient scheme to calculate
the neighborhood window of each vertex. Second, we need efficient solutions
to process the aggregation over a large number of windows that may overlap.
However, it is nontrivial to address these two challenges. The state-of-the-art
algorithm for k-hop like query is EAGR [12]. EAGR builds an overlay graph to
leverage the shared components of different windows through multiple iterations.
However, EAGR requires all vertices’ k-hop neighbors to be pre-computed and
resides in memory during every iteration. This heavily limits the efficiency and
scalability of EAGR.For instance, a LiveJournal social network graph1 (4.8 M
vertices, 69M edges) generates over 100GB neighborhood information for k =
2 in adjacency list representation. In addition, the overlay graph construction
is not a one-time task, but is periodically performed after a certain number of
structural updates in order to maintain the overlay quality. The high memory
requirement renders EAGR impractical when k and the graph size increase.

In this paper, we propose Dense Block Index (DBIndex), which enables an
efficient query processing by integrating the optimized query execution plan for
shared aggregation computation. Additionally, for index construction, we apply
a hash-based technique to cluster the vertices based on the window similarity,
1 Available at http://snap.stanford.edu/data/index.html, which is used in [12].

http://snap.stanford.edu/data/index.html

Towards Neighborhood Window Analytics over Large-Scale Graphs 203

which ensures memory efficiency. On the basis of the clusters, we further develop
different optimizations to extract the shared components efficiently.

Our contributions are summarized as follows:

– We introduce a new type of graph analytic query, Graph Window Query and
formally define the k-hop window.We illustrate how thesewindowquerieswould
help users better query and understand the graphs under different semantics.

– We propose Dense Block Index (DBIndex) to support the proposed k-hop
window queries. The index integrates the window aggregation sharing tech-
niques to salvage partial work done to enable efficient query processing over
large-scale graphs.

– We perform extensive experiments over both real and synthetic datasets with
hundreds of millions of vertices and edges on a single machine. Our exper-
iments indicate that our proposed index-based algorithms outperform the
naive non-index algorithm by up to four orders of magnitude. In addition,
our experiments also show that DBIndex is superior over EAGR in terms of
both scalability and efficiency.

The rest of the paper is organized as follows: Sect. 2 formulates the GWQ.
In Sect. 3, we introduce the DBIndex for k-hop window query. Section 4 presents
the experimental evaluations. In Sects. 5 and 6, we provide the related works and
the conclusion respectively.

2 Problem Formulation

In this section, we provide the formal definition of graph window query. We use
G = (V,E) to denote a directed/undirected data graph, where V is its vertex
set and E is its edge set. Each vertex/edge is associated with a (possibly empty)
set of attributes.

Figure 1 shows an undirected graph representing a social network that we will
use as our running example. The table shows the values of the five attributes
(User, Age, Gender, Industry, and Number of posts) associated with each vertex.
For convenience, each vertex is labeled with its user attribute value; and there
is one edge between a user X and another user Y if X and Y are connected in
the social network.

Fig. 1. Example of Social Graph. (a) Graph
structure; (b) Attributes associated with
the vertices in (a).

Given a data graph G = (V,E), a
Graph Window Function (GWF) over
G can be expressed as a quadruple
(G,W,Σ,A), where W (v) denotes a
window specification (or window for
short) for a vertex v ∈ V that deter-
mines the set of vertices (refer to as
nodes) in some subgraph of G, Σ
denotes an aggregate function, and A
denotes a vertex attribute. The eval-
uation of a GWF (G,W,Σ,A) on G

204 Q. Fan et al.

computes for each vertex v in G, the aggregation Σ on the values of attribute A
over all the vertices in W (v), which is denoted by Σv′∈W (v)v

′.A. We consider all
common aggregate functions (e.g., sum, count, average, max, min etc.) in this
paper.

Definition 1 (k-hop Window). Given a vertex v in a graph G, the k-hop
window of v, denoted by Wkh(v) (or W (v) when there is no ambiguity), is the
set of neighbors of v in G which can be reached within k hops. For an undirected
graph G, a vertex u is in Wkh(v) iff there is a α-hop path between u and v where
α � k. For a directed graph G, a vertex u is in Wkh(v) iff there is a α-hop
directed path from v to u2 where α � k.

Intuitively, a k-hop window selects the neighboring vertices of a vertex within
a k-hop distance. These neighboring vertices typically represent the most impor-
tant vertices to a vertex wrt their structural relationship in a graph. Thus, k-hop
windows provide meaningful specifications for many applications, such as cus-
tomer behavior analysis [1,6] and digital marketing [10]. As an example, in Fig. 1,
the 1-hop window of vertex E is {A,C,E} and the 2-hop window of vertex E is
{A,B,C,D,E, F}.

