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Abstract

The processing of a Continuous Reverse k-Nearest-
Neighbor (CRkNN) query on moving objects can be divided
into two sub tasks: continuous filter, and continuous refine-
ment. The algorithms for the two tasks can be completely
independent. Existing CRkNN solutions employ Continu-
ous k-Nearest-Neighbor (CkNN) queries for both continu-
ous filter and continuous refinement. We analyze the CkNN
based solution and point out that when k > 1 the refinement
cost becomes the system bottleneck. We propose a new con-
tinuous refinement method called CRange-k. In CRange-
k, we transform the continuous verification problem into a
Continuous Range-k query, which is also defined in this pa-
per, and process it efficiently. Experimental study shows
that the CRkNN solution based on our CRange-k refinement
method is more efficient and scalable than the state-of-the-
art CRkNN solution.

1. Introduction

A Reverse k-Nearest-Neighbors (RkNN) query issued
from object (or location) q returns the objects whose k near-
est neighbors include q. Formally, RkNN(q) = {o|q ∈
kNN(o)}, where kNN(o) is object o’s k nearest neigh-
bors [7]. Reverse k-Nearest-Neighbors queries are gaining
research interests due to its applications in decision mak-
ing (discovery of the influence sets) [6, 10], location based
services, and computer (and mobile) games.

In this paper, we investigate the problem of processing
Continuous Reverse k-Nearest-Neighbor (CRkNN) queries
on moving objects. Specifically, we look at the in-memory
processing of CRkNN queries based on moving objects’ lo-
cation updates (and location uncertainty is not taken into
account). A CRkNN query’s result needs to be kept up-to-
date when moving objects update their locations. Evaluat-
ing such queries is challenging because of two reasons: 1)
both object-query distance and object-object distance play
an important role in CRkNN processing, and therefore an

object’s location update may cause several changes to a
CRkNN query’s result; 2) moving objects have high loca-
tion update rates.

A filter-refinement framework is effective in processing
RkNN queries, as shown in both snapshot and continuous
RkNN algorithms [9, 11, 13, 5]. In the filter phase, most ob-
jects that are not query results are pruned using some tech-
niques (please refer to Section 2.1 for a review of RkNN
pruning methods), and this phase leaves a relatively small
number of objects called candidates. In the refinement
phase, each candidate is checked to see whether its kNNs
include the RkNN query object (i.e. q ∈ kNN(o)).

In the processing of a continuous RkNN query, both fil-
ter and refinement need to be done continuously because
object movement may change both filter result and refine-
ment result. In this paper we call them continuous filter and
continuous refinement.

It is desirable to have a CRkNN solution that makes
use of existing spatio-temporal system components. Ex-
isting CRkNN solutions [13, 2] use variants of Continuous
k-Nearest-Neighbor (CkNN) queries for both filter and re-
finement.

We analyze the CkNN based solution and point out: con-
tinuous refinement dominates the CRkNN processing cost
when k > 1, and this solution does not scale with k, because
the number of candidates increases with k and maintaining
each candidate’s kNNs continuously is expensive.

We present a continuous refinement method called
CRange-k. An object o’s kNN set includes q if and only
if there are fewer than k objects that are nearer to o than
q is. We verify a candidate o of a CRkNN query q1 as fol-
lows: we continuously check whether the number of objects
whose distances to o are shorter than dist(o, q) is fewer than
k. Here dist(o, q) is the distance between o and q.

We formalize this verification method as a new kind of
query called Range-k query. A Range-k query is specified
as < o, r, k > where o is an object, r is a distance, and k
is a threshold value. Its result is the value of the expression

1In this paper, “a CRkNN query q” means a CRkNN query issued from
object q.



|{p|dist(o, p) < r}| < k, i.e. a Boolean value (True/False)
indicating whether there are fewer than k objects within the
specified distance r to the object o. A continuous Range-k
query is cheap to process because we only need to main-
tain a count, and both r and k can be used to minimize the
query’s monitoring region. We present algorithms for the
efficient evaluation of continuous Range-k queries.

We did extensive experiments to study the performance
of our CRange-k continuous refinement method. Exper-
imental results show that the CRkNN solution based on
CRange-k performs much better than the existing CkNN
based solution.

The rest of the paper is organized as follows. Section 2
surveys related works. In section 3 we analyze CkNN
based CRkNN solution and identify its bottleneck. Then
we present our CRange-k verification method in Section 4.
Experimental study is shown in Section 5. Finally, Section 6
concludes this paper.

