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ABSTRACT
Many applications often require finding sets of entities of inter-
est that meet certain constraints. Such set-based queries (SQs) can
be broadly classified into two types: optimization SQs that involve
some optimization constraint and enumerative SQs that do not have
any optimization constraint. While there has been much research
on the evaluation of optimization SQs, there is very little work on
the evaluation of enumerative SQs, which represent the most funda-
mental fragment of set-based queries. In this paper, we address the
problem of evaluating enumerative SQs using RDBMS. While enu-
merative SQs can be expressed using SQL, existing relational en-
gines, unfortunately, are not able to efficiently evaluate such queries
due to their complexity. In this paper, we propose a novel evalua-
tion approach for enumerative SQs. Our experimental results on
PostgreSQL demonstrate that our proposed approach outperforms
the conventional approach by up to three orders of magnitude.

1. INTRODUCTION
Many applications often require finding sets of entities of in-

terest that meet certain constraints. Such set-based queries (SQs)
can be broadly classified into two types: optimization SQs that in-
volve some optimization constraint and enumerative SQs that do
not have any optimization constraint. For example, consider a re-
lation R(id,type,city,price,duration,rating) shown in Table 1 that
stores information about various places of interest (POI), where
type refers to the category of the POI (e.g., museum, park), du-
ration refers to the recommended duration to spend at the POI and
rating refers to the average visitors’ rating of the POI. Suppose that
a tourist is interested to find all tour trips near Shanghai consisting
of POIs that meet the following constraints: the trip must include
both Shanghai (S.H.) and Suzhou (S.Z.) cities, the trip must in-
clude POIs of type museum and park, and the total duration of the
trip should be between 6 and 10 hours. There are three packages
that satisfy the above query: {t1, t2}, {t1, t2, t3} and {t1, t2, t5}.
The above is an example of an enumerative SQ to find all sets of
POIs that satisfy the given constraints. If the query had an addi-
tional constraint to minimize the total cost of the tour package, it
would become an optimization SQ.

As another example, suppose that an employer is looking to
hire a team of language translators for a project that meet the fol-
lowing constraints: each team member must know English; the
team collectively must be knowledgeable in French, Russian, and
Spanish; the team consists of at least two translators; and the total
monthly salary of the team is no more than $50K. Consider a rela-
tion Translator (id,location,salary,english,french,russian,spanish)
that stores information about language translators available for hire,
where the four binary valued attributes english, french, russian,
and spanish indicate whether a translator is knowledgeable in the

Table 1: An example relation R
id type city price duration rating
t1 museum S.H. 50 4 7
t2 park S.Z. 70 3 5
t3 museum S.Z. 60 3 8
t4 shopping S.H. 80 5 7
t5 shopping H.Z. 90 2 9

specific languages, location represents the translator’s living place,
and salary represents the translator’s expected monthly salary. To
browse through all the possible teams for hiring, the employer exe-
cutes an enumerative SQ on the Translator relation.

Another application of enumerative SQs is in the area of set pref-
erence queries [1, 2, 3], which computes all sets of entities of in-
terest that satisfy some preference function. Consider again our ex-
ample on hiring translators. In addition to the previously discussed
constraints, the employer could prefer to hire a team where (a) the
team members are located close to one another and (b) their total
salary is low. Thus, this set preference query is essentially a sky-
line [4] set-query to retrieve non-dominated teams where the mem-
bers have close proximity and low total salary. The most general
approach to evaluate skyline set-queries is to first enumerate all the
candidate sets followed by pruning away the dominated sets. Al-
though there has been recent work to integrate these two steps [3],
such optimization is applicable only for restricted cases (e.g., when
the sets are of fixed cardinality and the preference function satisfies
certain properties); and is not applicable for queries such as our
example query. Therefore, efficient algorithms to evaluate enumer-
ative SQs are essential for the efficient processing of set preference
queries.

There has been much research on evaluating optimization SQs
where the focus is on heuristic techniques to compute approxi-
mately optimal or incomplete query results (e.g., [5, 6, 7, 8, 9,
3, 10]). However, to the best of our knowledge, there has not been
any prior work on the evaluation of enumerative SQs. Enumera-
tive SQs are essentially a generalization of conventional selection
queries to retrieve a collection of sets of tuples (instead of a collec-
tion of tuples), and they represent the most fundamental fragment
of set-based queries.

In this paper, we address the problem of evaluating enumerative
SQs using RDBMS. For convenience, we refer to enumerative SQs
as simply SQs in the rest of this paper.

While SQs can be expressed using SQL, existing relational en-
gines, unfortunately, are not able to efficiently optimize and eval-
uate such queries due to their complexity involving multiple self-
joins and/or view expressions. In this paper, we propose a novel
evaluation approach for SQs. The key idea is to first partition the in-
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put relation into disjoint blocks based on the different combinations
of constraints satisfied by the tuples and then compute the answer
sets by appropriate combinations of the blocks. In this way, a SQ
is evaluated as a collection of cross-product queries (CPQs). How-
ever, applying existing multiple query optimization (MQO) tech-
niques for this evaluation problem is not effective for two reasons.
First, the scale of the problem could be very large involving hun-
dreds of CPQ evaluations. Existing MQO heuristics, which are
mainly designed for optimizing a handful of queries, are not scal-
able for our problem. Second, as the queries here are CPQs (and
not join queries), existing MQO techniques, which are based on
materializing and reusing common subexpressions, is not effective
as the cost of materialization exceeds the cost of recomputation.

In this paper, we make three key contributions to the study of
SQs. First, we experimentally show that conventional RDBMS are
unable to efficiently evaluate SQs. Second, we propose a novel
approach to evaluate SQs in terms of a collection of CPQs. Our
approach includes both effective MQO heuristics designed to opti-
mize a large collection of CPQs and efficient evaluation techniques
that exploit the properties of set predicates in the SQs. Third, we
demonstrate the effectiveness of our approach with a comprehen-
sive experimental evaluation on PostgreSQL which shows that our
approach outperforms the conventional SQL-based solution by up
to three orders of magnitude.

The rest of this paper is organized as follows. In Section 2, we
formally introduce set-based queries (SQs) and a fragment of SQs
referred to as basic SQs (BSQs). Section 3 presents some prelim-
inaries. Section 4 presents a baseline SQL-based solution to eval-
uate SQs. Section 5 presents our main-memory based approach
to evaluate BSQs, and Section 6 extends the approach to evaluate
BSQs on disk-based data. In Section 7, we extend our approach to
evaluate general SQs beyond BSQs. Section 8 presents an exper-
imental performance evaluation of the proposed techniques. Sec-
tion 9 presents related work, and we conclude our paper in Sec-
tion 10.

2. SET-BASED QUERIES
In the simplest form, a set-based query (SQ) Q is defined by an

input relation R, which represents a collection of entities of inter-
est, and an input set of predicates P on R. The query’s result is a
collection of all the subsets of R such that each subset satisfies the
predicates in P .

For convenience, we introduce an extended SQL syntax to ex-
press SQs more explicitly. The example SQ in Section 1 can be
expressed by the following extended SQL query.

Qpoi: SELECT *
FROM SET(R) S
WHERE v1 in S AND v2 in S
AND v3 in S AND v4 in S
AND v1.city = S.H. AND v2.city = S.Z.
AND v3.type = museum AND v4.type = park
AND 6 ≤ SUM(S.duration) ≤ 10

The “SET(R) S” in the from-clause specifies S as a set vari-
able whose value is a subset of tuples in relation R. Each of the
predicates of the form “vi in S” specifies vi as a member variable
representing a member of the set variable S. Note that the values
of the member variables are not necessarily distinct. Each of the
next four predicates specifies a constraint on an individual mem-
ber; and the last predicate specifies an aggregation constraint on the
set. The output schema of this query consists of all the attributes in
relation R and an additional, implicit integer attribute named sid

Table 2: Output of the example SQ
sid id type city price duration rating
1 t1 museum S.H. 50 4 7
1 t2 park S.Z. 70 3 5
2 t1 museum S.H. 50 4 7
2 t2 park S.Z. 70 3 5
2 t3 museum S.Z. 60 3 8
3 t1 museum S.H. 50 4 7
3 t2 park S.Z. 70 3 5
3 t5 shopping H.Z. 90 2 9

Table 3: Classification of commonly used set predicates
Set Predicates Anti-monotone Monotone

MIN(S.A) ≥ c yes no
MIN(S.A) ≤ c no yes
MAX(S.A) ≥ c no yes
MAX(S.A) ≤ c yes no

SUM(S.A) ≥ c, ∀t ∈ S, t.A ≥ 0 no yes
SUM(S.A) ≤ c, ∀t ∈ S, t.A ≥ 0 yes no

COUNT (S) ≥ c no yes
COUNT (S) ≤ c yes no

AV G(S.A) θ c, θ ∈ {≥,≤} no no

that represents the identifier for an answer set. The values of sid
are generated automatically by the database system. The attributes
(sid, id) form the key of the output schema where id is the key of
input relation R. Thus, each answer set to the query is represented
by a collection of output tuples having the same sid value. Table 2
shows the output of the example SQ Qpoi.

There are two types of selection predicates in a SQ. A mem-
ber predicate specifies a constraint on exactly one member variable
(e.g., “v1.city = S.H.”). A set predicate specifies a constraint on a
set variable or more than one member variable; examples include
“SUM(S.duration) ≤ 10” and “v1.price + v3.price ≤ 100”.

Given a set predicate p, it is classified as anti-monotone if when-
ever a set S does not satisfy p, then any superset of S also does not
satisfy p; it is classified as monotone if whenever a set S satisfies p,
then any superset of S also satisfies p. In our example SQQpoi, the
predicate “SUM(S.duration) ≤ 10” is an anti-monotone set predi-
cate, while the predicate “SUM(S.duration)≥ 6” is a monotone set
predicate. An example of a set predicate that is neither monotone
nor anti-monotone is “AVG(S.price)≤ 20”. Note that set predicates
can also involve other SQL constructs such as groupby-clause and
having-clause which we omit in this paper. Table 3 shows a clas-
sification of commonly used set predicates in SQL. Anti-monotone
set predicates have the property that a conjunction/disjunction of
anti-monotone set predicates is anti-monotone. Similarly, mono-
tone set predicates have the property that a conjunction/disjunction
of monotone set predicates is monotone. If the monotone/anti-
monotone property of a set predicate in a query is unknown, our
query processing approach would conservatively assume that the
predicate in question is neither anti-monotone nor monotone and
hence does not apply any monotone/anti-monotone specific opti-
mizations.

The minimum/maximum cardinality of an answer set is deter-
mined as follows. If the query explicitly specifies an upper bound
on the the set’s cardinality (e.g., “COUNT(S) ≤ 3”), then the max-
imum cardinality is given by specified constraint; otherwise, the
maximum cardinality is the number of member variables in the
query. If the query explicitly specifies a lower bound on the the
set’s cardinality (e.g., “COUNT(S) ≥ 2”), then the minimum car-
dinality is given by specified constraint; otherwise, the minimum
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cardinality is equal to one.
Since the number of qualifying answer sets could be very large

for some SQs, there are two natural ways to limit the size of the
query result. The first approach is to retrieve only some fixed num-
ber of say k result sets either using a limit clause to retrieve any
k sets or via a ranking function to retrieve the top-k sets. The sec-
ond approach is to retrieve only minimal sets that satisfy the query’s
predicates. A set S is defined to be minimal if no proper non-empty
subset of S also satisfies the predicates in P . For example, the an-
swer sets {t1, t2, t3} and {t1, t2, t5} for the example SQ Qpoi are
not minimal since their subset {t1, t2} also satisfies the query’s
predicates. Minimal sets are also of interest on their own as they
serve as a concise representation of all the answer sets (i.e., any
superset of a minimal answer set is also an answer set) if all the
set predicates in the query are monotone. Furthermore, there are
use cases where minimal sets represent the desired answer sets. As
an example, consider a graduating student who is deciding on the
set of courses to enroll for her final semester of study. To meet her
school’s graduation requirement, she still need to complete at least
16 modular credits of courses from the Computer Science depart-
ment of which at least two courses must be at the 4000 level. For
this scenario, minimal answer sets would be an appropriate fit for
the user’s intention; moreover, the number of non-minimal answer
sets is probably too many to browse. The minimal set constraint can
be expressed in our extended SQL syntax by replacing “SET(R) S”
by “MINSET(R) S” to indicate that S is a minimal set variable.

