
Efficient Filtering of XML Documents with XPath Expressions

Chee-Yong Chan, Pascal Felber, Minos Garofalakis, Rajeev Rastogi
Bell Laboratories, Lucent Technologies�

cychan,pascal,minos,rastogi � @research.bell-labs.com

Abstract
We propose a novel index structure, termed XTrie, that

supports the efficient filtering of XML documents based on
XPath expressions. Our XTrie index structure offers several
novel features that make it especially attractive for large-
scale publish/subscribe systems. First, XTrie is designed
to support effective filtering based on complex XPath ex-
pressions (as opposed to simple, single-path specifications).
Second, our XTrie structure and algorithms are designed to
support both ordered and unordered matching of XML data.
Third, by indexing on sequences of element names orga-
nized in a trie structure and using a sophisticated matching
algorithm, XTrie is able to both reduce the number of un-
necessary index probes as well as avoid redundant match-
ings, thereby providing extremely efficient filtering. Our ex-
perimental results over a wide range of XML document and
XPath expression workloads demonstrate that our XTrie in-
dex structure outperforms earlier approaches by wide mar-
gins.

1. Introduction

The exploding volume of information (e.g., stock quotes,
news reports, advertisements) made available on the In-
ternet has fueled the development of a new generation of
applications based on selective data dissemination, where
specific data is selectively relayed to a large number (e.g.,
millions) of distributed clients. This trend has led to the
emergence of novel middleware architectures that asyn-
chronously propagate data from a set of publishers (i.e.,
data generators) to a large number of widely dispersed sub-
scribers (i.e., data consumers) who have pre-registered their
interest in specific information items [4]. In general, such
publish-subscribe architectures are implemented using a
set of networked servers that selectively propagate relevant
messages to the consumer population, where message rele-
vance is determined by subscriptions representing the con-
sumers’ interests in specific messages.

The majority of existing publish/subscribe systems have
typically relied on simple subscription mechanisms, such as
keyword or “bag of words” matching, or simple comparison

predicates on attribute values. For example, systems such as
Gryphon [1], Siena [4], and Elvin [15], all use filters in the
form of a set of attributes and simple arithmetic or boolean
comparisons on the values of these attributes. The recent
emergence of XML (eXtensible Markup Language) [18] as
a standard for information exchange on the Internet has led
to an increased interest in using more expressive subscrip-
tion/filtering mechanisms that exploit both the structure and
the content of published XML documents. In particular,
the XPath language [17], which is a W3C proposed stan-
dard for addressing parts of an XML document, has been
adopted as a filter-specification language by a number of
recent XML data dissemination systems (e.g., XFilter [2],
Intel’s NetStructure XML Accelerator [6]). Given the in-
creased complexity of structural, XPath-based data filters,
the problem of effectively identifying the subscriptions that
match an incoming XML document poses a difficult and
important research challenge. More specifically, the key
problem faced in XPath-based data-dissemination systems
can be abstracted as the following XPath Expression (XPE)
Retrieval Problem: “Given a large collection � of XPath
expressions (XPEs) and an input XML document � , find
the subset of XPEs in � that match � .”

The key technique for expediting XPE retrieval is to con-
struct an appropriate index structure on the given collection
of XPE subscriptions. Since XPEs can, in general, represent
structurally complex tree patterns, building index structures
for efficient XPE retrieval is a non-trivial problem. Further-
more, simplistic approaches (e.g., building an index based
solely on the element names contained in the XPEs) can re-
sult in very ineffective retrieval schemes that incur a lot of
unnecessary checking of (irrelevant) XPE subscriptions.

In this paper, we propose a novel index structure, termed
XTrie, that supports the efficient filtering of XML docu-
ments based on XPath expressions. Our XTrie index struc-
ture offers several novel features that make it especially
attractive for large-scale publish/subscribe systems. First,
XTrie is designed to support effective filtering based on
complex XPath expressions (as opposed to simple, single-
path specifications). Second, our XTrie structure and algo-
rithms are designed to support both ordered and unordered

matching of XML data. Note that ordered matching is an
important requirement for many applications (e.g., docu-
ment processing) that has typically been overlooked in ex-
isting data dissemination systems. Third, by indexing on
sequences of element names (i.e., substrings) organized in a
trie structure and using a sophisticated matching algorithm,
XTrie is able to both reduce the number of unnecessary in-
dex probes as well as avoid redundant matchings, thereby
providing extremely efficient filtering.

Indexing on a carefully-selected set of substrings (rather
than individual element names) in the XPEs is a key in-
gredient of our approach that enables us to minimize both
the number and the cost of the required index probes. The
key intuition here is that a sequence of element names has
a lower probability (compared to a single element name)
of matching in an input document, resulting in fewer index
probes. In addition, since there are fewer indexed XPEs as-
sociated with a “longer” substring key, each index probe is
likely to be less expensive as well.

To support on-line filtering of streaming XML data, our
XTrie indexing scheme is based on the event-based SAX
parsing interface [13], to implement XML data filtering as
the XML document is parsed. This is in contrast to the alter-
native DOM parsing interface [16], which requires a main-
memory representation of the XML data tree to be built be-
fore filtering can commence. To the best of our knowledge,
the only other SAX-based index structure for the XPE re-
trieval problem is Altinel and Franklin’s XFilter [2], which
relies on indexing the XPE element names using a hash-
table structure. By indexing on substrings rather than in-
dividual element names, our XTrie index provides a much
more effective indexing mechanism than XFilter. A further
limitation of XFilter is that its space requirement can grow
to a very large size as an input document is parsed, which
can also increase the filtering time significantly. Our exper-
imental results over a wide range of XML document and
XPath expression workloads validate our claims, demon-
strating that our XTrie index structure significantly outper-
forms XFilter (by factors of up to �).

2. Background
XPath Expressions (XPEs) and XPE-trees. An XML
document comprises a hierarchically nested structure of el-
ements, starting with a root element; sub-elements of an ele-
ment can themselves be elements and can also contain char-
acter data (i.e., text) and attributes. Elements can be nested
to any depth and the scope of an element in the XML doc-
ument is defined by a start-tag and an end-tag. The XPath
language treats XML documents as a tree of nodes (corre-
sponding to elements) and offers an expressive way to spec-
ify and select parts of this tree. XPath expressions (XPEs)
are structural patterns that can be matched to nodes in the
XML data tree. The evaluation of an XPE yields an object

whose type can be a node-set, a boolean, a number, or a
string. For our XPE retrieval problem, an XML document
matches an XPE when the evaluation result is a non-empty
node set.