We emphasize that there are different types of windows which can be for-
malized under different application scenarios. For instance, we have identified
another useful window, namely the topological window, which captures the set
of ancestor vertices of each vertex in a directed acyclic graph (DAG). There
are many DAGs in real-world applications (such as biological networks, cita-
tion networks and dependency networks) where topological windows represent
meaningful relationships that are of interest. For example, in a citation network
where (X,Y) is an edge iff paper X cites paper Y , the topological window of a
paper represents the citation impact of that paper [3,11]. Based on the topo-
logical window, we have proposed another index, inheritance index as in our
technical report [8] to facilitate an efficient topological window query processing
and systematically evaluated the index. In general, a graph window query is
defined as:

Definition 2 (Graph Window Query). A graph window query on a data
graph G is of the form GWQ(G,W1, Σ1, A1, · · · , Wm, Σm, Am), where m ≥ 1
and each quadruple (G,Wi, Σi, Ai) is a graph window function on G.

In this paper, we focus on efficiently processing k-hop window queries with
indexes. Due to space constraint, we only present the static solution for illus-
tration, and the strategy for handling updates are described in our technical
report [8].

2 Other variants of k-hop window for directed graphs are possible; e.g., a vertex u is
in Wkh(v) iff there is a α-hop directed path from u to v where α � k.

Towards Neighborhood Window Analytics over Large-Scale Graphs 205

3 Dense Block Index

A straightforward approach to process a graph window query Q = (G,W,Σ,A),
where G = (V,E), is to dynamically compute the window W (v) for each vertex
v ∈ V and its aggregation Σv′∈W (v)v

′. A independently from other vertices. We
refer to this approach as Non-Indexed method. Given that many of the windows
would share many common nodes (e.g., the k-hop windows of two adjacent ver-
tices), such a simple approach would be very inefficient due to the lack of sharing
of the aggregation computations.

To efficiently evaluate graph window queries, we propose an indexing tech-
nique named Dense Block Index (DBIndex), which is both space and query
efficient. The main idea of DBIndex is to try to reduce the aggregation com-
putation cost by identifying subsets of nodes that are shared by more than one
window so that the aggregation for the shared nodes could be computed only
once instead of multiple times.

For example, consider a graph window query on the social graph in Fig. 1
using the 1-hop window. We have W (B) = {A,B,D, F} and W (C) =
{A,C,D,E, F} sharing three common nodes A, D, and F . By identifying the
set of common nodes S = {A,D,F}, its aggregation Σv∈Sv.A can be computed
only once and then reuse to compute Σv∈W (B)v.A and Σv∈W (C)v.A.

Given a window W and a graph G = (V,E), we refer to a non-empty subset
B ⊆ V as a block. Moreover, if B contains at least two nodes and B is contained
by at least two different windows (i.e., if |B| ≥ 2, and ∃v1 �= v2 ∈ V , B ⊆ W (v1),
and B ⊆ W (v2)), then B is a dense block. Thus, in the last example, {A,D,F}
is a dense block.

We say that a window W (X) is covered by a collection of disjoint blocks
{B1, · · · , Bn} if the set of nodes in the window W (X) equals to the union of all
nodes in the collection of disjoint blocks; i.e., W (X) =

⋃n
i=1 Bi and Bi ∩ Bj = ∅

if i �= j.
To maximize the sharing of aggregation computations for a graph window

query, the objective of DBIndex is to identify a small set of blocks B such that
for each v ∈ V , W (v) is covered by a small subset of disjoint blocks in B. Clearly,
the cardinality of B is minimized if B contains a few large dense blocks.

Thus, given a window W and a graph G = (V,E), a DBIndex to evaluate
W on G consists of three components in the form of a bipartite graph. The first
component is a collection of vertex (i.e., V); the second component is a collection
of blocks B = {B1, · · · , Bn} where each Bi ⊆ V ; and the third component is a
collection of links from blocks to vertices such that if a set of blocks B(v) ⊆ B
is linked to a vertex v ∈ V , then W (v) is covered by B(v). Note that a DBIndex
is independent of both the aggregate function (i.e., Σ) and the attribute to be
aggregated (i.e., A). Figure 2(d) shows an example of a DBIndex wrt the social
graph in Fig. 1 and the 1-hop window. There are three dense blocks detected
which are {A,F,D}, {C,E}, and {A,C}.

206 Q. Fan et al.

3.1 Query Processing Using DBIndex

Given a DBIndex wrt a graph G and a window W , a graph window query
Q = (G,W,Σ,A) is processed by the following two steps. First, for each block
Bi in the index, we compute the aggregation (denoted by Ti) over all the nodes
in Bi; i.e., Ti = Σv∈Bi

v.A. Thus, each Ti is a partial aggregate value. Next,
for each window W (v), v ∈ V , the aggregation for the window is computed by
aggregating over all the partial aggregates associated with the blocks linked to
W (v); i.e., if B(v) is the collection of blocks linked to W (v), then the aggregation
for W (v) is given by ΣBi∈B(v)Ti.

