
IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society JANUARY • FEBRUARY 2003 49

M
id

dl
ew

ar
e

fo
r

W
eb

 S
er

vi
ce

s

Pascal Felber
Institut EURECOM

Chee-Yong Chan,
Minos Garofalakis,
and Rajeev Rastogi
Bell Labs, Lucent Technologies

Scalable Filtering
of XML Data
for Web Services
Scalable content-based routing architectures for Web

applications can handle the growing number of XML

messages associated with Web services.

As the Web gains prevalence as an
application-to-application com-
munication medium, organiza-

tions are deploying more Web service
applications to provide standardized, pro-
grammatic application functionality over
the Internet. Web services use open stan-
dards based on the Extensible Markup
Language (XML, www.w3.org/TR/REC
-xml), such as the Web Services Descrip-
tion Language (WSDL, www.w3.org/TR/
wsdl12) for service definition and the
simple object access protocol (www.w3.
org/TR/SOAP) for service invocation.
Users can reach the services using SOAP
and construct requests using the Web ser-
vice’s WSDL information. A wide range
of domain-specific specifications are also
based on XML, such as ebXML for busi-
ness-to-business interactions and FpML
for financial data exchange. Even HTML,
arguably the most widely used data for-
mat on the Internet, has recently been
rewritten as an XML-based specification,
Extensible Hypertext Markup Language

(XHTML, www.w3.org/TR/xhtml1).
Filtering, classifying, and routing the

growing number of XML messages
associated with Web services requires
scalable mechanisms. Enterprise appli-
cation servers, for instance, must scale
to numerous clients, provide high
throughput, and support a variety of
XML-based protocols. As Figure 1 illus-
trates, a Web server (generally associat-
ed with a firewall) receives XML data,
and one or more XML routers filter it.
These routers dispatch XML data,
according to its type or content, to the
appropriate back-end server, possibly
using load balancing, selective multi-
cast, or another routing scheme. XML
routers can also act as a sophisticated
firewall by filtering out unauthorized or
invalid XML messages.1,2

Because an XML request’s destination
depends on its type and content, Web ser-
vice applications must incorporate highly
efficient content-based routing technol-
ogy. Specialized back-end servers can

efficiently process only certain types of XML data.
A server could be responsible for all SOAP
requests, for example, or only for SOAP requests
related to stock quotes, or just for specific compa-
nies’ stock quotes. The resulting services are more
scalable and cost-effective than those based on
traditional load-balancing schemes, which require
each server to process any type of request.
Although not specific to Web services, efficient
techniques for content-based XML data routing
can benefit Web services because of the large
amount of XML traffic associated with such ser-
vices. We have developed techniques for matching
XML data to tree-structured filters expressed using

the W3C’s XML Path Language (XPath,
www.w3.org/TR/xpath) and propose a hierarchical
XML routing architecture that supports extremely
high traffic loads.

XML for Web Services
Web services provide an extensible and interop-
erable framework for application-to-application
communication, thanks to the use of universal
data formats and protocols, such as XML and
XPath.

Semistructured Data
XML’s simple structure is easy for applications to
interpret and process. Moreover, being vendor-
and platform-neutral and agnostic about content
appearance, XML simplifies integration of exist-
ing applications and representation of data in var-
ious human-readable formats.

XML defines an unambiguous mechanism for
constraining structure in a data stream. XML doc-
uments can include a type definition (XML schema
or document-type definition, DTD), which defines
the document structure by describing its legal
building blocks. (XML schemas are gaining favor
over DTDs, and Web services specifications explic-
itly disallow DTDs for defining Web service mes-
sage formats.)

Consider the sample XML document in Figure
2, taken from the SOAP specification, which rep-
resents a SOAP request for the current value of a
company’s stock. Start and end tags specify the
document’s structure. Start tags contain an option-
al list of attributes, which are essentially key-value
pairs. We refer to text data enclosed between tag
pairs, such as between the symbol tags in line 13,
as the tag’s value or content.

XML documents have a hierarchical structure, as
the tree-based representations in Figure 3 show.
Attributes (prefixed by the @ symbol) are repre-
sented as children of their associated tag; values
(shown between quotation marks) are represented as
children of their associated attribute or tag.