The simplest form of XPEs specify a single-path pattern,
which can be either an absolute path from the root of the
document or a relative path from some known location (i.e.,
context node). A path pattern is a sequence of one or more
location steps. In its basic form, a location step specifies
a node name (i.e., an element name), and the hierarchical
relationships between the nodes are specified using parent-
child (“ � ”) operators (i.e., at adjacent levels) and ancestor-
descendant (“ ��� ”) operators (i.e., separated by any number
of levels). For example, the XPE ������������	 selects all 	 ele-
ment descendants of all � elements that are direct children
of the root element � in the document. XPath also allows
the use of a wildcard operator (“
 ”) to match any element
name at a location step.

Each location step can also include one or more predi-
cates to further refine the selected set of nodes. Predicate
expressions are enclosed by “ � ” and “ � ” symbols. The pred-
icates can be applied to the text or the attributes of the ad-
dressed elements, and may also include other path expres-
sions. Any relative paths in a predicate expression are eval-
uated in the context of the element nodes addressed in the
location step at which they appear. For example, the XPE
���� ��� ����������������	�����
���� specifies a tree pattern starting at
the root element � with two child “branches” ����	 and
����
such that the element � has an attribute � with a value equal
to or greater than ����� .

The tree pattern specified by an XPE can be represented
by an ordered rooted tree, where each node is labeled with
an element name (prefixed by either “ � ” or “ ��� ” followed
by an optional sequence of one or more “*/”). The ordering
of the child nodes for each parent node is based on their
order of appearance in the XPE. We refer to such a tree
representation of an XPE as an XPE-tree.

Unordered and Ordered XPE Matchings. Before we de-
scribe the two modes of matching XPEs, we first introduce
some new definitions and notation. Given two nodes � and
��� in a rooted tree , we say that � precedes ��� in a post-
order traversal of , denoted by �"!$#�%'&)(*��� , if � is visited
before �+� in a post-order traversal of .

Each node � in an XML document tree is associated with
a level number, denoted by ,�-.��-/,10��+2 , where ,3-.��-/,403��265�� if
� is the root element; otherwise, ,3-.��-/,403��2�57,3-��+-/,403�+�82:9;� ,
where ��� is the parent node of � .

Each node < in an XPE-tree is associated with a rel-
ative level (with respect to its parent node in), which is
defined to be at least = , denoted by >/-/,3?@-.��-/,10A<42�5B� =C�DE� ,
if the label of < is prefixed with “ ��� ” followed by 0F=HGI�.2
“
 ”; otherwise, if the label of < is prefixed with “ � ” followed
by 0F=JG;�/2 “
 ”, then the relative level of < is defined to be

[1,]8

[1,]8 s 1()

s 2()

s 3()
s 4()

s 2()

b

b

c

f

d

10

8

(a)

//a

//b

[1,1]/d[2,2]/*/c

(b)

b

7

1

9

4

b

a

3

2

e

c

5

6

Figure 1. Unordered and Ordered Matchings.

exactly = , denoted by >�-/,�? -��+-/,40�<42 5 � =*C'=�� .
Consider an XPE-tree with the set of nodes� <��.C1<���C�������C4<�	�
 and an XML document tree � . We say

that a node <� in matches at a node � in � if the element
name of <� is equal to that of � . In the unordered matching
model, where is treated as an unordered tree, matches

� if there exists a set of � nodes
� ����C1����C�������C1��	�
 in �

such that (1) for each node <�� in , <�� matches at ��� , and (2)
for each child node <�� of a node < � in , ��� is a descendant of
� � such that ,�-.��-/,10�����2 G ,�-.�+-/,40�� � 2�� >�-/,�? -.��-/,40�<���2 . As an
example, consider the XPE-tree of � 5 �������������
���	������
in Figure 1(a), where the label and relative level of each
node are indicated on its left and right, respectively; and the
XML document tree � in Figure 1(b), where the subscripts
indicate the order in which the nodes are parsed (ignore the
parenthetical annotations for now). Note that matches �
with ����� , ����� , �
 ��	 , and � matching at ��� , ��� , 	�� , and ��� ,
respectively.

In addition to the model of unordered matchings, XPath
also allows the order of matching to be explicitly specified.
Consider again the XPE-tree in Figure 1(a) for � . If we wish
to indicate that the “branch”
���	 must match in the docu-
ment before the “branch” � , this can be expressed using the
XPE � � 5 ��������������
 � � ��,�,!�#"%$�& ' - (�$ � ,)$�& ' :: ���A��	 . Referring
again to Figure 1, if the positions of the two subtrees rooted
at -#* and ��� in � are swapped, then �� would not match

� while � would still match � . In the ordered matching
model, where is treated as an ordered tree, matches �
if (1) matches � in the unordered matching model, and
(2) for each pair of child nodes <+� and <, of each internal
node in , <���! #�%'&)(<, in iff ����! #�%'&)(�-, in � .

Note that hybrid matchings of XPEs, which involve both
unordered as well as ordered matchings, are also possible.
Due to space constraints, we shall focus on only ordered
matchings of XPEs that do not contain any attributes in the
rest of this paper. Details on handling attributes as well as
unordered and hybrid matchings are given in [5].

3. XPE Decompositions and Matchings

In this section, we describe the mechanisms employed
in our XTrie index for decomposing XPEs into sequences
of XML element names (i.e., substrings), and define sev-
eral important concepts for matching based on substring-
trees that play a key role in our XTrie indexing structure
and matching algorithms.

3.1. Substring Decompositions

Given an XPE � , we define a sequence of element names
(H5 <���. <��/.�������. <�0 to be a substring of � if (is equal to the
concatenation of the element names of the nodes along a
path 1 �2��C4����C������ ��043 in the XPE-tree of � , such that each
��� is the parent node of �/�657� (�98:$;1<&) and the label of
each � � (except perhaps for � �) is prefixed only by “ � ”. In
other words, each pair of consecutive element names in a
substring of � must be separated by a parent-child (“ � ”) op-
erator. We use = ��<>:0!(/2 to denote the path of nodes in the
XPE-tree of � that defines the substring (. As an example,
consider the XPE � 5���������� 	����+����-�� � ' ����-��/�"�A���
���
$��-��/�
whose XPE-tree is depicted in Figure 2(a). The set of sub-
strings of � includes �+��' , � 	�� , -?� and � ; on the other hand
� �@'+- , '+-?� , and � -#� are not substrings of � , since they in-
volve an intermediate element name (i.e., -) that is not pre-
fixed by “ � ”.