2. Related Works

Various algorithms have been proposed for processing
snapshot Reverse k-Nearest-Neighbor (RkNN) queries (in-
cluding Bi-chromatic RNN) in different settings [9, 10, 8,
11, 1, 14, 12]. Recently researchers have begun to work on
continuous RNN and RkNN queries [13, 5, 12].

Our work focuses on the exact answer of continuous
RkNN query in Euclidian space (w.r.t the moving objects’
reported positions in the database). In the following we re-
view the works that are closely relevant to ours. All these
works employ a filter-refinement framework.

2.1. Snapshot RkNN

The emphasis of algorithms for snapshot RkNN queries
has been to develop efficient filter methods that can prune
as many objects as possible. Two interesting filter methods
have been developed for RkNN processing. In this paper,
we call them 60-degree-pruning and TPL-pruning.

The 60-degree-pruning method is developed by Ioana
Stanoi et al. in [9] for processing RNN queries. Its idea is
illustrated in Figure 1(a): the space around a RNN query q
can be divided into six equal-size regions (S1, S2, . . . , S6),
then (thanks to the special property of 60 degree angle) in
each region only the nearest neighbor of q can possibly be
a reverse nearest neighbor of q. By this, q’s RNN can-
didates are restricted to q’s nearest neighbor in each sub-
space. Based on this idea, a RNN query is processed as fol-
lows: six constrained nearest neighbor queries [4] are used
to find the candidates, then a nearest neighbor query is used
to verify each candidate.

This 60-degree-pruning method can be extended easily
to the general case where k ≥ 1: in each sub-space, only
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Figure 1. Pruning techniques.

the RkNN query point’s k nearest neighbors are result can-
didates. An example is shown in Figure 2(a). This filtering
method results in 6 ∗ k candidates for each RkNN query.

The TPL-pruning method is proposed by Yufei Tao,
Dimitris Papadias, and Xiang Lian in [11]. The basic idea
of TPL is illustrated in Figure 1(b): the perpendicular bisec-
tor between the query point q and an arbitrary object point
p divides the space into two half planes, i.e. the PLq(p, q)
that contains q and the PLp(p, q) that contains p, then the
points in PLp(p, q) cannot be a RNN of q because p is
closer to them than q is. Similarly, for RkNN, an object
can be pruned if the object is in at least k PLp(p, q) planes.
Based on this finding, the TPL algorithm processes a RkNN
query as follows. In the filter step, objects near query point
q are used to (draw perpendicular bisectors to) do filtering;
these objects and the objects that are not pruned are the can-
didates. In the refinement step, candidates are verified by
checking whether q is one of their k nearest neighbors. Ex-
periments in [11] show that the number of candidates after
TPL-pruning is normally between 2 ∗ k and 3 ∗ k.

2.2. Continuous RkNN

The emphasis of existing Continuous RkNN (CRkNN)
query processing algorithms is on defining the monitoring
region2 of a CRkNN query and updating the query result
based on moving objects’ location updates.

Tian Xia and Donghui Zhang [13] investigated the pro-
cessing of Continuous RNN (CRNN, i.e. k = 1) queries.
Their method is based on the 60-degree-pruning technique.
The monitoring region of a CRNN query is defined as six
pie-regions (determined by the query point and the six can-
didates) and six cir-regions (determined by the six candi-
dates and their nearest neighbors). Then for a CRNN query:
in each sub-space a continuous constrained nearest neigh-
bor query is used to monitor the candidate in that sub-space
(continuous filter). For each candidate, a continuous nearest
neighbor query is used to do continuous refinement.

2A continuous query’s monitoring region is the region where object
location updates will trigger the query’s continuous processing.
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In [2], while mainly focusing on processing predic-
tive kNN and RkNN queries with the TPR-tree, Riman-
tas Benetis, Christian S. Jensen et al. also discussed the
problem of processing CRNN and CRkNN queries. Their
CRkNN processing solution is based the extension of the
60-degree-pruning technique. In each sub-space, the set of
candidates is continuously maintained, and each candidate’s
kNNs are also continuously maintained to do continuous re-
finement.

In [5], James M. Kang, Mohamed F. Mokbel et al. pre-
sented an CRNN (i.e. k = 1) processing algorithm called
IGERN. IGERN utilizes the TPL-pruning method. As such,
it monitors fewer candidates, and is more efficient in CRNN
monitoring than the 60-degree-pruning based solution [13].

