
ZINC: Efficient Indexing for Skyline Computation

Bin Liu CheeYong Chan
Department of Computer Science

School of Computing
National University of Singapore

{liubin,chancy}@comp.nus.edu.sg

ABSTRACT
We present a new indexing method named ZINC (for Z-order In-
dexing with Nested Code) that supports efficient skyline compu-
tation for data with both totally and partially ordered attribute do-
mains. The key innovation in ZINC is based on combining the
strengths of the ZB-tree, which is the state-of-the-art index method
for computing skylines involving totally ordered domains, with a
novel, nested coding scheme that succinctly maps partial orders
into total orders. An extensive performance evaluation demon-
strates that ZINC significantly outperforms the state-of-the-art TSS
indexing scheme for skyline queries.

1. INTRODUCTION
Given a set of data records D, a skyline query returns the inter-

esting subset of records of D that are not dominated (with respect
to the attributes of D) by any records in D. A data record r1 is
said to dominate another record r2 if r1 is at least as good as r2
on all attributes, and there exists at least one attribute where r1
is better than r2. Thus, a skyline query essentially computes the
subset of “optimal” records in D, which has many applications in
multi-criteria optimization problems.

There has been a lot of research on the skyline query computa-
tion problem, most of which are focused on data attribute domains
that are totally ordered (TO), where the best value for a domain is
either its maximum or minimum value. However, in many appli-
cations, some of the attribute domains are partially ordered (PO)
such as interval data (e.g. temporal intervals), type hierarchies,
and set-valued domains, where two domain values can be incom-
parable. A number of recent research work [2, 8] has started to
address the more general skyline computation problem where the
data attributes can include a combination of TO and PO domains.
SDC+ [2] is the first method proposed for the more general skyline
query problem, which is an extension of the well-known BBS index
method [7] designed for totally ordered domains. SDC+ employs
an approximate representation of each partially ordered domain by
transforming it into two totally ordered domains such that each par-
tially ordered value is presented as an interval value. The state-of-
the-art index method for handling PO domains is TSS [8], which is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 3
Copyright 2010 VLDB Endowment 21508097/10/12... $ 10.00.

also based on BBS. Unlike SDC+, TSS uses a precise representa-
tion of a PO value vp by mapping vp into a TO value vt and a set of
interval values. The TO value vt corresponds to the ordinal value
of vp in a topological sorting of the PO domain values. By using a
precise representation, TSS avoids the overhead incurred by SDC+

to filter out false positive skyline records.
Recently, a new index method called ZB-tree [5] has been pro-

posed for computing skyline queries for TO domains which has bet-
ter performance than BBS. The ZB-tree, which is an extension of
the B+-tree, is based on interleaving the bitstring representations
of attribute values using the Z-order to achieve a good clustering of
the data records that facilitates efficient data pruning and minimizes
the number of dominance comparisons.

Given the superior performance of ZB-tree over BBS for TO
domains, one question that arises is whether the ZB-tree ap-
proach can outperform the state-of-the-art BBS-based TSS ap-
proach, when extended to handle PO domains. In this paper, we
introduce a new indexing approach, called ZINC (for Z-order In-
dexing with Nested Codes), that combines ZB-tree with a novel
nested encoding scheme for PO domains. While our nested encod-
ing scheme is a general scheme that can encode any partial order,
the design is targeted to optimize the encoding of commonly used
partial orders for user preferences which we believe to have simple
or moderately complex structures.

The key intuition behind our proposed encoding scheme is to
organize a partial order into nested layers of simpler partial orders
so that each value in the original partial order is encoded using a
sequence of concise, local encodings within each of the simpler
partial orders. Our experimental results show that using the nested
encoding scheme, ZINC significantly outperforms TSS as well as
two ZB-tree variants based on different encoding schemes.

For simplicity and without loss of generality, we assume in this
paper that for TO domains, smaller values dominate larger values.

The rest of this paper is organized as follows. Section 2 sur-
veys related work and Section 3 provides more background on
ZB-tree which is the basis of our proposed ZINC approach. In
Section 4, we introduce our novel nested encoding scheme and the
proposed ZINC method. Section 5 presents our experimental eval-
uation results. Finally, we conclude in Section 6.

2. RELATED WORK
Skyline query processing has attracted a lot of research. In this

section, we review only the work that handles data with both TO
and PO domains.

Prior to ZB-tree, the state-of-the-art approach for data with
only TO domains was BBS [7]. Not surprisingly, the first work that
handles PO domain is based on BBS [2]. The main idea is to map
each PO attribute into an approximate representation consisting of

197

a pair of TO attributes. The transformed data is then indexed using
BBS. Due to the approximate representation, this approach requires
post-processing of false positive skylines. Although this limitation
is alleviated with some optimization technique to allow partial pro-
gressive skyline computation, the overhead of dominance compar-
isons can be high.

The state-of-the-art approach for computing skylines with PO
domains is TSS [8]. This approach is also based on BBS, but un-
like the approach in [2] which maps each PO domain value to a
single interval value, TSS uses a precise representation by map-
ping each PO domain value into an ordinal number with respect to
a topological ordering of the PO domain values and a set of interval
values. In this way, the overhead of post-processing false positive
skylines is avoided.
LatticeSky [6] is an efficient approach to process skyline

queries for low-cardinality PO attribute domains using at most two
sequential data scans. The first scan is to construct a lattice struc-
ture to identify the active dominating domain values, and the sec-
ond scan is to identify the skyline tuples by making use of the lat-
tice structure. LatticeSky works well when the PO attribute
domains have low cardinality such that the lattice structure can fit
in main-memory.

Another recent direction is the work on skyline computation for
continuous streaming data with PO domains [9, 4]. The focus there
is on efficient skyline maintenance for streaming non-indexed data
which is very different from the focus of our work which is on an
index-based approach for static data.