A sequence of substrings A 5B1C(� C@(� C�������C�(0 3 of an
XPE � is said to be a substring decomposition of p if each
(� �DA is a substring of � and each node <+� in � ’s XPE-tree
is contained in = ��<>:0!(� 2 for some (� �EA . The ordering
of the substrings in A is fixed based on the order in which
they would be matched in an ordered matching of � ; i.e., (�
should be matched before (�F5G� . A substring decomposition
A is a minimal decomposition of p if each substring (� of
A is of maximal length; that is, there does not exist another
longer substring in � ’s XPE-tree that contains (�� . Clearly,
a minimal decomposition of � comprises the smallest pos-
sible number of substrings among all possible decomposi-
tions of � . Figures 2(a) and (b) show two possible substring
decompositions for our example XPE � , where each dashed
region encloses a path of nodes defining a substring. Note
that AIH is the (unique) minimal decomposition of � .

Our XTrie index relies on substring decompositions for
installing XPEs into the indexing structure. The choice of a
specific class of substring decompositions impacts both the
space and performance of the index. Minimal decompo-
sitions, in particular, have two important performance ad-
vantages. First, since longer substrings have a lower prob-
ability of being matched in the input XML document, the
maximal-length substrings chosen in a minimal decompo-
sition generally result in fewer index probes. Second, since
there are fewer XPEs associated with a longer substring,
the cost of each index probe is generally lower with mini-

/b

/a

/c

/d

//e

/g /*/*/e

/f//e

/f

/b

/a

/c

/d

//e

/g /*/*/e

/f//e

/f

(a) S a (b) S b (c)

abg

e

ab

ef

ef

abcd

Figure 2. Substring Decompositions.

mal decompositions. On the other hand, using only a mini-
mal decomposition for an XPE can result in problems when
checking for an unordered matching. For example, consider
again the minimal decomposition A H in Figure 2(a), where
(#�$5;� � 	 � , (� 5 - , (� 5;� �@' , (���5;-?� , and (* 5 -?� . Since
“ � � ” is part of (?� and (� but not part of (#* , for unordered
matching, using only A H would fail to detect a matching of
� when (* matches after “ � � ” has been matched but before
(� and (� are matched.

Intuitively, to avoid such problems, we need to enrich the
minimal decomposition of an XPE so that it “takes note” of
the branching nodes in the XPE-tree. Our XTrie indexing
scheme accomplishes this through the use of simple XPE
decompositions. Formally, a substring decomposition A is
said to be a simple decomposition of an XPE � if A can
be partitioned into two sequences A � and A � , where: (1)
AI� is the minimal decomposition of � ; and, (2) AG� consists
of one substring (for each branching node v in � ’s XPE-
tree, such that (is the maximal substring in � with � as its
last node and (is not already listed in A � . As an example,
the decomposition A�� depicted in Figure 2(b) is the simple
decomposition of our example XPE � ; note that A�� simply
adds the substring � � (� is a branching node) to the minimal
decomposition A7H . Also, note that, for a single-path XPE,
its simple decomposition is equal to its minimal decompo-
sition.

The substrings of the simple decomposition of � �
can be organized into a unique rooted tree, referred as
the substring-tree of � � , as follows. Let A � 5 1
(��� � C�(��� � C�������C�(���	� #�
�� 3 denote the simple decomposition of
� � , where � � denotes the number of substrings in the sim-
ple decomposition of � � . Then, the root substring is (��� � ,
and the parent substring of (��� � , where � 3 � , is (��� , (or
equivalently, (��� � is the child substring of (��� ,) if either (1)
= ��<>:0!(��� , 2 is a prefix of = ��<>:0!(#��� � 2 , or (2) the last node of
= ��<>:0!(��� , 2 is the parent node of the first node of = ��<>:0!(?��� � 2
in the XPE-tree of � � . The ordering among sibling sub-
strings is based on their ordering in A7� . As an example,
Figure 2(c) shows the substring-tree for the simple decom-
position in Figure 2(b). A substring that has no child sub-
strings is called a leaf substring. A substring (��� � is said to

be a descendant of another substring (��� , if either (��� , is the
parent substring of (��� � , or the parent substring of (��� � is a
descendant of (��� , . Similarly, (#��� , is said to be an ancestor
of (��� � if (��� � is a descendant of (#��� , . Finally, we define the
rank of a substring (#��� � to be equal to = if (#��� � is the = (��
child of its parent substring; the rank of the root substring is
� .

We now extend the notion of relative level that was de-
fined for nodes in XPE-trees to substrings. Informally, the
relative level of a substring (refers to the relative difference
in levels between the last elements of (and its parent sub-
string in a matching. More formally, consider a substring
(of an XPE � (with parent substring (�), and let < 5 1
< � C1< � C�������C4< 0 3 be the longest suffix of = ��<>:0!(/2 such that
< ���� = ��<>:0!(.�82 . Let >�-.,3?@-.�+-.,10A< � 2�5 � � � C�� � � for � 8 $ 8 & ,
and let = denote � 0���7� ��� . Then the relative level of (is de-
fined to be at least = , denoted by >�-/,�? -��+-/,40�(.2�5 � =C�DE� , if����� ��� ��� 0 � � �+
 5�D ; otherwise, it is defined to be exactly
= , denoted by >�-/,�?@-.�+-/,40!(/2 5 � =C�=�� .

3.2. Matching with Substrings

Consider an XML document tree � , and an XPE
� � with XPE-tree � and simple decomposition 1
(��� ��C@(��� ��C�������C�(���	� #
 � 3 . Since each substring (#��� � corre-
sponds to some path of nodes = ��<> 0�(��� �.2 in � , we can ex-
tend the definition of matching for nodes to substrings as
follows: (��� � matches at a node � in � (or there is a match-
ing of (��� � at � in �) if = ��<>:0!(��� �.2 matches � such that the
last node of = ��<> 0�(��� ��2 matches at � . We say that there is a
matching of (��� � at level � in � if (��� � matches at some node
at level � in � .

As the nodes in � are parsed in a pre-order traversal (by
the SAX parser), the ordered matching of � � in � also pro-
gresses incrementally following a pre-order traversal of the
substring-tree of � � such that each substring (#��� � is matched
before (��� , , =E3�� . Thus, to determine if � � matches � ,
we need to keep track of the “partial matchings” of � � in

� . However, since we are interested only in whether or
not � � matches � and not in the actual number of match
occurrences, “partial matchings” of � � that are “redundant”
should be ignored in order to improve the effectiveness of
the filtering process.

