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Abstract. In many decision-making applications, the skyline query is frequently
used to find a set of dominating data points (called skyline points) in a multi-
dimensional dataset. In a high-dimensional space skyline points no longer offer
any interesting insights as there are too many of them. In this paper, we introduce
a novel metric, called skyline frequency that compares and ranks the interesting-
ness of data points based on how often they are returned in the skyline when dif-
ferent number of dimensions (i.e., subspaces) are considered. Intuitively, a point
with a high skyline frequency is more interesting as it can be dominated on fewer
combinations of the dimensions. Thus, the problem becomes one of finding top-k
frequent skyline points. But the algorithms thus far proposed for skyline compu-
tation typically do not scale well with dimensionality. Moreover, frequent skyline
computation requires that skylines be computed for each of an exponential num-
ber of subsets of the dimensions. We present efficient approximate algorithms to
address these twin difficulties. Our extensive performance study shows that our
approximate algorithm can run fast and compute the correct result on large data
sets in high-dimensional spaces.

1 Introduction

Consider a tourist who is looking for hotels, in some city, that are cheap and close to
the beach. For this skyline query, a hotel H is in the answer set (i.e., the skyline) if
there does not exist any hotel in that city that dominates H ; i.e., that is both cheaper
as well as closer to the beach than H . Our tourist can then tradeoff price with distance
from the beach from among the points in this answer set (called skyline points). Skyline
queries are useful as they define an interesting subset of data points with respect to the
dimensions considered, and the problem of efficiently computing skylines has attracted
a lot of recent interest (e.g., [2, 3, 13, 9, 18]).

A major drawback of skylines is that, in data sets with many dimensions, the number
of skyline points becomes large and no longer offer any interesting insights. The reason
is that as the number of dimensions increases, for any point p, it is more likely there
exists another point q where p and q are better than each other over different subsets
of dimensions. If our tourist, from the example in the preceding paragraph, cared not
just about price and distance to beach, but also about the size of room, the star rating,
the friendliness of staff, the availability of restaurants etc., then most hotels in the city
may have to be included in the skyline answer set since for each hotel there may be no
one hotel that beats it on all criteria, even if it beats it on many. Correlations between
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Table 1. Top-10 frequent skyline points in NBA data set

Top-10 Frequent Skyline Point, p Dominating Frequency
Player Name Season d(p)

Wilt Chamberlain 1961 1791
Michael Jordan 1986 2266
Michael Jordan 1987 3162
George Mcginnis 1974 4468
Michael Jordan 1988 5854
Bob Mcadoo 1974 6472
Julius Erving 1975 6781
Charles Barkley 1987 8578
Kobe Bryant 2002 9271
Kareem Abdul-Jabbar 1975 9400

dimensions ameliorates this problem somewhat, but does not eliminate it. For example,
for the NBA statistics data set [1], which is fairly correlated, a skyline query with respect
to all 17 dimensions returns over 1000 points.

To deal with this dimensionality curse, one possibility is to reduce the number of
dimensions considered. However, which dimensions to retain is not easy to determine,
and at the very least requires intimate knowledge of the application domain. In fact,
dimensionality reduction of this sort is a desirable goal in many data management and
data mining scenarios, and there has been a great deal of effort expended on trying to do
this well, with only limited success. Moreover, choosing different subsets of attributes
will result in different points being found in the skyline.

In this paper, we introduce a novel metric, called skyline frequency, to compare and
rank the interestingness of data points based on how often they are returned in the sky-
line when different subsets of dimensions are considered. Given a set of n-dimensional
data points, the skyline frequency of a data point is determined by the 2n − 1 distinct
skyline queries, one for each possible non-empty subset of the attributes. Intuitively, a
point with a high skyline frequency is more interesting since it can be dominated on
fewer combinations of the dimensions. Thus, the problem becomes one of finding top-k
frequent skyline points.

Referring once more to the 17-dimension NBA statistics data set that records the
performance of all players who have played in the NBA from 1946 to 2003. Each di-
mension represents a certain “skill”, e.g., number of 3-pointers, number of rebounds,
number of blocks, number of fouls, and so on. There are over 17000 tuples, each re-
flecting a player’s “performance” for a certain year. Note that every player has a tuple
for every year he played, so it is possible to have several tuples for one player with
different year numbers, like “Michael Jordan in 1986” and “Michael Jordan in 1999”.
Table 1 lists the top-10 frequent skyline points (represented by a player and season).
The skyline frequency of each point p is given by 217 − d(p) − 1; where d(p), which
is the dominating frequency, represents the number of subspaces for which p is domi-
nated by some other point. Readers who follow basketball will agree that this is a very
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Table 2. Bottom-10 frequent skyline points in NBA data set

Bottom-10 Frequent Skyline Point, p Dominating Frequency
Player Name Season d(p)

Terrell Brandon 2000 130559
John Starks 1991 130304
Allen Leavell 1982 130303
Rich Kelley 1981 130047
Rodney Mccray 1984 129823
Reggie Theus 1990 129727
Jamaal Wilkes 1979 129535
John Williams 1988 129151
Purvis Short 1983 129151
Rasheed Wallace 1999 128863

reasonable set of top basketball players of all time. Clearly, our top-k frequent skyline
query has the notion of picking “the best of the best”, and is superior to the simpler
skyline points (which in this example will mark as equally interesting all 1051 skyline
points!).

