
Content-based Dissemination of Fragmented XML Data

Chee-Yong Chan
Department of Computer Science
National University of Singapore

chancy@comp.nus.edu.sg

Yuan Ni
Department of Computer Science
National University of Singapore

niyuan@comp.nus.edu.sg

Abstract

Content-based dissemination of data using pub/sub
systems is an effective means to deliver relevant data
to interested data consumers. With the emergence of
XML as the standard for data representation and ex-
change, a lot of attention has been focused on pub/sub
systems for XML-based dissemination, where subscrip-
tions are specified using more expressive XML-based
languages (e.g., XPath). In this paper, we address
the problem of matching XPath-based subscriptions on
fragmented XML data, which is motivated by both the
prevalance of resource-constrained mobile devices for
accessing/monitoring data as well as by the optimiza-
tion opportunities from processing data in terms of
fragments. We investigate efficient strategies to sched-
ule and optimize the evaluation of XPath-based sub-
scriptions on XML fragments. Our experimental re-
sults not only demonstrate the effectiveness of our pro-
posed optimizations but also reveal several interesting
performance tradeoffs.

1 Introduction

Content-based publish/subscribe systems provide
an effective means to selectively and asynchronously
disseminate information generated by data publishers
to a large number of data subscribers who have pre-
registered their interests in specific information to some
content-based router (or message broker) using some
subscription language. Research on pub/sub systems
has produced many interesting work, including efficient
subscription matching algorithms (e.g., [17, 4]), sub-
scription summarization/aggregation algorithms to re-
duce matching complexity and routing overhead (e.g.,
[6, 18, 13]), and novel pub/sub architectures to im-
prove performance or adapt to network topological re-
configurations (e.g., [8, 14, 20]). The majority of ex-
isting pub/sub systems have typically relied on simple

subscription specifications, such as keyword or “bag of
words” matching, or simple comparison predicate on
attribute values (e.g., Gryphon [17], Siena [5]).

The emergence of XML (eXtensible Markup Lan-
guage) as a standard for information exchange on the
Internet has led to an increased interest in using more
expressive subscription/filtering mechanisms that ex-
ploit both the structure and the content of published
XML documents. In particular, the XPath language
has been adopted as a filter-specification language by
a number of XML data dissemination systems [16, 9].
Due to the more expressive and complex XPath-based
subscriptions, matching XML documents against such
subscriptions becomes a more challenging problem, and
several sophisticated algorithms have been developed
to address this issue (e.g., [16, 9, 24]).

In this paper, we address the problem of matching
XPath-based subscriptions on fragmented XML data,
where the published XML data is being disseminated
in terms of a collection of disjoint fragments. There
are several motivations for fragmenting XML data
[1, 11, 15, 12, 22]. With the popularity of employing
resource-constrained mobile devices for accessing and
monitoring data, there is a need for memory-efficient
techniques to process queries on fragmented data. Fur-
thermore, applications involving sensor devices typi-
cally also collect and process data in fragments. Dis-
seminating XML data in fragments also facilitates up-
dated data to be efficiently propagated without resend-
ing the entire document. The size of the collection of
queries being matched can vary depending on the ap-
plication context. A small-scale deployment can airse
in specialized monitoring applications that run on mo-
bile devices, while a large-scale scenario can arise in
middleware-based applications that disseminate data
to a large number of different users based on their sub-
scriptions. While the first scenario necessarily requires
the data to be fragmented for it to be processed by
resource-limited devices, the second scenario can also
benefit from using fragmented data as this can enable

1

more opportunities for query optimization by exploit-
ing the structural relationships among the fragments
to minimize unnecessary and redundant processing.

While there has been some research that address
general query processing issues on fragmented data
[22], we are not aware of any work that examines the
problem of matching boolean XPath queries on frag-
mented XML data. The more specialized nature of
processing boolean queries on fragmented XML data
opens up new opportunities for query optimization and
processing. Specifically, the challenge is how to effi-
ciently and effectively schedule and optimize the pro-
cessing of the fragments so as to “short-circuit” the
query evaluation as early or as much as possible by de-
termining the evaluation result with minimal unnec-
essary/redundant fragment evaluations. To the best of
our knowledge, our work represents the first compre-
hensive approach to schedule and optimize the evalu-
ation of boolean XPath queries on fragmented XML
data. Our experimental results (using both syn-
thetic and real-life datasets) not only show that our
fragmented approaches significantly outperformed the
traditional non-fragmented approach, but it also re-
veals interesting performance tradeoffs of our proposed
techniques.