Yet another recent direction is the work on dynamic skyline quer-
ies which are skyline queries where the user preferences are spec-
ified at run-time. Specifically, for data with categorical attributes,
the partial orders representing the user’s value preferences for such
attributes are given as part of the input skyline query. Three dif-
ferent approaches have been proposed for dynamic skyline queries.
The first approach is based on TSS [8], where an R-tree index is
built for every combination of PO domain values. The second ap-
proach is the IPO-Tree method [10], which is based on material-
izing a set of dominating relationship views and using a subset of
these materialized views at run-time to process an input dynamic
skyline query. The third approach is Adaptive-SFS [3], which
is based on re-sorting the data based on the run-time user’s pref-
erence specification. In this paper, our focus is on skyline queries
where the partial orders are static; extending our approach to handle
dynamic queries is part of our future work.

3. ZBTREE METHOD
In this section, we review the ZB-tree method [5], which our

proposed method is based upon. This method is designed for data
where all the attributes have TO domains. It first maps each multi-
dimensional data point to a one-dimensional Z-address according
to Z-order curve by interleaving the bitstring representations of the
attribute values of that point. For example, given a 2D data point
(0,5), its bitstring representation is (000,101) and its Z-address is
(010001). Fig. 1(b) depicts an example of Z-order curve on the
set of 2D data points shown in Fig. 1(a). By ordering data points
in non-descending order of their Z-addresses, ZB-tree has two
very useful properties. The monotonic ordering property states that
a data point p can not be dominated by any point that succeeds p in
the Z-order. The clustering property states that data points ordered
by Z-addresses are clustered into regions, which enables very effi-
cient region-based dominance comparisons and data pruning.

A ZB-tree is a variant of B+-tree using Z-addresses as keys.
The data points are stored in the leaf nodes sorted in non-descending
order of their Z-addresses. Fig. 1(d) depicts the ZB-tree built on

the dataset shown in Fig. 1(a), where the minimum and maximum
leaf node capacity are 1 and 3, respectively. Each internal node
entry (corresponding to some child node N) maintains an interval,
denoted by a pair of Z-addresses, representing a segment of the Z-
order curve (called the Z-region) covering all the data points in the
leaf nodes in the index subtree rooted at N . Specifically, an interval
is represented by (minpt,maxpt), where minpt and maxpt cor-
respond, respectively, to the minimum and maximum Z-addresses
of the smallest square region, called the RZ-region, that encloses the
Z-region. An example of RZ-region is shown by the 4 × 4 square
in Fig. 1(c) where three data points A, B, and C are bounded;
the minpt and maxpt indicated are the minimum and maximum
Z-addresses of the enclosed square RZ-region. The minpt (resp.,
maxpt) of an RZ-region is easily derived by appending 0s (resp.,
1s) to the common prefix of the Z-addresses of the two endpoints
of the corresponding curve segment.

The ZB-tree method utilizes an in-disk ZB-tree (named
SRC) and an in-memory ZB-tree (named SL) to index the data
points and computed skyline points, respectively. Skyline points
are computed by invoking ZSearch(SRC) (shown in Appendix A)
to recursively traverse SRC in depth-first manner to find regions or
data points that are not dominated by the current skyline points in
SL. Given two RZ-regions R and R′, the ZB-tree exploits the
following three properties of RZ-regions to optimize dominance
comparisons: (P1) If minpt of R′ is dominated by maxpt of R,
then the whole R′ is dominated by R. (P2) If minpt of R′ is not
dominated by maxpt of R and maxpt of R′ is dominated by minpt
of R, then some point in R′ could be dominated by R. (P3) If the
maxpt of R′ is not dominated by the minpt of R, then no point in
R′ can be dominated by any point in R.

For each visited index entry (either internal or leaf entry) E,
ZSearch invokes Dominate(SL,E) algorithm (shown in Appendix A)
to check whether the corresponding RZ-region or data point of E
can be dominated by the skyline points in SL. Dominate(SL,E) tra-
verses SL in a breadth-first manner and performs dominance com-
parison between each visited entry and E based on properties P1 to
P3. In particular, if E is an internal entry and it is dominated by
some skyline point due to P1, then the search of the index subtree
rooted at the node corresponding to E is pruned.

Due to the monotonic ordering property of ZB-tree, each vis-
ited data point in a leaf node that is not dominated by any skyline
point in SL is guaranteed to be a skyline point and is inserted into
SL and output to the users immediately. The clustering property of
ZB-tree enables many index subtree traversals to be efficiently
pruned leading to its superior performance over BBS [7].

4. ZINC
In this section, we present our proposed indexing method named

ZINC (for Z-order Indexing with Nested Code) that supports ef-
ficient skyline computation for data with both TO as well as PO
attribute domains. ZINC is basically a ZB-tree that uses a novel
encoding scheme to map PO domain values into bitstrings. Once
the PO domain values have been mapped into bitstrings, the mapped
bitstrings of all the attributes (whether TO or PO domains) of the
records will be used to construct a ZB-tree index. Thus, the in-
dex construction and search algorithms for ZINC is equivalent to
those of ZB-tree except that ZINC uses a different method for
dominance comparisons between PO domain values.

4.1 Nested Encoding Scheme
In this section, we introduce a novel encoding scheme, called

nested encoding (or NE, for short), for encoding values in PO do-
mains. The encoding scheme is designed to be amenable to Z-

198

(a) 2D data points (b) Z-order curve (c) RZ-region (d) ZB-tree

Figure 1: Z-order curve, RZ-region, and ZB-tree (adapted from [5])

(a) G0 (b) G1 (c) G2

Figure 2: Partial Order Reduction: G0 → G1 → G2

order indexing such that when the encoded values are indexed with
a ZB-tree, the two desirable properties of monotonicity and clus-
tering of ZB-tree are preserved.

We represent a partial order by a directed graph G = (V,E),
where V and E denote, respectively, the set of vertices and edges
in G such that given v, v′ ∈ V , v dominates v′ iff there is a directed
path in G from v to v′. Given a node v ∈ V , we use parent(v)
(resp., child(v)) to denote the set of parent (resp., child) nodes of v
in G. A node v in G is classified as a minimal node if parent(v) =
∅; and it is classified as a maximal node if child(v) = ∅. We use
min(G) and max(G) to denote, respectively, the set of minimal
nodes and maximal nodes of G.