To further examine this notion of skyline frequency, we selected the least skyline
frequency entries among the 1051 entries in the full skyline. The results are shown in
Table 2. These players, particularly in the years specified, can hardly be considered all-
time greats. Of course, each is a talented player, as one would expect given that these
were all in the top 1051 chosen from among all NBA players by the ordinary skyline
algorithm.

Unfortunately, skyline computations are not cheap. Given a data set with n dimen-
sions, skyline frequency computation requires 2n −1 skyline queries to be executed. To
address this problem, we propose an efficient approximate algorithm that is based on
counting the number of dominating subspaces (i.e., the number of subspaces in which a
point is not a skyline point). Our scheme is tunable in that we can tradeoff the accuracy
of the top-k answers for speed. We have implemented our scheme, and our extensive
performance study shows that our method with approximate counting can run fast in
very high dimensional data set without sacrificing much on the accuracy.

We make two key contributions in this paper:

– We introduce skyline frequency as a novel and meaningful measure for comparing
and ranking skylines.

– We present efficient approximate algorithms for computing top-k frequent skylines,
which are the top-k data points whose skyline frequencies are the highest.

The rest of this paper is organized as follows. In Section 2 we formally define the
key concepts, including frequent skylines and maximal dominating subspaces. Related
work is presented in Section 3. In Section 4, we present our proposed algorithms for
computing frequent skylines efficiently. We report on the results of an experimental
evaluation in Section 5. Finally, we conclude with a discussion of our findings in Sec-
tion 6. Due to space limitation, proofs of results are omitted.



On High Dimensional Skylines 481

2 Preliminaries

Given a space S defined by a set of n dimensions {d1, d2, . . . , dn} and a data set D on
S, a point p ∈ D can be represented as p = (p1, p2, . . . , pn) where every pi is a value
on dimension di. Each non-empty subset of S is referred to as a subspace. A point
p ∈ D is said to dominate another point q ∈ D on subspace S′ ⊆ S if (1) on every
dimension di ∈ S′, pi ≤ qi; and (2) on at least one dimension dj ∈ S′, pj < qj . The
skyline of a space S′ ⊆ S is a set of points D′ ⊆ D which can not be dominated by any
other point on space S′. That is, D′ = {p ∈ D :� ∃q ∈ D, q dominates p on space S′}.
The points in D′ are called skyline points on space S′.

Based on the definition of skyline points on a subspace, we define the skyline fre-
quency of a point p ∈ D, denoted by f(p), as the number of subspaces in which p is
a skyline point. Given S and D, the top-k frequent skyline points are the k points in D
that no other point in D can have larger skyline frequency than them. A top-k frequent
skyline query is a query that computes top-k skyline points for a given data set D and
space S. A subspace S′ ⊆ S is said to be a dominating subspace for a data point p if
there exists another data point that dominates p on subspace S′. We define the dominat-
ing frequency of p, denoted by d(p), as the number of dominating subspaces for p. It
is easy to see that the skyline frequency f(p) = 2n − d(p) − 1. So, the top-k skyline
frequency query can be computed by finding the k points with the smallest dominating
frequencies.

Let DS(q, p) denote the set of all subspaces for which a point q dominates another
point p. We call DS(q, p) the set of dominating subspaces of q over p. This set can
frequently be quite large, and so is unwieldy to enumerate explicitly. Just as a rectan-
gle in cartesian geometry can be represented succinctly by a pair of corner points, we
show below in Lemma 1 that the set DS(q, p) can be described succinctly by a pair of
subspaces (U, V ) where (1) U ⊆ S is the set of dimensions such that qi < pi on every
dimension di ∈ U ; and (2) V ⊆ S is the set of dimensions such that qi = pi on every
dimension di ∈ V . It follows that DS(p, q) = (S − U − V, V ).

Lemma 1. Let DS(q, p) = (U, V ). Then S′ ∈ DS(q, p) if and only if ∃U ′ ⊆ U ,
V ′ ⊆ V , such that S′ = U ′ ∪ V ′, and U ′ �= ∅.

It is easy to verify that |DS(q, p)| = (2|U| − 1)2|V |.
Given two collections of subspaces S1, S2 ⊆ S, we say that S1 covers S2 if S1 ⊇

S2. The following result provides a very simple way to determine if DS(q, p) covers
DS(r, p) given three points p, q, and r.

Lemma 2. Let DS(q, p) = (Uq, Vq) and DS(r, p) = (Ur, Vr), where Uq �= ∅ and
Ur �= ∅. Then DS(q, p) covers DS(r, p) if and only if (1) Ur ∪ Vr ⊆ Uq ∪ Vq and (2)
Ur ⊆ Uq.