To simplify the presentation of evaluation algorithms for SQs,
we introduce a special fragment of SQs called basic SQs. A SQ Q
is defined to be a basic SQ (BSQ) if Q retrieves only minimal sets
and all the set predicates in Q are anti-monotone1. BSQs have the
following property: if a tuple t in R does not satisfy any member
predicate in a BSQ Q, then t will not contribute to any answer set
of Q. The reason for this is as follows. If there exists an answer
set S containing t, then since all the set predicates in a BSQ are
anti-monotone, S \ {t} would also satisfy all the set predicates in
Q. This implies that S \ {t} is an answer set which contradicts the
fact that S is a minimal set. Note that this property of BSQs does
not hold for general SQs. For example, {t1, t2, t5} is an answer
set for our example SQ Qpoi, which contains the tuple t5 that does
not satisfy any member predicate. However, if we restrict Qpoi to
retrieve only minimal answer sets, then t5 would not contribute to
any answer set of Qpoi.

We should emphasize that the focus of this paper is not on the
design of SQL extensions but on efficient query evaluation. The
above example is meant to illustrate how the semantics of SQs can
be expressed more explicitly and easily using some SQL extensions
instead of using conventional SQL, which we will discuss in Sec-
tion 4.

3. PRELIMINARIES
In this paper, we consider a SQ Q defined over a relation R,

where there are n member variables in Q. Without loss of general-
ity, we assume that the maximum cardinality of the answer sets for
Q is n.

Let V = {v1, · · · , vn} denote the set of member variables in Q.
The predicates P in Q can be partitioned into n + 1 subsets, P0,
P1, · · · , Pn, where each Pi, i ∈ [1, n], denote the set of member
predicates inQ that involves the member variable vi; andP0 denote

1By definition of BSQs, the maximum cardinality of a BSQ’s an-
swer sets is bounded by the minimum of the number of member
variables in the query and any explicitly specified cardinality con-
straint.

the set of set predicates in Q.
In this paper, we refer to a set S as a k-set to mean that the car-

dinality of S is k. Thus, each answer set for Q is an i-set, where
i ∈ [1, n].

EXAMPLE 1. In our example SQ Qpoi, there are four member
variables (i.e., v1, v2, v3 and v4). Therefore, the predicates can be
partitioned into five subsets: P0 = {6 ≤ SUM(S.duration) ≤
10}, P1 = {v1.city = S.H.}, P2 = {v2.city = S.Z.}, P3 =
{v3.type = museum} and P4 = {v4.type = park}. 2

4. BASELINE SOLUTION USING SQL
In this section, we outline a baseline approach to evaluate SQs

using conventional SQL. The detail illustration of the baseline ap-
proach is given in A.

In this approach, answer sets are generated iteratively, i.e., an-
swer i-sets are computed before answer (i+ 1)-sets, which is sim-
ilar to the Apriori-style of using SQL to compute frequent item-
sets [11]. Let Ci (1 ≤ i ≤ n) denote the collection of candidate
answer i-sets that satisfy all the anti-monotone set predicates in P0,
and Ai ⊆ Ci denote the collection of answer i-sets. Each Ci/Ai

is represented by a relation/view where each tuple in Ci/Ai rep-
resents a subset of i tuples from R. Each Ci, i ≥ 2, is computed
using a self-join of Ci−1 and each Ai is derived from Ci. In this
approach, the answer sets for a SQ are given by multiple output ta-
bles A1, · · · , An, where each tuple in each Ai presents an answer
i-set for Q.

In the first iteration, C1 is the subset of tuples inR that satisfy all
the anti-monotone set predicates in P0. A1 is the subset of tuples
in C1 that satisfy all the predicates in Q. In the ith iteration, i > 1,
Ci is computed by a self join of Ci−1 to ensure two requirements.
First, Ci does not contain duplicate candidate answer i-sets. Fol-
lowing the same principle to avoid duplicates in [11], the self-join
of Ci−1 to compute Ci has (i − 2) equi-join predicates requiring
that two matching tuples in Ci−1 (representing two (i − 1)-sets)
have (i− 2) identical tuples. Second, each tuple in Ci satisfies all
the anti-monotone set predicates in P0. Ai is derived from Ci by
appropriate selection predicates to ensure that each tuple in Ai sat-
isfies all the predicates inQ. Thus, this approach is implemented as
a sequence of SQL queries where the number of queries is a linear
function of n (details are given in A).

EXAMPLE 2. Figure 1 illustrates the first two iterations of the
baseline approach for evaluating our example SQQpoi on the input
relation R in Table 1. To avoid clutter, the non-relevant attributes
(i.e., price and rating) are omitted from the figure. In the first it-
eration, C1 is computed by Q1 on R to ensure that each tuple in
C1 (representing a candidate answer 1-set) satisfies all the anti-
monotone set predicates. The answer 1-sets are given by A1 which
is computed by Q2 on C1; A1 is empty since there is no answer
1-set for this SQ. In the second iteration, C2 is computed by Q3

with a self-join on C1 and A2 is computed from C2 using Q4. Ob-
serve that A2 contains one answer 2-set {t1, t2}. Since the answer
sets for this query has a maximum cardinality of four, this process
continues for two additional iterations to find answer 3- and 4-sets
(details not shown).

Minimal set constraint. If the query requires only minimal an-
swer sets, then the above approach still works with the following
two extensions. First, to generate Ci (representing candidate an-
swer i-sets), the self join is performed on Ci−1 \ Ai−1 instead of
Ci−1 as all the supersets of answer (i − 1)-sets in Ai−1 are not
minimal. Second, for each tuple in Ai, in addition to satisfying all
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A1 A2

Q2: Select * from C1

where duration >= 6

id type city duration id1 type1 city1 duration1 id2 type2 city2 druation2

t1 museum S.H. 4 t2 park S.Z. 3

Q4: Select * from C2

where duration1 + duration 2 >= 6

1 2

id type city duration
id1 type1 city1 duration1 id2 type2 city2 druation2

where duration >  6  

and city = S.H. and city = S.Z.

and type = museum and type = park 

where  duration1 + duration 2 >  6

and (city1 = S.H. or city2 = S.H) and (city1 = S.Z. or city 2 = S.Z.)

and (type1 = museum or type2 = museum) 

and (type1 = park or type2 = park)C1 C2

t1 museum S.H. 4

t2 park S.Z. 3

t3 museum S.Z. 3

id1 type1 city1 duration1 id2 type2 city2 druation2

t1 museum S.H. 4 t2 park S.Z. 3

t1 museum S.H. 4 t3 museum S.Z. 3

t1 museum S.H. 4 t4 shopping S.H. 5

t4 shopping S.H. 5

t5 shopping H.Z. 2

1 4 pp g

... ...... ..... …… … ……. .... ……

t4 shopping S.H. 5 t5 shopping H.Z. 2

Q1: Select * from R 

where duration <= 10
Q3: Select * from C1 C11, C1 C12

where duration <= 10 
where C11.id < C12.id  and  C11.duration + C12.duration <= 10 

Figure 1: Illustration of the first two iterations of the baseline SQL-based solution

the predicates in Q, it must also represent a minimal set. To verify
the minimality of a candidate answer i-set S ∈ Ci, all the sub-
sets of S have to be examined to ensure that they do not satisfy all
the predicates in Q. However, if P0 contains only anti-monotone
and monotone set predicates, then only subsets with a cardinality
of (i− 1) need to be examined.

Alternative SQL-based approach for BSQs. For BSQs, there is
an alternative SQL-based approach that generates all the answer
sets in a single output table with arity equal to the maximum car-
dinality of the answer sets given by n. This approach consists of
two main steps. The first step generates all the candidate answer
sets in a relation/view M by computing the cartesian product of n
views M1, · · · , Mn, where each Mi is the set of tuples in R that
satisfies Pi. Note thatM may contain multiple tuples that represent
the same candidate answer set since each tuple in R may appear in
multiple Mi’s. Therefore, we need to remove the duplicate candi-
date answer sets from M . The second step computes the answer
sets by eliminating those candidate answer sets in M that are du-
plicates, do not satisfy P0, or are not minimal. The details of this
approach are given in A.

It is important to note that this alternative approach is not appli-
cable for evaluating SQs since a tuple from R can contribute to an
answer set even if it does not appear in any Mi (1 ≤ i ≤ n) as dis-
cussed in Section 2. For evaluating BSQs, our experimental results
show that the alternative approach is significantly outperformed by
the first discussed approach. The main reason is due to the complex
SQL queries used to remove duplicate and non-minimal candidate
answer sets in the second step. Given its limited applicability and
poor performance, we will not consider the alternative approach
any further in this paper.

5. BASIC APPROACH
To simplify the presentation of evaluation algorithms for SQs,

we first present the evaluation of BSQs in this section assuming
that all the data and structures can be stored in main memory, and
then describe the extensions to handle large, external data in Sec-
tion 6. We extend our techniques for (general) SQs beyond BSQs
in Section 7.

Recall that a BSQ Q retrieves only minimal sets and all the set
predicates in Q are anti-monotone. Our proposed approach evalu-
ates a BSQ Q in two phases. In the first phase, a sequential scan
of R is performed to partition R into s disjoint, non-empty blocks,
RV1 , · · · , RVs , s ∈ [1, 2n], where each Vi ⊆ V is a subset of
member variables in Q, and RVi ⊆ R represents the tuples that
satisfy exactly all the member predicates (i.e.,

⋃
vj∈Vi

Pj) associ-
ated with the member variables in Vi. Specifically, R is partitioned
as follows: for each tuple t in R, t belongs to block RVi where
Vi ⊆ V is the subset of all member variables such that for each
member variable v ∈ Vi, t satisfies all the member predicates in-
volving v. Thus, for each member variable v ∈ V \ Vi, t does not
satisfy some member predicate involving v.

There are two blocks of R, namely, R∅ and RV , that are not
materialized during the partitioning phase 2. The blockR∅ contains
tuples in R that do not satisfy any Pi (1 ≤ i ≤ n) in Q. For a
BSQ Q, none of the tuples in R∅ will contribute to an answer set.
Therefore, the block R∅ is not materialized during the partitioning.
At the other extreme, each tuple in RV satisfies all Pi (1 ≤ i ≤
n) in Q; therefore, each tuple in RV forms an answer 1-set if it
also satisfies P0. If a tuple in RV does not satisfy P0, it will not
contribute to any answer set for a BSQ and can be ignored. Since
each tuple in RV can be either directly output as an answer set or
ignored, these tuples will not contribute to additional answer sets;
thus, this block is also not materialized during partitioning. The
blocks materialized in the first phase will be used in the second
phase to generate further answer sets.

In the second phase, the remaining answer sets are generated by
combining tuples from appropriate blocks such that the combined
set of tuples qualifies as an answer set; i.e., the set of tuples is a
minimal set of tuples that satisfies all the query’s predicates. Each
such combination of blocks is then evaluated as a cross-product
query (CPQ); thus, the remaining answer sets are computed as a
union of CPQs. To enumerate these answer sets, we first need to
characterize the appropriate combinations of block sets.