Given a partial order G0, the key idea behind nested encoding
is to view G0 as being organized into nested layers of partial or-
ders, denoted by G0 → G1 · · · → Gn−1 → Gn, n ≥ 0, where
each Gi is nested within a simpler partial order Gi+1, with the last
partial order Gn being a total order. As an example, consider the
partial order G0 shown in Fig. 2, where G0 can be viewed as be-
ing nested within the partial order G1 which is derived from G0

by replacing three subsets of nodes S1 = {v6, v7, v8, v9}, S2 =
{v13, v14, v15, v16} and S3 = {v20, v21, v22, v23} in G0 by three
new nodes v′1, v′2 and v′3, respectively, in G1

1. G1 in turn can be
viewed as being nested within the total order G2 which is derived
from G1 by replacing the subset of nodes S4 = {v3, v′1, v4, v5, v10,

1The discussion here has been simplified for conciseness. The
PO-Reduce algorithm described in Section 4.3 actually performs
the replacement in two steps: S1 and S2 are replaced in the first
step followed by S3 in the second step.

v11, v
′
2, v12, v17, v

′
3, v18, v19} by one new node v′4 in G2. We re-

fer to the new nodes v′1, v′2, v′3 and v′4 as virtual nodes; and each
virtual node v′j in Gi+1 is said to contain each of the nodes in Sj

that v′j replaces. By viewing G0 in this way, each node in G0 can
be encoded as a sequence of encodings based on the nested node
containments within virtual nodes.

In the following, we present a formal definition of our nested
encoding scheme.

4.2 Horizontal, Vertical, and Irregular Regions
DEFINITION 4.1. Given a partial order G, a non-empty sub-

graph G′ of G is defined to be a region of G if G′ satisfies all the
following conditions: (1) every minimal node in G′ has the same
set of parent nodes in G; i.e., parent(v) = parent(v′), ∀ v, v′ ∈
min(G′); (2) every maximal node in G′ has the same set of child
nodes in G; i.e., child(v) = child(v′),∀ v, v′ ∈ max(G′);
and (3) only a minimal or maximal node in G′ can have a par-
ent or child node in G − G′; i.e., parent(v) ∪ child(v) ⊆ G′,
∀ v ∈ G′ −min(G′)−max(G′).

In the above example shown in Fig. 2, S1, S2, S3 and S4 are
regions. A region R in a partial order G1 can be replaced by a vir-
tual node v′ to derive a simpler partial order G2 while preserving
the dominance relationship between the nodes in R and nodes in
G1 − R. Specifically, the dominance relationships in G1 are pre-
served in G2 in the sense that (1) if a node v in G2 dominates v′,
then v also dominates each node of R in G1; and (2) if a node v in
G2 is dominated by v′, then v is also dominated by each node of R
in G1.

For our nested encoding scheme to be amenable for Z-order in-
dexing, a region ideally should have a simple regular structure so
that its encoding is concise. In this paper, we classify a region into
a regular or an irregular region depending on whether the region
can be encoded concisely. In the following, we introduce two types
of regular regions, namely, vertical regions and horizontal regions.

DEFINITION 4.2. A region G′ of a partial order G is defined
to be a vertical region if G′ satisfies all the following conditions:
(1) the nodes in G′ can be partitioned into a disjoint collection
of k non-empty chains C1, · · · , Ck, k > 1, where each chain Ci

represents a total order, such that child(v) ∩ Cj = ∅ for each
v ∈ Ci, Ci 6= Cj; and (2) G′ is a maximal subgraph of G that
satisfies condition (1).

DEFINITION 4.3. A region G′ of a partial order G is defined
to be a horizontal region if G′ satisfies all the following condi-
tions: (1) the nodes in G′ can be partitioned into k non-empty,

199

disjoint subsets S0, · · · , Sk−1, k ≥ 1; (2) min(G′) = S0 such
that child(v) = S1, ∀ v ∈ S0; (3) max(G′) = Sk−1 such that
parent(v) = Sk−2,∀ v ∈ Sk−1; (4) for each i ∈ (0, k − 1) and
for every node v ∈ Si, parent(v) = Si−1 and child(v) = Si+1;
and (5) G′ is a maximal subgraph of G that satisfies conditions (1)
to (4).

For a horizontal region R where the nodes are partitioned into
k subsets, S0, · · · , Sk−1, as defined, we refer to R as a k-level
horizontal region, and refer to a node in Si, i ∈ [0, k − 1] as a
level-i node.

DEFINITION 4.4. Consider a region G′ of a partial order G.
G′ is defined to be a regular region if G′ is either a vertical or hor-
izontal region. G′ is defined to be an irregular region if it satisfies
both the following conditions: (1) G′ is not a regular region; and
(2) G′ is a minimal subgraph of G containing at least two nodes.

Note that a vertical region corresponds to a collection of total
orders while a horizontal region corresponds to a weak order2. We
have defined a regular region to be a maximal subgraph in order to
have as large a regular structure as possible to be encoded concisely.
In contrast, an irregular region is defined to be a minimal subgraph
so as to minimize the number of nodes encoded using a lengthy
encoding. For example, the regions S1, S2 and S3 shown in G0 in
Fig. 2, respectively, are vertical, horizontal and irregular regions.

4.3 Partial Order Reduction Algorithm
In this section, we present an algorithm, termed PO-Reduce,

that takes a partial order G0 as input and computes a reduction
sequence, denoted by G0 → G1 · · · → Gn−1 → Gn, n ≥ 0, that
transforms G0 into a total order Gn, where each Gi+1 is derived
from Gi by replacing some regions in Gi by virtual nodes. The
reduction sequence will be used by our nested encoding scheme to
encode each node in G0.

Given an input partial order Gi, algorithm PO-Reduce operates
as follows: (1) Let S = {S1, · · ·Sk} be the collection of regular
regions in Gi; (2) If S is empty, then let S = {S1}, where S1 is
an irregular region in Gi that has the smallest size (in terms of the
number of nodes) among all the irregular regions in Gi. (3) Create a
new partial order Gi+1 from Gi as follows. First, initialize Gi+1 to
be Gi. For each region Sj in S, replace Sj in Gi+1 with a virtual
node v′j such that parent(v′j) = parent(v) with v ∈ min(Sj)
and child(v′j) = child(v) with v ∈ max(Sj). (4) If Gi+1 is
a total order, then the algorithm terminates; otherwise, invoke the
PO-Reduce algorithm with Gi+1 as input.