DS(q, p) is said to be a maximal dominating subspace set for a point p if there does not
exist another point r such that DS(r, p) covers DS(q, p). Therefore, d(p) =
|
⋃

Mi∈M Mi|, where M = {DS(q, p) | q ∈ S, DS(q, p) is a maximal dominating
subspace set for p}.
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3 Related Work

Computing the skyline of a set of points is also known as the maximum vector problem
[10]. Early works on solving the maximum vector problem typically assume that the
points fit into the main memory. Algorithms devised include divide-and-conquer para-
digm [10], parallel algorithms [17] and those that are specifically designed to target at
2 or very large number of dimensions [12]. Other related problems include top k [4],
nearest neighbor search [16], convex hull [16], and multi-objective optimization [14].
These related problems and their relationship to skyline queries have been discussed
in [3].

Börzsönyi et al. [3] first introduced the skyline operator into relational database sys-
tems by extending the SQL SELECT statement with an optional SKYLINE OF clause.
A large number of algorithms have been developed to compute skyline queries. These
can be categorized into non-index-based (e.g., block nested loop [3], Sort-Filter-Skyline
[6, 7], divide and conquer [3]), and index-based (e.g., B-tree [3], bitmap [18], index [18],
nearest neighbor [9], BBS [13]). As expected, the non-index-based strategies are typi-
cally inferior to the index-based strategies. It also turns out the index-based schemes can
progressively return answers without having to scan the entire data input. The nearest
neighbour scheme, which applies the divide and conquer framework on datasets indexed
by R-trees, was shown to be superior over earlier schemes in terms of overall perfor-
mance [9]. There have also been work on processing skyline queries over distributed
sources [2], over streaming data [11], and for data with partially-ordered domains [5].
All these algorithms are developed for computing skylines for a specific subspace.

The recent papers on skyline computation in subspaces [19, 15] is more closely re-
lated to our work. Yuan et al. [19] proposed two methods to compute skylines in all the
subspaces by traversing the lattice of subspaces either in a top-down or bottom-up man-
ner. In the bottom-up approach, the skylines in a subspace are partly derived by merging
the skylines from its “child” subspaces at the lower level. In the top-down approach, the
sharing-partition-and-merge and sharing-parent property of the DC algorithm [3] is ex-
ploited to recursively enumerate the subspaces and compute their skylines from the top
to bottom level, which turns out to be much more efficient than the bottom-up approach.
Since we can get the skyline frequencies if the skylines in every subspace is available,
we compare their top-down approach with our top-k method in the performance study.
Another study on computing skylines in subspaces is by Pei et al. [15]. They introduced
a new concept called skyline group, every entry of which contains the skyline points
sharing the same values in a corresponding subspace collection. They also proposed an
algorithm skyey, which visits all the subspaces along an enumeration tree, finds the sky-
lines by sorting and creates a new skyline group if some new skyline points are inserted
into an old group. The skyline groups found are maintained in a quotient cube struc-
ture for queries on subspace skyline. Their study tries to answer where and why a point
is part of skyline without any accompanying coincident points. However, their scheme
can not help to solve the skyline frequency problem since a point can be in exponential
number of skyline groups in high dimensional space.

The approximate counting technique used in our work is related to the problem
of counting the number of assignments that satisfies a given disjunctive normal
form(DNF). In [8], Karp et. al. proposed a monte-carlo algorithm which takes 2n ln 2

δ /ε2
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samples to give an approximate count of the assignments, whose error rate is smaller
than ε with probability 1 − δ. Since the sample size is irrelevant to the size of the sets,
this method is much more efficient than the conventional iteration method, especially
when the size of valid assignment set is much larger than sample number.

4 Top-k Frequent Skyline Computation

The most straightforward approach to compute top-k frequent skylines is the following
two-phase approach. First, compute the skyline points for each subspace by using an
existing algorithm (e.g., skycube algorithm [19]). Next, compute the skyline frequency
of each point p by summing up the number of subspaces for which p is a skyline. We
called this technique a subspace-based approach since it essentially enumerates each
subspace to compute skylines. A number of recent approaches have been proposed for
computing precise skylines for the complete collection of subspaces [19, 15].

However, computing skylines over all subspaces can be costly. In this paper, we pro-
pose a novel approach to compute top-k frequent skylines based on computing maximal
dominating subspace sets. This approach comprises of two key steps. The first step
computes the maximal dominating subspace sets for each data point. Based on these,
the second step then computes each point’s dominating frequency either precisely or
approximately. Thus, our approach actually computes the top-k skyline frequencies by
computing the bottom-k dominating frequencies.

In the rest of this section, we first give an overview of our approach in Section 4.1,
and then present the details of the two phases, maximal dominating subspace set compu-
tation and dominating subspace counting, in Sections 4.2 and 4.3, respectively. Finally,
we present two optimization techniques to improve the efficiency of our approach in
Section 4.4.

4.1 Overview

The intuition for our approach is based on the result in Section 2 that each dominating
subspace of a point p is covered by some maximal dominating subspace set of p. Since
the dominating frequency of a point is the dual of its skyline frequency, we can compute
the skyline frequency of a point p by computing its dominating frequency in two stages.
First, find all the maximal dominating subspace sets of p, and then count the number
of subspaces covered by them. The top-k frequent skyline points is then obtained by
taking the bottom-k points with the lowest dominating frequencies.