Consider a set of blocks U = {RV1 , · · · , RVk} where each

2For SQs, both R∅ and RV have to be materialized as discussed in
Section 7.1.

4



RVi 6= ∅. Note that U is not necessarily a partition of R; i.e.,
RV1∪· · ·∪RVk = R. We defineU to be a valid block set (or vbset)
if U satisfies the following two properties: (P1)

⋃
RVi
∈U Vi = V ;

and (P2) no proper subset of U satisfies P1. Property 1 ensures that
a candidate answer set S formed by selecting one member from
each block in U will satisfy all the member predicates in Q, while
property 2 ensures that S is minimal.

For convenience, we refer to a vbset that is a k-set as a k-vbset.
We use VBSet to denote the collection of all vbsets.

Thus, if U = {RV1 , · · · , RVk} is a k-vbset, then a k-set S =
{t1, · · · , tk}, where ti ∈ RVi , i ∈ [1, k], is an answer set for Q
if S satisfies P0. Therefore, the remaining answer sets for Q is
computed by evaluating a collection of CPQs, where each CPQ is
associated with a vbset.

Our overall approach evaluatesQ based on the following expres-
sion:

σP0(RV ∪
⋃

Ui∈VBSet

( ×
RVj
∈Ui

RVj ))

σP0(RV ) is evaluated in the first phase while σP0(
⋃

Ui∈VBSet

(×RVj
∈Ui

RVj )) is evaluated in the second phase. The cross-

product expression represents a CPQ corresponding to the vbset
Ui, the union expression enumerates all the vbsets3, and the final
selection operator selects the minimal sets that satisfy all the set
predicates in P0.

EXAMPLE 3. Consider the evaluation of the BSQ Q′poi that
is derived from our example SQ Qpoi by removing its non-anti-
monotone set predicate (i.e., SUM(S.duration) ≥ 6). In the
first phase, for the tuple t1, since it exactly satisfies the member
predicates (i.e.,P1 = {v1.city = S.H.} and P3 = {v3.type =
museum}) associated with the member variables v1 and v3, it is
put into the block R{v1,v3}. Following the same approach for the
remaining tuples, R is partitioned into five blocks: R{v1,v3} =
{t1}, R{v2,v4} = {t2}, R{v2,v3} = {t3}, R{v1} = {t4} and
R∅ = {t5}. Note that the block R∅ is not materialized. In the sec-
ond phase, two vbsets, {R{v1,v3}, R{v2,v4}} and {R{v1}, R{v2,v3},
R{v2,v4}}, are enumerated which generate two candidate answer
sets {t1, t2} and {t2, t3, t4}. Among them, only {t1, t2} satisfies
the anti-monotone set predicate (i.e., SUM(S.duration) ≤ 10)
and forms an answer set.

In the following, we elaborate on the details of the second phase,
namely, how to efficiently enumerate vbsets and evaluate the corre-
sponding CPQs.

Enumeration of vbsets. Given the blocks of R created in the first
phase, the collection of all vbsets VBSet is efficiently enumerated
based on the following proposition.

PROPOSITION 1. If U is a k-vbset, then it satisfies the follow-
ing three properties: (1) for each RVi ∈ U , the cardinality of Vi

is at most n − k + 1; (2) there must exist a block RVi ∈ U such
that the cardinality of Vi is at least dn

k
e; (3) for any pair of distinct

blocks RVi and RVj in U , Vi 6⊆ Vj and Vj 6⊆ Vi.

The proof of the proposition is given in Appendix B. Based
on the proposition, we enumerate all the vbsets by computing the
cartesian product of n sets (with the above three properties enabled
to prune the cartesian product space) where each set is {RV1 , · · · , RVs}
representing the set of all generated blocks in the partitioning phase.
3The union operator is used only to combine the results and not to
eliminate duplicates as the generated results are all unique.

Thus, the time complexity to enumerate all the vbsets is O(2n
2

n2)

where O(2n
2

) is the time complexity to compute the cartesian
product to generate all the candidate vbsets and O(n2) is the time
complexity to determine a candidate vbset is indeed a vbset. As
the value n is not expected to be large for BSQs, it is very fast to
enumerate all the vbsets by exploiting the above three properties.

EXAMPLE 4. Continuing with Example 3. Here we have n =
4. From the first property, block R{v1,v3} will not form a 4-vbset
since the cardinality of the set {v1, v3} is 2. From the second prop-
erty, for a 2-vbset, at least one block should satisfy two Pi (1 ≤ i ≤
4), otherwise the 2-vbset can not satisfy all Pi (1 ≤ i ≤ 4). From
the third property, blocks R{v1,v3} and R{v1} will not appear in
the same vbset since one is a subset of the other.

Evaluation of CPQs. Each CPQ is evaluated using a multi-way
nested-loop cross-product (MNLCP) approach, which is a general-
ization of the well-known binary nested-loop join algorithm. For
convenience, we use the notation (RV1 , · · · , RVk ) to refer to a
CPQ Q′ that is over k blocks {RV1 , · · · , RVk} as well as the or-
dering of the blocks in a MNLCP evaluation of Q′ where RV1 and
RVk are, respectively, the outermost and innermost relations of the
MNLCP evaluation.

With the MNLCP evaluation, for a CPQQ′ = (RV1 , · · · , RVk ),
each result tuple (t1, t2, · · · , tk) ofQ′ (where each tuple ti ∈ RVi )
is constructed progressively as a sequence of partial result tuples:
(t1), (t1, t2), · · · , and finally (t1, t2, · · · , tk). To optimize the
MNLCP evaluation, for each partial result tuple t = (t1, t2, · · · , tj)
(1 ≤ j < k), we check whether t satisfies each anti-monotone
set predicate p in P0. If t does not satisfy p, then this implies
that none of the partial result tuples extended from t will satisfy p;
therefore, the MNLCP evaluation involving t can be immediately
“short-circuited” by dropping t from further processing. Note that
similar optimization is also applicable for the monotone set pred-
icates in general SQs. Specifically, if each partial results tuple t
satisfies p, then we can conclude that each of the partial result tu-
ple extended from t will also satisfy p. Further optimizations for
anti-monotone/monotone set predicates evaluation are discussed in
Section 7.2.

The number of CPQs evaluated for a BSQ can be very large:
the maximum number of CPQs when n ranges from 3 to 7 are 7,
48, 461, 6432, and 129424, respectively. Therefore, there could be
considerable efficiency gains by applying multi-query optimization
(MQO) techniques to optimize the evaluation of a BSQ. However,
MQO is a very hard optimization problem with a search space that
is doubly exponential in the size of the queries [12, 13, 14, 15]. As
early exhaustive strategies [12, 14] are not practical, many heuris-
tic solutions have been proposed (e.g. [16, 13, 15, 17, 18, 19]). To
cope with the high optimization complexity, a well-known strategy
for MQO is to adopt a two-phase optimization approach [19, 18].
The first phase generates local optimal query plans for the indi-
vidual queries, and the second phase generates a global query plan
that exploits the common subexpressions (CSEs) in the local query
plans.

However, the existing MQO heuristics are not appropriate for our
problem context for two main reasons. First, as explained above,
the number of CPQs in our problem is very large, which means
that it is important to use an efficient heuristic that can scale to
thousands of queries. Existing MQO heuristics are, however, not
designed for such scale. As an example, the state-of-the-art MQO
heuristic [13] took 30 seconds to optimize 22 (which is the max-
imum number of queries considered) queries without considering
cross product joins where each query only references five relations,
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and was unable to scale when the number of relations in the queries
increases or cross product joins are considered. Second, most of the
existing MQO works [12, 13, 14, 15, 19] are based on the materi-
alization and reusing the results of CSEs which is not beneficial
for our context. This is because for CPQs, the cost of computing,
writing and reading a CSE result to/from disk is higher than the
cost of recomputing the CSE as shown by our experimental results
in Section 8.1. Thus, our approach for evaluating CPQs does not
employ the materialization technique; instead, we evaluate them by
pipelining the results of CSEs to CPQs.

Due to both the scale of the problem as well as the nature of the
queries (i.e., CPQs and not join queries), existing MQO heuris-
tics designed for optimizing a moderate number of general join
queries are too complex and not sufficiently scalable for our prob-
lem. We therefore propose a novel and efficient heuristic, which is
also based on the two-phase approach, to optimize the evaluation
of a large collection of CPQs. The first phase generates a local op-
timal evaluation plan for each CPQ and the second phase optimizes
the collection of local plans by exploiting CSEs.

In the first phase, since each CPQ is evaluated using the MNLCP
method, the local evaluation plan for a CPQ is simply a specifica-
tion of the ordering of the blocks in the CPQ (i.e., from outermost to
innermost relation). To optimize the evaluation of CPQs, it is desir-
able to minimize the cost to check anti-monotone set predicates (to
find short-circuited partial result tuples). Therefore, our approach
to order the blocks for a CPQ is to order them in non-decreasing
order of their cardinalities. The intuition behind the approach is to
minimize the cost to check the short-circuited partial result tuples
assuming that any pair of partial result tuples of the same length are
equally likely to be short-circuited. As shown by our cost model
in Section 6.2.2, our approach to order the blocks for a CPQ in a
MNLCP evaluation is indeed optimal.

In the second phase, to efficiently identify the CSEs among the
local query plans, our heuristic uses a trie to represent all the local
query plans. Each node in the trie, except for the root node which
is a virtual node, represents a block, and each path from a child
node of the root node to a leaf node corresponds to the sequence
of blocks (in non-decreasing order of their cardinalities) in a local
query plan. With this simple technique, our heuristic is able to
capture the common “prefixes” among the local query plans. The
time complexity of constructing the trie is proportional to the total
number of blocks in all the CPQs. The simplicity of this structure
enables our heuristic to scale to a large number of queries.

Once the trie has been constructed with the local query plans, the
global query plan is formed and evaluated by a top-down traversal
of the trie structure. Consider a trie node Ri that has multiple child
nodes, and let (R1, · · · , Ri−1) be the path of ancestor nodes of
Ri in the trie (i.e., R1 is the child of the root node and each Rj

is a child node of Rj−1, j ∈ [2, i]). By pipelining the output of
(R1 × · · · ×Ri) to each of the child nodes of Ri, the computation
of the cross-product expression associated with the common prefix
path is shared among the child nodes.

EXAMPLE 5. Consider a BSQ that is evaluated as five CPQs
{Q1, · · · , Q5} with their local query plans shown by the trie in
Figure 2(a), where the node labeled ∅ represents the virtual root
node of the trie. Each path from a child node of the root node
to a leaf node corresponds to a local query plan for a CPQ. For
example, the fourth leftmost path corresponds to the local plan
(R6, R7, R4) for Q4. Observe that the two local plans for Q2 and
Q3 share the block R3. Thus, for every tuple t read from R3, the
global plan evaluation will pipeline t to its child nodesR4 andR5.

ø 

R1 R3 R6

R4 R7

R4 R5

ø 

R1 R3

R4

ø 

R6

R7

R4 R5

R5

R5

(a)  Trie�of�query�plans             (b)  Two query batches constructed from (a)

R2

R2

(c) Size of block in terms of number of pages

|R1| |R2| |R3| |R4| |R5| |R6| |R7|
1 2 2 3 4 2 2

Q1 Q2 Q3

Q4 Q5 Q1 Q2 Q3 Q4 Q5

Figure 2: An example of CPQ blocks from a BSQ organized as
a trie.

6. HANDLING LARGE DATA
In this section, we extend our in-memory approach discussed in

the previous section to evaluate BSQs on large, disk-based data.
In the following discussion, we use B to denote the number of

main memory buffer pages available for evaluating a BSQ Q on a
relation R. For a block RVi , we use |RVi | and ‖RVi‖ to respec-
tively denote its size in terms of number of pages and its cardinality
in terms of number of tuples. We assume that the answer sets com-
puted for a BSQ are directly output without being buffered.