To distinguish between structural elements —
tags and attributes — and the actual data values
associated with them, we represent connections
between the former with solid lines, and connec-
tions between elements and values with dashed
lines. Intuitively, an XML document’s tags and
attributes define its type, while the data associat-
ed with its tags and attributes define its value.
(Formally, an associated schema specifies the
XML document type.) By disconnecting the
dashed lines from the XML document’s tree rep-

50 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

...

XML

Secure XML

 Clusters

Servers

XML routers

E
xt

ra
ne

t
Fi

re
w

al
l

Li
st

en
er

In
tr

an
et

Internet

Figure 1. XML routing for enterprise Web servers. Routers filter the
XML data received by the Web server and dispatch it to the appro-
priate back-end servers using various routing schemes.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=“http://.../soap/envelope/”
SOAP-ENV:encodingStyle=“http://.../soap/encoding/”>

<SOAP-ENV:Header>
<t:Transaction xmlns:t=“some-URI”

SOAP-ENV:mustUnderstand=“1”>
5

</t:Transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m=“Some-URI”>
<Symbol>DEF</Symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 2. Sample XML code from the SOAP specification. Start and
end tags, which are enclosed within < and >, specify the document’s
structure.Text data, enclosed between tag pairs, express the tag’s
value or content.

resentation, we obtain its type.
Two SOAP requests for the
value of different stocks would
have the same type but differ-
ent values.

Tree-Structured Filters
XML’s structured, extensible
nature allows for a powerful
combination of type-based and
value-based content filtering. To
that end, XML filters should be
able to express both data type
and value constraints. The sim-
plicity and standardization of
the XPath addressing language
makes it widely used for that
purpose.

XPath treats an XML docu-
ment as a node tree and lets
applications specify and select
parts of this tree. An XPath
expression contains one or
more location steps, which are
separated by slashes. A location
step designates an element
name followed by zero or more
predicates between brackets.
Predicates use basic compari-
son operators (=, <, =, >, and
=), and are generally specified as constraints on
the presence of structural elements or on the val-
ues of XML documents. XPath also allows wild-
card (*) and ancestor/descendant (//) operators,
which match exactly one and an arbitrarily long
sequence of element names, respectively. In a
data-filtering context, an XML document match-
es an XPath expression when the expression’s
evaluation yields a nonnull object.

Figure 4 (next page) gives several sample
XPath expressions. Figure 4a designates docu-
ments that have two consecutive nodes (m:Get-
LastTradePrice and Symbol) at any level in
the document (the initial // specifies that any
number of nodes can appear before the first ele-
ment). Figure 4b adds constraints to the Symbol
node’s value to make it equal “DEF”. Text()
selects the text node below the current node. Fig-
ure 4c designates SOAP messages that have a
Symbol node with value “DEF” at least two lev-
els inside the message (below the Body node).
This expression specifies an absolute path from
the XML document’s root. All three expressions
match the XML document in Figure 4a.

Attributes in XPath expressions are specified
like tag nodes, but are prefixed with @. Figure
4d designates documents that have a Transac-
tion node with a SOAP-ENV:mustUnder-
stand attribute, and Figure 4e further mandates
that this attribute have the value 1.

XPath can also express more complex filters
where the structural constraints are not limited
to single paths. Consider a filter that selects SOAP
messages with quotes for symbol GHI with a
price higher than 15. Figure 4f expresses the first
constraint, and Figure 4g expresses the second.
Simply combining these two XPath expressions
is not sufficient, however, to obtain the desired
filter: the document in Figure 4d contains both
expressions, but the price that matches the sec-
ond expression is not for GHI. The filter must
further constrain the matching Symbol and
Price nodes to share a Stock parent node. We
achieve such structural constraints using tree-
structured expressions, which we express in
XPath by defining multiple predicates on the
same node. Figure 4h is one possible embodiment
of the desired filter.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 51

Scalable Filtering

t:Transaction

SOAP-ENV:Header@xmlns:SOAP-ENV @SOAP-ENV:
encodingStyle

@SOAP-ENV:
mustUnderstand

"1"

SOAP-ENV:Envelope

"http://.../soap/
envelope/"

"http://.../soap/
encoding/"

"5"

"some-URI"

@xmlns:m@xmlns:t

"some-URI"

SOAP-ENV:Body

m:GetLastTradePrice

Symbol

"DEF"
(a)

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePriceResponse

Stock Stock

PriceSymbol PriceSymbol

"11.5""GHI""34.1""DEF"

(b)

Figure 3. XML trees for sample SOAP messages. (a) Representation of the sample
code in Figure 1 without attributes; (b) a SOAP message with multiple response values.