The time complexity of PO-Reduce to reduce a partial order
G0 is O(|V0|2 × |E0|), where |V0| and |E0| are total number of
nodes and edges in G0, respectively.

When a node v in a region R is being replaced by a virtual node
v′, we say that v is contained in v′ (or v′ contains v), denoted by
v

R→ v′. Clearly, the node containment can be nested; for exam-
ple, if v is contained in v′, and v′ is in turn contained in v′′, then
v is also contained in v′′. Given an input partial order G0, we de-
fine the depth of a node v in G0 to be the number of virtual nodes
that contain v in the reduction sequence computed by algorithm
PO-Reduce. As an example, consider the value v6 in Fig. 2 and
let R0 = {v6, v7, v8, v9} and R1 = {v3, v′1, v4, v5, v10, v11, v′2,
v12, v17, v

′
3, v18, v19}. The containment sequence of v6 is v6

R0→
2A partial order G is defined to be a weak order if incomparability
is transitive; i.e., ∀v1, v2, v3 ∈ G, if v1 is incomparable with v2
and v2 is incomparable with v3, then v1 is incomparable with v3.

v′1
R1→ v′4 and therefore, the depth of node v6 is 2. The containment

sequence of v3 is v3
R1→ v′4 and therefore, the depth of node v3 is 1.

Thus, given an input partial order G0, algorithm PO-Reduce
outputs the following: (1) the partial order reduction sequence,
G0 → G1 · · · → Gn−1 → Gn, n ≥ 0, where Gn is a total
order; and (2) the node containment sequence for each node in G0.
If a node v0 in G0 has a depth of k, we can represent the node con-

tainment sequence for v0 by v0
R0→ v1 · · ·

Rk−1→ vk, where each vi
is contained in the region Ri, i ∈ [0, k).

4.4 Encoding Scheme
In this section, we describe how the nodes in a partial order are

encoded using our nested encoding scheme. Consider a node v0
in an input partial order G0, where the reduction sequence of G0

is G0 → G1 · · · → Gn−1 → Gn, n ≥ 0; and v0 is contained

in k0 virtual nodes, k0 ∈ [0, n]. Let v0
R0→ v1 · · · vk0−1

Rk0−1→
vk0 denote the containment sequence of v0 computed by algorithm
PO-Reduce. Note that each vi in the containment sequence is
associated with a region: for i ∈ [0, k0), vi is associated with Ri;
and the last node vk0 is associated with the total order Gn. For
notational convenience, we use Rk0 to denote Gn.

In our nested encoding scheme, the encoding of each node v0
(w.r.t. G0), denoted by N (v0), is defined by a sequence of k0 + 1
segments: < R(vk0 , Rk0),R(vk0−1, Rk0−1), · · · ,R(v0, R0) >,
where each segment R(vi, Ri) represents the region encoding of
vi w.r.t. the region Ri. In the following, we present the details
of the region encoding for the three types of regions (i.e., vertical,
horizontal, and irregular).
Vertical Region Encoding. Suppose Ri is a vertical region con-
sisting of c chains, where the longest chain has p nodes. Without
loss of generality, we number the chains in Ri from left to right by
0, · · · , c− 1; and number the positions of the nodes within a chain
from top to bottom by 0, 1, etc. R(vi, Ri) is defined to be a pair
of natural numbers <X-num,Y-num>, where X-num represents the
chain number that contains vi and Y-num represents the position
of vi on that chain. R(vi, Ri) is represented by a bitstring of size
dlog2(c)e+ dlog2(p)e bits.
Horizontal Region Encoding. Suppose Ri is an `-level horizontal
region. If vi is a level-j node in Ri, j ∈ [0, ` − 1], then for the
purpose of dominance comparison it is sufficient to represent the
node vi in Ri by the value j. To facilitate efficient decoding, we
design the format for horizontal region encoding to be the same
as that for vertical region encoding with a pair of natural numbers
<X-num,Y-num>, where X-num and Y-num are set to be 0 and j,
respectively. R(vi, Ri) is represented by a bitstring of size 1 +
dlog2(`)e bits.
Irregular Region Encoding. Suppose Ri is an irregular region. In
contrast to regular regions which can be encoded compactly, there
is no universal optimal encoding for irregular regions. However,
for ZINC to preserve the monotonicity property of ZB-tree, the
scheme used for encoding irregular regions must satisfy the prop-
erty that whenever a node vx dominates another node vy in Ri,
the encoded bitstring for vx must have a smaller value than the en-
coded bitstring for vy following our assumption that smaller values
dominate larger values. In this paper, we use the bitvector scheme
called Compact Hierarchical Encoding (CHE) [1] to encode Ri;
this scheme offers compact encoding of partial orders and efficient
dominance comparison between values in partial orders. Each node
vx in Ri is encoded by a fixed-length bitstring of length m, denoted
by bx[1, · · · ,m]. where m is dependent on the complexity of the
irregular region. Given a pair of nodes vx and vy in Ri, the en-
coding has the property that vx dominates vy iff (1) there exists at

200

Table 1: Examples of Nested Encodings, N (v)
v Segment1 Segment2 Segment3

v5 0, < 0, 01 > 0, < 00, 11 > 0, < 0, 00 >
v9 0, < 0, 01 > 0, < 00, 01 > 0, < 1, 01 >
v15 0, < 0, 01 > 0, < 01, 10 > 0, < 0, 00 >
v21 0, < 0, 01 > 0, < 10, 01 > 1, < 011 >

least one bit position j such that bx[j] = 0 and by[j] = 1, and (2)
whenever bx[j] = 1, by[j] = 1.

As an example of regular region encoding, consider the value
v9 in Fig. 2, and let R0 = S1, R1 = S4, and R2 = G2. The

containment sequence of v9 is v9
R0→ v′1

R1→ v′4, and N (v9) is
< R(v′4, R2),R(v′1, R1), R(v9, R0) >; i.e., << 0, 01 >,<
00, 01 >,< 1, 1 >>. Similarly, the containment sequence of
v5 is v5

R1→ v′4, and N (v5) is < R(v′4, R2), R(v5, R1) >; i.e.,
<< 0, 01 >,< 00, 11 >>.