3.2 DBIndex Construction

In this section, we discuss the construction of the DBIndex (wrt a graph G =
(V,E) and window W) which has two key challenges.

The first challenge is the time complexity of the index construction. From
our discussion of query processing using DBIndex, we note that the number of
aggregation computations is determined by both the number of blocks as well
as the number of links in the index; the former determines the number of partial
aggregates to compute while the latter determines the number of aggregations
of the partial aggregate values. Thus, to maximize the shared aggregation com-
putations using DBIndex, both the number of blocks in the index as well as the
number of blocks covering each window should be minimized. However, finding
the optimal DBIndex to minimize this objective is NP-hard3. Therefore, efficient
heuristics are needed to construct the DBIndex.

The second challenge is the space complexity of the index construction. In
order to identify large dense blocks to optimize for query efficiency, a straight-
forward approach is to first derive the window W (v) for each vertex v ∈ V and
then use this derived information to identify large dense blocks. However, this
direct approach incurs a high space complexity of O(|V |2). Therefore, a more
space-efficient approach is needed in order to scale to large graphs.

MinHash-based Index Construction (MC). To reduce both the time and
space complexities for the index construction, instead of trying to identify large
dense blocks among a large collection of windows, MC first partitions all the
windows into a number of smaller clusters of similar windows and then identifies
large dense blocks from each of the smaller clusters. Intuitively, two windows are
considered to be highly similar if they share a larger subset of nodes. We apply
the well-known MinHash based Clustering algorithm [2] to partition the windows
into clusters of similar windows. The MinHash clustering algorithm uses Jaccard
Coefficient to measure the similarity of two sets. Given two windows W (v) and
W (u), u, v ∈ V , their Jaccard Coefficient is given by J(u, v) = |W (u)∩W (v)|

|W (u)∪W (v)| .
The Jaccard Coefficient ranges from 0 to 1, where a larger value means that the
windows are more similar.
3 Note that a simpler variation of our optimization problem has been proven to be

NP-hard [16].

Towards Neighborhood Window Analytics over Large-Scale Graphs 207

Our heuristic approach to construct DBIndex I operates as in Algorithms 1
and 2. Let vertices(I), blocks(I), and links(I) denote the collection of vertices,
blocks, and links in I. Initially, we have vertices(I) = V , blocks(I) = ∅, and
links(I) = ∅.

Algorithm 1. CreateDBIndex
Require: Graph G = (V, E), window

W
Ensure: DBIndex I
1: Initialize DBIndex I: vertices(I) =

V , blocks(I) = ∅, links(I) = ∅
2: for all v ∈ V do
3: Traverse G to determine W (v)
4: Compute the hash signature

H(v) for W (v)
5: end for
6: Partition V into clusters C =

{C1, C2, · · · } based on hash signa-
tures H(v)

7: for all Ci ∈ C do
8: for all v ∈ Ci do
9: Traverse G to determine W (v)

10: end for
11: IdentifyDenseBlocks

(I, W, Ci)
12: end for
13: return I
14:

Algorithm 2. IdentifyDenseBlocks
Require: DBIndex I, window W , a cluster

Ci ⊆ V
1: Return if Ci is empty.
2: Partition V into blocks wrt to Ci,

DenseNodes = ∅
3: for all dense block B do
4: Insert B into blocks(I) if B �∈

blocks(I)
5: Insert (B, v) into links(I) for each

v ∈ Ci where B ⊆ W (v)
6: DenseNodes = DenseNodes ∪ B
7: end for
8: Cn ← ∅, Wn ← ∅
9: for all vi ∈ Ci do

10: if (W (vi)−DenseNodes �= ∅) then
11: Insert vi to Cn

12: Insert (W (vi) − DenseNodes) to
Wn

13: end if
14: end for
15: IdentifyDenseBlocks (I, Wn, Cn)
16: return

The first step (Lines 1–6 Algorithm 1) is to partition the vertices in V into
clusters using MinHash algorithm such that vertices with similar windows belong
to the same cluster. For each vertex v ∈ V , we first derive its window W (v) by an
appropriate traversal (e.g., k-hop BFS) of the graph G. Next, we compute hash
signatures (denoted by H(v)) for each v by applying MinHash on W (v). Vertices
with identical hash signatures are considered to have highly similar windows and
are grouped into the same cluster. To ensure that our approach is scalable, we
do not retain W (v) in memory after its hash signature H(v) has been computed
and used to cluster v; i.e., our approach does not materialize all the windows in
the memory to avoid high space complexity. Let C = {C1, C2, · · · } denotes the
collection of clusters obtained from the first step, where each Ci is a subset of
vertices.