2 Preliminaries

We focus on a commonly used subclass of XPath
queries called tree pattern (or twig) queries that essen-
tially supports only XPath’s / and // location steps
with AND-predicates. A tree pattern query is repre-
sented by an unordered rooted tree, where each node
is labeled with an element name or a wildcard that is
prefixed by either “/” (for a child-step) or “//” (for a
descendant-step).

Given a query q and an XML document d, a match-
ing of q in d is identified by a mapping from the nodes
in q to the nodes in d such that both the following
conditions are satisfied: (1) each mapped data node di

matches its corresponding query node qi (i.e., either di

and qi have the same element tag or qi is “*”); and (2)
the structural relationships between query nodes are
satisfied by their corresponding mapped data nodes.
Thus, we say that q matches d if there exists at least
one matching of q in d; otherwise, q does not match d.

Consider a node ti in a (query or data) tree T . We
define the prefix of ti, denoted by prefix(ti), to be the
path of nodes from the root node of T to ti (inclusive).
We define the minimum (maximum) height of ti, de-
noted by minHt(ti) (maxHt(ti)), to be the length of
the shortest (longest) path from ti to one of its descen-
dant leaf nodes in T . Given a query node qj and a data

node di, we can view prefix(qj) and prefix(di) as a
query tree and a data tree, respectively, and define the
matching of prefix(qj) in prefix(di) similarly.

When the data nodes in an XML document d are
partitioned into fragments, finding a matching of a
query q becomes more complex and requires seeking
matchings of different subqueries of q among the frag-
ments. Given a query node qi in q, we define the sub-
query rooted at qi, denoted by subquery(qi), to be the
query subtree rooted at qi.

Example 2.1 Consider the XML document d and
query q in Figs. 1(a) and (b), respectively; where d
is partitioned into 7 fragments indicated by the dashed
regions of nodes (f1 to f7). It can be easily verified
that the document d matches the query q. In f4,
prefix(c) = /a/m/c, minHt(c) = 2, and maxHt(c) =
2. In q, prefix(i) = /a/b/f//i, minHt(a) = 3, and
maxHt(a) = 4. Note that subquery(/f) matches f1,
subquery(/k) matches f3, and subquery(/s) matches
f4. Together with the matchings of query nodes /b in
f2, /c in f4, and /a and /m in f7, we have a matching
of q in d. ¦

3 Our Approach

In this section, we present our approach of process-
ing boolean XPath queries on fragmented XML data.

3.1 XML Fragmentation Model

Our work assumes a very general data fragmentation
model, where an XML document is partitioned into a
collection of fragments that satisfy the following three
properties:

P1. The fragments are disjoint; i.e., each document
node belongs to exactly one fragment.

P2. The fragments are acyclic in the sense that when-
ever a fragment fi contains some data node that
is an ancestor of some data node in another frag-
ment fj , then fj can not also contain a data node
that is an ancestor of some data node in fi.

P3. The fragments are complete; i.e., the original non-
fragmented document can be reconstructed from
the collection of fragments.

Property P1 is motivated by space-efficiency to
avoid node duplication. Property P2 specifies a de-
sirable property to ensure that document nodes are
contiguous in the sense that if node x is an ancestor
of node y and they both are stored in the same frag-
ment, then all the nodes along the path from x to y

2

p x

m

cc

yx

k

x y

c

f

yx

k

x y

e
f1

x x

i

f e 6f

3f
5f

7f

4f

sp

2f
a

b

/c

/y

//m

/s/k

/x

//i

/f

/b

/a Fragment Prefix
ID Prefix +Level
1 /f, //m /f
2 /b, //m /b
3 /k, //m /k
4 /c, //m /c
5 /k, //m /k
6 /c, //m /c
7 /a −

(a) Fragmented XML Document (b) Example Twig Query (c) Relevant Fragment-Query Node Matchings

Figure 1. Fragmentation, query models, and relevant node information

should also belong to that fragment. Property P3 is a
necessary condition for correctness. These three prop-
erties are rather simple and reasonable requirements in
our fragmentation model; and they are indeed satis-
fied by various strategies that have been proposed for
fragmenting XML data [23, 19]. In general, a fragment
can consist of a forest of subtrees of nodes (e.g., f1 in
Fig. 1(a) contains two subtrees rooted at nodes f and
e). Furthermore, a subtree in a fragment does not nec-
essarily correspond to a complete subtree in the XML
document (e.g., the subtree rooted at node b in f2 in
Fig. 1(a) is partitioned between fragments f1 and f2).