Since TPL-pruning results in fewer candidates, it will be
appealing to apply TPL-pruning in general CRkNN moni-
toring where k ≥ 1. Unfortunately, when k > 1, defin-
ing the continuous monitoring region for TPL-pruning and
designing an incremental TPL-pruning algorithm are non-
trivial, and no one has proposed a solution. The monitoring
region defined in IGERN [5] only applies to CRNN (k = 1).
Also for this reason, the IGERN algorithm cannot be ex-
tended easily to handle CRKNN queries where k > 1.

Our work in this paper differentiates itself from the exist-
ing works by focusing on continuous verification rather than
continuous filter. In the next section, we analyze CRkNN
processing and show why continuous refinement deserves
our attention.

3. Analysis of CkNN based CRkNN Processing

The processing of a Continuous Reverse k-Nearest-
Neighbor (CRkNN) query can be divided into two tasks:
continuous filter, and continuous refinement. Continuous
filter maintains the query’s result candidates (the objects
that are not pruned with the applied pruning technique).
The job of continuous refinement is to continuously ver-
ify whether each candidate is a query result. Here “contin-
uous” means both the candidates set and each candidate’s
state (whether it is result object) are maintained up-to-date.
Note an object’s movement may change both candidate set
and candidates’ states.

Figure 2 depicts an example of the changes an object’s
movement can cause to a CR3NN (k = 3) query. In this
example, the 60-degree-pruning method is used to do filter-
ing and 3NN query is used to do refinement. For clarity,
we only show the pie-region (monitoring region for contin-
uous filter) in S1 and the circ-region (monitoring region for
continuous refinement) of object 2. In Figure 2(a), i.e. Be-
fore the movement of object 4, the candidates in sub-space
S1 are object 1, 2, and 3 because they are the query point’s
3NNs in S1, and the object 2 is a query result because its
3NN includes the query point. After the movement of ob-
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Figure 2. Example of impact of object move-
ment on RkNN.

ject 4, in Figure 2(b), the candidates in S1 become object 1,
2 and 4, and object 2 is not a result object anymore because
its 3NN now does not include the query point.

In CRkNN monitoring, the interaction between the two
tasks (filter and refinement) are very simple: when a new
candidate is identified in continuous filtering, the system
starts the candidate’s continuous refinement; when an object
is not a candidate anymore, the system ends the candidate’s
continuous refinement. Therefore, the algorithm for contin-
uous filter and the algorithm for continuous refinement are
independent3.

Up to now, in the existing CRkNN (k ≥ 1) solutions
(please refer to Section 2 for a review), both the continu-
ous filter method and the continuous refinement method are
based on Continuous kNN (CkNN) queries. The continuous
filter method applies the 60-degree-pruning technique: from
the CRkNN query point, the space is divided into six 60-
degree sub-spaces, and in each sub-space the query point’s
kNNs are the candidates (see Figure 2 for an example); then
six Continuous Constrained k-Nearest-Neighbor queries are
used to do continuous filter (i.e. monitor the query point’s
six kNNs in the six sub-spaces). The continuous refinement
method is to maintain each candidate’s kNNs with a CkNN
query (see Figure 2 for an example).

3.1. Bottleneck of CkNN based Solution

Here we compare the costs of continuous filter and con-
tinuous refinement, with the objective to determine the bot-
tleneck of the existing CkNN based CRkNN solution.

In continuous filter, six Continuous Constrained k-
Nearest-Neighbor (CCkNN) queries are used to maintain
a CRkNN query’s candidates, the cost is therefore 6 ∗
Costccknn where Costccknn is the cost of processing a
CCkNN query. CCkNN query can be processed by adapting
existing continuous kNN (CkNN) query processing tech-
niques, i.e. considering only the objects in the specific

3As a result, the continuous refinement method proposed in this pa-
per can integrate with any continuous filter method to construct a CRkNN
solution.
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Figure 3. Filter vs. refinement

region. Adding a filter condition to the existing CkNN
query processing algorithm will not add much additional
cost, therefore we can write the cost of a CCkNN query as
a∗Costcknn where a is a constant little larger than 1. Then
the cost of continuous candidate monitoring of a CRkNN
query is 6 ∗ a ∗ Costcknn where Costcknn is the cost for
processing a CkNN query.