The second step (Lines 7–12 Algorithm 1) is to identify dense blocks from
each of the clusters computed in the first step. The identification of dense blocks
in each cluster Ci is based on the notion of node equivalence defined as follows.
Two distinct nodes u, v ∈ V are defined to be equivalent (denoted by u ≡ v)
wrt Ci iff u and v are both contained in the same set of windows wrt Ci; i.e.,
for every window W (x), x ∈ Ci, u ∈ W (x) iff v ∈ W (x). Based on this notion of
node equivalence, V is partitioned into blocks of equivalent nodes. To perform

208 Q. Fan et al.

this partitioning, we need to again traverse the graph for each vertex v ∈ Ci to
determine its window W (v)4.

However, since Ci is now a smaller cluster of vertices, we can now materialize
all the windows for the vertices in Ci in memory without exceeding the memory
space. In the event that a cluster Ci is still too large for all its windows to
be materialized in main memory, we can further partition Ci into equal sized
sub-clusters. This re-partition process can be recursively performed until the
sub-clusters created are small enough such that the windows for all vertices in
the sub-cluster fit in memory.

Recall that a block B is a dense block if B contains at least two nodes and
B is contained in at least two windows. Thus, we can classify nodes in V as
either dense or non-dense nodes: a node v ∈ V is classified as a dense node if v
is contained in a dense block; otherwise, v is a non-dense node.

For each dense block B in Ci, we update the blocks and links in the DBIndex I
recursively as follows: If the current cluster or window only contains one element,
then algorithm stops. Otherwise, we insert dense block B into block(I); and
we insert (B, v) into links(I) for each v ∈ Ci where B ⊆ W (v) (Lines 3–7
Algorithm 2). For each vertex v in Ci, we remove dense nodes from its window
W (v). This forms the refined window Wn(v). If Wn(v) is not empty, we then add
v to a refined cluster Cn. Cn and Wn are then processed recursively (Lines 8–15
Algorithm 2).

Figure 2 illustrates the construction of the DBIndex wrt the social graph in
Fig. 1(a) and 1-hop window using the MC algorithm. First, the set of graph
vertices are partitioned into clusters using MinHash clustering; Fig. 2(a) shows
that the set of vertices V = {A,B,C,D,E, F} are partitioned into two clusters
C1 = {A,B,C} and C2 = {D,E, F}. Table 1 in Fig. 2(b) shows the node-vertex
mapping in C1, i.e. for each node u ∈ V , the corresponding row is the set {v ∈
C1|u ∈ W (v)}. Similarly, Table 2 in Fig. 2(b) shows the node-vertex mapping
in C2.

Consider the identification of dense blocks in cluster C1. As shown in
Fig. 2(c), based on the notion of equivalence nodes, cluster C1 is partitioned into
three blocks of equivalent nodes: B1 = {A,D,F}, B2 = {B}, and B3{C,E}.
Among these three blocks, only B1 and B3 are dense blocks. The MC algo-
rithm then tries to repartition the window A,B,C using non-dense nodes
in C1, (i.e., B) as next window. Since B is the only node, it directly out-
puts. At the end of processing cluster C1, the DBIndex I is updated as fol-
lows: blocks(I) = {B1, B2, B3} and links(I) = {(B1, {A,B,C}), (B2, {A,B}),
(B3, {A,C})}. The identification of dense blocks in cluster C2 is of similar
process.

4 Note that although we could have avoided deriving W (v) a second time if we had
materialized all the derived windows the first time, our approach is designed to
avoid the space complexity of materializing all the windows in memory at the cost
of computing each W (v) twice. We present an optimization later in this section to
avoid the recomputation cost on k-hop window query.

Towards Neighborhood Window Analytics over Large-Scale Graphs 209

Fig. 2. DBIndex Construction over Social Graph in
Fig. 1. (a) Two clusters after MinHash clustering;
(b) Window information of involved vertices within
each cluster; (c) Dense blocks within each cluster;
(d) Final DBIndex.

Assume that, the aver-
age neighborhood size of each
vertex is w. The MinHash
cost is thus w|V |. The cost
of traversal for all vertex
is w|E|. In Algorithm 1,
Lines 1–10 have the cost of
w(|V |+2|E|); In Algorithm 2,
since we can simply parti-
tion nodes using hashing, the
time cost is thus w|Ci|. The
recursive procedure runs at
most log(|Ci|) times, and the
total cost for Algorithm 2
is Σ(w|Ci|log(|Ci|)). Since
Σ(|Ci|) = |V |, the total cost
for Algorithm 2 is less than
w|V |log(|V |). Therefore, the
total cost for Algorithm 1 and
Algorithm 2 is w(|V | + 2|E| + |V |log(|V |)), thus the complexity is O(w(|E| +
|V |log(|V |))).

Next, we provide two specific optimizations for constructing DB-Index for
k-hop window queries.

Estimation Optimization. For k-hop window query with a large value of k,
the cost of graph traversals to compute the k-hop windows is high. Moreover,
the cost of initial MinHash in MC approach equals to the initial number of
vertex-window mappings, which is of the same order as graph traversal.