6.1 Phase 1: Partitioning Phase
In the first phase, we need to allocate the available buffer space

for reading R as well as creating the blocks of R. This partitioning
problem using limited buffer space can be solved with two standard
database techniques (i.e., sorting and hashing), which we briefly
described in this section.

In the hash-based approach, we allocate one buffer page for read-
ing R and divide the remaining buffer pages uniformly among the
maximum number of 2n−2 blocks to be materialized4. Each tuple
read from R is copied to the appropriate block buffer, and a block
buffer is flushed to disk when it becomes full. For the case where
there is not enough buffer space to even allocate one page for each
block, then R will have to be partitioned in multiple passes instead
of a single pass.

In the sort-based approach, each tuple read fromR is assigned an
appropriate block identifier (i.e., 1, · · · , 2n−2) based on the subset
of member predicates that it satisfies. The tuples are then sorted
on this identifier using external merge-sort algorithm to create the
blocks.

If the buffer space is sufficiently large such that R can be hash
partitioned in one scan, then the hash-based approach is generally
more efficient as the sort-based approach might require multiple
merge passes to sort R. However, if a BSQ contains certain type of
set predicates, then the sort-based approach could be optimized to
become more efficient; we defer the discussion of the optimization
to Section 7.2.

6.2 Phase 2: Enumeration Phase
The main challenge in the second phase is how to efficiently eval-

uate a large collection of CPQs given a buffer space constraint of
B pages.

Consider a CPQ Q′ = (R1, · · · , Rk). What is an optimal ap-

4Recall from Section 5 that R∅ and RT are not materialized.
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proach to evaluate Q′ such that (1) the buffer space used is mini-
mized and (2) each block in Q′ is read only once? A well-known
strategy [20, 21] to achieve this is to load all the blocks of Q′,
except for the outermost block (i.e., R1), into the buffer and to
allocate only one buffer page for R1. As each page b of R1 is
loaded into the buffer, the MNLCP method is used to compute
b× R2 × · · · × Rk. Thus, the minimum buffer space required for
this optimal evaluation is 1 +

∑k
i=2 |Ri| pages. Let minbuf(Q′)

denote the minimum buffer space requirement (in terms of number
of pages) for evaluating a CPQ Q′ in this manner.

Given a buffer space of B pages, we classify a CPQ Q′ as a lean
query if minbuf(Q′) ≤ B; otherwise, Q′ is classified as a fat
query. Let Qlean and Qfat denote the set of all the lean and fat
CPQs, respectively, from the collection of CPQs to be evaluated.
From the optimization viewpoint,Qlean are easier to optimize than
Qfat. Therefore, our proposed approach optimizes the evaluation
of Qlean and Qfat separately.

6.2.1 Evaluation of lean queries.
To exploit the CSEs among a collection of lean CPQs, we present

an efficient strategy to evaluate them in batches such that each batch
of queries can be evaluated efficiently similar to the in-memory
approach described in Section 5 using onlyB buffer pages. We first
formally define a query batch and then present efficient heuristics
to optimize both the partitioning of Qlean into query batches as
well as the evaluation order of the batches.

Consider a set of lean CPQs Qbatch = {Q1, · · · , Qm}, where
Qbatch ⊆ Qlean and eachQi = (Ri,1, · · · , Ri,ki). LetD(Qbatch) =⋃

Qi∈Qbatch
{Ri,2, · · · , Ri,ki} denote the set of distinct blocks in

all the m CPQs from Qbatch after excluding the outermost block
from each CPQ (i.e., Ri,1, i ∈ [1,m]). We say that Qbatch forms
a query batch if 1 +

∑
Ri∈D(Qbatch) |Ri| ≤ B. Note that a query

batchQbatch can be evaluated optimally using onlyB buffer pages
as each block (involved in Qbatch) is read only once from disk.

EXAMPLE 6. Assume that B = 10. Consider Q5 in Figure 2.
Since minbuf(Q5) = 1 + |R7| + |R5| = 7 < B, Q5 is classi-
fied as a lean query. Similarly, all the other queries (Q1 to Q4)
in Figure 2 are also classified as lean queries. Consider a set
of lean queries Q′batch = {Q4, Q5}. We have D(Q′batch) =
{R7, R4}

⋃
{R7, R5} = {R7, R4, R5}. Since the total size of the

blocks in D(Q′batch) (i.e., |R7| + |R4| + |R5| = 9) is no larger
thanB−1,Q′batch forms a query batch. On the other hand, for the
set of lean queries Q′′batch = {Q1, Q4, Q5}, since the total size of
the blocks inD(Q′′batch) = {R2, R7, R4, R5} is 11 which is larger
than B − 1, Q′′batch is not a query batch.

Partitioning of query batches. Since a block may appear in multi-
ple CPQs which are in different query batches, a block may still be
read into the buffer multiple times. Thus, it is desirable to group
CPQs that share some common block (or more generally, share
some CSEs in the form of a subset of blocks) in the same query
batch to minimize both the number of times a common block is
read into the buffer as well as the number of redundant computa-
tions of the CSEs.

Our heuristic to partition Qlean into query batches applies the
same idea from Section 5 to organize the CPQs in Qlean using
a trie to capture the common “prefixes” among the CPQs. The
query batches are then created by a pre-order traversal of the trie
as follows. We first initialize the current query batch Qbatch to
be empty. Whenever the pre-order traversal visits a leaf node in the
trie, we have found a CPQQ′ which corresponds to the root-to-leaf
path in the trie. If Qbatch remains a query batch after Q′ is added

to it, we addQ′ to be part ofQbatch; otherwise, we initialize a new
query batch with only Q′ in it and call this the current query batch.
At the end of the traversal, Qlean is partitioned into query batches.
By partitioning Qlean in this way, our heuristic is able to capture
the CSEs among the CPQs in each batch. Thus, each query batch
is a trie which is a subtree of the input trie. The time complexity
for the query batch partitioning is linear to the number of nodes in
the trie.

Evaluation order of query batches. We now explain how a query
batch Qbatch = {Q1, · · · , Qm} formed using the above approach
is evaluated similar to the in-memory approach. Here each Qi rep-
resents a CPQ. For each Qi = (Ri,1, · · · , Ri,ki) ∈ Qbatch, we
load into the buffer all the blocks ofQi, except the outermost block
Ri,1. Note that within each query batch, each block is loaded
exactly once in the buffer even if the block appears in different
queries. By the definition of a query batch, the remaining num-
ber of pages left in the buffer (denoted by B′) after loading all the
blocks except for Ri,1 must be at least one. Therefore, we can
incrementally load the outermost block Ri,1 for each Qi into the
buffer (B′ pages at a time), and pipeline the loaded tuples of Ri,1

to each child block to compute the CPQs in the query batch.
The final optimization issue to consider is how to order the query

batches formed for evaluation. If two query batches have many
blocks in common, then it is desirable to evaluate these two batches
consecutively so as to minimize the number of times the same block
is loaded into the buffer (across query batches). This schedul-
ing optimization problem can be formulated as finding the longest
Hamiltonian path in a fully-connected, weighted, undirected graph
G = (V ′, E′) as follows. Each vertex in V ′ represents a query
batch, and each edge in E′ has a weight that is equal to the sum of
the sizes of the common blocks (excluding the outermost block in
each CPQ) between the CPQs corresponding to the connected ver-
tices. This optimization problem is in general NP-complete; and we
solve this using a simple 3/4 approximation algorithm [22], which
has a time complexity O(|V ′|3) where |V ′| is the number of query
batches.

EXAMPLE 7. Assume that B = 10. Figure 2(b) shows two
query batches, Q′batch = {Q1, Q2, Q3} and Q′′batch = {Q4, Q5},
constructed from the trie in Figure 2(a) by a pre-order traversal
of the trie. Let us assume that Q′batch is evaluated before Q′′batch.
When evaluating the batch Q′batch, the blocks R2, R4 and R5 are
completely loaded into the buffer and the remaining 1 buffer page is
used to load in the tuples inR1 andR3 sequentially with the tuples
being pipelined to the corresponding children blocks. When evalu-
ating the batch Q′′batch, as R4 and R5 have already been loaded in
the buffer, we only need to load in R7 (i.e., R2 is evicted from the
buffer) and the remaining 1 buffer page is used to load in R6.

6.2.2 Evaluation of Fat Queries.
Since each fat CPQ can not be evaluated optimally with the avail-

able B buffer space, our evaluation approach for lean CPQs is not
applicable for fat CPQs. To exploit the CSEs among a collection
of fat CPQs, another alternative strategy is to materialize and reuse
(instead of pipelining) the results of CSEs. However, since a cross-
product result is always larger than the combined size of its input
operands, a materialization strategy incurs a high I/O cost to write
and read the materialized results. Indeed, as shown by our experi-
mental results, it is overall more efficient to recompute the results of
a CSE (incurring a higher CPU cost) than to materialize and reuse
the results of a CSE. Thus, we propose to use the MNLCP method
to evaluate each fat CPQ separately without relying on any result
materialization. The main challenge here is how to effectively allo-
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cate the buffer space among the blocks in the CPQ to optimize both
CPU and I/O costs.

In the following, we first analyze the I/O and CPU costs of the
MNLCP evaluation method, and then present our heuristic to opti-
mize the buffer allocation based on these cost models.

Cost models. Consider the evaluation of a fat CPQQ′ = (RV1 , · · · ,
RVk ) using the MNLCP approach. Let (b1, · · · , bk) denote the
buffer space allocation for the blocks, where each RVi is allocated
bi number of buffer pages, such that

∑k
i=1 bi ≤ B. The MNLCP

evaluation method will first load the first bi pages of each RVi into
the buffer and compute the cross-product among the tuples in the
buffer, and then load in the next b1 pages forRV1 , and so on. When-
ever all the pages of some RVi have been read and loaded into the
buffer, the method will load in the next bi+1 pages for RVi+1 and
“rewind” each RVj , j ∈ [1, i], by loading in the first bj pages for
each RVj , j ∈ [1, i]. The method terminates when all the pages of
RVk have been read. The I/O cost to evaluate Q′ in such a manner
is given by

Ci/o =

k∑
i=1

ci/o|RVi |
k∏

j=i+1

d
|RVj |
bj
e (1)

where ci/o is the cost ratio to read one page. Each ci/o|RVi |
∏k

j=i+1

d
|RVj

|
bj
e represents the I/O cost to load inRVi with

∏k
j=i+1d

|RVj
|

bj
e

representing the times to load in RVi . The CPU cost to evaluate Q′

is given by

Ccpu =

k∑
i=1

ccpuSi

i∏
j=1

‖RVj‖
k∏

j=i+1

d
|RVj |
bj
e (2)

where ccpu is the cost ratio to process a tuple and Si is the selec-
tive factor of anti-monotone set predicates for (i − 1)-sets. Each

ccpuSi

∏i
j=1 ‖RVj‖

∏k
j=i+1d

|RVj
|

bj
e represents the CPU cost to

compute the cross product of (RV1 , · · · , RVi) with Si

∏i
j=1 ‖RVj‖

representing the number of cross product results that need to be

computed, and
∏k

j=i+1d
|RVj

|
bj
e representing the times to compute

the cross-product results. Note that both ci/o and ccpu are tunable
constants commonly used in query optimizers and Si can be esti-
mated based on conventional RDBMS estimation techniques (e.g.
with histograms).

We remark that if each bi (1 ≤ i ≤ k) is allocated |RVi | pages
(i.e., in-memory case), then our approach to evaluate each CPQ
with the blocks ordered in non-descending order of cardinality in-
deed minimizes the CPU cost.