In order to guarantee Property P3 (i.e., fragment
completeness), it is necessary to maintain some addi-
tional header information for each fragment to enable
the fragments to be “stitched” together to reconstruct
the original XML document. In addition to ensuring
completeness, note that the header information asso-
ciated with the fragments can also be exploited for
query processing as it actually provides some partial
structural information about the fragments and their
relationships.

3.2 Overview of Processing XML Fragments

Our approach of processing boolean XPath queries
on fragmented XML data consists of three main steps.

1. Identify relevant fragments. The first step is
to make use of the collection of fragment header
information to identify a set of “relevant” match-
ings to determine for each fragment. The goal is to
minimize both the number of relevant matchings
as well as the number of fragments to be evaluated.

2. Schedule fragment evaluations. The second
step is to determine an order in which to process
the fragments. The goal is to “short-circuit” the
query evaluation as early or as much as possible.

3. Evaluate subqueries on fragments. This step
deals with how to efficiently optimize and process

the set of relevant subqueries associated with each
fragment.

3.3 Fragment Header Information

In this section, we discuss two annotation schemes
for representing fragment header information, namely,
Prefix and Prefix+Level. These schemes have differ-
ent space-performance tradeoffs.
Prefix Annotation. The first method stores infor-
mation about the path leading to the root node of
each subtree in a fragment. Specifically, each fragment
is associated with the following header information:
(1) a unique identifier for the fragment; and (2) for
each subtree (rooted at a data node di) in the frag-
ment, its prefix given by prefix(di). For example,
the header information for f3 in Fig. 1(a) is the tu-
ple (3, /a[1]/m[2]/c[1]/k). Note that for convenience,
we have used positional predicates in prefix(dj) to
distinguish among distinct data paths that share the
same sequence of element tag names; other means of
achieving this purpose (e.g., assigning each node with
a unique nodeID attribute value) can be used as well.
Prefix+Level Annotation. The second method is a
simple extension of Prefix, that additionally records
maxHt(r) for each subtree rooted at node r in a frag-
ment. For example, the header information for f3 in
Fig. 1(a) is (3, /a[1]/m[2]/c[1]/k,1). As we shall explain
in Section 3.4, the additional precomputed information
turns out to be very effective in improving query eval-
uation as it can avoid unnecessary computations.

3.4 Identifying Relevant Fragments

To improve matching efficiency, our goal is to de-
termine for each query node qj , the set of “relevant”
fragments that can potentially contain matchings of
qj . Informally, a fragment fi is said to be relevant for a
query node qj (or equivalently, fi is a relevant fragment
for qj) if based on the fragment header information, fi

3

contains some subtree that could contain a matching
of subquery(qj). For notational convenience, we use R
to denote the set of all relevant fragment-query node
pairs between a given fragmented document d and a
twig query q; i.e., (fi, qj) ∈ R iff fragment fi is rele-
vant for query node qj . In the following, we elaborate
on how relevant fragment-query node pairs are identi-
fied for the two types of fragment header information.
Prefix Annotation. With the Prefix header an-
notation scheme, (fi, qj) ∈ R if there exists a sub-
tree rooted at r in fi such that prefix(qj) matches
prefix(r). For example, in Fig. 1, since prefix(/b)
matches prefix(b) in f2, we have (f2, /b) ∈ R. How-
ever, when qj is a descendant-step, the relevance check-
ing needs to be more elaborate. For example, al-
though prefix(//m) does not match prefix(b) in f2

(in Fig. 1), it is incorrect to conclude that there can
not be a matching of subquery(//m) in f2. Indeed,
prefix(//m), which is given by /a//m, is equivalent
to (/a/m ∪ /a//*//m); and it is clear that /a//∗
matches prefix(b) in f2. To correctly capture both
the cases of relevance matching, we define the extended
prefix of a query node qj , denoted by eprefix(qj), as
follows:

eprefix(qj) =





prefix(qj) if qj is a child-step,
prefix(qk)//∗ if qj is a descendant-step &

qk is the parent node of qj ,
//∗ otherwise.