As an example of irregular region encoding, consider the value
v21 in the irregular region R3 = S3. Applying the CHE scheme
on R3, the nodes v20, v21, v22, and v23, are encoded into bitstrings
001, 011, 010, and 110, respectively. The containment sequence of
v21 is v21

R3→ v′3
R1→ v′4, and N (v21) is < R(v′4, R2), R(v′3, R1),

R(v21, R3); i.e., << 0, 01 >,< 10, 01 >,< 0, 011 >>.
Having defined the three different region encodings, we now

explain how N (.) is mapped into a fixed-length bitstring for effi-
cient decoding when used together with Z-order indexing. This re-
quires three refinements to the basic N (.) scheme described above.
First, each node in G0 is encoded with a fixed number of seg-
ments. Specifically, N (.) is extended to consist of a fixed num-
ber of kmax + 1 segments, where kmax is the maximum depth
of all nodes in G0. When encoding a node v that has a depth of
k < kmax, we append kmax − k additional dummy segments to
N (v) that are filled with 0 bits. Second, for each segment, the
size of its bitstring representation is fixed for all nodes being en-
coded; i.e., if the longest xth segment encoding is represented by
w bits, then all xth segments are encoded with w bits by padding
additional 0 bits. Third, in order to distinguish between regular
and irregular region encodings to allow for correct interpretation,
each segment starts with a single header bit: a header bit value of 0
(resp., 1) indicates that the segment is a regular (resp., irregular) re-
gion encoding. Note that it is not necessary to distinguish between
the two regular region encodings since they are encoded using the
same two-component format.

For convenience, we denote the fixed-length nested encoding of
a PO domain value v by N (v). Once each PO domain value of
all data points has been mapped using NE, each data point is repre-
sented by a fixed-length bitstring which is indexed using ZB-tree.

Table 1 illustrates the nested encodings of four nodes (v5, v9,
v15, and v21) in Fig. 2(a). Since the maximum depth of the nodes
in G0, kmax, is 2, the nested encoding for each node in G0 consists
of three segments. Among the four example nodes, all the nodes
have a depth of 2 except for v5, which has a depth of 1; therefore,
the third segment of N (v5) is a dummy segment filled with 0 bits.
The first bit for each N (.) is the header bit; and v21 is the only
example node that has this bit set in the third segment since v21
is the only node (among the example nodes) that is contained in
an irregular region (i.e., S3). Since the vertical region S1 (which
contains v9) has two chains and the horizontal region S2 (which
contains v15) has two levels, both v9 and v15 require only a sin-
gle bit for encoding their X-num components in the third segment.
However, since the encoding of v21 in the third segment requires

three non-header bits, the size of the third segment is therefore four
bits (including the header bit).
Dominance Comparisons. The dominance comparison between
two nested encodings N (vi) and N (vj) is performed one segment
at a time starting with the first segment. If the ith segment values
of N (vi) and N (vj) are not equal, this means that the comparison
is conclusive (i.e., the nodes are either incomparable or one node
dominates the other) and the dominance checking terminates at the
ith segment. If the ith segment values of N (vi) and N (vj) are
equal, there are two possibilities: if the ith segment is the last seg-
ment, then the nodes are incomparable; otherwise, the comparison
at the ith segment is inconclusive and the comparison proceeds to
the (i+ 1)th segment.

As an example, consider the dominance comparison between
N (v5) and N (v9) in Table 1. Since both v5 and v9 are contained
in the same virtual node v′4 in G2, their values for the first segment
are equal which means the comparison is inconclusive. The com-
parison then proceeds to the second segment. Since v9 is contained
in the virtual node v′1 in G1 which is along the same chain as v5,
both N (v5) and N (v9) have the same X-num values. However,
since the Y-num value of N (v9) is smaller than that of N (v5), the
comparison concludes that v9 dominates v5, and the dominance
comparison terminates at the second segment.

5. PERFORMANCE STUDY
To evaluate the performance of our proposed ZINC, we con-

ducted an extensive set of experiments to compare ZINC against
three competing methods: TSS and the two basic extensions of
ZB-tree, namely, TSS+ZB and CHE+ZB. Our experimental re-
sults show that ZINC outperforms the other three competing meth-
ods. Given that both TSS+ZB and CHE+ZB are also based on
ZB-tree, the superior performance of ZINC demonstrates the ef-
fectiveness of our proposed NE encoding for PO domains.

Algorithms: We consider two variants of the main competing
method, TSS: an unoptimized variant of TSS (denoted by TSS)
and an optimized variant of TSS (denoted by TSS-opt). In TSS,
the set of intervals associated with each data / index entry’s PO
value are stored explicitly with the entry, while in TSS-opt, the
intervals associated with an entry are retrieved from a separate pre-
computed structure. We compare against TSS in this section and
TSS-opt in Appendix D.

To compare the effectiveness of our proposed nested encoding
scheme, we also introduced two variants of ZB-tree that are
based on using different schemes to encode PO domains. The first
variant, TSS+ZB, combines the TSS encoding scheme with the
ZB-tree method. Each PO domain value vp of a data point is en-
coded into a bitstring based on its ordinal value vt in a topological
sorting of the PO domain values. The inclusion of vt in the deriva-
tion of the data point’s Z-address is important to ensure ZB-tree’s
monotonicity property. Each leaf node entry in TSS+ZB stores a
data point p together with the interval set representation of each of
p’s PO attribute values. In each internal node entry of TSS+ZB, be-
sides storing the minpt and maxpt of the corresponding RZ-region
(similar to what is done in ZB-tree), for each PO attribute A, a
merged interval set for A is also stored which is the union of the
interval sets for attribute A of the covered data points. In TSS+ZB,
region-based dominance test is applied as follows: if (1) the Z-
address of an intermediate skyline point pi dominates minpt of an
internal node entry ej , and (2) the interval set of pi subsumes the
interval set of ej w.r.t. every PO dimension, then the region repre-
sented by ej is dominated by pi and is pruned from consideration.