Optimizing buffer allocation. As both Ci/o and Ccpu are not
related to b1, we will allocate the minimum of one page to b1. The
overall optimization problem is to minimize Ctotal = Ci/o+Ccpu

with the following constraints: (1) b1 = 1, (2)
∑k

i=2 bi ≤ B − 1,
and (3) bi ≤ |RVi | for 2 ≤ i ≤ k.

A naive solution to optimize the above is to try all possible as-
signments for (b2, · · · , bk). However, the time complexity will be
O(Bk) which is not feasible when B and k are large. Therefore,
we use a simple greedy approach to solve the problem by itera-
tively selecting the “best” block to increase its buffer allocation
until the buffer space is fully utilized. Initially, each block is allo-
cated one page (i.e., bi = 1 for 2 ≤ i ≤ k). At each iteration,
we first compute the benefit ratio for each block RVi , given by
(C − C′i)/(b′i − bi), where bi is the current buffer allocation for
RVi , C is Ctotal for the current buffer allocation, b′i is the smallest
possible integer such that b′i > bi and d |RVi

|
b′i
e < d |RVi

|
bi
e, and C′i

is Ctotal after increasing bi to b′i. Thus, the benefit ratio measures
the reduction in evaluation cost per additional buffer page allocated
for a block. Then we increase bi for the block RVi with the max-
imum benefit ratio to b′i. The time complexity of this heuristic is
O(Bk) where B is the maximum number of iterations and O(k) is
the time complexity of an iteration.

Unlike lean CPQs, where the order of evaluation is optimized,
we do not optimize the order of evaluating fat CPQs as the potential
benefit is questionable. Since the allocated buffer for a block is
generally less than the block size, and the allocation could vary
among CPQs having that block, we can only partially share the scan
of the block across CPQs which entails non-trivial bookkeeping to
keep track of partially loaded blocks. We therefore do not consider
this optimization in this paper.

6.3 Progressive Approaches
Our proposed two-phase approach is a blocking algorithm in that

the enumeration phase can only start after the partitioning phase
has completed. For a BSQ that does not require retrieving all the
answer sets (e.g., the query has a limit-clause), this approach is not
ideal. In this section, we describe how to extend the two approaches
(sort-based and hash-based approaches) for the first phase to make
them non-blocking (i.e., progressive) so that more answer sets can
be generated earlier during the first phase (beyond those produced
by RT ). The challenge is to avoid generating duplicate answer sets
that are produced in both the partitioning and enumeration phases.

Sort-based approach. To make the sort-based partitioning phase
progressive, we generate answers while creating initial sorted runs
as follows. For each set of tuples that form an initial sorted run, we
first sort them based on their block identifiers, and then generate
minimal answer sets using these in-memory blocks following the
basic approach described in Section 5. In this way, we are able to
compute some answer sets as initial sorted runs are being created in
the partitioning phase. A simple way to avoid generating duplicate
answer sets is to simply assign a run number to each tuple in the
partitioning phase and detect for duplicate answer sets during the
enumeration phase as follows: if all the tuples in a potential answer
set have the same run number, then the set is a duplicate and is
ignored.

Hash-based approach. To make the hash-based partitioning phase
progressive, we simply generate answer sets for each new tuple t
read with all the in-memory tuples (i.e., we construct the trie for
the block containing t with all the in-memory blocks). In the event
that the buffer space is full, we make room for t by selecting some
other in-memory block and flush it to disk. To detect for duplicate
answer sets, we adapted the techniques from [23, 24] as follows.
Each tuple t is assigned a timestamp [begin, end], where begin and
end represent, respectively, the time t is read into memory and the
time t is flushed to disk. Thus, for each potential answer set S
considered in the enumeration phase, S is a duplicate answer if the
intersection of the timestamps of all the tuples is not empty.

Comparing the two approaches, the hash-based approach may
produce results earlier than the sort-based approach since the for-
mer can produce results immediately for each newly read tuple
while the latter can only produce results after it has filled and sorted
the buffer with tuples. However, the hash-based approach is likely
to run slower than the sort-based approach due to the per-tuple over-
head (i.e., trie construction for each tuple).

7. EXTENSIONS AND OPTIMIZATIONS
In this section, we first extend our proposed approaches to eval-

uate SQs in Section 7.1. We then discuss the further optimization
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of SQ evaluation for sort-based approaches based on the properties
of set predicates in Section 7.2.

7.1 Evaluation of SQs
To evaluate SQs, our proposed approaches for BSQs can be ex-

tended as follows.
In the partitioning phase, the input table R is partitioned as be-

fore based on the combination of predicates satisfied by the tuples;
however, we now need to materialize both blocksR∅ andRT . This
is because for a SQ Q, it is now possible for S ∪ {t} to be an
answer set for Q, where t ∈ R∅ ∪RV and S is a set of tuples from
the blocks excluding R∅ and RV . Hence, both R∅ and RV need to
be materialized for generating potential answer sets in the second
phase.

Since the answer sets for SQs are not necessarily minimal and
the set predicates in SQs are not necessarily anti-monotone, the
enumeration phase now requires a weaker definition of vbset (Sec-
tion 5) that satisfies only property P1. This weaker definition has
two implications. First, the blocks in a vbset are now not neces-
sarily distinct as it is possible for an answer set to contain multiple
tuples from the same block. However, as the cardinality of answer
sets is bounded by n, the maximum number of blocks in a vbset is
also bounded by n. Second, it is now possible for one vbset to be
a subset of another vbset. For instance, in the example SQ in Sec-
tion 1, if the query is not constrained to retrieve only minimal an-
swer sets, then both {R{v1,v3}, R{v2,v4}} and {R{v1,v3}, R{v1,v3},
R{v2,v4}} are vbsets with one being a subset of the other.

Consequently, after constructing the trie to capture the CSEs for
the local query plans, each path from a child node of the root node
to any node in the trie now may correspond to a vbset. Note that
this is different from the trie constructed for BSQs where only a
path from a child node of the root node to a leaf node corresponds
to a vbset. Furthermore, since a vbset U could contain multiple
instances of the same block, the CPQ corresponding to U needs to
be evaluated such that answer sets with duplicates are not gener-
ated by judicious manipulation of tuple pointers using the MNLCP
approach5.

EXAMPLE 8. Figure 3 shows the trie to represent the local query
plans for a SQ that is evaluated as six CPQs {Q6, Q7, Q8, Q9, Q10,
Q11}, where the node labeled ∅ represents the virtual root and each
path from a child node of the root node to a node labeled with Qi

(i ∈ [6, 11]) represents a local plan for a CPQ. Note that for a SQ,
a CPQ may contain multiple instances of the same blocks (e.g., Q6

andQ8). Different with the trie constructed for a BSQ where only a
path from a child node of the root node to a leaf node corresponds
to a vbset, each path from a child node of the root node to any node
in the trie constructed for a CPQ now may correspond to a vbset
(e.g.,Q7).

Minimal set constraint. For SQs that are constrained to retrieve
only minimal sets, the following additional extensions are required.
In the partitioning phase, for RV , if a tuple t in RV satisfies P0,
then we simply output t as a singleton answer set; otherwise, we
materialize t. Thus, the materialized RV contains tuples that sat-
isfy all the member predicates but do not satisfy P0. In the enumer-
ation phase, since the weaker vbset definition does not guarantee

5Consider the evaluation of a CPQ (R1, R2, · · · ) whereR1 andR2

are two instances of the same block R. To avoid generating dupli-
cate answer sets, whenever the tuple pointer for the outer block R1

is moved to the ith tuple of R, the tuple pointer for the inner block
R2 is rewind to the (i+ 1)th (rather than the first) tuple of R.

ø 

R1

R2

R1

R4 R5

R2

Q6

Q7

Q8 Q9

Trie�of�query�plans

R2 R3

Q10 Q11

Figure 3: An example of CPQ blocks from a SQ organized as a
trie

that a candidate answer set is minimal, we need to verify its min-
imality requirement during the enumeration phase as discussed in
Section 4.

EXAMPLE 9. Consider the example SQ Qpoi. In the partition-
ing phase, R is partitioned into five blocks: R{v1,v3} = {t1},
R{v2,v4} = {t2}, R{v2,v3} = {t3}, R{v1} = {t4} and R∅ =
{t5}. In the enumeration phase, all the vbsets are enumerated us-
ing the weaker definition of vbset for SQs. Some example vbsets in-
clude {R{v1,v3}, R{v2,v4}}, {R{v1,v3}, R{v2,v4}, R{v2,v3}} and
{R{v1,v3}, R{v2,v4}, R∅}. Note that the number of vbsets for the
SQ is larger than that for the corresponding BSQ (Example 3) due
to the weaker definition of vbset for SQs. After evaluating the corre-
sponding CPQs and checking the set predicates, three answer sets
{t1, t2},{t1, t2, t3} and {t1, t2, t5} are formed.

7.2 Optimizations of SQ Evaluation
In this section, we describe how the evaluation of a SQ using

MNLCP can be further “short-circuited” for sort-based approach
by exploiting the presence of certain set predicates in the SQ. Be-
fore we describe the optimizations, we first present some prelimi-
naries.

Consider a function F that takes a set of tuples S as input and
outputs a numeric value. F is classified as distributive if there ex-
ists another function F ′ such that for each pairwise disjoint parti-
tioning of S = S1∪· · ·∪Sm, F (S) = F ′({F (S1), · · · , F (Sm)}).
A distributive function F is classified as monotone if for any two
sets of tuples of the same cardinality, S1 = {t1, · · · , tk} and
S2 = {t′1, · · · , t′k}, if F ({ti}) ≤ F ({t′i}) for each i ∈ [1, k], then
F (S1) ≤ F (S2). The function “SUM(S.duration)” in Section 2 is
an example of a distributive monotone function.

Anti-monotone set predicates. If a SQ contains an anti-monotone
set predicate p of the form F (S) ≤ c where F is a distributive
monotone function, then we can optimize the sort-based approach
of partitioning as follows. Instead of sorting the tuples using only
the block identifier pid, we sort on the composite key (pid, F ({t}))
which generates blocks that are sorted on F ({t}). When evaluat-
ing a CPQ (RV1 , · · · , RVk ) using MNLCP to generate k-sets, if
tj is the first tuple from RVj (1 ≤ j ≤ k) that does not satisfy
p when combined with a specific combined tuple (t1, · · · , tj−1)
from (RV1 × · · · ×RVj−1), then we can short-circuit the MNLCP
evaluation by dropping (t1, · · · , tj−1) from further processing. Note
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Table 4: Compared Algorithms
Notation Algorithm
ps progressive, sort-based algorithm
ns non-progressive, sort-based algorithm
ph progressive, hash-based algorithm
nh non-progressive, hash-based algorithm
bs baseline SQL solution

that if we do not sort on the composite key (pid, F ({t})), we can
only drop (t1, · · · , tj) from processing.

Monotone set predicates. Consider a SQ that contains a mono-
tone set predicate p of the form F (S) ≥ c where F is a distributive
monotone function, then we can optimize the sort-based approach
of partitioning as follows. Here again, we sort on the composite key
(pid, F ({t})) which generates blocks that are sorted on F ({t}).
When evaluating a CPQ (RV1 , · · · , RVk ) using MNLCP to gener-
ate k-sets, if tj is the first tuple fromRVj (1 ≤ j ≤ k) that satisfies
p when combined with a specific combined tuple (t1, · · · , tj−1)
from (RV1 × · · · × RVj−1), then we do not need to check the sat-
isfaction for the partial result tuples extended from (t1, · · · , tj−1).
Note that if we do not sort on the composite key (pid, F ({t})), we
can only avoid the satisfiability checking for the partial result tuples
extend from (t1, · · · , tj).

Due to the fixed cardinality of the answer sets for a vbset, the
above optimization can also be applied for some functions that are
not distributive monotone. One such example is AVG(S.price) ≤
(or ≥) c.