Scalable Architectures
for Web Services
The combination of semistructured data and tree-
structured filters offers a more flexible and expres-
sive framework for content-based routing than the
traditional keyword-based information retrieval
techniques used for unstructured data. It does,
however, also increase the complexity of filtering
and makes efficient matching algorithms a pre-
requisite to scalable content routing.

Efficient Filtering of XML Data
Our XTrie index structure supports the efficient fil-
tering of XML documents based on XPath expres-
sions. It offers several novel features that make it
especially attractive for Web service applications
with high scalability and performance requirements:

• It supports effective filtering based on complex,
tree-structured XPath expressions (as opposed
to simple, single-path specifications).

• The XTrie structure and algorithms support
both ordered and unordered matching of XML
data.

• By indexing on sequences of elements orga-
nized in a trie structure and using a sophisti-
cated matching algorithm, XTrie both reduces
unnecessary index probes and avoids redun-
dant matchings, thereby providing extremely
efficient filtering.

To construct an XTrie for a given set of XPath
expressions, we first decompose each expression
into a minimal number of substrings, where a sub-
string is a nonempty sequence of elements, sepa-
rated by a parent/child operator, that can be pre-
fixed by an ancestor/descendant operator and
wildcards. We then organize the decomposed sub-
strings using a sophisticated trie structure and an
auxiliary table. The trie allows both space-efficient

indexing and time-efficient retrieval of XPath
expressions, while the table stores additional infor-
mation used for detecting valid matches.

The trie is a rooted tree, where each edge is
labeled with some element name. As the trie fac-
torizes substrings with common prefixes, its size
generally remains small. Each node in the trie
points to other nodes and to rows in the auxiliary
table. The table contains one row for each sub-
string of each indexed XPath expression. In each
row, a set of values describes the positional and
structural constraints of the associated substring.
Figure 5 shows an XTrie index for the sample
XPath expressions in Figure 4.

The XTrie matching algorithm acts on an
incoming XML document as follows. First, the
event-based simple API for XML (SAX, www.sax-
project.org) parser parses the document, reporting
occurrences of XML elements (start tags, text, and
so on) to the matcher. The matching algorithm
attempts to map sequences of start tags, attribut-
es, and text values to trie paths by following the
trie’s edges. For each matching substring it
detects, the algorithm uses the auxiliary table to
verify the substring’s positional constraints with
respect to its previously matched parent and sib-
ling substrings, as well as any associated predi-
cates. A data structure that stores the occurrence,
depth, and scope of previously encountered sub-
strings maintains information about partially
matched XPath expressions at runtime. When end
tags are parsed, the matching algorithm updates
the runtime information to invalidate out-of-
scope substring matches.

An XPath expression is completely matched
when the algorithm has paired all substrings with
their associated constraints and has validated their
predicates. Using the event-based SAX parser,
which does not require an in-memory representa-
tion of the input document for matching, XTrie
can also filter streaming XML data. We provide an
exhaustive description of the XTrie algorithms
elsewhere.3

Parallel XTrie
Because they must handle many XPath expres-
sions and process many requests, large Web ser-
vice applications usually impose very demanding
performance requirements. One way to improve
the XTrie’s scalability is to parallelize its process-
ing so that multiple XML routers can share the
time- and space-consuming task of filtering data.
We can easily achieve parallelization using a clus-
ter of XML routers organized according to one of

52 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

(a) //m:GetLastTradePrice/Symbol
(b) //m:GetLastTradePrice/Symbol[text()=“DEF”]
(c) /SOAP-ENV:Envelope/SOAP-

ENV:Body/*//Symbol[text()=“DEF”]
(d) //t:Transaction/@SOAP-ENV:mustUnderstand
(e) //t:Transaction[@SOAP-ENV:mustUnderstand=1]
(f) //Stock/Symbol[text()=“GHI”]
(g) //Stock/Price[text()>15]
(h) //Stock[Symbol/text()=“GHI”][Price/text()>15]

Figure 4. Sample XPath expressions. Attributes are signified by an
@ symbol. Comparison operators (=, <, =, >, and =) indicate predi-
cates, which specify constraints on XML document values.Wildcard
(*) operators match one element name while ancestor/descendant
(//) operators match an arbitrarily long sequence of element names.

two simple strategies.