We now formally define the notions of partial and re-
dundant matchings. Given an XPE � � and an XML docu-
ment tree � , we define � to be a set of matchings (with
respect to � � and �) if � contains pairs of the form
0!(��� � C1� � 2 , where (#��� � matches at � � , and for each distinct
pairs 0!(#��� � C'� � 2 , 0�(��� ��! C1� ��! 2%�" � , (��� � �5E(��� ��! and � � �5I� ��! .
We say that there is a partial matching of (���� � at a node � �
in � if there exists a set of matchings � such that for each
� 8 =:8�� , (1) 0!(��� , C'� , 2D�# � ; and (2) for each child
substring (��� ,$! of (��� , , �-,$! is a descendant of � , such that
,�-.�+-.,10��-,$!�2�G ,�-.�+-/,40��-,�29� >�-.,3?@-.�+-.,10!(��� ,$!�2 . It follows that

we have a (complete) matching of � � in � if there is a par-
tial matching of (���	� #�
 � at some node in � . We represent a
partial matching by its set of matchings � .

To define redundant matching, we first need to introduce
the notion of subtree-matching. A set of matchings � is
said to be a subtree-matching of (��� � if � is a partial match-
ing of each descendant of (#��� � . Informally, a partial match-
ing of (#��� � at a node � is considered redundant if there exists
a subtree-matching of (#��� � at some “earlier” node �+� (i.e.,
���3! #�%1&)(� in �); thus, all subsequent partial matchings that
require the matching of (?��� � at � can be safely ignored with-
out affecting the correctness of deciding whether or not � �
matches � . More precisely, a partial matching of (��� � at ���
(represented by �) is said to be a redundant matching if
there exists a subtree-matching of (��� , (represented by � �),
where (��� , is either (��� � itself or an ancestor of (��� � , such that
(1) 0!(��� ��C1����!F2 � � � and ����!4! #�%'&)(��� in � ; and (2) if (��� , is
not the root substring of � � , then 0�(��� ,$!4C'��, !32 � � � � � ,
where (��� ,$! is the parent substring of (��� , . Otherwise, � is
said to be a non-redundant matching of (��� � .

Consider again the XPE � and XML document � in Fig-
ure 1, where the four substrings in the simple decomposition
of � are: (� 5 � , (� 5 � , (� 5 	 , and (� 5 � � . The par-
enthetical annotation “ 0!(��.2 ” besides a node � � in � means
that there is a non-redundant matching of (� at ��� when ���
is parsed in � . Thus � matches � . Both the partial match-
ings of (� at 	�� and (� at ����� are redundant. Observe that
a non-redundant matching could later become redundant as
more nodes in the document tree are parsed; in particular,
the non-redundant matching of (� at � � becomes redundant
after � � is parsed.

4. The XTrie Indexing Scheme

In this section, we present our novel XTrie indexing
scheme for filtering XML documents based on XPEs. Due
to space constraints, we focus only on ordered matchings.
The details for unordered and hybrid matchings can be
found in [5].

4.1. The Index Structure

Let � 5 � � �.C!� ��C�������C!� 0
 denote the set of XPEs be-
ing indexed, and � denote the set of distinct substrings de-
rived from all the simple decompositions of the XPEs in
� . An XTrie index consists of two key components: (1) a
Trie [12] (denoted by) constructed on � to facilitate de-
tection of substring matchings in the input XML data; and,
(2) a Substring-Table (denoted by A) that stores informa-
tion about each substring of each XPE in � . The informa-
tion in A is used to check for partial matchings. We now
describe each of these two XTrie components in detail.

The Substring-Table. The substring-table A contains one

row for each substring of each indexed XPE; i.e., there are
� #��
	 � rows in A with each row corresponding to some
(��� � . The rows in A are physically clustered in terms of the
XPEs such that the substrings belonging to an XPE � are
stored in consecutive rows ordered based on the simple de-
composition of � . The order of the XPEs in A is arbitrary.
Since each row > in A corresponds to some substring, for
convenience, we use the notation > ��� � to the denote the row
in A that corresponds to the substring (��� � .

To facilitate locating all XPEs that contain some sub-
string, the rows in A are also logically partitioned into �
disjoint blocks such that each block contains all the rows
that correspond to the same substring. This substring-based
partitioning of the rows in A is achieved by chaining the
rows within each block using a singly linked list, giving a
total of � singly linked lists in A (with one list for each
distinct substring in �). The rows within each linked list
are partially ordered such that if rows >?��� � and >���� , belong to
the same linked list, then >#��� , precedes > ��� � in the linked list
if � 1 = . This is required to ensure correctness under the
ordered matching model [5].

Each row in A (corresponding to some substring (��� �) is
a 5-tuple 0!= ��>/- &*<�� �#" C� -.,3?@-.�+-.,4C�� �2& =*C�� � ��� > $,��"C
� -.� <42 C where:� = ��>�-�&*<�� �#" refers to the row number of the tuple

in A corresponding to the parent substring of (���� � .
(= ��>�- &*<�� �#" 5;� if (��� � is a root substring.)

� � -/,�?@-.�+-/, is the relative level of (��� � (i.e.,
>�-/,�?@-.�+-/,40!(��� � 2).

� � ��& = is the rank of (��� � (i.e., � ��& = 5 = if (��� � is the
= (�� child substring of its parent substring).

� � � ��� > $,�� is the total number of child substrings of
(��� � .

� � -.� < , which is a “pointer” for a singly linked list, is
the row number of the next tuple in A that belongs to
the same logical block as the current row. If the current
row is the last row in the linked list, then � -��"< 5 � .

The Trie. The trie is a rooted tree constructed from the
set of distinct substrings � , where each edge in is labeled
with some element name. Each node � in is associ-
ated with a label, denoted by ,�� � -/,40�� 2 , which is the string
formed by concatenating the edge labels along the path from
the root node of to node � ; the label of the root node is
an empty string. is constructed such that for each (��� ,
there is a unique node � in such that ,3� � -/,40���265E(; and
for each leaf node � in , ,3� � -/,40���2 ��� . In addition to the
pointers to nodes at the next level of the trie, each node �
in has two special pointers:� The Substring pointer (denoted by � 0�� 2) points to

some row in A (i.e., � 0�� 2 is a row number) as
follows: if ,3�+� -.,10�� 2 ��� , then � 0�� 2 points to the
first row of the linked list associated with substring
,�� � -/,10�� 2 ; otherwise, � 0�� 2@5;� .