To address the high computation issue, we make an observation that if the
m-hop windows for two vertices are similar, the n-hop windows for them are
also similar, where m < n. The intuition is that the shared component becomes
larger via hop expansion. This observation is formally described as follows:

Theorem 1. Let 〈u, v〉 be a randomly chosen vertex pair from a graph, let
Jk(u, v) be their Jaccard similarity wrt k-hop window. Then with high proba-
bility Jm(u, v) ≤ Jn(u, v), where m < n.

We omit the theoretic proof here. Interested readers are referred to [8] for
details. Based on Theorem 1, one optimization to improve the efficiency of
Algorithm 1 with the tradeoff of a possible lower “quality” dense blocks (in
terms of their sizes) is to use the m-hop window as an estimation for a n-hop
index construction during the clustering, where m < n. In particular, for the
first round of window computation (Lines 3–4 in Algorithm 1), we can use the
hash signatures of the lower hop windows cluster the vertices in V to approxi-
mate k-hop windows. This approximation has the advantage of improved time-
efficiency as traversal and MinHash clustering on lower-hop window is signifi-
cantly faster. In particular, if the average number of neighbors for each vertex

210 Q. Fan et al.

in a n-hop window is denoted by wn, then the optimization reduces the index
construction cost by (|V | + |E|)(wn − wm) from (|V | + 2|E| + |V |log(|V |))wn to
(|V | + |E|)wm + (|E| + |V |(log|V |))wn. This improvement is significant as wn

is exponentially greater than wm, where m < n, in k-hop windows. Our experi-
mental results show with this optimization, the reduction in the quality of dense
blocks is actually only marginal which makes this optimization a good tradeoff.

Batching Optimization. When multiple k-hop indexes are required, one
applicable optimization is to batch the index constructions to share the graph
traversal and clustering. Suppose there is a need to compute the DBIndex for
1-hop, 2-hop, ..., k-hop windows. Constructing each index independently would
incur high overhead on both clustering and graph traversal which can be allevi-
ated by batching their computations. The overall idea of the batching construc-
tion is to utilize the lower hop (e.g., 1-hop) traversal information to build the
clustering and reuse it for all the h-higher hops. In addition, the second time
graph traversal after obtaining the clustering can also be shared. Intuitively,
while we expand the k-hop window, we can calculate the i-hop window as well.
This can be achieved as the BFS is adopted where the (i + 1)-hop window can
be directly derived based on the i-hop windows, thus the traversal overhead can
be shared.

4 Experimental Evaluation

In this section, we present the results of our experiments on both real-world
networks and synthetic graphs. Due to space limitations, we can only present
partial experimental results here and more results can be found in our technical
report [8].

Name Type # of Vertices # of Edges
LiveJournal undirected 3,997,962 34,681,189
Pokec directed 1,632,803 30,622,564
Orkut undirected 3,072,441 117,185,083
DBLP undirected 317,080 1,049,866
YouTube undirected 1,134,890 2,987,624
Google directed 875,713 5,105,039
Amazon undirected 334,863 925,872
Stanford-web directed 281,903 2,312,497

Fig. 3. Large-scale Real Datasets

All experiments are conduc-
ted on an Amazon EC2 r3.2xlarge
machine5, with an 8-core 2.5 GHz
CPU, 60 GB memory and 320 GB
hard drive running with 64-bit
Ubuntu 12.04. We implement
EAGR algorithm as a reference in
our comparative study. All algo-
rithms are implemented in Java
and run under JRE 1.6.

Datasets. For real datasets, we
use 8 information networks which
are available at the Stanford
SNAP website6: The detail description of these datasets is provided in Fig. 3. For
synthetic datasets, we use SNAP graph generator to create graphs with various
sizes.
5 http://aws.amazon.com/ec2/pricing/.
6 http://snap.stanford.edu/snap/index.html.

http://aws.amazon.com/ec2/pricing/
http://snap.stanford.edu/snap/index.html

Towards Neighborhood Window Analytics over Large-Scale Graphs 211

Query. In all the experiments, the window query is conducted by using SUM()
as the aggregate function.

4.1 Index Construction Optimization

To study the performance of index construction, we compare two indexing meth-
ods, namely MC and MC++. MC method uses the MinHash clustering as
described in Algorithm 1 while MC++ adapted the estimation optimization
as in Theorem 1. We then present the results on the Amazon and Stanford-web
graphs for a series of k-hop queries.