• Data-sharing strategy. Each XML router in the
cluster manages the complete set of XPath
expressions. A load balancer dispatches each
XML document to only one router according
to a load-balancing strategy (Figure 6a).

• Filter-sharing strategy. XML routers share
XPath expressions equally, so exactly one
router manages each distinct expression (Fig-
ure 6b). All routers filter incoming XML docu-
ments.

We designed these two strategies to optimize dif-
ferent scalability requirements. The first strategy
maximizes the filtering throughput by increasing
the number of documents that can be processed
concurrently. In contrast, by processing each input
document with all the routers in the cluster (with
each router responsible for a small and disjoint
subset of XPath expressions), the second strategy
minimizes the filtering latency time.

Hierarchical XTrie
One way to achieve both reasonable filtering
throughput and reasonable filtering response time
is to combine the strengths of the data- and filter-
sharing strategies into a hybrid strategy that orga-
nizes the cluster of XML routers into a hierarchical
configuration. The network dispatcher sends each
incoming XML document to the root router, per-
forming coarse filtering to decide which subset of

child routers it will send the document to for more
refined filtering. This top-down propagation and
XML document filtering continues from one level
to the next until the document reaches the leaf
level, where a subset of leaf routers filter it to
decide which target back-end servers to dispatch
the document to.

Figure 6c (next page) is an example of the hier-
archically organized XTrie. In the hierarchy, each
router manages a set of filters (that is, XPath
expressions). We use the filter-sharing strategy to
organize leaf routers, so each leaf router manages
a disjoint subset of the XPath expression (or end
filter) workload. Each internal router manages a
collection of sets of intermediate filters, with one
set corresponding to each of its child routers. Each
set of intermediate filters provides a coarse-level
summary of the set of filters its corresponding
child router manages. Specifically, each filter F in
a child router must be covered by some filter in F’
in its parent router so any XML document that
matches F will also match F’. For instance, the
XPath expression //Symbol covers the XPath
expressions in Figures 4a through 4c, 4f, and 4h.
This property guarantees that whenever a docu-
ment matches an end filter in a leaf router, the
internal routers will always route the document
to that leaf router. This hierarchical strategy there-
fore combines the advantages of the filter- and
data-sharing strategies: like the former, multiple
routers process each document to improve filter-
ing latency; like the latter, routers can process

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 53

Scalable Filtering

m:getLastTradePrice
Symbol

t:Transaction

Stock

Symbol

SOAP-ENV:Body

DEF

Symbol

Price

DEF GHI

SOAP-ENV:Envelope

@SOAP-ENV:mustUnderstand

1

7

2 3 4 5 6

8 9 10 11 12

13 14 15

1

Figure 5. XTrie for the sample XPath expressions in Figure 4. Each edge in the trie is labeled with an element name; the
auxiliary table is not shown.

multiple documents concurrently to improve fil-
tering throughput.

The main challenge of the hierarchical strategy is
clustering the XPath expressions into subsets to be
assigned to leaf XML routers, and clustering the col-
lection of XML routers at one level into subsets to
be assigned to parent routers at the level above. This
clustering must be performed in such a way that

• a small set of intermediate filters installed in
the parent router can concisely represent each
subset, and

• each XML document is propagated down to
only a small subset of leaf routers.

The first condition ensures efficient filtering at
internal routers as each router manages only a
small set of filters, while the second condition
optimizes the filtering throughput by ensuring that
only the relevant subset of routers processes each
XML document.

Clustering XPath expressions. There are a num-
ber of simple methods for clustering XPath

54 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

XML data

XPath
expressions

...

XML routers

1

2

3

4

Trie

Trie

Trie

Trie

(a)

(c)

expressions
XPath

XML routers

...