The main procedure of our approach is shown in Algorithm 1 which takes a set of
data points D, a set of dimensions S, and an integer value k as inputs and computes the
top-k frequent skylines in D w.r.t. S. To avoid the complexity of explicitly sorting the
points by their dominating frequencies, we maintain a frequency threshold (denoted by
θ) that keeps track of the kth smallest dominating frequency among all the processed
points. This frequency threshold is initialized in step 1 to 2|S|−1, which is the maximum
possible dominating frequency value. The top-k frequent skylines are maintained in a
set R which is initialized to empty in step 2. For each data point p ∈ D (steps 3-11), the
procedure ComputeMaxSubspaceSets is first invoked to compute the set M of all
the maximal dominating subspace sets of point p by comparing every other point with
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Algorithm 1. Top-k Frequent Skyline Algorithm (D, S, k)

1: initialize frequency threshold θ = 2|S| − 1
2: initialize R, the set of top-k frequent skylines, to be empty
3: for every point p ∈ D do
4: M = ComputeMaxSubspaceSets (D, S, p, k, θ, |R|)
5: d(p) = CountDominatingSubspaces (M)
6: if (|R| < k) or (d(p) < θ) then
7: remove the point with the highest dominating frequency in R if |R| = k
8: insert p into R
9: update θ to be the highest dominating frequency in R

10: end if
11: end for
12: return R

point p on all the dimensions. Next, the procedure CountDominatingSubspaces
is called to compute the dominating frequency d(p) of p, which is the total number of
subspaces in S that are covered by the maximal dominating subspace sets in M. If R
has fewer than k skylines or if the dominating frequency of p (i.e., d(p)) is smaller than
the frequency threshold θ, then p is inserted into R and the value of θ updated. Note
that if R already has k skylines before a new point is to be inserted, than a point q in R
with the largest dominating frequency (i.e., d(q) = θ) is removed from R.

Example 1. Consider the computation of the top-2 frequent skylines for a set of 4-
dimensional data points D = {a, b, c, e} shown below:

Point d1 d2 d3 d4

a 2 3 4 5
b 1 5 2 6
c 3 4 4 4
e 4 3 4 3

To compute the set of maximal dominating subspace sets of point a, we need to deter-
mine DS(q, a) for each q ∈ D − {a}. We have DS(b, a) = ({d1, d3}, ∅), DS(c, a) =
({d4}, {d3}), and DS(e, a) = ({d4}, {d2, d3}). By Lemma 2, DS(e, a) covers
DS(c, a), and so DS(c, a) is not a maximal dominating subspace set of a. However,
since neither DS(b, a) nor DS(e, a) covers each other, they are both maximal dominat-
ing subspace sets of a. The number of dominating subspaces covered by each of them is
given by: |DS(b, a)| = 3 and |DS(e, a)| = 4. Since there are no common dominating
subspaces that are covered by both DS(b, a) and DS(e, a), the number of dominating
subspaces of a is d(a) = |DS(b, a)| + |DS(e, a)| = 7. Similarly, we have d(b) = 3,
d(c) = 11, and d(e) = 5. Thus, the top-2 frequent skylines are b and e. �

4.2 Maximal Dominating Subspace Computation

Algorithm 2 shows the ComputeMaxSubspaceSets procedure to compute the col-
lection of maximal dominating subspace sets of an input point p ∈ D (w.r.t. a set of
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Algorithm 2. ComputeMaxSubspaceSets (D, S, p, k, θ, r)
1: initialize M, the set of maximal dominating subspace sets of p, to be empty
2: for every point q in D − {p} do
3: let U ⊆ S such that on every dimension di ∈ U , qi < pi

4: let V ⊆ S such that on every dimension di ∈ V , qi = pi

5: if (r = k) and ((2|U| − 1)2|V | ≥ θ) then
6: return {(U, V )}
7: end if
8: initialize isMaximal = true
9: for every maximal dominating subspace set (P, Q) ∈ M do

10: if (U ∪ V ⊆ P ∪ Q) and (U ⊆ P ) then
11: isMaximal = false
12: break out of for loop
13: else if (P ∪ Q ⊆ U ∪ V ) and (P ⊆ U ) then
14: remove (P, Q) from M
15: end if
16: end for
17: if isMaximal then
18: insert (U, V ) into M
19: end if
20: end for
21: return M

dimensions S). The remaining three input parameters (k, θ, and r), where θ is the high-
est dominating frequency among all the r frequent skylines processed so far, are used
to optimize the computation when p is determined to be not among the top-k frequent
skylines. The output collection of maximal dominating subspace sets is maintained in
a set M which is initialized to be empty in step 1. Each maximal dominating subspace
set in M is represented in the form of a subspace pair; i.e., M = {(U1, V2), (U2, V2),
· · · , (Un, Vn)}, where each (Ui, Vi) corresponds to DS(qi, p) for some point qi ∈ D.