8. PERFORMANCE STUDY
In this section, we present an experimental study to compare the

performance of our proposed approach against the baseline SQL
solution. Our approach was implemented on PostgreSQL 8.4.4,
and the experiments were performed on an Intel Dual Core 2.33GHz
machine with 3.2GB of RAM and two SATA2 disks running Linux.
Both OS and DBMS were installed on a 250GB disk, while the
database was stored on a 1TB disk.

Implementation. We implemented our evaluation approach as a
new operator inside the PostgreSQL execution engine. An engine-
based implementation offers the best performance as it enables the
implementation to leverage the existing evaluation code (e.g., ex-
ternal sorting and hashing). Furthermore, it makes the interaction
with other database operators much easier. For example, the results
of SQs can be pipelined to other database operators like join and
set-skyline to perform additional computation.

Algorithms. Table 4 shows the notations for the five algorithms
(four variants of proposed approach and one baseline SQL solution)
compared in the experiments. For each non-progressive algorithm
A (A ∈ {ns, nh}), we use A-p and A-e to represent, respectively,
its partitioning and enumeration phases. For the SQL solution, we
actually experimented with two variants: the first variant used vir-
tual views while the second variant used materialized views. In the
experimental results, each running time shown for the SQL solu-
tion refers to the timing of the more efficient variant; furthermore,
we omit reporting its running time if it exceeds 12 hours.

Datasets. We used both synthetic and real datasets for the exper-
iments. Our real dataset is from the MusicBrainz database [25]
which stores music metadata. We created a materialized view by
joining several tables from the database as the input relation for our
experiments. The schema of the view is music(mid,mname,duration,
language,aname,atype,abegindate,aenddate,bname,battribute,btype,

Table 5: Key Experimental Parameters
Parameter Notation Default

Cardinality of synthetic input table R ||R|| 1,000,000
Work memory B 40MB/200MB
Maximum number of returned answer sets k ALL
Number of member predicates n 4
Selectivity factor of each member predicate f 0.05
Aggregate value in set predicate c Avg

bscript), and the detailed information about the attributes can be
found in [25]. After removing tuples with non-positive duration
attribute value, the size of the materialized view is 1.35GB with
8,507,949 tuples.

Our synthetic dataset was generated based on the schema of the
MusicBrainz database [25]. The size of the relation (in the de-
fault setting) is 408MB with 1 million tuples. For attributes used
for member predicates, their values were generated with a uni-
form distribution to simplify our control on the selectively fac-
tors, while for the attribute (i.e., duration) used for the set predicate
(i.e., sum), its values were generated with a Gaussian distribution
(µ = 300, σ = 55) to ensure that each query returns a reasonable
number of answer sets.

Queries. Our experimental queries aim to find different subsets of
music files to meet certain constraints. We tested on both BSQs
and SQs for the experiments. Each query has between 2 to 6 mem-
ber variables with exactly one member predicate for each mem-
ber variable. All the member predicates are on different attributes.
Each BSQ also has an anti-monotone set predicate of the form
sum(S.duration) ≤ c, while each SQ has the same anti-monotone
set predicate as well as a monotone set predicate of the form sum
(S.duration) ≥ c/2, where c is some constant value. Each query
was run three times and we report their average running time.

Parameter settings. Table 5 shows the key parameters and their
default values used in the experiments; the default parameter values
were used unless specified otherwise. The k parameter represents
the maximum number of required answer sets in the query’s limit
clause and has a default value of “ALL” to retrieve all answer sets.
The c parameter is used to control the selectivity of the set predi-
cates and its default value (denoted by “Avg”) refers to the average
value of the duration attribute, which is 230 seconds for the real
dataset and 300 seconds for the synthetic datasets.

The work memory parameter B controls the main memory allo-
cated in PostgreSQL for our algorithms as well as for sorting and
storing hash tables. Since we are interested in comparing the disk-
based variants of our algorithms, we set B = 40MB for BSQs and
B = 200MB for SQs in the default setting. Note that a larger B
value was used for SQs since the evaluation of SQs requires both
R∅ and RV to be materialized in the partitioning phase which sig-
nificantly increases the total size of the blocks. However, for the
baseline SQL solution, we actually used a larger, fixed value of
256MB of work memory (to improve its performance via speed-
ing up the sort-merge and hash joins in the SQL solution), which
is much larger than the typical work memory size recommended
for PostgreSQL [26]. Thus, our work memory allocation favors the
baseline solution.

Summary of results. For queries where all the query results are
returned, our algorithms significantly outperform the SQL solu-
tion by up to three orders of magnitude and the non-progressive
algorithms are at least as fast as the corresponding progressive al-
gorithms. Furthermore, the sort-based algorithms are significantly
faster by up to two orders of magnitude than the corresponding
hash-based algorithms due to the optimization technique discussed
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in Section 7.2 for sort-based algorithms. However, the partitioning
phase of nh is slightly faster than the partitioning phase of ns as
discussed in Section 6.

For queries where the maximum number of returned answer sets
are limited (i.e., with limit-k clause), our experimental results (with
k ranging from 10 to 50) show that both the progressive and non-
progressive algorithms outperform the baseline solution by up to
one order of magnitude and the progressive algorithms are faster
than the corresponding non-progressive algorithms. Furthermore,
ph is able to produce results earlier than ps as ph can start to pro-
duce results immediately for each newly read tuple while ps needs
to fill and sort the buffer with tuples before producing any results.

8.1 Results for BSQs on Synthetic Datasets
In this section, we first compare our proposed algorithms against

the baseline SQL solution, and then study the effectiveness of our
optimizations for evaluating lean and fat CPQs, and finally compare
the relative performance of our algorithms for different settings.

8.1.1 Comparison with SQL baseline solution.
Figure 4(a) compares the performance as a function of the input

relation cardinality ||R||. The running times for the baseline so-
lution are not shown on the graph as they are extremely long: for
relation cardinality sizes of 1m, 1.5m and 2m, it took 1.2hr, 3.3hr
and 6.9hr, respectively; and it exceeded 12hr for cardinality sizes
beyond that. Thus, comparing to the cases where the baseline solu-
tion run to completion (i.e., under 12hr), our algorithms outperform
the baseline solution by up to three orders of magnitude.

As expected, the running times of our algorithms increase with
the value of ||R||. Since a larger input table results in larger blocks,
this increases the CPQ processing time for three reasons. First,
larger blocks increase the number of results; second, larger blocks
cause lean CPQs to be partitioned into more query batches which
requires more processing time; and third, larger blocks also in-
crease the number of fat CPQs (which are more costly to evalu-
ate than lean CPQs). For example, when the input cardinality is
1m, 1.5m, 2m, 2.5m, and 3m, the number of answer sets is, respec-
tively, 7942, 15721, 31584, 51247, and 75273; the number of query
batches is, respectively, 6, 8, 14, 14, and 15; and the number of fat
CPQs is, respectively, 0, 1, 7, 7, and 7.
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Figure 4: Comparison with the baseline solution

To enable the baseline solution to complete running within rea-
sonable time, we also compared the algorithms by limiting the max-
imum number of returned results by varying the k parameter. The
comparison is shown in Figure 4(b).

For the baseline solution, we manually control its running to ob-
tain k results as follows. Recall that the baseline solution works by
generating answer sets iteratively (i.e., 1-sets, 2-sets, etc.) using a
sequence of queries. We first try to obtain k answer sets from the
query that generates answer 1-sets. If k results are obtained, then
we are done; otherwise, we try to obtain the remaining answer sets

from the query that generates answer 2-sets, and so on until we get
k results.

The performance of the baseline solution (results omitted in Fig-
ure 4(b)) is almost one order of magnitude slower than our ap-
proach: specifically, the running time of bs are 3.6s, 14.9s, 15.0s,
18.1s and 26.9s, respectively, for a k value of 10, 20, 30, 40 and
50. As expected, the execution time of our approach increases as k
increases.

8.1.2 Effectiveness of optimizations.
We now study the effectiveness of our optimizations for evaluat-

ing lean and fat CPQs.

Lean CPQs. To evaluate the effectiveness of our MQO heuristic
(denoted by nh6) to process lean CPQs, we created two alterna-
tive heuristics to compare against nh. The first heuristic (denoted
by nd) is equivalent to nh except for nd uses a different strategy
to generate the local plans: for each CPQ, its blocks are ordered
in non-increasing order of their cardinalities (i.e., opposite to nh’s
strategy) for the MNLCP evaluation. nd is used to demonstrate the
effectiveness of our heuristic to generate local plans. The second
heuristic (denoted by nv) uses the same way as nh to generate local
plans. However, unlike nh, nv evaluates the CPQs one at a time
without sharing the computations of any CSEs; i.e., nv enumerates
the vbsets one by one and process the corresponding CPQs one by
one. To enable block scans to be shared, nv employs the follow-
ing simple buffer replacement strategy: if the buffer is full when a
block P is to be loaded into the buffer, nv randomly evicts some
block(s) that are not needed by the CPQ being evaluated from the
buffer to make room for P . nv is used to demonstrate the effec-
tiveness of our heuristic to share computation of CSEs.

Figure 5(a) compares the running time of nh, nd and nv as a
function of selectivity factor of member predicates, f 7. Note that
when f increases from 0.1 to 0.5, the cardinalities of the blocks be-
come more balanced. In particular, when f = 0.5, the cardinality
of all the blocks are almost the same and thus the running times of
nh and nd do not show much differences. The experimental results
show that nh outperforms nd by 1.1 times on average and up to 3.2
times when f = 0.1, which demonstrates the effectiveness of our
MQO heuristic to generate local plans, and nh outperforms nv by
1.7 times on average and up to 2.6 times when f = 0.5, which
demonstrates the effectiveness of our MQO heuristic to share the
computation of CSEs.
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Figure 5: Effectiveness of CPQ optimizations

Fat CPQs. To evaluate the effectiveness of our heuristic technique
6We use nh to represent our algorithm since nh is more general
than ns (i.e., the optimization technique discussed in 7.2 for ns is
only applicable for certain set predicates).
7To ensure that all the CPQs in the experiment are lean queries
when we vary f , we set ||R|| = 10k and n = 6.

11



 1

 10

 100

20 25 30 35 40

E
xe

cu
tio

n
 t

im
e

 (
se

c)

Work memory (MB)

ns-e
ns-p

ps
ph

nh-e
nh-p

 1

 10

 100

 1000

 10000

0.1 0.3 0.5 0.7 0.9

E
xe

cu
tio

n
 t

im
e

 (
se

c)

Selectivity factor

ns-e
ns-p

ps
ph

nh-e
nh-p

 1

 10

 100

2 3 4 5 6

E
xe

cu
tio

n
 t

im
e

 (
se

c)

Number of member predicates

ns-e
ns-p

ps
nh-e
nh-p

ph

 1

 10

 100

 1000

300 310 320 330 340

E
xe

cu
tio

n
 t

im
e

 (
se

c)

Aggregate value in anti-monotone set predicate

ns-e
ns-p

ps
ph

nh-e
nh-p

(a) Effect of B (b) Effect of f (c) Effect of n (d) Effect of c

Figure 6: Effect of varying parameters on synthetic datasets

(denoted byOpt) for processing fat CPQs, we compare against two
other competing techniques (denoted by Mat and Unf ). The first,
Mat, is the materialization strategy discussed in Section 6.2 where
a fat CPQ is evaluated as a sequence of binary cross-products with
each intermediate result being materialized. The second, Unf ,
adopts the same MNLCP technique as our Opt but uses a simple
buffer allocation strategy that allocates the buffer space uniformly
among the query blocks.

To compare the performance of these methods, we created a sin-
gle fat CPQ with one anti-monotone set predicate that consists of
four blocks whose sizes (cardinalities) are, respectively, 3.7MB
(7480 tuples), 5.0MB (10084 tuples), 5.1MB (10174 tuples) and
6.3MB (12594 tuples).