Trie

Trie

Trie

Trie

XML data

321 4

321 4

321 4

321 4

321 4

321 4

(b)

XML routers

etc

.....

.....

.....

etc

etc

.....

XML data

etc etc etcetc etc

0Trie

n321

11 12 1n 31 3n n1 nnTrie Trie TrieTrie Trie

Trie

Trie

//Price//*//t:Transaction //* //*//*/*/*/*/*/*//SOAP-ENV:Fault

/*
/SOAP-ENV:Envelope

/Quote
/Order/nitf

321 4

1 4 321 4

321 42

32

1 414 3

Figure 6. Strategies for parallel filtering of XML documents with XTrie: (a) sharing XML workload, (b) sharing XPath
expressions, and (c) hierarchical filtering (highlighted paths are traversed by the sample SOAP message in Figure 2).

expressions. One straightforward approach is to
partition absolute XPath expressions based on the
element names of their root nodes. This cluster-
ing technique is effective because XML docu-
ments with distinct root nodes must have differ-
ent types (schema).

The first level of the hierarchical XTrie in Fig-
ure 6c illustrates this partitioning. The topmost
router filters XML documents according to their
root tags and forwards them to the appropriate
child router subset downstream. For instance,
router 1 handles all SOAP requests, while router 3
handles both quote and order requests. The sub-
tree at router n contains all XPath expressions that
do not have an explicit root tag (that is, they begin
with // or /*). Thus, in Figure 6c, the topmost
router will always propagate each XML document
to router n, as well as to any router associated with
the document’s root tag. More generally, we can
partition nonabsolute XPath expressions using
schema-specific element names.

Clustering XPath expressions by the XML doc-
ument type they refer to is effective in practice,
but it only permits building a coarse-grained
router hierarchy. This might prove inefficient
when, for instance, some types of documents
occur much more frequently than others. It is
therefore desirable to also cluster XPath expres-
sions in a single schema. Router 11 in Figure 6c
manages SOAP error messages, for example, and
router 12 filters SOAP messages with transaction
identifiers. For good results, you can cluster XPath
expressions according to exclusive sets of element
names that never or rarely appear in the same
XML document. Finding exclusive elements is
straightforward when you know the XML
schemas in advance. Alternately, you can observe
XML data flowing through the routers and gather
information about the patterns that are unlikely
to occur in the same document.

Generating intermediate filters. Unlike the end fil-
ters managed by leaf routers, which correspond to
the input set of XPath expressions, the intermedi-
ate filters at each internal router cover the set of
XPath expressions in its child routers. To provide
effective coarse-level filtering, the set of interme-
diate filters needs to satisfy two conflicting
requirements. First, it should be small to enable
fast filtering. Second, it should provide a tight cov-
ering — that is, it should minimize the number of
documents matching some intermediate filter in a
router but not matching any filters in the router’s
corresponding child router. In other words, it

should minimize unnecessary document forward-
ing to irrelevant downstream XML routers.

When XPath expressions are clustered accord-
ing to element names, the construction of the
intermediate filters is trivial. When the set of
XPath expressions managed by a router is diverse,
however, finding a set of intermediate filters is
challenging. In earlier work, we proposed an effi-
cient aggregation algorithm that effectively uses
document-distribution statistics to compute a pre-
cise and compact set of coarse-level XPath expres-
sions for a given set of XPath expressions.4 We can
apply this algorithm to intermediate filter gener-
ation. When the set of XPath expressions to aggre-
gate have strong similarities, which is expected
from an effective clustering scheme, our aggrega-
tion algorithm can produce intermediate filters
several orders of magnitude smaller without sig-
nificant loss in precision.

Performance Evaluation
To test the effectiveness of our XML routing tech-
nology for Web services, we conducted an exten-
sive performance study of the XTrie filtering algo-
rithm using actual document types and numerous
tree patterns. We then evaluated the performance
of the various architectures for parallelizing XTrie
based on our results. Because an XML message’s
filtering time is several orders of magnitude slow-
er than its actual transmission over the network,
we did not account for transmission time. Our
study thus shows the asymptotic performance of
the parallel XTrie architectures. We conducted our
experiments on a 1.5-GHz Intel Pentium 4 machine
with 512 MBytes of main memory running Linux.