Index Construction. Figure 4(a) and (c) compare the index construction time
between MC and MC++ when we vary the windows from 1-hop to 4-hop under
Amazon and Stanford-web datasets. To better understand the time difference,
the construction time is split into two parts: the MinHash cost (MC++-hash or
MC-hash) and the BFS traversal (to compute the k-hop window) cost (MC++-
bfs or MC-bfs). The results show the same trend for the two datasets. We made
several observations. First, as the number of hops increases, the indexing time
increases as well. This is expected as a larger hop count results in a larger window
size and the BFS and MinHash computation time increase correspondingly. Sec-
ond, as the hop count increases, the difference between the index time of MC++
and that of MC widens. For instance, as shown in Fig. 4(a), for the 4-hop win-
dow queries, compared to MC, MC++ can save 62% construction time. MC++
benefits from both the low MinHash cost and low BFS cost. From Fig. 4(a), we
can see that the MinHash cost of MC increases as the number of hops increases,
while that for MC++ remains almost the same as the 1-hop case. The similar
pattern can be found in Fig. 4(c) as well. These show that the cost of MinHash
becomes more significant for larger windows. Thus, using 1-hop clustering for
larger hop counts reduces the MinHash cost in MC++. Similarly, as MC++
saves on BFS cost for k-hop queries where k > 1, the BFS cost of MC++ is
much smaller than that of MC as well.

Query Performance. Figure 4(b) and (d) present the query time of MC and
MC++ on Amazon and Stanford-web datasets as we vary the number of hops
from 1 to 4. To appreciate the benefits of an index-based scheme, we also imple-
mented a Non-indexed algorithm which computes window aggregate by per-
forming k-hop breadth first search for each vertex individually in real time. In
Fig. 4(b), the execution time shown on the y-axis is in log scale. The results show
that the index-based schemes outperform the non-index approach by four orders
of magnitude. For instance, for the 4-hop query, our algorithm is 13,000 times
faster than the non-index approach. This confirms that it is necessary to have
well-designed index support for efficient window query processing. By utilizing
DBIndex, for these graphs with millions of edges, every aggregation query can
be processed in just between 30 ms to 100 ms. In addition, we can see that as
the number of hops increases, the query time decreases. This is the case because
a larger hop count eventually results in a larger number of dense blocks where
more (shared) computation can be salvaged. Furthermore, we can see that the

212 Q. Fan et al.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

hop=1 hop=2 hop=3 hop=4

T
im

e
(s

)
Index Construction on Amazon

MC++-hash
MC++-bfs
MC-hash

MC-bfs

(a) Amazon Index

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

hop=1 hop=2 hop=3 hop=4

R
un

ni
ng

 T
im

e(
m

s)
 in

 lo
g

sc
al

e

Query Performance on Amazon

MC++
MC

Non index

(b) Amazon Query

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

hop=1 hop=2 hop=3 hop=4

T
im

e
(s

)

Index Construction on Stanford-Web

EMC-hash
EMC-bfs
MC-hash

MC-bfs

(c) Stanford-web Index

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

hop=1 hop=2 hop=3 hop=4

R
un

ni
ng

 T
im

e(
m

s)
 in

 lo
g

sc
al

e

Query Performance on Stanford-Web

EMC
MC

Non Index

(d) Stanford-web Query

Fig. 4. The evaluation of the index construction optimization.

query time of MC++ is slightly longer than that of MC when the number of
hops is large. This is expected as MC++ does not cluster based on the complete
window information; instead, it uses only partial information derived from the
1-hop windows. However, the performance difference is quite small even for 4-
hop queries - the difference is only 20 ms. For small number of hops, the time
difference is even smaller. This performance penalty is acceptable as tens of
milliseconds time difference will not affect user’s experience. As MC++ is sig-
nificantly more efficient than MC in index construction, MC++ may still be a
promising solution for many applications. In addition, we also observe the same
pattern in Fig. 4(d). As such, in the following sections, we adopt MC++ for
DBIndex in our experimental evaluations.

4.2 Comparison Between DBIndex and EAGR

We then compare DBIndex and EAGR [12]7 using both real and synthetic
datasets.

Real Datasets. We first study the index construction and query time per-
formance of DBIndex and EAGR for 1-hop and 2-hop windows using 6 real
7 As in [12], for each dataset, EAGR is run for 10 iterations in the index construction.

Towards Neighborhood Window Analytics over Large-Scale Graphs 213

datasets: DBLP, YouTube, Livejournal, Google, Pokec and Orkut. The results
for 1-hop window and 2-hop window are presented in Fig. 5(a)-(d). As shown
in Fig. 5(a) and (c) both DBIndex and EAGR can build the index for all the
real datasets for 1-hop but EAGR ran out of the memory for 2-hop window
queries on LiveJournal and Orkut datasets. This further confirms that EAGR
incurs high memory usage as it needs to maintain the vertex-window mapping
information. We also observe that DBIndex is significantly faster than EAGR
in index creation. For instance, for Orkut dataset, EAGR takes 4 hours to build
the index while DBIndex only takes 33 min.

