Efficient Processing of Skyline Queries
with Partially-Ordered Domains

Chee-Yong Chan
National University of Singapore

chancy@comp.nus.edu.sg

1. Introduction

Many decision support applications are character-
ized by several features: (1) the query is typically based
on multiple criteria; (2) there is no single optimal an-
swer (or answer set); (3) because of (2), users typi-
cally look for satisfying answers; (4) for the same query,
different users, dictated by their personal preferences,
may find different answers meeting their needs. As
such, it is important for the DBMS to present all inter-
esting answers that may fulfill a user’s need. In this pa-
per, we focus on the set of interesting answers called
the skyline. Given a set of points, the skyline comprises
the points that are not dominated by other points [1].
A point dominates another point if it is as good or better
in all dimensions and better in at least one dimension. As
an example, a tourist looking for budget hotels that are
close to the cities may issue the following SQL queries
[1]: Select * From hotels Skyline of Price Min,
Distance Min, where Min indicates that the price and
the distance should be minimized. Clearly, if hotel hl
dominates hotel h2 (i.e., hl is cheaper and nearer to
the city than hotel h2), then h2 can be pruned away.

While much work has been done to develop efficient
schemes to evaluate skyline queries, these deal exclu-
sively with totally-ordered attribute domains [1, 4, 2,
3]. Partially-ordered attribute domains which include
interval data (e.g., temporal data), categorical data
(e.g., type/class hierarchies), and set-valued domains,
have not been considered. In our hotel example, a hotel
may store a set of interesting places/amenities within
its vicinity, and our tourist may prefer a hotel that con-
tains a larger set of interesting places/amenities (e.g.,
gift shop, gymnasium, saloon, sauna, etc.).

For totally-ordered attribute domains, index-based
algorithms like NN algorithm [2] and BBS algorithm
[3] have been shown to be superior over the nested-
loop approach. However, because of the lack of a total
ordering for partially-ordered attribute domains, it is
unclear if index-based schemes can still maintain their

Pin-Kwang Eng
National University of Singapore

engpk@comp.nus.edu.sg

Kian-Lee Tan
National University of Singapore

tankl@comp.nus.edu.sg

competitiveness given that their effectiveness to prune
the search space are reduced.

In this paper, we address the novel and impor-
tant problem of evaluating skyline queries involving
partially-ordered attribute domains. To the best of our
knowledge, this issue has not been investigated by any
of the previous related work.

2. Motivation

In this section, we consider the possible evaluation
strategies and motivate our proposed algorithms for
processing skyline queries with partially-ordered at-
tribute domains. For convenience, we refer to such
queries as partially-ordered skyline queries (or POS-
queries) in contrast to the totally-ordered skyline queries
(or TOS-queries) that involve only totally-ordered at-
tribute domains.

The most direct method to process POS-queries is
to apply the well-known block nested loop approach
(BNL) [1], which is the simplest and most versatile ap-
proach that works for all types of attribute domains.
However, the performance of BNL has been shown to
be inferior to that of index-based approaches (such as
NN algorithm [2] and BBS algorithm [3]) due to the
pruning effectiveness of index-based methods. Another
limitation of BNL is that it is a “blocking” algorithm
and lacks progressiveness (i.e., answers can only re-
turned after all skylines are computed).

Another strategy to evaluate POS-queries is to try
to leverage the effectiveness of previous index-based
approaches for TOS-queries by first transform-
ing the partially-ordered attribute domains into
totally-ordered domains such that the partial order-
ing of the original domains are “preserved” in the
transformed domains. The most obvious transfor-
mation technique is to map each partially-ordered
attribute domain into a set of boolean attribute do-
mains as illustrated by the simple example in Fig. 1,
where the attribute A (with partially-ordered do-

A A | Ao
a 1 1
(¢ b| —> 0|1
¢ 1 0
d 0 0

@

Figure 1. Example of domain transformation

main values {a,b,c,d}) is mapped into two boolean
attributes A; and As. In this way, the collec-
tion of transformed attributes is now amenable to
be indexed using one of the efficient techniques pro-
posed for TOS-queries (e.g., [2, 3]). This transfor-
mation is particularly convenient for set-valued at-
tribute domains. However, this approach suffers
from the well-known “dimensionality curse” prob-
lem when the size of the partially-ordered attribute do-
main is large, which will be transformed to a large
number of boolean-valued attributes. Thus, the sim-
ple boolean mapping is not suitable for index-based
methods.

3. Our Approach

To both enable the use of efficient index-based
techniques (that are designed for totally-ordered at-
tributes) as well as avoid the “dimensionality curse”
problem with using simple domain transformations, the
approach that we propose is a “middle-ground” so-
lution that is based on using an approximate, space-
efficient domain transformation. Our approach is based
on using an approximate interval representation (in the
form of a pair of integer attributes) for each partially-
ordered attribute. This strategy, which increases the
dimensionality by one for each partially-ordered at-
tribute, provides a reasonable and practical approxi-
mate domain mapping that is amenable to efficient in-
dexing. Thus, the skyline answers can be computed by
organizing the transformed attributes using an exist-
ing indexing method. Note that as the skyline com-
putation is performed on the transformed space, false
positives may arise and these have to be pruned away
when answering skyline queries.

Based on the above framework, we propose three
evaluation algorithms. BBS™ is a straightforward adap-
tation of BBS. Because of false positives, BBS™ is no
longer progressive, i.e., it needs to find all skyline points
before answers can be returned. The second scheme,
SDC (Stratification by Dominance Classification) ex-
ploits the properties of domain mappings to avoid un-
necessary dominance checkings. In particular, it orga-

260

234
208
182 BNL —&—
BNL+ -+
L BBS# --a-
156 SDC —-6--
) SDC+ ---%--
g 1o
104
78
52
Lo X
26
o " P S ¥)
0 20 40 60 80 100

% of answers output

Figure 2. Performance Comparison

nizes the data into two strata at runtime - points that
are definitely in the skyline (stratum 1) and those that
may be false positives (stratum 2) . As such, it can re-
turn answers in the former category as soon as they are
produced. In the third scheme, SDC*, the data is par-
titioned into two or more strata offline so that points
at stratum ¢ cannot dominate points at stratum ¢ — 1.
In this way, skyline points obtained from stratum ¢ — 1
can be returned before points in stratum 4 are exam-
ined, thereby further improving on the progressiveness
of the skyline computation.

Fig. 2 compares the performance of our pro-
posed algorithms (BBS™, SDC, and SDC™) against the
block nested-loop algorithms (BNL and BNL™) for a
3-dimensional dataset (with one partially-ordered at-
tribte) consisting of 500K records. SDC* has the best
performance in terms of both response time and pro-
gressiveness.

4. Conclusions

In this paper, we addressed the problem of evaluat-
ing skyline queries with partially-ordered domains. Our
proposed algorithms, which are based on using approx-
imate domain transformations, outperformed existing
approaches by a wide margin.

References

[1] S.Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE’01, pages 421-430, 2001.

[2] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: an online algorithm for skyline queries. In
VLDB’02, 2002.

[3] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal
and progressive algorithm for skyline queries. In SIG-
MOD’03, pages 467-478, 2003.

[4] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB’01, pages 301-310, 2001.