1

2

6

11

14 15

12

7 8

13

3 4 5

109

1

1 1 1 1

1

2 3 3

10

4

8

12

7

5

a
b c

dp4 = //c/b//c/d/*/*/d

p1 = //a/a/b/c/*/a/b

p2 = /a/b[c/e]/*/b/c/d

p3 = /a/b[c/*/d]//b/c

b

b c

ec

c

d

0

0

a

0

0

1 4

7

2 9

5

0

db

0 8

1110

Parent Rel Num
Row Level Rank Child Next

1 0 � � ����� 1 1 �
2 1 � � � � � 1 0 3
3 0 � ���!��� 1 2 6
4 3 � ���!��� 1 0 �
5 3 � � �)��� 2 0 �
6 0 � ���!��� 1 2 �
7 6 � �$����� 1 1 �
8 7 � ���!��� 1 0 12
9 6 � ������� 2 0 �

10 0 � ������� 1 1 �
11 10 � ������� 1 1 �
12 11 � � � � � 1 0 �

Figure 3. XTrie Example.
� The Max-suffix pointer (denoted by �@0���2) points to

some internal node in and its purpose is to ensure
the correctness of the matching algorithm. Specifi-
cally, �@0�� 2 5 � � if ,�� � -/,10�� � 2 is the longest proper
suffix of ,3� � -/,40���2 among all the internal nodes in ;
if � � does not exist, then �@0���2 points to the root node
of .

Figure 3 depicts the XTrie index structures for a set of
four XPEs � 5 � � � C)� � C)� � C!� �
 , where their respective sim-
ple decompositions are as follows: A � 5 1 ��� � 	�C1� � 3 ,
A � 5 1 � �/C'�+� 	 -�C'� 	 �E3 , A � 5 1 � �/C'�+� 	�C1�"C'� 	 3 , and
A � 5 1 	���C1	 �"C1� 3 . The number within each trie node �
represents the node’s identifier; and the values of � 0���2 and
�@0�� 2 are shown to the left and right of � , respectively.

4.2. The XTrie Matching Algorithm

Our XTrie indexing scheme is designed to support on-
line filtering of streaming XML data and is based on the
SAX event-based interface that reports parsing events. Fig-
ure 4 shows the search procedure for the XTrie, which ac-
cepts as input an XML document � and an XTrie index
0!A �C1 �2 , processes the parsing events generated by � , and
returns the identifiers of all the matching XPEs in the index.

The basic idea of the search algorithm is as follows. We
use the trie to detect the occurrence of matching sub-
strings as the input document is parsed. For each match-
ing substring (detected, we iterate through all the instances

of (in the indexed XPEs (by traversing the appropriate
linked list of rows in the substring-table A associated with
() to check if the matched substring (corresponds to any
non-redundant matching. Since the information stored in
A is static, we need to maintain some additional dynamic
run-time information to ensure that we check only for non-
redundant matchings.

This run-time information is maintained in the form of
a two-dimensional integer-array 	 of size A �
 ? 	 H� ,
where A denotes the number of rows in the substring-
table A , and ? 	 H� is the maximum number of levels in an
XML document. 	 � > ��� ��C�� �$5 & , &E3 � , if there is a non-
redundant matching of (��� � (represented by) at level �
such that the & (�� child substring of (��� � is the leftmost child
substring of (��� � for which a subtree-matching has not yet
been detected (i.e., is a subtree-matching of the 0 &�G �/2 (��
child substring of (��� � if & 3 �). Each 	 � > ��� ��C�� � is initialized
to � , and is incremented to � after a non-redundant matching
of (��� � at level � is detected. As more substring matchings
are detected, the value of 	 � >#��� � C � � is incremented from & to
&@9 � , & 3I� , when the matching also becomes a subtree-
matching of the & (�� child substring of (#��� � . The value of
	 � > ��� ��C�� � is reset to � when the end-tag corresponding to
the begin-tag at level � is parsed. Note that since 	 is a
large sparse array, its implementation can be optimized to
minimize space (e.g., using linked lists).

To understand how 	 is used to detect non-redundant
matchings, suppose that a matching of substring (��� � at level
� has been detected, and (��� � is the & (�� child substring of
(��� , . This matching is a partial matching of (��� � if there
exists a matching of (��� , at level ��� such that �JG ��� �
>�-.,3?@-.�+-.,10!(��� � 2 and 	 � >���� , C���� � � & . If, in addition, the value
of 	 � > ��� , C ��� � is exactly & , then this partial matching is non-
redundant; otherwise, it is redundant and it can safely be
ignored. We know that an XPE � � matches the input docu-
ment when 	 � > ��� �/C�� �*5 �;9 � for some value of � , where �
is the number of child substrings of the root substring (/��� � .

Our XTrie SEARCH algorithm (depicted in Figure 4) be-
gins by initializing the search node � to be the root node
of the trie (Step 5). For each start-tag < encountered, if
there is an edge out of � with the label < (to another trie
node � � in), the search continues on node � � . For each
trie node � � visited, a matching substring (corresponding to
,�� � -/,40�� � 2) is detected if � 0�� � 2 �5 � ; in this case, Algorithm
MATCH-SUBSTRING is invoked to process the matching
substring using the substring table A . Furthermore, for
each trie node � � visited, we also need to check for other
potential matching substrings that are suffixes of ,3� � -/,40�� � 2 ;
this is achieved by using the max-suffix pointer (i.e., �@0�� � 2)
in Step 16. On the other hand, if there is no edge out of
a node � with the current tag < , this means that the con-
catenation of ,�� � -/,40�� 2 and < is not a matching substring.
Therefore, we need to check for other potential matching

Algorithm SEARCH (� , ��� , �)
Input: � is an input XML document. (��� , �) is an XTrie index.
Output: � is the set of XPEs that matches � .
1) Initialize � to be empty;
2) Initialize ���	��
� ��� = root node of � for � = 0 to ������� ;
3) Let � be a � ��������������� integer-array with all values initialized to � ;
4) Initialize "!#� ; $�$� is the current document level
5) Initialize � to be the root node of � ; $�$"� is the current trie node
6) repeat
7) if (a start-tag % is parsed in �) then
8) &!')(+* ;
9) while ((there is no edge labeled ”t” from �) and

(� is not the root node of �)) do
10) �,!#-�./�10 ;
11) if (there is an edge labeled ”t” from � to �32 in �) then
12) ���4�5
5� 6�7!8�9!+�:2 ;
13) while (�;2 is not the root node) do
14) if (<�.=�:2=0?>@�) then
15) �A!+�@B MATCH-SUBSTRING(���&C=�"CD<�./� 2 0ECF);
16) � 2 !#-).=� 2 0 ;
17) else if (an end-tag is parsed in �) then
18) Reset �"� �GC= 6� to � for � = 1 to � ����� ;
19) ���4�5
5� 6� = root node of � ;
20) &!' IH'* ;
21) �J!#���	��
� E� ;
22) until (� has been completely parsed);
23) return � ;

Figure 4. Algorithm to search XTrie.

substrings, which are formed by the concatenation of some
suffix of ,3� � -/,40���2 and < , by using the max-suffix pointer in
Step 10. For each end-tag < encountered (corresponding to
some start-tag at level �), the run-time information 	 is up-
dated by resetting 	 � >�C � � to � for all rows > (Step 18), and
the search node is re-initialized to its previous location be-
fore the tag < was encountered (Step 19). This is achieved
by using an array � ����- to keep track of the location of the
search node at each document level (Step 12).