Fig. 5. DBIndex VS. EAGR (a)(b) are for 1-hop queries;(c)(d) are for 2-hop queries

Figure 5(b) and (d) show the query performance for 1-hop and 2-hop queries
respectively. The results indicate that the query performance is comparable. For
most of the datasets, DBIndex is faster than EAGR. In some datasets (e.g.,
Orkut and Pokec), DBIndex performs 30 % faster than EAGR. We see that,
for 1-hop queries on YouTube and LiveJournal datasets and 2-hop queries on
YouTube dataset, DBIndex is slightly slower than EAGR. We observe that these
datasets are very sparse graphs where the intersections among windows are nat-
urally small. For very sparse graphs, both DBIndex and EAGR are unable to
find much computation sharing. In this case, the performance of DBIndex and
EAGR is very close. For instance, in the worst case, as in the livejournal dataset,

214 Q. Fan et al.

DBIndex is 9 % slower than EAGR where the actual time difference remains tens
of milliseconds.

We also observe that, both algorithms process 2-hop queries faster than 1-
hop queries. This is because there is more computation sharing for 2-hop window
query. In summary, DBIndex takes much shorter time to build but offers com-
parable, if not much faster, query performance than EAGR.

Synthetic Datasets. We generated synthetic datasets using the SNAP gener-
ator to study the scalability of DBIndex.

Impact of Number of Vertices. First, we study how the performance changes
when we fix the degree 8 at 10 and vary the number of vertices from 2 M to 10 M.
Figure 6(a) and (b) show the execution time for index construction and query
performance respectively. From the results, we can see that DBIndex outper-
forms EAGR in both index construction and query performance. For the graph
with 10 M vertices and 100 M edges, the DBIndex query time is less than 450
milliseconds. Moreover, when the number of vertices changes from 2M to 10M,
the query performance only increases 3 times. This shows that DBIndex is not
only scalable, but offers acceptable performance.

Fig. 6. Impact of number of vertices

Impact of Degree. Our proposed DBIndex is effective when there are signifi-
cant overlaps between windows of neighboring vertices. As such, it is interesting
to study how it performs under various graph degrees. Here, we report the results
from dense graphs. More results of sparse graphs can be found in the technical
report [8]. We fix the number of vertices in a graph to be 200k. and then vary the
degree from 80 to 200. Figure 7(a) shows the index construction and query time
for 1-hop query. We can see that DBIndex outperforms EAGR significantly. As
the degree increases, EAGR’s performance degrades much faster than DBIndex.
8 Degree means average degree of the graph. The generated graph is of Erdos-Renyi

model .

Towards Neighborhood Window Analytics over Large-Scale Graphs 215

Fig. 7. Impact of Degree on Dense Graphs

It is notable that DBIndex indexing time almost matches EAGR’s query time.
Figure 7(b) shows the comparison under 2-hop queries. EAGR is only able to
work on the dataset with degree 80 due to the memory issue. This is because
the number of edges is large (e.g., 40 M edges for a graph of degree 200).

In summary, the insight we obtain is that the scalability of EAGR is highly
limited by two factors: the graph size and the number of hops. DBIndex achieves
better scalability as it does not need to create a large amount of intermediate
data in memory.

5 Related Work

GWFs are different from graph aggregation [4,17,19] in graph OLAP. In graph
OLAP, information in a graph are summarized by partitioning the graph’s ver-
tices/edges (based on some attribute values) and computing aggregate values
for each partition. GWFs, on the other hand, compute aggregate values for each
graph vertex wrt the subgraph associated with the vertex. Indeed, such differ-
ences also arise in the relational context, where different techniques are developed
to evaluate OLAP and window function queries.

In [18], the authors investigated the problem of finding the vertices that
have top-k highest aggregate values over their h-hop neighbors. They proposed
mechanisms to prune the computation by using two properties: First, the locality
between vertices is used to propagate the upper bound of aggregation; Second,
the upper bound of aggregates can be estimated from the distribution of attribute
values. However, all these pruning techniques are not applicable in our work,
as we need to compute the aggregation for every vertex. In such a scenario,
techniques in [18] degrade to the non-indexed approach as described in Sect. 4.

Indexing techniques have been proposed to efficiently determine whether a
pair of vertices is within a distance of k-hops (e.g., k-reach index [5]). However,
such techniques are not suitable for k-hop window queries due to the time com-
plexity of O(n2) in determining each vertex’s window. Moreover, such techniques
do not leverage shared components among windows to boost query processing.

216 Q. Fan et al.

In distributed databases community, some works considered utilizing partial
aggregates to facilitate efficient aggregate computation (e.g., [9,15]). However,
their primary goal is to optimize the communication cost between sites, hence
the optimization problem is fundamentally different from ours.

In network science community, egocentric analysis is emerging in recent years.
However, their main focus is on structural analyses of a vertex’s k-hop neighbor-
hood. For example, Everett et al. [7] looked at finding the betweenness centrality
among vertices’ k-hop neighbors; and Moustafa et al. [13] developed techniques
for matching specialized patterns among k-hop neighborhoods. These works are
different from ours as they do not consider attribute aggregation.