For our experiments, we selected 10 real-world
commercial application document types with 77
to 2727 distinct elements and up to 8512 distinct
attributes. Most of these types have recursive
structures, which we can nest to produce XML
documents with an arbitrary number of levels.
For each type, we generated a representative set
of XML documents with approximately 100 tags
and 20 levels, as well as sets of XPath expres-
sions containing approximately 10 percent of *
and // operators.

We ran experiments with two variants of the
XTrie algorithm:

• one optimized for single-path XPath expres-
sions, where each node has at most one child;
and

• another optimized for ordered matching of
tree-structured XPath expressions.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 55

Scalable Filtering

We compared the scalability of XTrie paralleliza-
tion for the data-sharing, filter-sharing, and hier-
archical strategies, using simulation based on the
experimental results of the XTrie algorithms.

Raw XTrie Performance
The performance of the nonparallel XTrie algo-
rithms decreases linearly with the number of
XPath expressions, as well as with the length of
the XML documents. In particular, the XTrie
variant optimized for single-path XPath expres-
sions filters around 100 messages per second
with 20,000 XPath expressions, and 27 messages
with 200,000 XPath expressions. The perfor-
mance of the variant for tree-structured expres-
sions is approximately one order of magnitude
slower. Detailed experimental results can be
found elsewhere.3

Data-Sharing and Filter-Sharing Strategies
Figure 7a compares the throughput performance
of the data-sharing and filter-sharing strategies
(with logarithmic scales) for 200,000 XPath
expressions. As expected, the data-sharing strate-
gy’s throughput scales linearly with the number of
XML routers. In contrast, the filter-sharing strate-
gy’s throughput increases more gradually with the
number of XML routers to a maximum through-
put of 170 messages per second (since all XML
routers filter each message, throughput is limited
by constant cost of parsing XML documents, irre-
spective of how many XPath expressions each
router manages).

Figure 7b compares the latency performance of
the parallel XTrie strategies for the same set of
200,000 XPath expressions. For the data-sharing
strategy, increasing the number of XML routers
does not improve the latency performance because
only one of the routers filters each incoming doc-
ument. For the filter-sharing strategy, on the other
hand, the filtering latency decreases proportional-
ly to the number of XPath expressions managed
per router.

Our performance results clearly validate our
expectations about the strengths of the different
parallelization strategies. The appropriate strategy
for a Web service application depends on the per-
formance objective.

Hierarchical Strategy
We evaluated the performance of the hierarchical
strategy with absolute XPath expressions (that is,
relative to the root node) and a clustering scheme
in which the first-level router filters documents

56 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

1

10

100

1,000

10,000

100,000

1 10 100 1,000

T
hr

ou
gh

pu
t

(d
oc

/s
)

Number of XML routers

Data-sharing (Single)
Data-sharing (Tree)
Filter-sharing (Single)
Filter-sharing (Tree)

(a)

0

100

200

300

400

1 10 100 1,000

La
te

nc
y

(m
s)

Number of XML routers

Data-Sharing (Single)
Data-Sharing (Tree)
Filter-Sharing (Single)
Filter-Sharing (Tree)

1

10

100

1,000

10,000

100,000

1 10 100 1,000

T
hr

ou
gh

pu
t

(d
oc

/s
)

Number of XML routers

Data-Sharing
Filter-Sharing
Hierarchical (f=1)
Hierarchical (f=2)
Hierarchical (f=5)
Hierarchical (f=10)

(b)

(c)

Figure 7. Parallel XTrie filtering performance with 200,000 single-
path XPath expressions: (a) throughput, (b) latency, (c) hierarchical
filtering throughput (single-path XTrie algorithm).

based on their root tags. This initial routing step
is extremely efficient because XML documents do
not need to be parsed (the root tag is the first ele-
ment that appears in a document) and the filter-
ing degenerates into a simple hash-table lookup.
Because all the input XPath expressions are
absolute, an XML document is routed to at most
one subtree during first-level routing.

In practice, two major factors prevent hierar-
chical filtering from being optimal:

• The average number of leaf routers ultimately
reached by each XML document — its fanout —
is generally greater than 1 and reduces paral-
lelism.