Our experimental results show that both Opt and Unf signifi-
cantly outperform Mat by up to one order of magnitude. As an
example, when the work memory is 10MB, the running times for
Opt, Unf and Mat are 95s, 151s and 3163s, respectively. Given
the poor performance of Mat, we next focus on comparing Opt
and Unf as a function of the work memory (i.e.,B) in Figure 5(b).
As expected, when B increases, the running times for both Opt
andUnf decrease. The experimental results show thatOpt outper-
forms Unf by 83% on average and up to 108% when B = 10MB.

8.1.3 Effect of Other Parameters.
We compare the effect of other parameters in Figure 6; as be-

fore, the results for the baseline solution are omitted here as our
algorithms outperform the baseline solution by up to three orders
of magnitude.

Figure 6(a) compares the effect of the work memory size, B. As
B increases, the running times for the non-progressive algorithms
decrease. This is expected since for non-progressive algorithms,
the running times for both the partitioning and enumeration phases
decrease when B increases. However, the running times for the
progressive algorithms increase with more work memory. The rea-
son is that although a larger B speeds up the enumeration phase
of the progressive algorithms, it also increases the running time for
the partitioning phase of the progressive algorithms since the larger
work memory means that more results are produced during the par-
titioning phase due to the larger buffer of tuples. For the progres-
sive algorithms, our experimental results show that as B increases,
the improvement in the enumeration phase is offset by the slower
partitioning phase resulting in an overall slower running time.

Figure 6(b) compares the effect of selectivity factor of member
predicates, f . We observe an interesting trend where the running
time initially increases with increasing f until a certain threshold
(f = 0.3) after which the running time decreases with increasing f .
This is because for BSQs, the value of f affects the type of resultant
CPQs and hence the evaluation cost. At one extreme with very
small values of f , a tuple is more likely to belong to a block that
satisfies a small number of member predicates. Thus, many tuples

will belong to the block R∅ which means that the resultant CPQs
can be evaluated efficiently. At the other extreme with very large
values of f , a tuple is more likely to belong to a block that satisfies
a large number of member predicates. Thus, the resultant CPQs
correspond to vbsets with small cardinality (i.e., CPQs with small
number of operand blocks) which can also be evaluated efficiently.

Figure 6(c) compares the effect of the number of member pred-
icates, n. Note that the number of blocks increases exponentially
with n. Although a larger number of blocks reduces the number of
tuples in each block, it also increases the number of CPQs which
increases the running time as shown by our experimental results.

Figure 6(d) compares the effect of selectivity of the set predicate
as we increase the aggregate value c in the set predicate. As the
value of c increases, the running times for all the algorithms in-
crease. This is expected since the number of results increases (e.g.,
the number of answer sets are, respectively, 7942, 14905, 27692,
51243, and 94326 for an aggregate value of 300, 310, 320, 330,
and 340) with increasing c value which therefore increases the run-
ning time.

8.2 Results for BSQs on Real Dataset
In this section, we evaluate the performance of BSQs using the

real dataset. Since the cardinality of the real dataset is larger than
that of the synthetic datasets, we used smaller selectivity factors for
the member predicates for the experiments on the real dataset. In
the default setting, each query has four member predicates with the
following selectivity factors: 6.1× 10−4, 1.1× 10−3, 9.4× 10−4

and 5.8 × 10−4 8. Accordingly, we used a smaller default work
memory size of 1MB to ensure that we are comparing the disk-
based variants of the algorithms.

In the default setting, the baseline solution did not complete run-
ning in 12 hours. In contrast, the running times of ns, ps, nh and
ph are 13.8s, 15.0s, 86.4s and 104s respectively. The results show
that our algorithms are at least three orders of magnitude faster than
the SQL solution.

Figure 7 compares the effect of varying various parameters using
the real dataset. Our experimental results for the real dataset exhibit
similar trends observed for the synthetic datasets, and we therefore
do not repeat the analysis of the results. In figure 7(d), the running
times of the baseline solution are not shown as they are one order of
magnitude slower than our algorithms. For example, when k = 10,
the running times of ph, ps, ns, nh and bs are respectively 3.5s,
5.0s, 8.4s, 8.4s and 84s.

8.3 Results for SQs on Synthetic Datasets
In this section, we evaluate the performance of SQs on synthetic

datasets. Our experimental results for SQs show that both SQs and

8In Figure 7(a), the selectivity factors of the additional two member
predicates are 3.6× 10−4 and 2.3× 10−4.
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Figure 7: Effect of varying parameters on real dataset

minimal SQs (i.e., SQs that are constrained to retrieve only minimal
answer sets) are more time consuming to evaluate than BSQs. For
example, in the default setting, the running times of ph for BSQs,
minimal SQs and SQs are, respectively, 61s, 575s and 779s. The
reason for this is threefold. First, SQs produce more blocks as both
R∅ and RV have to be materialized in the partitioning phase. Sec-
ond, SQs require more vbsets to be enumerated (due to the weaker
definition of vbsets). For example, when n = 4, the number of
vbsets for BSQs and SQs are, respectively, 48 and 3229. Third, the
number of returned answer sets for SQs are larger. For example,
the number of answer sets for BSQs, minimal SQs and SQs are, re-
spectively, 7942, 9214 and 15563 (in the default setting). We also
observe that minimal SQs can be evaluated more efficiently than
SQs as minimal SQs can prune the cross product space for SQs
(i.e., if S is a minimal answer set, then all the supersets of S can be
pruned).
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Figure 8: Effect of ||R||

Figure 8 compares the effect of ||R|| for both SQs and minimal
SQs. The baseline SQL solution did not complete execution within
12 hours and we therefore omit its results in the graphs. As ex-
pected, the running times of our algorithms increase with ||R|| as
explained in Section 8.1.
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Figure 9: Effect of k

Figure 9 compares the effect of k for both SQs and minimal SQs.
As the baseline solution is two orders of magnitude slower than

our algorithms, its running times are not shown in the figure. For
example, when k = 50, the running times of bs are respectively
651.0s and 649.5s for SQs and minimal SQs. As expected, the
running times of our algorithms increase slowly with the increasing
of k.

We observe that the performance trends for SQs are similar to
those for BSQs. Therefore, we do not repeatedly report and discuss
them further.

8.4 Results for SQs on Real Dataset
In this section, we evaluate the performance of SQs on the real

dataset 9. Here again, the experimental results show that our al-
gorithms significantly outperform the baseline solution. For exam-
ple, for SQs in the default setting, the running times of ns, ps, nh
and ph are respectively, 0.8hr, 1.33hr, 2.25hr and 5.77hr while the
baseline solution did not finish running in 12 hours. Furthermore,
even for the setting where only k results are returned, both SQs and
minimal SQs for the baseline solution did not finish running in 12
hours. This is because the answer sets for queries on the real dataset
have large cardinality due to the low selectivity factors of member
predicates as discussed in Section 8.2, the baseline solution has to
spend more time to generate large size candidate answer sets be-
fore producing any answer sets. Therefore, the baseline solution
runs slowly even for limit-k queries.

We do not repeatedly discuss the results for SQs on the real
dataset as the trends are similar to the results for SQs on the syn-
thetic datasets.

9. RELATED WORK
There are two main areas related to our work: set-based queries

and multi-query optimization.

Set-based queries. Set-based queries aim to find sets of entities of
interest to meet certain constraints. There are several works on
evaluation of set-based queries: OPAC queries for business op-
timization problems [5], composite items construction in online
shopping applications [6], composite recommendations in recom-
mender systems [8, 9], team formation in social networks [10], set-
based preference queries [3] and set-based queries with aggregation
constraints [7]. However, the focus of all these works is on opti-
mization SQs whereas our focus is on enumerative SQs. Moreover,
as most of these works deal with NP-hard optimization problems,
their algorithms are mostly approximate or produce incomplete so-
lutions; in contrast, our algorithm is exact and complete. Finally,
our work is focused on optimizing query evaluation at the database
engine level, whereas these works is focused on middleware-level
solution with mostly main-memory resident data. In summary, our
9To compare the disk-based algorithms and reduce the number of
answer sets, we set c = 100.
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work is the first to address efficient techniques to evaluate enumer-
ative SQs.

Multi-query optimization (MQO). MQO aims to find evaluation
plans that share CSEs. Most of existing works [27, 28, 16, 29,
30, 12, 13, 14, 19, 15] focus on materializing and reusing the re-
sults of CSEs. One of the earliest works [27] uses an iteratively
greedy heuristic to select CSEs to materialize given an initial plan
produced by a normal query optimizer. The works in [12, 14] de-
scribe exhaustive search algorithms and heuristic search pruning
techniques to find a global query plan by searching all the plan
space. However, the exhaustive search of the plan space incurs
high optimization overhead which make these works impractical.
The state-of-the-art work in MQO [13] uses AND/OR graphs to
capture CSEs and proposes several cost-based greedy heuristics to
find a global query plan. However, all these work are not useful for
our context since materializing cross-product results is extremely
costly and it is less efficient than our proposed non-materialized
approach as we have explained and demonstrated.

There are several works [17, 18] that exploit pipelining for MQO.
[18] considers specialized MQO techniques to pipeline the results
of CSEs for OLAP queries. Their work addresses star join queries
where all the dimension tables are assumed to be main-memory
resident (i.e., only the fact table is disk-based). In contrast, our
MQO techniques are proposed for cross-product queries without
any strong assumption about the main-memory residency of the re-
lations.

[17] addresses the MQO problem with pipelining and follows a
two-phase optimization strategy which is different from our work.
The first phase uses existing techniques (such as [13]) to gener-
ate a global plan for a set of queries which is represented as a
plan-DAG. All the CSEs that can benefit from materialization are
captured by the plan-DAG. The second phase optimizes the plan-
DAG by pipelining the results of some CSEs in the plan-DAG.
Thus, only the results of CSEs that can benefit from materializa-
tion are considered for pipelining. This simplification is restrictive
since the results of a CSE could be pipelined to improve perfor-
mance even if materializing the results of that CSE does not im-
prove performance. Since our work does not materialize the results
of any CSEs, their work is not applicable for our context. Further-
more, their work assumes that the pipelined relations/results are
not buffered whereas our work focus on efficiently optimizing the
buffer allocation for pipelining.

10. CONCLUSION
In this paper, we have proposed a novel and efficient approach

to evaluate enumerative set-based queries. Our extensive experi-
mental results demonstrate that our proposed approach significantly
outperforms the conventional RDBMS approach by up to three or-
ders of magnitude.

As part of ongoing work, we are examining the evaluation of
top-k SQs. In particular, if the ranking function F is a distributive
monotone function, then the sort-based evaluation can be optimized
as follows. In the partitioning phase, we generate blocks that are
sorted on F ({t}) by sorting the input relation on the composite
key (pid, F ({t})) where pid is the assigned block identifier. In the
enumeration phase, we apply existing rank join algorithms [31] to
incrementally produce the ranked answer sets for each vbset and
apply the well-known TA algorithm [32] to retrieve the top-k an-
swer sets for all the vbsets.
Acknowledgements This research is supported in part by NUS
Grant R-252-000-512-112.

11. REFERENCES
[1] M. Desjardins, K. L. Wagstaff, Dd-pref: A language for

expressing preferences over sets, AAAI 2005, pp. 620–626.
[2] M. Binshtok, R. I. Brafman, S. E. Shimony, A. Martin,

C. Boutilier, Computing optimal subsets, AAAI 2007, pp.
1231–1236.

[3] X. Zhang, J. Chomicki, Preference queries over sets, ICDE
2011, pp. 1019–1030.
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APPENDIX
A. DETAILED ILLUSTRATION OF BASE-

LINE SQL SOLUTION
In this section, we illustrate the baseline solution for evaluat-

ing SQs using our example SQ Qpoi and BSQs using the BSQ
Q′poi that is derived from the SQ Qpoi by removing its non-anti-
monotone set predicate (i.e., SUM(S.duration) ≥ 6).