For the continuous refinement task, a CkNN query is
used for each candidate, hence the cost of continuous refine-
ment of a CRkNN query is ]Can ∗ Costcknn where ]Can
is the number of candidates of the CRkNN query. As we
mentioned, the 60-degree-pruning method results in 6 ∗ k
candidates4. Therefore the cost of continuous refinement is
6 ∗ k ∗ Costcknn.

The ratio of continuous refinement cost (Costcr) to the
continuous filter cost (Costcf ) is

Costcr

Costcf
=

6 ∗ k ∗ Costcknn

6 ∗ a ∗ Costcknn
=

k

a
(1)

Since 1 < a < 2, the cost of continuous refinement
dominates the total cost of CRkNN processing when k > 1.
More importantly, when k increases, the cost of continuous
refinement increases much faster than the cost of continuous
filter.

Our experiments verify this analysis (please refer to Sec-
tion 5 for the setup of this experiment). Figure 3 shows the
breakdown of CRkNN cost (when CkNN is used for con-
tinuous refinement) with the increase of k. It is clear that
the continuous refinement time dominates the total process-
ing time, and the ratio of continuous refinement cost to the
continuous filter cost increases with k.

This result indicates that in CRkNN, when k > 1, the
continuous refinement will become the bottleneck of the
CRkNN monitoring system. In the following sections, we
propose our efficient method for doing continuous refine-
ment.

4Even if TPL-pruning can be applied to CRkNN, the result of the anal-
ysis still holds, because in TPL-pruning the number of candidates also in-
creases with k.

4. CRange-k Continuous Refinement

In this section, we propose a new continuous refinement
method called CRange-k.

Given a CRkNN query q’s candidate o: object q is one
of object o’s kNNs if and only if the number of objects,
whose distances to o are shorter than dist(o, q), is smaller
than k, where dist(o, q) is the distance between o and q. A
mathematical representation of the observation is:

q ∈ kNN(o) ⇔ |{p : dist(p, o) < dist(q, o)}| < k (2)

Verifying whether o is a result object can be transformed
to such a question: is the number of objects whose distances
to o are shorter than dist(q, o) smaller than k? To facili-
tate discussion, we formalize this question as a new kind of
query called Range-k Query. A Range-k query is specified
as < o, r, k > where o is an object, r is a distance, and k is
a threshold value, and the query’s result is the boolean value
of the following expression: |{p : dist(p, o) < r}| < k.

Notice the result of the Range-k query <
o, dist(q, o), k > tells whether o is a result object q.
The continuous refinement can be done with a correspond-
ing continuous Range-k query.

It is worth noting that Range-k query is closely related to
kNN query and Range query. A continuous Range-k query
can even be evaluated with any continuous kNN query al-
gorithm or continuous Range query algorithm. However,
an algorithm specifically designed for Range-k query can
be much more efficient. We will discuss this in detail in
Section 4.3.

In the remainder of this section, we present our CRange-
k continuous verification algorithm by describing it as an
continuous Range-k query processing algorithm.

In Range-k query, we are only interested in the relation-
ship between k and the number of objects within the range.
Therefore, the processing of a Range-k query can terminate
as soon as their relationship is clear. Our algorithm makes
use of this property.

In the algorithm, we use a grid to index both moving
objects and Range-k queries. The objects are mapped to
the grid cells based on their locations. A Range-k query is
indexed in a minimal set of cells such that by monitoring
the object movements in these cells we can keep the query
result refresh.

The algorithm consists of two parts: a Search part and
a Maintenance part. Search’s functionality is to compute
the query’s result by looking for objects that are within
the given range, and to index the query into proper cells.
An object’s location update triggers the Maintenance of the
queries indexed in the corresponding cell (or cells when
the object moves from one to another cell). Maintenance’s
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main functionality is to update the query’s result upon ob-
ject location changes. Maintenance uses Search to find
more objects if necessary. The two parts share and main-
tain the following information for each Range-k query:
• count: the number of objects that are within the circle

found in visited cells;
• V : set of cells checked so far;
• U : a FIFO queue of cells that we need to check.
In the above, “circle” means circle(o, r), i.e. the circle

centered at o with radius r.
A continuous Range-k query is first processed with

Search, and then continuously maintained by Maintenance.
We present Search and Maintenance by looking at the initial
process and continuous maintenance of a Range-k query.