The second variant, CHE+ZB, is based on using the CHE scheme
[1] to encode PO domain values. In contrast to ZINC which uses

201

Table 2: Parameters of Synthetic Datasets
Parameters Values

|PO|: no of PO domains 3, 1, 2
|TO|: no of TO domains 1, 2, 3, 4

h: DAG height 6, 2, 4, 8, 10
nd: DAG node density 0.4, 0.2, 0.6, 0.8, 1.0
ed: DAG edge density 0.6, 0.2, 0.4, 0.8, 1.0
|D|: size of dataset 500K, 100K, 1M, 3M, 5M

Correlation independent, anti-correlated, correlated

the CHE scheme for encoding only the irregular regions in a PO do-
main, CHE+ZB encodes a PO domain using only the CHE scheme.

Synthetic datasets: We generated three types of synthetic data-
sets according to the methodology in [8]. For TO domains, we
used the same data generator as [8] to generate synthetic datasets
with different distributions. For PO domains, we generated DAGs
by varying three parameters to control their size and complexity:
height (h), node density (nd), and edge density (ed)3, where h ∈
Z+, nd, ed ∈ [0, 1]. Each value of a PO domain corresponds to
a node in DAG and the dominating relationship between two val-
ues is determined by the existence of a directed path between them.
Given h, nd, and ed, a DAG is generated as follows. First, a DAG
is constructed to represent a poset for the powerset of a set of h ele-
ments ordered by subset containment; thus, the DAG has 2h nodes.
Next, (1 − nd) × 100% of the nodes (along with incident edges)
are randomly removed from the DAG, followed by randomly re-
moving (1 − ed) × 100% of the remaining edges such that the
resultant DAG is a single connected component with a height of h.
Following the approach in [8], all the PO domains for a dataset are
based on the same DAG. Table 2 shows the parameters and their
values used for generating the synthetic datasets, where the first
value shown for each parameter is its default value. In this section,
default parameter values are used unless stated otherwise.

Real dataset: We used a real dataset on movie ratings that is
derived from two data sources, Netflix4 and MovieLens 5. Netflix
contains more than 100 million movie ratings submitted by more
than 480 thousand users on 17770 movies during the period from
1999 to 2005. MovieLens contains more than 1 million ratings sub-
mitted by more than 6040 users on 3900 movies. Both these data
sources use the same rating scale from 0 to 5 with a higher rating
value indicating a more preferred movie. Our dataset consists of
the ratings for 3098 of the movies that are common to both data
sources.

We derived a PO attribute, named movie preference, for the 3098
movies as follows: a movie mi dominates another movie mj iff
the average rating of mi in one data source is higher than that of
mj , and the average rating of mi in the other data source is at
least as high as that of mj . We also derived two TO attributes for
each movie, named average rating and number of ratings, which
represent, respectively, the movie’s average rating (each value is
between 0.00 and 5.00) and the total number of ratings that it has
received over the two data sources. The number of distinct values
for these two TO domains are 501 and 219800, respectively. For
each of the TO domains, a higher attribute value is preferred.

Platform and settings: All the algorithms were implemented in
C++ and compiled with GCC. The index/data page size was set to

3In contrast to [8], which used only the h and nd parameters, the
additional ed parameter that we introduced enables a more fine-
grained control over the complexity of the generated DAGS.
4http://www.netflix.com
5http://www.grouplens.org

Table 3: Properties of PO Domains and Sizes of Indexes
Size of Index (MB)

h Card Depth ZINC CHE+ZB TSS TSS+ZB

2 3 0 7.38 5.96 14.32 8.05
4 6 1 15.07 5.90 29.02 21.08
6 29 3 29.54 12.04 50.71 40.69
8 112 6 60.59 40.28 113.10 97.20
10 456 7 67.57 103.32 151.25 124.17

be 4K byte for all the algorithms. Our experiments were carried
out on a Pentium IV PC with 2.66GHz processor and 4GB main
memory running on Linux operating system. Each reported timing
measurement is an average of five runs with cold cache.

In the rest of this section, we first present the results for the syn-
thetic datasets (Figs. 3(a) to 3(i)) followed by the results for the real
dataset (Fig. 3(j)).
Effect of PO Structure. Figs. 3(a), 3(b), and 3(c), compare the
effect of the PO structure on the total processing time (including
both CPU and I/O) to compute skylines as each of the three pa-
rameters (DAG height, node density, edge density) is varied. Note
that the complexity of the DAGs increases as each parameter value
becomes larger. In the following, we shall focus our discussion
on Fig. 3(a) (the y-axis shown is in logarithmic scale), where the
height parameter is being varied. The properties of the generated
PO domains are shown in the first three columns of Table 3, where
Card represents the domain cardinality and Depth represents the
maximum node depth in the DAG; the sizes of the constructed in-
dexes for the four approaches (for 500K dataset) are shown in the
last four columns.

For simple partial orders (i.e, height = 2, 4, 6 in Fig. 3(a)), the
number of returned skyline points are 102, 8, and 267, respectively.
The performance of all four methods for these three cases are I/O
bound with at least 63% of the processing time spent on I/O. While
CHE+ZB, TSS, and TSS+ZB have comparable performance, ZINC
outperforms all these three methods. ZINC was able to more effec-
tively prune away many unnecessary subtree traversals and visited
only a small portion of the index nodes; specifically, only 29% (532
out of 1846), 18% (678 out of 3768), and 24% (1778 out of 7386)
of the distinct index nodes of ZINC were visited corresponding to
height of 2, 4, and 6, respectively. In contrast, CHE+ZB visited
78% (1158 out of 1491), 73% (1085 out of 1476), and 82% (2456
out of 3010) of the distinct index nodes; TSS visited 15% (537 out
of 3580), 21% (1524 out of 7255), and 69% (8748 out of 12678)
of the distinct index nodes; and TSS+ZB visited 30% (604 out of
2012), 19% (1001 out of 5270), and 31% (3153 out of 10172) of
the distinct index nodes, respectively, for these three cases.

For complex partial orders (i.e., height = 8, 10 in Fig. 3(a)), the
performance of all four methods become CPU bound with at least
83% of the total time spent on CPU processing. This is because the
complex partial orders result in much more skyline points and dom-
inance comparisons. For example, when the height is 8, there are
112 values in the PO domain and a total of 20493 skyline points.
Observe that ZINC continues to outperform the other methods sig-
nificantly. For CHE+ZB, it requires a bitstring of 58 bits to en-
code each PO domain value, and CHE+ZB actually visited all the
index nodes for the skyline computation. Thus, the data points in
CHE+ZB are not well clustered resulting in ineffective region-based
pruning for its index traversals.