Therefore, (fi, qj) ∈ R iff there exists a subtree rooted
at r in fi such that prefix(qj) or eprefix(qj) matches
prefix(r).
Prefix+Level Annotation. With the additional
maximum height information, the Prefix+Level an-
notation scheme provides a more precise definition of
relevance. Specifically, (fi, qj) ∈ R iff there exists some
subtree rooted at r in fi such that (1) prefix(qj) or
eprefix(qj) matches prefix(r) and (2) minHt(qj) ≤
maxHt(r).

Example 3.1 Consider again the fragment f2 and
query q in Fig. 1. With the Prefix annotation, f2

is relevant for both query nodes /b and //m. However,
with the Prefix+Level annotation, f2 is relevant only
for query node /b. The reason that f2 is not relevant
for //m is because maxHt(b) = 2 which is less than
minHt(qm) = 3. Fig. 1(c) shows all the relevant query
node matchings for query q in Fig. 1(b) under both
Prefix and Prefix+Level annotations. ¦

3.5 Scheduling Fragment Evaluations

To optimize the processing of the fragments, it is
important to schedule the fragment evaluations so as to
minimize the processing of unnecessary fragments (i.e.,

fragments whose evaluations could be skipped without
affecting the query’s result). In this section, we present
five policies for scheduling fragment evaluations.

Topological Scheduling, T. This policy evaluates a
fragment fi before another fragment fj if some node in
fi has an edge pointing to some node in fj .

Reverse-Topological Scheduling, R. This is the re-
verse of topological scheduling, where fragment fi is
evaluated before fragment fj if some node in fj has an
edge pointing to some node in fi.

Most-Specific Scheduling, S. The intuition for this
policy is that a fragment fi is more likely to contain
some query node matching than another fragment fj if
fi’s prefix is more “specific” than fj ’s prefix in terms of
matching some query node’s prefix. This is captured
by the specificity of a fragment fi, denoted by s(fi),
which is given by s(fi) = max(fi,qj)∈R{|prefix(qj)|},
where |prefix(qj)| denote the number of non-wildcard
steps in prefix(qj). A fragment with a larger speci-
ficity value is processed earlier.

Maximal-Matching Scheduling, M. The intu-
ition for this policy is that a fragment that con-
tains more relevant subtrees has a higher chance
of producing a matching. This notion is cap-
tured by the maximal-matching metric of a fragment
fi, denoted by m(fi), which is given by m(fi) =∑

(fi,qj)∈R |{si,k | si,k is a subtree in fi, si,k is relevant
for qj}|. Fragments are processed in non-increasing

maximal-matching values.

Most-Critical Scheduling, C. This policy is opti-
mized for non-matching queries by trying to process
earlier “critical” query nodes that can be potentially
matched only in very few fragments. Let F (qj) de-
note the set of fragments that can potentially contain
a matching for query node qj ; and let Q(fi) denote the
set of query nodes that can potentially be matched in
fragment fi. A query node qj is defined to be critical
if |F (qj)| ≤ |F (qk)| for each query node qk in q. A
fragment fi is defined to be critical if there exists some
critical query node in Q(fi). We define the criticality
of a critical fragment fi, denoted by c(fi), as follows:

c(fi) = (
∑

qj∈Q(fi)
|F (qj)|)/|Q(fi)|. Then, critical

fragments are processed before non-critical ones; and
critical fragments are processed in non-descending or-
der of their criticality values.

Example 3.2 Consider the document d and query q
in Fig. 1. In terms of Prefix+Level annotation, R =
{(f1, /f), (f2, /b), (f3, /k), (f4, /c), (f5, /k), (f6, /c)}.
For scheduling S, f2, which has the smallest specificity,
is skipped since a matching is found after processing the
other fragments. For scheduling M , the order of frag-

4

ment evaluation is arbitrary due to the equal maximal-
matching value. To illustrate the policy C, we replace
the query node //i with //j to make q becomes a non-
matching query. The order of the criticality values of
the 6 relevant fragments is f1 = f2 < f5 = f6 < f3 = f4.
After processing f1 and f2, //j has not been matched
and none of the remaining fragments are relevant with
//j; thus the query will not be matched. ¦

3.6 Evaluating Subqueries on Fragments

The processing of a data fragment entails the simul-
taneous matching of the set of subqueries relevant for
that fragment. This requires the detection and main-
tenance of various matching data nodes as the data
nodes in a fragment are parsed and processed. The
matching of subqueries in fragments involves two chal-
lenges. Firstly, since the data subtrees in a fragment
are not necessarily complete as different parts of a sub-
tree might be distributed over several fragments, the
matching algorithm for fragments needs to be gener-
alized to handle partial matchings of subqueries. Sec-
ondly, since the fragments are not necessarily evalu-
ated in a “contiguous” manner, the presence of partial
matchings in various fragments need to be maintained
to enable the partial matchings to be “combined” to
detect complete matchings.