The work that is most related to ours is [12] - referred to as EAGR which
examined the evaluation of egocentric (similar to our k-hop window) aggregation
queries. EAGR and our DBIndex share the similar spirit in terms of discovering
the shared components among different windows to speed up the query process-
ing. However, as elaborated in Sect. 1, our techniques are more memory-efficient,
as well as more scalable than those in EAGR.

6 Conclusion

In this paper, we have proposed Graph Window Query to facilitate analytics
over a local community of each graph vertex, and studied one instantiations,
namely k-hop window in detail. We proposed the Dense Block Index (DBIndex)
to facilitate efficient processing of k-hop window query. DBIndex integrates win-
dow aggregation sharing techniques to salvage partial work done, which is both
space and query efficient. Results of an extensive experimental study on both
large-scale real and synthetic datasets showed the efficiency and scalability of
our proposed index.

Acknowledgment. Qi Fan is supported by NGS Scholarship. This work is supported
by the MOE/NUS grant R-252-000-500-112 and AWS in Education Grant award.

References

1. Briscoe, E.J., Appling, D.S., Mappus IV, R.L., Hayes, H.: Determining credibility
from social network structure. In: ICASNAM 2013, pp. 1418–1424. ACM (2013)

2. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Comput. Netw. ISDN Syst. 29(8), 1157–1166 (1997)

3. Campanario, J.M.: Empirical study of journal impact factors obtained using the
classical two-year citation window versus a five-year citation window. Scientomet-
rics 87(1), 189–204 (2011)

4. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: towards online ana-
lytical processing on graphs. In: ICDM 2008, pp. 103–112 (2008)

5. Cheng, J., Shang, Z., Cheng, H., Wang, H., Yu, J.X.: K-reach: who is in your small
world. VLDB 5(11), 1292–1303 (2012)

6. Dai, L., Luo, J.-D., Fu, X., Li, Z.: Predicting offline behaviors from online features:
an ego-centric dynamical network approach. In: HotSocial 2012, pp. 17–24 (2012)

Towards Neighborhood Window Analytics over Large-Scale Graphs 217

7. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27(1), 31–38
(2005)

8. Fan, Q., Wang, Z., Chan, C.Y., Tan, K.L.: Supporting window analytics over large-
scale dynamic graphs, CORR (2015). arxiv:1510.07104

9. Huebsch, R., Garofalakis, M., Hellerstein, J.M., Stoica, I.: Sharing aggregate com-
putation for distributed queries. In: SIGMOD 2007, pp. 485–496 (2007)

10. Ma, H.H., Gustafson, S., Moitra, A., Bracewell, D.: Ego-centric network sampling
in viral marketing applications. In: Ting, I.-H., Wu, H.-J., Ho, T.-H. (eds.) Mining
and Analyzing Social Networks. SCI, vol. 288, pp. 35–51. Springer, Heidelberg
(2010)

11. Ma, N., Guan, J., Zhao, Y.: Bringing pagerank to the citation analysis. Inf. Process.
Manage. 44(2), 800–810 (2008)

12. Mondal, J., Deshpande, A.: Eagr: supporting continuous ego-centric aggregate
queries over large dynamic graphs. In: SIGMOD 2014, pp. 1335–1346 (2014)

13. Moustafa, W.E., Deshpande, A., Getoor, L.: Ego-centric graph pattern census. In:
ICDE 2012, pp. 234–245 (2012)

14. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD 2008, pp. 419–432 (2008)

15. Trigoni, N., Yao, Y., Demers, A., Gehrke, J., Rajaraman, R.: Multi-query optimiza-
tion for sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh,
M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 307–321. Springer, Heidelberg (2005)

16. Vassilevska, V., Pinar, A.: Finding nonoverlapping dense blocks of a sparse matrix.
Lawrence Berkeley National Laboratory, Livermore (2004)

17. Wang, Z., Fan, Q., Wang, H., Tan, K.-L., Agrawal, D., El Abbadi, A.: Pagrol:
parallel graph OLAP over large-scale attributed graphs. In: ICDE 2014, pp. 496–
507 (2014)

18. Yan, X., He, B., Zhu, F., Han, J.: Top-k aggregation queries over large networks.
In: ICDE 2010, pp. 377–380 (2010)

19. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multi-
dimensional networks. In: SIGMOD 2011, pp. 853–864 (2011)

http://arxiv.org/abs/1510.07104

	Towards Neighborhood Window Analytics over Large-Scale Graphs
	1 Introduction
	2 Problem Formulation
	3 Dense Block Index
	3.1 Query Processing Using DBIndex
	3.2 DBIndex Construction

	4 Experimental Evaluation
	4.1 Index Construction Optimization
	4.2 Comparison Between DBIndex and EAGR

	5 Related Work
	6 Conclusion
	References