• Contention on some leaf routers that are tra-
versed more often than others might exist.

To account for these factors, we evaluated the per-
formance of the hierarchical configuration with
different values for the average fanout f. Figure 7c
shows the results. Although the hierarchical strat-
egy requires additional routers for intermediate fil-
tering (we used at least 20 in our experiments), it
quickly achieves better throughput than the other
strategies. The ideal case, f = 1, scales the best;
however, the data-sharing strategy is preferable
for fanouts higher than 5.

A promising alternative is to combine the hier-
archical and data-sharing strategies. We can use a
one-level routing hierarchy that partitions the
XPath expressions based on their root nodes, and
then use the data-sharing strategy to load-balance
XML documents to clusters of XML routers dimen-
sioned according to the document distribution. As
we mentioned previously, the first-level filtering
phase is extremely efficient and lets us lower leaf
router space requirements. In addition, with
absolute XPath expressions, the fanout will never
exceed 1. This approach therefore offers a good
trade-off between the high scalability of the hier-
archical strategy and the simplicity and efficien-
cy of the data-sharing strategy.

Conclusion
Our XML filtering techniques can facilitate the
design of highly scalable Web services. Several
important issues, however, remain open for fur-
ther research. In particular, the configuration
and clustering of routers is a crucial issue with
significant impact on routing performance. We
are also working to extend our techniques to
better adapt to fluctuating traffic loads and data
distributions.

References

1. The HTRC Group, “Data Routing in the Age of Informa-

tion,” Oct. 2001. http://www.htrcgroup.com.

2. E. Kuznetsov, “XML-Aware Networking,” XML J., vol. 3,

no. 8, Aug. 2002, pp. 22-23.

3. C.-Y. Chan et al., “Efficient Filtering of XML Documents

with XPath Expressions,” Proc. 18th Int’l Conf. Data Eng.

(ICDE 2002), IEEE CS Press, 2002, pp. 235-244.

4. C.-Y. Chan et al., “Tree Pattern Aggregation for Scalable XML

Data Dissemination,” Proc. 28th Int’l Conf. Very Large Data

Bases (VLDB 2002), Morgan Kaufmann, 2002, pp. 826-837

Pascal Felber is an assistant professor at Institute EURECOM,

France, a graduate institute specialized in Telecommunications.

He has MSc and PhD degrees from the Computer Science

Department of the Swiss Federal Institute of Technology (Lau-

sanne). His current research interests include dependable and

distributed systems, distributed data management, and object-

based systems. He is a member of the ACM and the IEEE Com-

puter Society. Contact him at pascal.felber@eurecom.fr.

Chee-Yong Chan is a member of technical staff at the Infor-

mation Sciences Research Center of Bell Labs, Lucent Tech-

nologies. He has an MSc from the Computer Science

Department of the National University of Singapore, and

a PhD from the University of Wisconsin-Madison Com-

puter Science Department. His current research interests

include XML databases, indexing techniques, and data-

warehousing systems. He is a member of the ACM and the

IEEE Computer Society. Contact him at cychan@research.

bell-labs.com.

Minos Garofalakis is a member of technical staff at the Infor-

mation Sciences Research Center of Bell Labs, Lucent Tech-

nologies. He has a BSc from the Computer Engineering and

Informatics Department of the University of Patras, and

MSc and PhD degrees in computer science from the Uni-

versity of Wisconsin-Madison. His current research inter-

ests lie in the areas of data streaming, approximate query

processing, data mining, network management, and XML

databases. He is a member of the ACM and the IEEE. Con-

tact him at minos@research.bell-labs.com.

Rajeev Rastogi is the director of the Internet Management

Research Department at Bell Laboratories, Lucent Tech-

nologies. He has a BSc in computer science from the Indi-

an Institute of Technology, Bombay, and MSc and PhD

degrees in computer science from the University of Texas,

Austin. His research interests include database systems,

network management, storage systems, and knowledge

discovery. His most recent research has focused on network

topology discovery, monitoring, configuration and provi-

sioning, data mining, and high-performance transaction

systems. Contact him at rastogi@research.bell-labs.com.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 57

Scalable Filtering

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