We have extended an existing approach for match-
ing multiple queries, XTrie [9], to handle both these
requirements. The modified algorithm is able to pro-
cess multiple subqueries on fragments, and it returns
both the matched subqueries as well as the matched
portions of partially matched subqueries. To enable
partial matchings to be combined to form complete
matchings, a subquery matching at query node qi is
propagated to its closest branching ancestor node, say
qj , to facilitate the detection of a subquery matching
at qj when more subquery matchings are detected for
the various child subtrees of qj . The details of these
extensions can be found in the full version of the pa-
per [10].

Example 3.3 Consider the document d and query q
in Fig. 1 and assume that Prefix+Level annotation
is used. Suppose f4 is first processed with the rele-
vant subquery subquery(/c). Since there is no com-
plete matching of subquery(/c) in f4, the algorithm
returns the partial matching /c/s/y, which means that
subquery(/s) is matched. Now, suppose the next
fragment to be processed is f3, which will result in
subquery(/k) being matched. From these two sub-
query matchings with different fragments, the algo-
rithm detects a complete matching of subquery(/c). ¦

3.7 Processing Multiple Queries

In this section, we briefly discuss the additional ex-
tensions required to process multiple queries simulta-
neously on fragmented XML data. There are two main
differences from processing a single query. Firstly,
the identification of relevant matchings for the vari-
ous subqueries of different queries can be processed
efficiently by exploiting any common prefixes among
the subqueries to avoid unnnecessary processing over-
head. Secondly, for the fragment scheduling schemes,
the scheduling metric value for each query-dependent
scheduling policy needs to be generalized to consider
the subqueries from all queries. As an example, the
specificity value of each fragment should be the sum of
the specificity values for all relevant queries.

4 Dynamic Optimizations

In this section, we present two novel optimizations
to further speed up the evaluation of twig queries on
fragmented XML data by eliminating certain relevant
evaluations. Our new optimizations utilize dynamic
information about the processed fragments to eliminate
certain yet-to-be-processed relevant evaluations with-
out affecting correctness.
Eliminating Redundant Evaluations, +. This
optimization is based on using the existence of some
matching in a processed fragment to eliminate cer-
tain relevant evaluations in yet-to-be-processed frag-
ments. Given subquery(qi) and qj is the nearest
ancestor branch node of qi, suppose subquery(qi) is
matched and the data node that matches qj is nj , then
for all subquery(qk) in which qk is some descendant
node of qi(including qi), if nj matches some prefix of
qk, subquery(qk) is redundant, since the matching of
subquery(qk) will finally form a redundant matching
of subquery(qi) under the same data node nj .
Eliminating Unnecessary Evaluations, −. This
optimization is based on using the absence of some
matching in a processed fragment to eliminate cer-
tain relevant evaluations in yet-to-be-processed frag-
ments. Suppose qb is a branch node in a tree pattern
query q and nb is the data node in the document that
matches qb. If there exists some branch of subquery(qb)
that is not matched in the subtree of nb, then for all
subquery(qd), in which qd is some descendant node of
qb and subquery(qd) will be evaluated at the subtree
rooted at nb, it is considered as unnecessary, since it
has been guaranteed that no matching of subquery(qb)
at nb does not exist.

Example 4.1 Consider the fragmented document d

5

and query q in Fig. 1. After processing f1, the evalu-
ation of query node /f at f2 becomes redundant since
there is already a complete matching of subquery(/f)
in f1 under the same data node b in f2. After pro-
cessing f6, the evaluation of query node /k with f5

becomes unnecessary since (1) there is no matching of
subquery(/s) in f6 and (2) there are no other descen-
dant fragments of f6 (besides f5) that could poten-
tially provide a matching of subquery(/s). Thus, even
if there is a matching of subquery(/k) in f5, this will
not yield a complete matching of subquery(/c). ¦

5 Related Work

The most related work to ours is the paper by Bose
and Fegaras on XFrag [22] which examines process-
ing XQuery queries on fragmented XML data based
on the hole-filler model. In their work, the processing
of an operator can be suspended while waiting for a
missing fragment to arrive. In Active XML [21], XML
documents are embedded with service calls to generate
additional data during query processing, which can be
considered as an alternative fragmentation model that
is suitable for pull-based web-service applications.