In contrast, due to the effectiveness of NE, ZINC visited only
27% of its index nodes. Consequently, the number of pairwise

202

dominance comparisons in CHE+ZB is about 10 times more than
that in ZINC (9.1 × 108 vs 9.2 × 107), and about 3 times more
than that in TSS (9.1 × 108 vs 2.8 × 108). Like CHE+ZB, TSS
also visited all its index nodes. Observe that the performance of
TSS and TSS+ZB degrades significantly as the complexity of the
partial orders increases. The reason is because each pairwise dom-
inance comparison in TSS and TSS+ZB involves not only dom-
inance comparison between two bitstrings but also containment
checking between the corresponding two interval sets. The average
number of intervals in each interval set are 4 and 5, respectively, for
height values of 8 and 10. Consequently, the cost of pairwise domi-
nance comparisons in TSS and TSS+ZB is significantly higher than
that of the other algorithms. Finally, with respect to the total pro-
cessing time, ZINC outperforms CHE+ZB, TSS and TSS+ZB by
up to a factor of about 9, 14.5 and 13 times, respectively. Similarly,
for the results shown in Figs. 3(b) and 3(c) for varying node density
and edge density, respectively, ZINC outperforms all of CHE+ZB,
TSS, and TSS+ZB.
Effect of Data Distribution. Fig. 3(d) compares the performance
for anti-correlated datasets. Again here, ZINC has the best per-
formance. Observe the the performance of CHE+ZB, TSS, and
TSS+ZB is satisfactory for simple partial orders, but not for com-
plex partial orders. In particular, when height = 10 (which is not
shown in Fig. 3(d), each of CHE+ZB, TSS, and TSS+ZB took
more than 3 hours to complete the skyline computation compared
to ZINC which took 1.7 hours. The reason for this significant in-
crease in running time is due to the large number of skyline points
when the data is anti-correlated. Specifically, the number of sky-
line points in Fig. 3(d) corresponding to the five increasing height
values are 200, 1780, 4917, 54926, and 286223.

Fig. 3(e) compares the performance for correlated datasets. From
the results in Figs. 3(d) and 3(e) we can see that the processing time
becomes higher (resp., lower) when datasets are anti-correlated (resp.,
correlated). The reason is that the number of skyline points be-
comes larger (resp., smaller) and more (resp., less) computations
are incurred.
Progressiveness. Fig. 3(f) compares the progressiveness of the al-
gorithms. For each algorithm, we recorded the time it took to out-
put specific percentages of the results (0% for the first returned
result, 20%, 40%, 60%, 80% and 100%). The results in Fig. 3(f)
indicate that ZINC also outperforms the other methods in terms
of progressiveness. While ZINC took only 50% of the total pro-
cessing time to compute the first 80% of skyline points, TSS+ZB,
CHE+ZB, and TSS required 55%, 64%, and 90% of the total time,
respectively.
Effect of Dimensionality. Fig. 3(g) investigates the effect of the
dataset dimensionality. Each pair of numbers (t, p) along the x-
axis represents the number of TO (t) and number of PO (p) domains
in the datasets. As the number of skyline points increases with an
increase in the data dimensionality, the processing time for all the
algorithms also increases. For a fixed number of dimensions, the
processing time is larger when there are more PO domains, e.g.,
(2,2) vs (3,1), and (3,2) vs (4,1). The reason is that PO domains
always have many more non-dominated values than TO domains.
Again here, ZINC has the best performance.
Effect of Data Cardinality. Fig. 3(h) compares the performance of
the algorithms as a function of data cardinality. The number of sky-
line points for data cardinality values of 100K, 500K, 1M, 3M, and
5M, are 601, 267, 142, 1, and 1, respectively. The processing time
decreases for all the methods when the cardinality increases from
1M to 3M; this is due to the fact that there is only one skyline point
when the cardinality is 3M, resulting in very effective index traver-
sal pruning. However, when cardinality increases further from 3M

to 5M, although the number of skyline points remains unchanged
(with only one point), there is an increase in the number of dom-
inance comparisons and visited index nodes due to the larger data
size which results in an increase in the processing time.
Index Construction Time. Fig. 3(i) compares the index construc-
tion time as a function of the height parameter. Observe that the
construction time for ZINC is slightly higher than that of TSS
and TSS+ZB. Although ZINC incurs less I/O time than TSS and
TSS+ZB for index construction, the nested encoding used by ZINC
is more complex which increases the CPU time spent on encoding
and computing node splits. CHE+ZB has the highest index con-
struction time because the encodings produced by CHE+ZB are
also the longest resulting in more costly comparisons and hence
higher construction time; in particular, when height = 10, the max-
imum lengths of the encodings produced by TSS+ZB, ZINC, and
CHE+ZB are 132, 352, and 848 bits, respectively.
Performance on Real Dataset. Fig. 3(j) compares the perfor-
mance on the real dataset which contains 291 skyline points. The
depth of the derived partial order domain is 9, and the ratio of the
size of the regular region (in terms of the number of regular nodes6)
over the entire partial order domain size is 53%. The results show
that ZINC outperforms CHE+ZB, TSS, and TSS+ZB by a factor of
5.5, 15, and 13, respectively.

6. CONCLUSIONS
In this paper, we have presented a novel index method, called

ZINC, for computing skyline queries on data that contains both TO
and PO domains. By combining the strengths of the Z-order index-
ing method with a novel nested encoding scheme to represent par-
tial orders, ZINC is able to encode partial orders of varying com-
plexity in a concise manner while maintaining a good clustering of
the PO domain values. Our experimental results have demonstrated
that ZINC outperforms the the state-of-the-art TSS technique for
various settings.

7. REFERENCES
[1] Y. Caseau. Efficient handling of multiple inheritance hierarchies. In

OOPSLA, pages 271–287, 1993.
[2] C. Y. Chan, P. K. Eng, and K. L. Tan. Stratified computation of

skylines with partially-ordered domains. In SIGMOD, pages
203–214, 2005.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717–816, 2003.