4.1. Initial Processing

When a Range-k query < o, r, k > is issued, the infor-
mation we are going to maintain for this query is initialized
as follows: count ← 0; V ← ∅; U ← cell(o). Here cell(o)
means the cell that contains object o. Then the Search rou-
tine is used to do the initial processing of the query.

Here is an overview of how Search processes a new
Range-k query: starting from the cell that contains ob-
ject o, the cells that intersect with circle(o, r) are checked
until one of the following two conditions is satisfied: 1)
count ≥ k, which means at least k objects are within the
given range; 2) all the cells intersecting with circle(o, r)
have been checked and the count is smaller than k. In the
first case, False is returned; in the second case, True is re-
turned. During the course, the query is indexed into the
visited cells.

Figure 4 lists the pseudo-code of the Search routine.
This Search routine returns false if count ≥ k after a cell

is checked. This is to visit as few cells as possible and to
index the query in a minimal number of cells (object move-
ment in these cells will trigger the query’s Maintenance).

One detail of the algorithm is that we distinguish the cells
totally covered by the circle from the cells partially inter-
sected with the circle. We avoid checking objects in totally
covered cells. For a covered cell, all objects in it are in the
circle so we just increase the count directly by the cell’s
number of objects (lines 7-8). For a partially intersected
cell, we check each object in it to determine how many are
in the circle and increase the count accordingly (lines 9-13).

Another detail of the algorithm is that we look at the
neighbors of an intersecting cell to find other cells that in-
tersect with the circle. This is based on the following ob-
servation: the cells that intersect with a given circle are
connected. For a new Range-k query, U is initialized with
cell(o) (which must intersect with the circle). Then when
checking a cell that intersects with the circle, its un-checked
neighbors are added to U . By this, we visit the cells that in-

Range-k Search (o, r, k, count, V , U )
// Inputs
o: a Range-k query point; r: the range; k: the k value;
count, V , U : see Section 4 for description.
// Output: result of Range-k query < o, r, k >.

1. WHILE U 6= ∅
2. e = deque(U )
3. IF e intersects with circle(o, r)
4. put e into V
5. put neighbours(e)− V − U into U
6. add reference of this query into cell e
7. IF e is totally covered by circle(o, r)
8. count = count + e.]objects
9. ELSE

10. FOR EACH object o in e
11. IF o is in circle(o, r)
12. THEN count = count + 1
13. END FOR
14. END IF
15. END IF
16. IF count ≥ k THEN RETURN false
17. END WHILE
18. RETURN true

Figure 4. The Search routine of Range-k

(a) (b) (c)

Figure 5. Search’s Sample States

tersect with the circle layer by layer, and the cells totally
covered by the circle are likely to be visited early.

Figure 5 shows some sample states a Search can be in.
In the figures, gray cells are the covered cells, shaded cells
are the partially covered cells, and dotted cells are the cells
in the to-be-visited queue.

4.2. Continuous Maintenance

Maintenance does an incremental processing of the
query and keeps both the data structures and the query’s
result up-to-date.

In Search, we put a reference of the Range-k query to
the visited cells that intersect with circle(o, r). For exam-
ple, they are the grey cells and line shaded cells in Figure 5.
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With the reference of the Range-k query in these cell, the
incremental maintenance for the query will and only will
be triggered by the location updates that may change the
query’s result. An object’s movement triggers the Mainte-
nance of the queries indexed in its starting and ending cells
(they could be the same cell).

Maintenance (Figure 6) does an incremental processing
of a query when triggered by an object’s movement. Main-
tenance examines the impact of this movement on the count
(the number of objects that are within range and in the vis-
ited cells). If the object moved from a visited cell to a visited
cell, we check both its starting and ending location to see if
count needs to be updated (case 1, lines 3-8). If the object
moved from a visited cell to an un-visited cell, we only need
to check its starting location to see if count needs to be de-
creased (case 2, lines 9-12). If the object moved from an
un-visited cell to a visited cell, we only need to check its
ending location to see if count needs to be increased (case
3, lines 13-16). Note if an object moved from an un-visited
cell to another un-visited cell, it will not trigger this query.
And notice that the invariant of the algorithm is that count
is the number of objects that are in the visited cells and in
the circle.

Range-k Maintenance (o, r, k, count, V , U , p)
// Inputs
o, r, k, count, V , U : same as in Search;
p: a moving object;
// Output: result of Range-k query < o, r, k >.