Algorithm MATCH-SUBSTRING (Figure 5) is invoked
when a substring ((matching at level �) is detected. The
algorithm checks for non-redundant matchings of (, updates
the run-time information 	 , and returns the identifiers of all
the matching XPEs that have (as their last substring. More
specifically, the algorithm iterates through each instance of
(in A (i.e., each row in the linked list associated with
() to check for non-redundant matchings of (. There are
two scenarios for the instance of the matching substring (say
(��� �) corresponding to row > . For the special case where (��� �
is a root substring (Steps 5-9), if its positional constraint is
satisfied (Step 6), then the matching is a partial matching
(and obviously non-redundant, since it is a root substring)
and 	 � >�C�� � is updated to � . If, in addition, (���� � is a leaf
substring, then we have a matching of � � (Step 9). For the
general case where (��� � is a non-root substring (Steps 10-
14), if there is a non-redundant matching of (���� � (Step 11),
then 	 � >�C � � is updated to � . If, in addition, (���� � is a leaf
substring, then Algorithm PROPAGATE-UPDATE is called
to update the run-time information array 	 and check for

Algorithm MATCH-SUBSTRING (��� , � , K ,)
Input: ��� is the substring-table of an XTrie index. � is a 2-dim.

integer-array. K refers to the first row in ��� that
corresponds to some substring that is matched at level .

Output: Set of matching XPEs.
1) Initialize � to be empty;
2) while (K:L!#�) do
3) K	2�!#���M� K4�=N OQP�K�
SRT%F�"�4U ;
4) Initalize V�P5%XWZY�!+[\P]�^S
 ;
5) if (K 2 !Q!+�) then
6) if (`_������ KS�=N �"
4]a��
cb5
4]) then
7) ��� K	C= 6�d!e* ;
8) if (����� KS�=N �:f7V�g`Y\�=]a�Q!Q!#�) then
9) V1P�%XWZY:!#%=K	fd
 ;
10) else
11) if (h" Z2)_i� *�CX ?H@*6� such that ?Hj Z2)_1���M� K4�=N �"
S]���
Sb5
4]

and �"� K	2FC= Z2k�T!+���M� K4�=N �"P�R�l) then
12) ��� K	C= 6�d!e* ;
13) if (����� KS�=N �:f7V�g`Y\�=]a�Q!Q!#�) then
14) V1P�%XWZY:! PROPAGATE-UPDATE(���"Cm�"CDK	CX);
15) if (V�P5%XWZY) then
16) Insert the id. of the XPE corrp. to row K into � ;
17) KQ!8����� KS�=N ��
Sn\% ;
18) return � ;

Figure 5. Algorithm to process a matched
substring.

a matching of � � . We should point out that, since we are
not interested in finding multiple matches of the same XPE,
we should eliminate unnecessary processing and checking
in MATCH-SUBSTRING for XPEs that have already been
matched. This can be easily achieved by using a bit-mask
(consisting of one bit per XPE); we have omitted details of
this additional filtering step from Figure 5 for simplicity of
presentation.

Algorithm PROPAGATE-UPDATE (depicted in Fig-
ure 6) is used to update 	 whenever a non-redundant
subtree-matching of some non-root substring ((/��� � match-
ing at level � corresponding to row > in A) is detected. The
algorithm iterates through each matching of its parent sub-
string (at level ��� � � ��� 	 �60 C ��� 	 H���) and updates its 	 entry
if the matching forms a non-redundant matching of (��� � . If
this matching is also a subtree-matching for the parent sub-
string of (��� � (Step 12), then there are two cases to consider.
If the parent substring is a root substring (Step 13), then we
have found a matching of � � ; otherwise, we recurse the up-
date propagation of the 	 entries for the ancestor substrings
of (��� � as well (Step 16). The algorithm returns < > �- if a
matching of � � has been detected; otherwise, if it is possible
to have multiple matchings of the parent substring of (/��� �
(i.e., >�-/,�? -��+-/,40�(��� � 2J5 � ��	 �F0C D � for some ��	 �60), then to
avoid any subsequent redundant matchings of descendants
of (��� � , the algorithm updates the 	 entries of all the earlier
matchings of (��� � (Steps 18 to 20), and returns ��+,!(.- .

The space requirement of the XTrie index is dominated
by the total number of substrings in � ; that is, the space
complexity is o 0 � � 	 ����7� � � 2 , where � � denotes the num-

Algorithm PROPAGATE-UPDATE (��� , � , K ,)
Input: ��� is the substring-table of an XTrie index.

� is a 2-dimensional integer-array. K refers to a row in
��� that corresponds to some substring ^ of �
for which there is a subtree-matching of ^ at level .

Output: Returns %=K4fT
 if there is a matching of � ; [\P]�^S
 otherwise.
1) K 2 !8���M� K4�=N OQP�K�
SRT%F�"�4U ;
2) � ����� CX ����� �T!+���M� K4�=N �&
4]a��
cb
S] ;
3) if .k ����� !Q!��'0 then
4) � 2 ����� CF 2 �����5�d!e� *�CX ?Hj ����� � ;
5) else
6) � 2 ����� CF 2 ����� �d!e� H� ����� CX ?Hj ����� � ;
7) Initialize V�P5%XWZY�!+[\P]�^S
 ;
8) Initialize 2 !' 2 ����� ;
9) while (V1P�%XWZY�!Q!#[7P5]�^S
) and (c2�_ � Z2 ����� C= Z2/���	��) do
10) if (��� K	2XCX Z2a�7!Q!+���M� K4�=N �&P5R l) then
11) ��� K	2XC= Z2a�7!#��� K	2XC= Z2a�(#* ;
12) if (��� K	2XC= Z2k�T!Q!+���M� K	2 �=N �;fdV1g`Y\�=]a�"(#*) then
13) if (����� K 2 �=N OQP�K�
SRT%F�"�4U#!Q!#�) then
14) V1P�%XWZY:!#%=K	fd
 ;
15) else
16) V1P�%XWZY = PROPAGATE-UPDATE(��� , � , K 2 , 2);
17) 2 !' 2 H@* ;
18) if (V1P�%XWZY:!Q!8[7P5]�^S
) and (c����� !Q!	�) then
19) for � = * to ?H@* do
20) if (��� K	CF�m� >'�) then ��� K	CF�m�d!+���M� K4�=N �:f7V1g`Y\�=]�� (#* ;
21) return V�P5%XWZY ;