There exist a body of work that focused on XML-
based pub/sub systems [16, 24, 9], which assume that
data is disseminated as complete XML documents
while our emphasis is on exploiting fragmented data
for optimized filtering. There are also a number of
papers addressing the query processing on fragmented
XML data [11, 7, 3] in distributed or P2P environ-
ments. All these work are optimizing the query eval-
uations at different sites, which is different from our
work where queries are evaluated at one place.

Another relevant line of work examines how to frag-
ment XML documents [15, 19, 12, 1]. These papers are
complementary to our work which focuses on process-
ing queries on fragmented data.

6 Performance Study

We have conducted a comprehensive performance
study using both synthetic and real-life datasets. Our
results demonstrate the efficiency of our query process-
ing approach on fragmented data and the effectiveness
of our scheduling strategies and optimizations. In our
experiments, we observed that the total size of header
information is no more than 1% of the none-fragmented
document.

6.1 Experimental Testbed and Methodology

Data Sets: The synthetic data XMark [2] (DXMark)
and the real-life data from DBLP (DDBLP) are used.
The size of the document for DXMark is 11.5MB by
setting the scale factor of XMark as 0.1. Documents
are fragmented using Natix’s algorithm [23] which con-
trols the number of data nodes per fragment using a
threshold t. By setting t to 5000, we obtained 34 frag-
ments for DXMark. We have constructed eight XPath
queries for DXMark(Q1 − Q4 are matching queries,
and Q−5 −Q−

8 are non-matching queries). The queries
represent various properties of twig queries, including
“//” location step, single path queries and tree pat-
tern queries. For the specific queries, please refer to
the full version paper [10]. A set of random queries
were generated using YFilter’s XPath generator [24].

Algorithm Values
Scheduling R, T, S, M, C
Header annotation P(Prefix), PL(Prefix+Level)
optimizations none, +, −, {+,−}

Table 1. Different Algorithms Options

Algorithms: Table 1) lists the variations for differ-
ent fragmented approaches. Ax

y is used to denote a
fragmented approach, where A ∈ {P, PL} represents
the fragment header annotation scheme used; y ∈
{R, T, S, M, C} (as denoted in Section 3.5) represents the
scheduling policy used; and x represents the set of dy-
namic optimizations used. For example, PL+,−

S denote
the fragmented approach using the Prefix+Level an-
notation scheme, most-specific scheduling policy, and
both dynamic optimizations. NF is used to represent
the non-fragmentation approach.

For the scheduling policies, not all fragments may be
available at the moment of processing. An alternative
mechanism is that we only wait for the arriving of k
fragments to perform the scheduling. Here, k is called
scheduling window size.

Our performance metric is the query processing time
(in ms) including both the time to identify relevant
fragments and the time to schedule and process the
fragments. Our experiments were conducted on a
3 GHz Intel Pentium IV machine with 1 GB of main
memory running Windows XP; and all algorithms were
implemented using C++.

6.2 Experimental Results

Due to the space limitation, we omit the results on
DDBLP which showed similar trends as DXMark.

6

 0

 200

 400

 600

 800

 1000

Q-
8Q-

7Q-
6Q-

5Q4Q3Q2Q1

P
ro

ce
ss

in
g
 T

im
e

(m
s)

NF
PR

PLR

(a) NF vs. PR vs. PLR

 0

 200

 400

 600

 800

Q-
8Q-

7Q-
6Q-

5Q4Q3Q2Q1

P
ro

ce
ss

in
g
 T

im
e

(m
s)

PLR
PLT
PLM
PLS
PLC

(b) Comparison of schedulings

 0

 200

 400

 600

 800

Q-
8Q-

7Q-
6Q-

5Q4Q3Q2Q1

P
ro

ce
ss

in
g
 T

im
e

(m
s)

PLS
PL-

S
PL+

S
PL+,-

S

(c) Effect of optimizations on S

 0

 200

 400

 600

 800

Q-
8Q-

7Q-
6Q-

5Q4Q3Q2Q1

P
ro

ce
ss

in
g
 T

im
e

(m
s)