To compute the maximal dominating subspace sets of p, the algorithm compares p
against each other point q in D (steps 2-20). First, DS(q, p) = (U, V ) is determined
in steps 3-4. Steps 5-7 is an optimization (to be explained at the end of the discussion)
that can be ignored for now. Steps 8-19 compare (U, V ) against each of the maximal
dominating subspace sets computed so far in M to determine if (U, V ) is also a maxi-
mal dominating subspace set and update M accordingly. Specifically, if there is some
subspace set (P, Q) ∈ M that covers (U, V ), then by Lemma 2, we can conclude that
(U, V ) is not a maximal dominating subspace set (steps 11-12). On the other hand, if
subspace set (P, Q) ∈ M is covered by (U, V ), then (P, Q) is not a maximal dominat-
ing subspace set and is removed from M (step 14). Finally, if (U, V ) is not covered by
any of the maximal dominating subspace sets in M, then (U, V ) is a maximal dominat-
ing subspace set and it is added to M (step 18).

We now explain the optimization performed in steps 5-7 that makes use of the ad-
ditional input parameters k, θ, and r. The main idea is to avoid computing the precise
collection of maximal dominating subspace sets of p if p is determined to be not among
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Algorithm 3. CountDominatingSubspaces (M)
1: let M = {M1, M2, · · · , Mn}
2: initialize counter C = 0
3: for i = 1 to n do
4: for every dominating subspace (P, Q) that is covered by Mi do
5: if (P, Q) is not covered by any Mj , j ∈ [1, i) then
6: C = C + 1
7: end if
8: end for
9: end for

10: return C

the top-k frequent skylines. Specifically, if there are already k intermediate frequent
skylines (i.e., r = k) and |DS(q, p)|, which is given by (2|U| − 1)2|V |, already ex-
ceeds θ, then p clearly can not be among the top-k frequent skylines. In this case, it is
not necessary to know the precise maximal dominating subspace sets of p; instead, the
algorithm simply returns the single subspace set (U, V ) (in step 6) since this is suffi-
cient for the main algorithm to conclude that p is not a top-k frequent skyline. With this
optimization, ComputeMaxSubspaceSets computes the precise collection of max-
imal dominating subspace sets of p only when p could potentially be a top-k frequent
skyline.

Our implementation of ComputeMaxSubspaceSets uses a bitmap representa-
tion for subspaces to enable efficient manipulations. If S has n dimensions, then a sub-
space of S is represented by a n-bit bitmap with the ith bit corresponding to dimension
di such that a bit is set to 1 iff its corresponding dimension is in the subspace. As an
example, in an 8-dimensional space S, the subspace {d1, d3, d5, d6} is represented by
the bitmap “10101100”. Given two bitmaps B1 and B2 (corresponding to subspaces
S1 and S2, respectively), S1 covers S2 if and only if the logical-AND of B1 and B2
is equal to B1. Furthermore, by exploiting arithmetic bit-operation, |DS(U, V )| for a
given subspace set (U, V ) can be efficiently computed with a left shift operation in O(1)
time.

4.3 Dominating Subspace Counting

In this section, we discuss how to derive the number of dominating subspaces for a
point p based on the collection M of maximal dominating subspace sets for p returned
by ComputeMaxSubspaceSets for p. Since there is usually more than one maximal
dominating subspace set in M and the subspaces covered by them generally overlap,
the challenge is to efficiently compute the number of dominating subspace sets taking
into account of the overlapping covered subspaces.

As an example, consider M = {M1, M2}, where M1 = ({d1, d2}, {d3}) and M2 =
({d1, d3}, {d4}). Note that there are a total of eight dominating subspaces covered by
M: {d2}, {d2, d3}, {d1, d2}, {d1, d2, d3}, {d1}, {d1, d3}, {d1, d4} and {d1, d3, d4}.
Among these, the first six are covered by M1 while the last four are covered by M2;
hence, there are two dominating subspaces (i.e., {d1} and {d1, d3}) that are covered by
both M1 and M2.
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One direct approach to derive the number of dominating subspaces is to apply the
Inclusion-Exclusion principle to obtain the union of all the subspaces covered by the
maximal dominating subspaces. However, this method is non-trivial as it requires enu-
merating all the subspaces covered by each maximal dominating subspace and checking
if the enumerated subspace has already been previously generated. In the following, we
propose two alternative methods based on precise counting and approximate counting,
respectively, for counting the number of dominating subspaces covered by M.

Precise Counting. Our improved approach for computing the exact number of dom-
inating subspaces is shown in Algorithm 3. For each maximal dominating subspace
set Mi ∈ M, let Si denote the collection of dominating subspaces that are covered
by Mi. We define for each Si, a new subspace collection (denoted by S′

i) as follows:
S′

i = Si −
⋃

j∈[1,i) Sj . It is easy to verify that (1)
⋃

Mi∈M Si =
⋃

Mi∈M S′
i; and (2)

S′
i ∩ S′

j = ∅ for any distinct pair S′
i and S′

j . In this way, we transform the problem
of counting the union of a collection of sets to a subset counting problem without any
intersection among the subsets. For every maximal dominating subspace set Mi ∈ M,
we enumerate over each of the subspaces covered by Mi and check whether it is also
covered by an earlier maximal dominating subspace set Mj , j ∈ [1, i). Referring to
the preceding example with M = {M1, M2}, we have S′

1 = {{d1}, {d1, d3}, {d2},
{d2, d3}, {d1, d2}, {d1, d2, d3}}, and S′

2 = {{d1, d4}, {d1, d3, d4}}.
However, the simple precise counting method can not scale efficiently to handle

high-dimensional spaces because we still need to enumerate all the (2|U| − 1)2|V | sub-
spaces for a maximal dominating subspace (U, V ). For example, with |U | = 20, over
one million of subspaces need to be compared against with every previous maximal
dominating subspace.