Figure 6. Algorithm to update 	 and detect
complete matchings of XPE.

ber of the substrings in the simple decomposition of � � . To
analyze the time complexity, let = denote the length of the
longest root-to-leaf path in the trie , ? denote the maxi-
mum length of a linked list in A , and

denote the max-

imum height of a substring-tree. The complexity of Algo-
rithm PROPAGATE-UPDATE is o 0
 ? 	 H � 2 . Since Algo-
rithm MATCH-SUBSTRINGmakes at most ? calls to Algo-
rithm PROPAGATE-UPDATE, the complexity of Algorithm
MATCH-SUBSTRING is o 0�?
 ? 	 H� 2 . For each start-tag
in the input document, Algorithm SEARCH makes at most
= calls to Algorithm MATCH-SUBSTRING; thus, the com-
plexity of processing each start-tag is o 0!=;?
 ? 	 H��2 .

We conclude this section by briefly describing an opti-
mized variant of XTrie, which we referred to as Lazy XTrie.
In contrast to above variant of XTrie (referred to as Ea-
ger XTrie), which probes the substring-table A for every
matching substring detected in the input document, Lazy
XTrie postpones the probing of A such that the substring-
table is only probed for a matching substring (if (appears
as a leaf substring in some XPE; otherwise, for a matching
non-leaf substring (, Lazy XTrie only updates information
about the level at which (is matched in the input document.
Thus, Lazy XTrie minimizes the number of unnecessary in-
dex probes at the expense of a slightly higher cost for each
probe due to the additional processing required to check for
matchings of the ancestor substrings of the matched leaf
substring. The details of Lazy XTrie are given in [5].

5. Related Work

There has been various work on the filtering of data using
“flat patterns” in the form of conjunctions of simple pred-
icates on data attributes, including research on rule/trigger
processing systems [9, 11] and publish-subscribe systems
[1, 10, 14]. In contrast, our paper focuses on filtering XML
documents based on tree patterns (based on XPath expres-
sions), which demands more sophisticated indexing tech-
niques, since tree patterns consist of both data contents as
well as structure. The only work that is closely related to
ours is the XFilter index which is also designed for filter-
ing XML documents with XPath expressions [2]. While
our XTrie index is based on decomposing tree patterns into
collections of substrings (i.e., sequences of element names)
and indexing them using a trie, XFilter essentially treats
each tree pattern as a set of finite state automata, with each
automaton responsible for the matching of some path in the
tree pattern. The collection of automata for all the tree pat-
terns are indexed using a hash table on the single element
names (i.e., automata transitions).

XTrie is more space-efficient than XFilter since the space
cost of XTrie is dominated by the number of substrings in
each tree pattern, while the space cost of XFilter is dom-
inated by the number of element names in each tree pat-
tern. By indexing on substrings instead of single element
names, the substring-table entries in XTrie are also probed
less often than the hash table entries in XFilter. Further-
more, while XTrie ignores partial matchings of tree patterns
that are redundant, XFilter keeps tracks of all instances of
partially matched tree patterns, which results in more pro-
cessing overhead.

6. Experimental Evaluation

To determine the effectiveness of XTrie, we compare its
performance against XFilter. Our results indicate that XTrie
is between � to � times faster than XFilter for single-path
XPEs1.

XML Documents. Similar to [2], we used the NITF (News
Industry Text Format) DTD [7] to generate our XML doc-
ument data set. The NITF DTD (version 2.5) contains ����
elements with � �� attributes. Our data set of XML docu-
ments is generated using IBM’s XML Generator tool [8].
We generated three sets of ����� XML documents with sim-
ilar characteristics. These sets correspond to different sizes
of document: small, medium and large, with an average of
��� , �.��� , and ������� pairs of tags, respectively.

XPath Expressions. We implemented an XPath expression
generator that takes a DTD as input and creates a set of
valid XPath expressions (with no duplicates) based on the

1We did not compare with tree-structured XPEs because the XFilter
paper [2] focuses on single-path XPEs.

0

500

1000

1500

0 100 200 300 400 500

F
ilt

er
in

g
T

im
e

(m
s)

Number of XPEs (x1,000)

Eager XTrie
Lazy XTrie

XFilter
XFilter-LB

(a) Varying P (� !���� C ��� ! � N *�C���� !
� N *�C ��� !+� C	� !#�).

0

1000

2000

3000

4000

20 100 1000

F
ilt

er
in

g
T

im
e

(m
s)

Document Size (number of tag pairs)

Eager XTrie
Lazy XTrie
XFilter-LB

(b) Varying document length (O = *c����l , � = ��� ,
��� = � N * , ��� = � N * , ��� = � , � = �).

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5

F
ilt

er
in

g
T

im
e

(m
s)

Descendant (’//’) Probability

Eager XTrie
Lazy XTrie
XFilter-LB

(c) Varying � � (O = *c����l , � = ��� , � � = � N * , � � = � ,
� = �).

0

100

200

300

10 15 20

F
ilt

er
in

g
T

im
e

(m
s)

Maximum Number of Levels

Eager XTrie
Lazy XTrie
XFilter-LB

(d) Varying � (O = *c����l , � � = � N * , � � = � N * , � � = � ,
� = �).

Figure 7. Experimental Results.

following set of six input parameters. The parameter =
controls the cardinality of the set of indexed XPEs (rang-
ing from ����C'����� to ����� C1�����). The parameter ? controls
the “depth” of the XPEs in terms of the maximum number
of levels (ranging from �.� to ��). The parameter ��
 (��)
controls the probability (ranging from � to ��. �) of having a
wildcard “ ��
 ” (descendant “ ��� ”) operator at each node. The
parameter � � controls how “bushy” are the XPE-trees of the
XPEs (ranging from � to ��.8�); a value of � will generate
only single-path XPEs, while a higher value will increase
the number of branches in the XPE-trees. The parameter�

(ranging from � to �) controls the skewness of the Zipf
distribution [19] used for selecting element names, where a
value of � corresponds to a uniform distribution and a higher
value corresponds to a more skewed distribution.