PL+,-
R

PL+,-
T

PL+,-
M

PL+,-
S

PL+,-
C

(d) Optimizations on different schedulings

 0

 200

 400

 600

 800

80402010

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Number of Queries

15 32 78 140 NF
PL+,-

R
PL+,-

T
PL+,-

M
PL+,-

S
PL+,-

C

(e) Effect of number of queries

 0

 100

 200

 300

 400

 500

 600

 700

 800

inf201050

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Number of Fragments in a Scheduling Window

delay = 0
delay = 10%
delay = 20%
delay = 40%

(f) Effect of transmission delay, PL+,−
S ,

Q40

Figure 2. Experimental Results, DXMark

Fragmented vs. Non-fragmented Approaches.
Fig. 2(a) compares the NF against PR and PLR for var-
ious queries on DXMark. The results show that PR and
PLR generally outperformed NF; in particular, for Q2,
PLR reduces the processing time of NF by 95%. The
performance improvement is due to the fact that frag-
mented approaches are able to process the fragments
selectively based on relevant information. Even for the
case that each fragment is relevant, the performance of
PR is still competitive with NF, which means that the
time to process header information is trivial. We also
observe that PLR is consistently more efficient than PR

since Prefix+Level annotation is able to exploit the
additional maxHt() information to prune off more non-
relevant fragments. We observe that the improvement
of PLR over PR is more significant for DDBLP than
DXMark since DDBLP is shallower than the DXMark

such that maxHt()-based pruning has more opportuni-
ties to prune. We will not include Prefix-based meth-
ods in subsequent experimental graphs.

Comparison of Scheduling Policies. Fig. 2(b)
compares five different scheduling policies (i.e. R, T, M,
S, C) for various queries on DXMark. The results show
that S is generally the most competitive for matching
queries (except for Q4); while C is generally the best
policy for non-matching queries. The reason for the
relatively weaker performance of the S for Q4 is that
many redundant evaluations with high specificities for
the two most specific branches in Q4 delay the match-

ing of the remaining branch. However, as shown later,
when the redundant elimination optimization is also
applied, PL+

S outperforms the other policies for Q4.

Effect of Dynamic Optimizations. Figs. 2(c) con-
sider the impact of the optimizations on most specific
scheduling S. We observe that for tree pattern queries
(e.g., Q3, Q4, Q−

6 , and Q−8), dynamic optimizations
is effective to eliminate redundant/unnecessary evalu-
ations. Our results also reveal that the unnecessary
evaluation optimization is less significant than the re-
dundant evaluation optimization due to the fact that
the DXMark data provides more opportunities for elim-
inating redundant evaluations. We have applied the
optimizations on other schedulings, which showed the
similar effectiveness. However, eliminating redundant
evaluations achieves best improvement for scheduling
S, since S is likely to find matchings early such that
+ has more chances to eliminate redundant evalua-
tions. We also observe that combining both optimiza-
tions achieves the best performance. Fig. 2(d) com-
pares the effect of the combined optimizations with
various scheduling policies on DXMark. The results
show that for matching queries, PL+,−

S offers the best
performance, while for non-matching queries, PL+,−

C

gives the best performance.

Effect of Number of Queries Fig. 2(e) demonstrates
the performance for multiple queries by varying the
number of queries from 10 to 80. The y-axis is the aver-
age processing time for all queries in the set. The num-

7

bers above the bars are the time to generate header an-
notations. As the number of queries increases, the time
to find relevant queries increases. However, as afore-
mentioned the time to determine the relevant queries
can be further improved by sharing the processing of
common prefix in the queries. We also observe that the
improvement becomes smaller as the number of queries
increases, since it is likely that more fragments are rel-
evant. However, it shows that even for Q80, PL+,−

S

and PL+,−
C can still outperform NF, since they help

to find matching or non-matching queries earlier such
that more redundant/unnecessary queries can be elim-
inated, which can further help to skip the processing
of more fragments.
Effect of Scheduling Window Size and Trans-
mission Delay In this section, we vary the scheduling
window size k to illustrate the effect, where k = inf
is the case that performs scheduling on all fragments.
The bottom line in Fig. 2(f) shows the effect of schedul-
ing window size k on scheduling S without considering
any delay. The similar trends are observed for other
scheduling. With the increasing of k, a better schedul-
ing strategy is obtained such that the query processing
time is reduced. Then we increase the transmission de-
lay in the query processing. We control delay for each
fragment as a percentage of the time to parse the frag-
ment, which is varied from 0, 10%, 20%, to 40%. From
Fig. 2(f), we observe that as the transmission delay
increases from 0 to 20%, the improvement of larger k
becomes smaller, since more time is spent to wait for
the fragments. And for the percentage of 40%, if k is
further increased to inf , the processing time is worse
than the case k = 0, since the gain by scheduling on
larger set of fragments is compensated by the time to
wait for the available of all these fragments.