Approximate Counting. To avoid the high complexity of the precise counting ap-
proach, we present an effective approximate counting method that is based on extend-
ing a Monte-Carlo counting algorithm [8] originally proposed for counting the number
of assignments that satisfy a specified DNF formula, which is a #P-complete problem.

Our approach is shown in Algorithm 4 which takes three input parameters (M, ε, and
δ) and returns an approximate count of the number of dominating subspaces covered
by a collection M of maximal dominating subspace sets for some point. The approx-
imate answer is within an error of ε with a confidence level of at least 1 − δ. Steps
1-6 first compute the number of subspaces (denoted by Ni) covered by each maximal
dominating subspace set Mi ∈ M, and the total number of these (possibly overlapping)
subspaces denoted by N . To obtain the desired error bound, a random repeatable sample
of T = 2n ln(2/δ)/ε2 number of maximal dominating subspace sets is selected from
M, where the probability of sampling Mi is proportional to the number of subspaces
covered by Mi. For each generated maximal dominating subspace set Mi, a dominating
subspace set (U, V ) that is covered by Mi is randomly selected and checked if it is also
covered by any maximal dominating subspace sets Mj, j ∈ [1, i). A counter, denoted
by C, is used to keep track of the number of distinct dominating subspaces determined
from this sampling process. The approximate count output by the algorithm is given
(N × C)/T ; the proof of the error bound follows from [8].
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Algorithm 4. ApproxCountDominatingSubspaces (M, ε, δ)
1: let M = {M1, M2, · · · , Mn}
2: for i = 1 to n do
3: let Mi = (Ui, Vi)
4: Ni = (2|Ui| − 1)2|Vi|

5: end for
6: N =

�
Mi∈M Ni

7: T = 2n ln(2/δ)/ε2

8: initialize C = 0
9: for i = 1 to T do

10: choose a maximal dominating subspace set Mi with probability Ni/N
11: choose a subspace set (U, V ) that is covered by Mi with equal probability
12: if (U, V ) is not covered by any Mj , j ∈ [1, i) then
13: C = C + 1
14: end if
15: end for
16: return N · C/T

Complexity Analysis. Let M = {(U1, V1), (U2, V2), . . . , (Un, Vn))}. We use Um,
Vm, Ua and Va to denote max1≤i≤n{|Ui|}, max1≤i≤n{|Vi|},

∑n
i=1 |Ui|/n, and∑n

i=1 |Vi|/n, respectively.
In the exact counting algorithm, since each covered subspace for a maximal domi-

nating subspace set (Ui, Vi) must be compared with the previous maximal dominating
subspace sets, the computation complexity for (Ui, Vi) is (i − 1)(2|Ui|−1)2|Vi|. There-
fore, the total time complexity of the exact counting algorithm is

∑
(i−1)(2|Ui|−1)2|Vi|

= O(n22Um+Vm). Note that by Jensen’s Inequality,
∑

(i − 1)(2|Ui|−1)2|Vi| =
Ω(n2Ua+Va−1).

In the approximate counting algorithm, the sampling process is independent of |Ui|
and |Vi|. Since there are a total of 2n ln(2/δ)/ε2 subspace sets sampled, the upper and
lower bounds on the computation complexity of the approximate counting approach are
O(2n2 ln(2/δ)/ε2) and Ω(2n ln(2/δ)/ε2), respectively.

With the above analysis, it is not difficult to verify that the exact counting method can
not be slower than approximate counting method in constant factor when Um + Vm ≤
ln ln(2/δ) + 2 ln(1/ε) − ln n + 1, while the approximate counting method can not be
slower than exact counting method when Ua + Va ≥ ln ln(2/δ)+ 2 ln(1/ε)+ lnn +2.

4.4 Optimizations

In this section, we present two optimizations to further improve the performance of
the ComputeMaxSubspaceSets algorithm presented in Section 4.2. In the current
ComputeMaxSubspaceSets algorithm, the main optimization relies on using the
frequency threshold θ (steps 5-7) as a quick filtering test to check whether a point is
guaranteed to be not among the top-k frequent skylines. Clearly, it is desirable to prune
out points that are not top-k frequent skylines as early as possible using this efficient
checking to reduce the unnecessary elaborate enumeration and comparison performed
in steps 8-19.
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Pre-Sorting. Our first optimization is based on the observation that the effectiveness of
the pruning test is dependent on the order in which the data points are processed. For ex-
ample, no early pruning would be possible if the points are processed in non-descending
order of their skyline frequencies. One idea to maximize the pruning effectiveness is to
first sort the data points based on some simple criterion such that points that have higher
potential to be top-k frequent skylines appear earlier. Our optimization simply sorts the
points in non-descending order of the sum of their dimension values. The intuition be-
hind this heuristic is that a point with a smaller sum is likely to have smaller values on
more dimensions and is therefore likely to have a higher skyline frequency. A similar
idea was previously used in [6, 15, 19].