Algorithms. We compare the performance of four algo-
rithms: (1) XFilter, (2) XFilter with “list balance” opti-
mization [2], which is denoted by ��� $,A< -.> - ?�� , (3) Ea-
ger XTrie, and (4) Lazy XTrie. Note that we did not apply
the prefiltering optimization [2] to XFilter because this opti-
mization is orthogonal to the index approach, and is applica-
ble to XTrie as well. All the algorithms were implemented
in C++ and compiled using GNU C++ version 2.95.3. Ex-
periments were conducted on a Sun Ultra-250 with � ��� MB
of main memory running Solaris 2.7. All the index struc-

tures were resident in main-memory for all the experiments.
For each input XML document, we measured the total fil-
tering time which includes the CPU time to parse the in-
put document, probe and update the index, and report the
matched expressions. Our performance metric for each cat-
egory of documents (small, medium, or large) is the average
filtering time over the set of ����� XML documents for that
category. We used the SAX parser of the Apache Founda-
tion [3] for parsing XML documents. The average times for
parsing a small, medium, and large document were ��. � ms,
���2. � ms, ��� � . ms, respectively.

6.1. Experimental Results

Our experimental results are shown in Figure 7, where
the base case uses the following parameter values: medium
data set, = 5 �.��C1����� , ? = ��� , �
 = ��.8� , � � = ��.8� , � � = � , and�
= � .

Figure 7(a) compares the scalability of the algorithms
as a function of = , the size of the set of indexed XPEs.
The results show that the filtering time increases almost lin-
early with = , with Lazy XTrie being the fastest algorithm,
which outperforms XFilter-LB by a factor of between � to � .
Eager XTrie performs slightly better than XFilter-LB, and
XFilter performs the worst. Note that since the performance
of XFilter is always much worse than XFilter-LB, we omit

XFilter from subsequent graphs. Figure 7(b) compares the
scalability of the algorithms as a function of the size of the
XML documents (in terms of the number of tag-pairs). The
results clearly show that the filtering time increases linearly
with the document size for all the algorithms.

Figure 7(c) shows that increasing the probability of de-
scendant operators in the XPEs (i.e., � �) increases the filter-
ing time of all the algorithms. For the XTrie algorithms, this
is because having more descendant operators in a XPE is
likely to result in a larger number of shorter substrings in its
simple decomposition, which not only increases the num-
ber of entries in the substring-table but also leads to more
matchings in the trie (due to shorter substrings). For the
XFilter-LB algorithm, having more descendant operators in
the XPEs translates to more instances of partially matched
expressions thereby resulting in more processing overhead.

Finally, Figure 7(d) compares the effect of the “depth”
of the XPEs on the performance of the filtering algorithms.
The graphs show that the performance of all the algorithms
improves slightly as the depth of the XPEs increases. This
is because tree patterns with longer “branches” are more
selective resulting in fewer matches. More experimental re-
sults are given in [5].

We also compared the memory usage of both XTrie and
XFilter, and our experimental results indicate that XTrie is
more space efficient. For instance, for the experiment in
Figure 7(a) with ����� C1����� XPEs, XTrie required approxi-
mately � � MB of memory while XFilter required � �

MB.

7. Conclusions

In this paper, we have proposed a novel index structure,
termed XTrie, that supports the efficient filtering of stream-
ing XML documents based on XPath expressions. Our
XTrie index offers several novel features that make it espe-
cially attractive for large-scale publish/subscribe systems.
First, the XTrie is designed to support effective filtering
based on complex XPath expressions (as opposed to sim-
ple, single-path specifications). Second, our XTrie structure
and algorithms are designed to support both ordered and un-
ordered matching of XML data. Third, by indexing on se-
quences of XML element names (i.e., substrings) organized
in a trie structure and using a sophisticated matching algo-
rithm, the XTrie is able to both reduce the number of unnec-
essary index probes as well as avoid redundant matchings,
thereby providing extremely efficient filtering. Our exper-
imental results over a wide range of XML document and
XPath expression workloads have clearly demonstrated the
benefits of our approach, showing that our XTrie index con-
sistently outperforms earlier approaches by wide margins.

Acknowledgements. We would like to thank Mehmet Al-
tinel and Mike Franklin for helping us to understand the
details of XFilter.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching Events in a Content-based Sub-
scription System. In Proc. of ACM PODC, pages 53–61,
Atlanta, GA, May 1999.

[2] M. Altinel and M. Franklin. Efficient Filtering of XML Doc-
uments for Selective Dissemination of Information. In Proc.
of VLDB, pages 53–64, Sept. 2000.

[3] Apache. Xerces C++ Parser. http://xml.apache.org, 2001.
[4] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Eval-

uation of a Wide-Area Event Notification Service. ACM
Trans. on Computer Systems, 19(3):332–383, August 2001.

[5] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Effi-
cient Filtering of XML Documents with XPath Expressions.
Technical report, Bell Labs., June 2001.

[6] T. I. Corporation. Intel NetStructure XML Ac-
celerators. http://www.intel.com/netstructure/products/
xml accelerators.htm, 2000.

[7] R. Cover. The SGML/XML Web Page.
http://www.oasis.open.org/cover/sgml-xml.html, Dec.
1999.

[8] A. Diaz and D. Lovell. XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator,
Sept. 1999.

[9] E. N. Hanson and M. Chaabouni and C.-H. Kim and Y.-W.
Wang. A Predicate Matching Algorithm for Database Rule
Systems. In Proc. of ACM SIGMOD, pages 271–280, At-
lantic City, NJ, May 1990.

[10] F. Fabret, H. Jacobsen, F. Llirbat, K. Ross, and D. Shasha.
Filtering Algorithms and Implementations for Very Fast
Publish/Subscribe Systems. In Proc. of ACM SIGMOD,
pages 115–126, Santa Barbara, California, May 2001.

[11] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
L. Noronha, S. Parthasarathy, J. B. Park, and A. Vernon.
Scalable Trigger Processing. In Proc. of IEEE ICDE, pages
266–275, Sydney, Austrialia, March 1999.

[12] D. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3, chapter 6.3. Addison Wesley, second
edition, 1998.

[13] D. Megginson. SAX: A Simple API for XML.
http://www.megginson.com/SAX/.

[14] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Mon-
itoring XML data on the Web. In Proc. of ACM SIGMOD,
pages 437–448, Santa Barbara, California, May 2001.

[15] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps.
Content Based Routing with Elvin4. In AUUG2K, Canberra,
Australia, June 2000.

[16] W3C. Document Object Model (DOM) Level 1 Specification
(Second Edition), Version 1.0. http://www.w3.org/TR/REC-
DOM-Level-1/.

[17] W3C. XML Path Language (XPath) 1.0.
http://www.w3.org/TR/xpath, November 1999.

[18] W3C. Extensible Markup Language (XML) 1.0, 2nd Edition.
http://www.w3.org/TR/REC-xml/, October 2000.

[19] G. Zipf. Human Behaviour and Principle of Least Effort.
Addison-Wesley, Cambridge, Massachusetts, 1949.