Baseline solution to evaluate the SQ Qpoi. Figure 10 shows the
SQL queries to evaluate our example SQ Qpoi. To simplify the
predicates as well as the minimality checking, we create C1 to rep-
resent the information of POIs that satisfy the anti-monotone set
predicate (i.e., SUM(S.duration) ≤ 10). Each tuple in C1 rep-
resents the information for a POI. Each of the four binary valued
attributes pi (1 ≤ i ≤ 4) indicates whether a POI satisfies Pi,
where a value of 1 indicates that the POI satisfies Pi. Note that in
Figure 10, to simplify the expression of SQL queries, in the select-
clause, Ci.∗ represents that we retrieve all the attributes in Ci and
Ci.j∗ represents that we retrieve all the attributes from the jth tuple
in Ci.

Baseline solution to evaluate the BSQ Q′poi. Recall that there are
two SQL-based approaches to evaluate BSQs. Figure 11 shows the
SQL queries to evaluate the BSQ Q′poi that generate answer sets in
multiple output tables. In Figure 11, we use Bi to denote Ci \ Ai.
Note that for BSQ, Ci+1 is derived from Bi instead of Ci. In the
view A3, the first four conditions ensure that each answer set in
A3 satisfies all the predicates in Q′poi and the remaining conditions
ensure that each answer set inA3 is minimal, i.e., for each member
in the answer set, there must exist some Pi (1 ≤ i ≤ 4) that is
satisfied by only this member in the answer set.

Figure 12 shows the SQL queries to evaluate the BSQ Q′poi that
generate all the answer sets in a single output table whose arity is
equal to the maximum cardinality of the answer sets given by n. To
avoid clutter, we only keep the key attribute id. In this approach,
since a tuple may satisfy multiple member predicates, the same tu-
ple may appear multiple times (under different columns) within a

create view C1(id,duration,p1,p2,p3,p4) as select  id, duration, 

case city = S.H. then 1 else 0 as p1, case city = S.Z. then 1 else 0 as p2,

case type = museum then 1 else 0 as p3, case type = park  then 1 else 0 as p4

from R where duration <= 10 

create view A1 as select * from C1

where p1 = 1 and p2 = 1 and p3 = 1 and p4 = 1 and duration >= 6

           

create view C2(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24) 

as select * from C1 C11, C1 C12

where C11.id < C12.id and C11.duration + C12.duration <= 10 

create view A2 as select * from C2 where p11 + p21 > 0 and p12 + p22 > 0 

and p13 + p23 > 0 and p14 + p24 > 0 and duration1 + duration 2 >= 6

create view C3(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24, 

id3,duration3,p31,p32,p33,p34) as select   C21.*, C22.id2* from C2 C21, C2 C22

where  C21.id1 = C22.id1 and C21.id2 < C22.id2 and

C21.duration1 +  C21.duration2 + C22.duration2  <= 10 

create view A3 as select * from C3 where p11 + p21 + p31 > 0 and

p12 + p22 + p32 > 0 and p13 + p23 + p33 > 0 and p14 + p24 + p34 > 0 

and  duration1 + duration 2 + duration3 >= 6 

create viewC4(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24,

id3,duration3,p31,p32,p33,p34,id4,duration4,p41,p42,p43,p44) as

select  C31.*, C32.id3* from C3 C31, C3 C32

where  C31.id1 = C32.id1 and C31.id2 = C32.id2 and C31.id3 < C32.id3 and

C31.duration1 + C31.duration2 + C31.duration3 + C32.duration3 <= 10 

create view A4 as select * from C4 where p11 + p21 + p31 + p41 > 0  and

p12 + p22 + p32 + p42 > 0 and  p13 + p23 + p33 + p43 > 0 and  p14 + p24 +

p34 + p44 > 0 and  duration1 + duration 2 + duration3 + duration4 >= 6

Figure 10: SQL queries to evaluate our example SQ Qpoi

row in the result table representing an answer set. Therefore, this
approach uses SQL’s case statements to check whether a candidate
answer set satisfies a set predicate. All the tuples in the view M
satisfy all Pi (0 ≤ i ≤ 4). The view M ′ removes the answer sets
in M that are not minimal. In the view M ′, the first four condi-
tions ensure that all the members in the m2 tuple are contained in
the m1 tuple, and the remaining four conditions ensure that at least
one member from the m1 tuple is different from the m2 tuple which
guarantees that the m2 tuple is a proper subset of the m1 tuple. The
view M ′′ removes duplicates in M ′ and stores the answer sets.

B. PROOF OF PROPOSITION 1
PROOF. We prove each of the three properties by contradiction.
Suppose the first property is false; i.e., there exists a blockRVi ∈

U such that the cardinality of Vi is greater than n − k + 1. It
follows that U is not a vpset since it does not satisfy the second
property of a vpset (i.e., U is not minimal). The reason for this is
as follows. To ensure that U is minimal, for any RVj ∈ U , Vj

should contain at least one member variable that other blocks do
not contain. Since the cardinality of Vi is greater than n − k + 1,
the remaining number of member variables is fewer than k − 1
which can not ensure that the remaining k − 1 blocks in U \ RVi

have at least one member variable that other blocks do not contain.
Thus, we have a contradiction.

Suppose the second property is false; i.e., for any RVi ∈ U , the
cardinality of Vi is less than dn

k
e. It follows that U is not a vpset

since the number of member variables in
⋃

RVi
∈U Vi is less than n

which contradicts the first property.
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create view C1(id,duration,p1,p2,p3,p4) as select id, duration, 

case city = S.H. then 1 else 0 as p1, case city = S.Z. then 1 else 0 as p2, 

case type = museum then 1 else 0 as p3, case type = park then 1 else 0 as p4

from R where duration <= 10 and p1 + p2 + p3 + p4 > 0

create view A1 as select * from C1 where p1 = 1 and p2 = 1 and p3 = 1 and p4 = 1

create view B1 as select * from C1 except select * from A1

create view C2(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24) as

select * from B1 B11, B1 B12 where B11.id < B12.id and (B11.duration + B12.duration) <= 10 

create view A2 as select * from C2 where p11 + p21 > 0 and p12 + p22 > 0 

and p13 + p23 > 0 and p14 + p24 > 0 

create view B2 as select * from C2 except select * from A2

create view C3(id1,duration1,p11,p12,p13,p14,,id2,duration2,p21,p22,p23,p24, id3,duration3,

p31,p32,p33,p34) as select   B21.*, B22.id2* from B2 B21, B2 B22 where  B21.id1 = B22.id1 and 

B21.id2 < B22.id2 and (B21.duration1 + B21.duration2 + B22.duration2 ) <= 10 

create view A3 as select * from C3 where p11 + p21 + p31 > 0 and p12 + p22 + p32 > 0 and

p13 + p23 + p33 > 0 and p14 + p24 + p34 > 0 and  ((p11 = 1 and p21 + p31 = 0) or (p12 = 1 

and p22 + p32 = 0) or  (p13 = 1 andp23 + p33 = 0) or (p14 = 1 and p24 + p34 = 0)) and  (

(p21 = 1 and p11 + p31 = 0) or (p22 = 1 and p12 + p32 = 0) or (p23 = 1 and p13 + p33 = 0) 

or (p24 = 1 and p14 + p34 = 0) ) and  ((p31 = 1 and p11 + p21 = 0) or (p32 = 1

and p12 + p22 = 0) or (p33 = 1 and p13 + p23 = 0) or  (p34 = 1 and p14 + p24 = 0))

create view B3 as select * from C3 except select * from A3

create view C4(id1,duration1,p11,p12,p13,p14,id2,duration2,p21,p22,p23,p24,d3,duration3,

p31,p32,p33,p34,id4,duration4,p41,p42,p43,p44) as select B31.*, B32.id3* from B3 B31, B3 B32

where  B31.id1 = B32.id1 and B31.id2 = B32.id2 and B31.id3 < B32.id3 and

(B31.duration1 + B31.duration2  + B31.duration3 +B32.duration3 ) <= 10 

create view A4 as select * from C4 where p11 + p21 + p31 + p41 = 1 and

p12 + p22 + p32 + p42 = 1 and p13 + p23 + p33 + p43 = 1 and  p14 + p24 + p34 + p44 = 1

Figure 11: SQL queries to evaluate the BSQQ′poi that generate
results in multiple output tables

Suppose the third property is false; i.e., there exists a pair of
distinct blocks RVi and RVj in U such that Vi ⊆ Vj . It follows
that U is not a k-vpset since the subset U \RVi can also satisfy all
the member predicates which contradicts the second property.

create view M as (id1, id2, id3, id4) 

select  R1.id, R2.id, R3.id, R4.id from R R1, R R2, R R3, R R4

where R1.city =  S.H. and R2.city = S.Z. and  R3.type = museum and R4.type = park

and    (R1.duration + case (R2.id = R1.id) then 0 else R2.duration  + case (R3.id = R1.id  

           or R3.id = R2.id)  then 0 else R3.duration  + case (R4.id = R1.id or R4.id = R2.id 

           or R4.id = R3.id) then 0 else  R4.duration) <= 10

create view M’ as select * from M m1 where Not Exists 

select * from M m2 where

(m2.id1 = m1.id1 or m2.id1 = m1.id2 or m2.id1 = m1.id3 or m2.id1 = m1.id4) and

(m2.id2 = m1.id1 or m2.id2 = m1.id2 or m2.id2 = m1.id3 or m2.id2 = m1.id4) and

(m2.id3 = m1.id1 or m2.id3 = m1.id2 or m2.id3 = m1.id3 or m2.id3 = m1.id4) and

(m2.id4 = m1.id1 or m2.id4 = m1.id2 or m2.id4 = m1.id3 or m2.id4 = m1.id4) and (

(m1.id1   m2.id1 and m1.id1   m2.id2 and m1.id1   m2.id3 and m1.id1   m2.id4) or

(m1.id2   m2.id1 and m1.id2   m2.id2 and m1.id2   m2.id3 and m1.id2   m2.id4) or

(m1.id3   m2.id1 and m1.id3   m2.id2 and m1.id3   m2.id3 and m1.id3   m2.id4) or

(m1.id4   m2.id1 and m1.id4   m2.id2 and m1.id4   m2.id3 and m1.id4   m2.id4) )

create view M’’ as select * from M’ m1 where Not Exist 

select * from M’ m2 where

(m2.id1 = m1.id1 or m2.id1 = m1.id2 or m2.id1 = m1.id3 or m2.id1 = m1.id4) and

(m2.id2 = m1.id1 or m2.id2 = m1.id2 or m2.id2 = m1.id3 or m2.id2 = m1.id4) and

(m2.id3 = m1.id1 or m2.id3 = m1.id2 or m2.id3 = m1.id3 or m2.id3 = m1.id4) and

(m2.id4 = m1.id1 or m2.id4 = m1.id2 or m2.id4 = m1.id3 or m2.id4 = m1.id4) and

(m2.id1   m1.id1 or m2.id2   m1.id2 or m2.id3   m1.id3 or m2.id4   m1.id4) and (

(m2.id1 < m1.id1) or (m2.id1 = m1.id1 and m2.id2 < m1.id2) or 

(m2.id1 = m1.id1 and m2.id2 = m1.id2 and m2.id3 < m1.id3) or

(m2.id1 = m1.id1 and m2.id2 = m1.id2 and m2.id3 = m1.id3 and  m2.id4 < m1.id4))

Figure 12: SQL queries to evaluate the BSQQ′poi that generate
results in a single output table
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