Checkpoint. Our second optimization aims to generalize the pruning test to improve
its effectiveness. Currently, the pruning test for a point p is applied in the context of
a single maximal dominating subspace set (i.e., DS(q, p) for some q ∈ D). However,
when the number of maximal dominating subspace sets is large, it is possible that each
maximal dominating subspace set in M on its own does not cover too many dominating
subspaces (to cause p to be pruned) even though the collection of dominating subspaces
covered by M as a whole is large.

To overcome this limitation, we extend the pruning test to be done at several “check-
points” by invoking CountDominatingSubspaces to count the number of
dominating subspaces at intermediate stages and performing the pruning tests using
intermediate collections of M each of which generally consists of more than one max-
imal dominating subspace set. Thus, by counting the coverage for multiple maximal
dominating subspace sets rather than a single maximal dominating subspace set, the
opportunity for pruning is increased.

In the implementation of this optimization, we set checkpoints at exponential sizes;
i.e., when the number of maximal dominating subspace sets reaches 2t (for some t > 0),
the counting process is invoked to check whether the current number of subspaces cov-
ered has already exceeded the threshold. This exponential checkpoint setup turns out
to perform better than any “linear” checkpoint setup since the number of subspaces
covered is usually proportional to the number of maximal dominating subspace sets.

5 Performance Study

In this section, we present an experimental evaluation of our proposed algorithms for
computing top-k frequent skylines using both synthetic as well as real data sets.

5.1 Experimental Setup

We generated synthetic data sets by varying the number of dimensions, the size of the
data set and the distributions of the data set; in particular, we considered the three com-
monly used types of data distributions: independent, correlated, and anti-correlated. In
addition, we also conducted experiments on the NBA real data set [1] that is mentioned
throughout this paper. The characteristics of this real data set most closely resembles a
correlated data distribution.
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We compare the performance of the following four algorithm variants:

1. Exact Count (EC): This scheme adopts exact counting, and employs the Pre-
Sorting and Checkpoint optimizations.

2. Approx Count without Sorting (ACWS): This scheme uses approximate counting
and only the Checkpoint optimization.

3. Approx Count without Checkpoint (ACWC): This scheme employs approximate
counting with only the Pre-Sorting optimization.

4. Approx Count(AC): This scheme adopts approximate counting together with both
Pre-Sorting and Checkpoint optimizations.

All experiments were carried out on a PC with a 2 GHz AMD Athlon processor and
2 GB of main memory running the Linux operating system. Unless otherwise stated,
we use the following default setting in our study: 15-dimensional data set with 100K
records, ε = 0.2, k = 10, and δ = 0.05. The default algorithm for all experiments is
AC, which we expect to show is the algorithm of choice.

5.2 Tuning the Approximate Counting Scheme

There are several tunable parameters in the approximate counting scheme: ε, δ and
k. We study the relationship between the effect of these parameters on efficiency and
precision. The efficiency result is shown in Fig. 1, while the precison result is shown in
Fig. 2.

We first discuss the efficiency results which compare the computation time as a func-
tion of different parameters. When we vary ε from 0.1 to 0.4 in AC, the processing time
decreases greatly since the number of samples is quadratic to 1/ε in approximate count-
ing. When we vary δ from 0.025 to 0.1 in AC, the processing time is very stable since
the number of samples in approximate counting is linear to ln(2/δ), which does not
change much with δ. From Fig. 1(c), which shows the result when k is varied from 10
to 70, we can see that the increase trend of the processing time is almost linear to the
result size k, which indicates that AC is scalable to various values of k.

The effectiveness of the method is measured by precision, which is the ratio between
the number of true top-k frequent skylines and the result size k. Looking at Fig. 2, we
note that the precision on correlated data set is always close to 1. Even on independent
and anti-correlated data sets, the AC algorithm can achieve precision over 90% with a
large range of different parameters. The figure also indicates that ε is the most important
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Fig. 1. Efficiency comparison as a function of different parameters
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Fig. 2. Precision comparison as a function of different parameters

factor affecting the precision of the result. The precision decreases monotonically with
the increase of ε, while the other two parameters, δ and k, do not have too much impact
on the precision.

From this experiment, we can conclude that even setting ε = 0.2 and δ = 0.05 is
enough to provide very good results for top-k frequent skyline queries. As such, we use
these as the default setting.

5.3 Effect of Number of Dimensions

We study the impact of dimensionality on the efficiency of the algorithms. We compare
all the four algorithms EC, AC, ACWS and ACWC on data sets ranging from 10-25
dimensions. The results on the three synthetic data sets are shown in Fig. 3.

First, we look at the three approximate counting schemes. In the figure, the “bars”
that are beyond the maximum time plotted are truncated (in other words, all “bars” with
the maximum value have much larger value than the maximum value plotted). From the
poor performance of ACWS and ACWC, we can see the effect of the pre-sorting and
checkpoint optimizations. It is clear that pre-sorting is an important optimization. With-
out pre-sorting, the efficiency decreases by at least one order of magnitude. The check-
point optimization is useful when the dimensions are independent or anti-correlated
since it can prune many points. The combined effect of both optimizations contributes
to the superior performance of AC.