7 Conclusions

In this paper, we have provided the first compre-
hensive study on processing XPath boolean queries di-
rectly on fragmented XML documents without recon-
structing the original documents. Our experimental
results based on both synthetic and real-life datasets
demonstrate the effectiveness of our processing and op-
timization strategies with a performance improvement
of up to a factor of 20 over the conventional approach
of processing non-fragmented documents. Among the
various fragment header annotation schemes, schedul-
ing policies, and evaluation optimizations that we con-
sidered, the PL+,−

S combination turns out to be the
best approach for evaluating matching queries, while
the PL+,−

C combination turns out to be the best ap-
proach for evaluating non-matching queries.

References

[1] W3C (2001) XML Fragment Interchange.
http://www.w3.org/TR/xml-fragment/.

[2] XMark. http://monetdb.cwi.nl/xml/index.html.
[3] A. Bonifati et al. XPath lookup-queries in P2P networks.

In WIDM, 2004.
[4] A. Carzaniga, A.L. Wolf. Forwarding in a content-based

network. In SIGCOMM, 2003.
[5] A. Carzaniga, D.S. Rosenblum, A.L. Wolf. Design and

evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3), 2001.

[6] A. Carzaniga, M. Rutherford, A.L. Wolf. A routing scheme
for content-based networking. In INFOCOM, 2004.

[7] A. Deshpande et al. Cache-and-query for wide area sensor
databases. In SIGMOD, 2003.

[8] A. Riabov et al. New algorithms for content-based
publication-subscription systems. In ICDCS, 2003.

[9] C.-Y. Chan et al. Efficient filtering of XML documents with
XPath expressions. VLDB Journal, 11(4), 2002.

[10] C.-Y. Chan, Y. Ni. Content-based dis-
semination of fragmented XML data.
http://www.comp.nus.edu.sg/ niyuan/fullversion.pdf.

[11] D. Suciu. Distributed query evaluation on semistructured
data. ACM TODS, 27(1), 2002.

[12] Eugene Y. C. Wong, Alvin T. S. Chan, Hong-Va Leong.
Efficient management of XML contents over wireless envi-
ronment by XStream. In SAC, 2004.

[13] G. Li, S. Hou, H-A. Jacobsen. A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams. In ICDCS,
2005.

[14] G. Picco, G. Cugola, Amy L. Murphy. Efficient content-
based event dispatching in the presence of topological re-
configuration. In ICDCS, 2003.

[15] J-M. Bremer, M. Gertz. On distributing XML repositories.
In WebDB, 2003.

[16] M. Altinel, M.J. Franklin. Efficient filtering of XML docu-
ments for selective dissemination of information. In VLDB,
2000.

[17] M. K. Aguilera et al. Matching events in a content-based
subscription system. In PODC, 1999.

[18] P. Triantafillou, Andreas A. Economides. Subscription sum-
marization: a new paradigm for efficient publish/subscribe
systems. In ICDCS, 2004.

[19] R. Bordawekar, O. Shmueli. Flexible workload-aware clus-
tering of XML documents. In XSym, 2004.

[20] R. Zhang, Y. Hu. HYPER: a hybrid approach to efficient
content-based publish/subscribe. In ICDCS, 2005.

[21] S. Abiteboul et al. Dynamic XML documents with distri-
bution and replication. In SIGMOD, 2003.

[22] S. Bose, L. Fegaras. XFrag: a query processing framework
for fragmented XML data. In WebDB, 2005.

[23] T. Fiebig et al. Anatomy of a native XML base management
system. VLDB Journal, 11(4), 2002.

[24] Yanlei Diao et al. Path sharing and predicate evaluation for
high-performance XML filtering. ACM TODS, 28(4), 2003.

8