1. sc ← the cell p was in before move
2. ec ← the cell p is in after move
3. IF sc ∈ V AND ec ∈ V //case 1
4. IF p moves into circle(o, r) from outer
5. THEN count = count + 1
6. IF p moves out of circle(o, r) from inner
7. THEN count = count− 1
8. END IF
9. IF sc ∈ V AND ec /∈ V //case 2

10. IF p was in circle(o, r) before move
11. THEN count = count− 1
12. END IF
13. IF sc /∈ V AND ec ∈ V //case 3
14. IF p was in circle(o, r) after move
15. THEN count = count + 1
16. END IF
17. IF count ≥ k
18. RETURN false
19. ELSE
20. RETURN Search(o, r, k, count, V , U )
21. END IF

Figure 6. Incremental Maintenance of Range-k

After updating the count, if count ≥ k then query re-
sult false is immediately returned (lines 17-18), otherwise
Search will be invoked to compute the result of the query
(lines 19-20). Note Search was used to do initial processing
of the query, but here it is used to do incremental process-
ing. This time Search does not start from scratch; it does
an incremental search based on current states of count, V ,
and U . Search either returns false if count ≥ k after visit-
ing other cells intersecting with the circle; or returns true if
all cells intersecting with the circle have been visited (U is
empty) and count < k.

With the algorithm, the processing of a continu-
ous Range-k query (therefore the continuous verification
method based on it) is efficient because: (1) Search indexes
the query in a minimum number of cells, so that the Main-
tenance will not be triggered unless necessary; (2) for most
cases (count > k), the algorithm can return in constant
time; (3) if Search is called because count ≤ k, when queue
V is already exhausted, Search will return in constant time.

4.3. Discussion

In this section, we briefly discuss 1) other possible ap-
plications of Range-k queries, 2) the relationship between
Range-k query and kNN query and Range query, and 3) why
CRange-k verification is more efficient than kNN query or
Range query based verification in CRkNN processing.

Although we define Range-k query for the purpose of
using it in CRkNN processing, this kind of query is gener-
ally meaningful. It can be used in certain applications to
help making decisions. For example, in battlefield a soldier
may want to know whether there are more than k accompa-
nying soldiers within a specific range. If so she/he is safe,
otherwise she/he may need support. As another example,
a mobile object that provides service to other objects via
Bluetooth may need to know whether there are more than k
(e.g., its service capacity) objects within a distance (e.g., the
Bluetooth transmission range). If so, more service-provider
objects are needed, otherwise the object itself is able to ser-
vice its nearby customer objects.

Range-k query is closely related to Range query and
kNN query because it combines the range and k param-
eters from them. kNN query algorithm and Range query
algorithm can even be used to process a Range-k query
< o, r, k >. To use kNN query algorithm, we first find
o’s kNN, and then compare r with the distance between o
the its k-th nearest neighbor. To use Range query algorithm,
we first find all the objects in range, and then compare its
size with k.

Because of the relationship shown above, any continu-
ous kNN query algorithm and any continuous Range query
algorithm can be used to do continuous verification in
CRkNN. But both of them will be an overkill and incur
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high maintenance cost. Continuously maintaining kNN is
expensive, and if kNN based algorithm is used then can-
didates near the CRkNN query point will have an unnec-
essarily large monitoring region. If Range query is used,
then the candidates that are farther from the CRkNN query
point can have a very big monitoring region. In this way the
query is unnecessarily triggered by too many location up-
dates. What makes a continuous Range-k efficient to pro-
cess is that it does not ask for precise information and both
the range and the k value can be used to make its monitor-
ing region as small as possible. For candidates near to the
CRkNN query point, range limits the monitoring region for
this candidate; for candidates far from the CRkNN query
point, the k value limits the monitoring region for this can-
didate (notice that our Range-k algorithm terminates either
count ≥ k or cells intersecting with the circle have all been
visited). In Section 5 we experimentally study their perfor-
mance when applied in CRkNN monitoring.

5. Experimental Study

We implemented one continuous filter module and two
continuous refinement modules. The continuous filter mod-
ule is based on the 60-degree-pruning (TPL-pruning is not
used simply because how to use it in continuous filter when
k > 1 is still open) and uses six continuous constrained
kNN queries to maintain a CRkNN query’s candidates.
One of the two continuous refinement modules uses our
CRange-k refinement method, and the other employs Con-
tinuous kNN (CkNN) query based refinement method as in
existing CRkNN solutions. In the CkNN based refinement
module, we implemented the state-of-the-art CkNN algo-
rithm [7].