Now, comparing AC and EC, we observe that EC slightly outperforms AC at low
dimensionality (< 15). This is because when the dimensionality is low, the subspaces
covered by those maximal subspace sets are fewer than the number of samples needed
by AC. However, when the dimensionality is high, AC shows its strength since the
number of samples is irrelevant to the dimensionality, while EC must enumerate all the
covered subspaces whose number is exponential to the dimensionality.

Third, looking at the figure, we see that the relative performance of the schemes
remain largely unchanged under different distributions. As expected, the computation
time is higher for all schemes when the data becomes more anti-correlated.

Since ACWS and ACWC perform poorly relative to AC, we shall not discuss them
further.
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Fig. 3. Efficiency comparison on varying dimensionality
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Fig. 4. Efficiency comparison on varying data size

5.4 Effect of Data Set Cardinality

In this experiment, we evaluate the impact of data size on the computation efficiency
for 15-dimensional data. The data size is varied from 50K to 300K. We study two vari-
ants of AC: δ = 0.05 and δ = 0.1. The results in Fig. 4 show that although the time
complexity of Algorithm 1 is theoretically quadratic to the data size in the worst case,
the actual efficiency of these methods is almost linear in the data size. On the corre-
lated data set, EC always outperforms the algorithms with approximate counting. This
is because the dominating frequencies of the top-k points are all very small when the
data is correlated. For the data set with independent dimensions, EC outperforms AC
(δ = 0.05) but only outperforms AC (δ = 0.1) when the data size is smaller than 200K.
For the anti-correlated data set, both AC (δ = 0.05) and AC (δ = 0.1) are faster than
EC since the dominating frequency is large enough.

5.5 Results on Real Data Set

We use the NBA player statistics data set as our real data set for this experiment. As
noted, there are 17266 tuples over 17 dimensions.

Fig. 5 comparies the efficiency of the four algorithms, AC, EC, ACWS and ACWC.
From the figure, we can see that ACWC outperforms all the other methods on the real
data set; this is due to the fact that the NBA data set is fairly correlated. Although AC
is slower than ACWC by a little (due to the cost of the unnecessary checkpoints), its
performance is still much better than that of the exact counting algorithm.
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5.6 Comparison of Number of Maximal Dominating Subspaces

Table 3 compares the number of maximal dominating subspaces that are maintained by
the various algorithms for different number of data dimensions and data distributions
(i.e., correlated, independent, and anti-correlated). The last column in the table lists
the upper bounds on the number of maximal dominating subspace sets. Note that for a
data set with D dimensions, the upper bound is given by

(
D

�D/2�
)
, where each maximal

dominating subspace consists of �D/2� dimensions.
As expected, the points in the anti-correlated data set has the maximum number of

maximal dominating subspaces. However, the number of maximal dominating subspace
is still much smaller than the theoretical upper bound listed in the last column. This in-
dicates that our method does not suffer from the exponential increase of dimensionality
in practice.

Table 3. Comparison of number of maximal dominating subspaces

Dimensionality Correlated Independent Anti-Correlated Upper Bound

10 17 64 62 252
15 72 483 565 6435
20 188 1897 2477 184756
25 587 5119 7617 5200300

5.7 Comparative Study

We also compared our EC and AC schemes against the Skycube algorithm [19]. Al-
though the Skycube algorithm (denoted as SC) can find the precise top-k frequent sky-
lines, it does not scale beyond 15 dimensions. Our results show that it takes more than
10 hours for SC to run on the independent data set with 100K 15-dimensional points.
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This is because SC focuses on conventional skyline query in any specified subspace,
and thus spends most of its computation time on points which cannot be top frequent
skyline points. As such, we only present the results for 100K 10-dimensional data sets
in Fig. 7.

From the figure, it is clear that both EC and AC are superior to SC in all the three
types of data sets. SC is not scalable as it may need to compute all the subspaces which
is exponential in the number of dimensions. We note that for small number of dimen-
sions (10 in this case), our AC scheme returns the exact answers, i.e., it has 100%
precision. That is, we do not give up any precision loss to obtain performance gain in
this case.
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6 Conclusions

Skyline queries have been lauded for their ability to find the most interesting points in
a data set. However, in high dimensional data sets, there are too many skyline points
for them to be of practical value. In this paper, we introduced skyline frequency as a
measure of interestingness for points in the data set. The skyline frequency of a point
measures the number of subspaces in which the point is a skyline. We developed an
efficient approximation algorithm to compute the top-k frequent skyline query. Our
experimental study demonstrated the performance and the effectiveness of the proposed
algorithm.

We plan to extend this work in several directions. First, we would like to explore
precomputation techniques (e.g., indexes) to further speed up the computation of top-k
frequent skyline query. Second, our current work assumes a static data set. We would
like to study techniques to facilitate incremental updates. Finally, exploring other inter-
estingness measures of skyline points is also part of our future work.

Acknowledgement. We thank the authors of [19] for sharing their implementation of
the Skycube algorithm.
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