The one continuous filter and two continuous refinement
modules form two CRkNN solutions (recall that a CRkNN
solution consists of one filter method and one refinement
method). For simplicity, in the experimental result analysis,
we use RF to refer to the one containing our CRange-k re-
finement method, and use CK to refer to the one containing
the CkNN based refinement method.

The metric used in this performance study is processing
time. The processing is done in memory. Moving objects
and CRkNN queries datasets are generated using Network-
based Generator [3] with the Oldenburg map. We study the
effect of the following parameters: grid index granularity,
value of k, number of moving objects, number of CRkNN
queries, moving objects’ speed. These parameters are sum-
marized in Table 1. All the experiments are done on a
workstation with 2 Intel Xeon 3.0 CPUs and 2 GB mem-
ory, running Red Hat Linux Enterprise 3 with Java 5.

Effect of Grid Index Granularity. Grid index granu-
larity has a big impact on the performance of CRkNN so-
lutions. Its effect is shown in Figure 7. We can observe

Table 1. System Parameters
Parameter Default Range
Number of objects (no) 20K 10,20,50,70,100(K)
Number of queries (nq) 2K 1,2,5,7,10 (K)
Value of k (k) 8 1,2,4,6,8,12,16
Object/Query speed (v) middle slow, middle, fast
No. of grid cells (nc) 1002 322, 642, 1002,

1282, 1502, 2562

that RK outperforms CK at any grid index granularity. This
is because RK issues a continuous Range-k query for each
candidate and CK issues a continuous kNN query for each
candidate. With the same k value, a Range-k query is al-
ways cheaper than a kNN query. The figure also shows that
both a too coarse and a too fine granularity will hurt the
performance. This is a common phenomenon in grid index
based systems.

Effect of k. A comparison of processing time with re-
spect to parameter k is depicted in Figure 8. The processing
time of both RK and CK increases with k, but the perfor-
mance of RK is always better than CK, and their difference
increases rapidly with k. RK’s processing time is almost
linear with k, while CK’s is almost quadratic with k. This is
because: a CRkNN query’s number of candidates increases
linearly with k; a continuous Range-k query’s maintenance
cost is almost constant; a continuous kNN query’s mainte-
nance cost also increases with k.

Figure 9 shows the breakdown of processing times with
respect to the k parameter. The contrast is obvious: as the
k becomes large, the refinement time of CK grows rapidly
and thus becomes the bottleneck of the whole system. For
example, when k=12, 87.5% of the processing time is spent
on refinement. For RK, the refinement time increases sig-
nificantly slower. Furthermore, the ratio of refinement time
is almost a constant (around 50%) and it is no longer the
dominant factor for the total processing time.

Effect of Object Number. When the population of ob-
jects gets bigger, both CR and CK’s processing time become
longer (Figure 10). This is within expectation as more up-
date messages are processed when the number of objects
increases. When the number of objects increases, object
density is higher, then object movement is more likely to
trigger a CRkNN query’s filter and refinement. CR is more
scalable than CK because it maintains a smaller monitoring
region for candidates near the CRkNN query point.

Effect of Query Number. Figure 11 shows that the
processing time of RK and CK grow almost linearly when
increasing the number of CRkNN queries. This is natural
since the total processing time is the sum of all queries’
processing times.

Effect of Moving Speed. The effect of objects’ moving
speed on CRkNN query’s processing time is shown in Fig-
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ure 12. RK outperforms CK in all speed settings. When
the objects move faster, object movement is more likely to
trigger continuous queries maintenance, thus the processing
time of both RK and CK increases with objects’ speed.

6. Conclusion

In this paper we investigated the problem of Continuous
Reverse k-Nearest-Neighbor monitoring on moving objects.
We show that a CRkNN query’s processing can be clearly
divided into continuous filter and continuous refinement,
and continuous refinement will dominate the CRkNN pro-
cessing time when k > 1. We propose an efficient continu-
ous refinement method called CRange-k. In our method, the
continuous refinement is formalized as continuous Range-k
queries, which then are processed efficiently. Applying our
CRange-k refinement method in CRkNN monitoring can ef-
fectively improve the efficiency of CRkNN monitoring.
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