[4] Y. Fang and C. Y. Chan. Efficient skyline maintenance for streaming
data with partially-ordered domains. In DASFAA, pages 322–336,
2010.

[5] K. Lee, B. Zheng, H. Li, and W. C. Lee. Approaching the skyline in
Z order. In VLDB, pages 279–290, 2007.

[6] M. Morse, J. M. Patel, and H. V. Jagadish. Efficient skyline
computation over low-cardinality domains. In VLDB, pages 267–278,
2007.

[7] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD, pages
467–478, 2003.

[8] D. Sacharidis, S. Papadopoulos, and D. Papadias.
Topologically-sorted skyline for partially-ordered domains. In ICDE,
pages 1072–1083, 2009.

[9] N. Sarkas, G. Das, N. Koudas, and A. K. H. Tung. Categorical
skylines for streaming data. In SIGMOD, pages 239–250, 2008.

[10] R. C. Wong, A. W. Fu, J. Pei, Y. S.Ho, T. Wong, and Y. B. Liu.
Efficient skyline querying with variable user preferences on nominal
attributes. PVLDB, 1(1):1032–1043, 2008.

6A node v in a PO P is classified as an irregular node if the inner-
most region that contains v in the PO reduction of P is an irregular
region; otherwise, v is classified as a regular node.

203

1

10

10
2

10
3

10
4

2 4 6 8 10

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

 0

 50

 100

 150

 200

 250

0.2 0.4 0.6 0.8 1.0

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Node density

TSS+ZB
TSS

CHE+ZB
ZINC

(a) Effect of height (b) Effect of node density

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8 1.0

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Edge density

TSS+ZB
TSS

CHE+ZB
ZINC

1

10

10
2

10
3

10
4

2 4 6 8

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

(c) Effect of edge density (d) Anti-correlated dataset

10
-2

10
-1

1

10

10
2

10
3

2 4 6 8 10

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

 0

 10

 20

 30

 40

 50

 60

20 40 60 80 100

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

% of answers ouput

TSS+ZB
TSS

CHE+ZB
ZINC

(e) Correlated dataset (f) Comparison of progressiveness

 0

 10

 20

 30

 40

 50

(2,1) (3,1) (4,1) (2,2) (3,2) (4,2)

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

(|TO|, |PO|)

TSS+ZB
TSS

CHE+ZB
ZINC

 0

 10

 20

 30

 40

 50

100K 500K 1M 3M 5M

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Dataset cardinality

TSS+ZB
TSS

CHE+ZB
ZINC

(g) Effect of dimensionality (h) Effect of data cardinality

 0

 10

 20

 30

 40

 50

 60

 70

2 4 6 8 10

In
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

1

10

10
2

Methods

Pr
oc

es
si

ng
 T

im
e

(s
ec

)

TSS+ZB
TSS

CHE+ZB
ZINC

(i) Comparison of index construction time (j) Real dataset

Figure 3: Experimental Results

204

APPENDIX
A. ZBTREE ALGORITHMS

This section presents the details of the two key algorithms of
ZB-tree, ZSearch(SRC) and Dominate(SL,E), that are used in
ZINC. The main algorithm, ZSearch(SRC), traverses the ZB-tree,
named SRC, to compute the skyline points. The Dominate(SL,E)
algorithm is invoked to check if an index entry E is dominated by
the intermediate skyline points indexed by the in-memory ZB-tree
SL.

Algorithm 1: ZSearch(SRC)
Input: SRC: ZB-tree indexing source data points;
Local: s: Stack;
Output: SL: ZB-tree indexing skyline points;
s.push(SRC’s root);1
while s is not empty do2

n = s.pop();3
if not Dominate(SL, n) then4

if n is an internal node then5
foreach child node c of n do6

s.push(c);7

else8
foreach data point c in n do9

if not Dominate(SL, c) then10
SL.insert(c);11

output SL;12

Algorithm 2: Dominate(SL,E)
Input: SL: ZB-tree indexing skyline points
E: an index or data entry
Local: q: Queue;
Output: TRUE if E is dominated, FALSE otherwise;
q.enqueue(SL’s root);1
while q is not empty do2

n = q.dequeue();3
if n is an internal node then4

foreach child node c of n do5
if c’s maxpt dominate E’s minpt then6

return TRUE;7

else if c’s minpt dominate E’s maxpt then8
q.enqueue(c);9

else10
foreach child data point p of n do11

if p dominate E’s minpt then12
return TRUE;13

return FALSE;14

B. EFFECT OF PO DOMAINS
In this section, we present additional experimental results to ex-

amine the effect of both the regularity of a partially ordered domain
as well as the number of partially ordered domains. The exper-
iments were conducted using a subset of the Netflix real dataset
consisting of movies that were produced no later than 2000 that
have ratings for six years (between 2000 and 2005); the number of
such movies is 10,709.

B.1 Effect of Regularity of PO Domain
In this section, we examine the effect of the regularity of a PO

domain by using a different approach to generate PO domains. In

 1

 10

 100

 1000

L=4 L=5 L=6

P
ro

c
e

s
s
in

g
 T

im
e

 (
s
e

c
)

Parameter L

TSS+ZB
TSS

CHE+ZB
ZINC

Figure 4: Effect of Regularity of PO Domain

this approach, the structure of a PO domain is defined using a num-
ber of TO domains (denoted by parameter L). As L increases, the
generated PO domain becomes more complex and less regular.

Since the Netflix dataset has six years of rating data, we derive
L TO domains (with L ∈ {4, 5, 6}) using the following approach.
First, the movie rating records is partitioned into six subsets based
on the year that the rating was given. For a given value of L,
we choose the (L − 1) largest rating subsets (denoted by R1, . . .,
RL−1) and combine the remaining (7−L) subset(s) into one subset
(denoted by RL). For each movie m, we then compute L average
ratings for m, with one average rating computed for each Ri. Us-
ing these L derived rating TO domains, we create a PO domain for
movie preference as follows: a movie mi dominates another movie
mj iff (1) mi is no lower than mj in each of the L ratings, and (2)
mi is higher than mj in at least one of the L ratings.

We also derived two TO domains for the dataset: the average
rating and the total number of ratings of a movie over all the six
years. In both of these TO domains, higher values are preferred
over lower values.

Fig. 4 compares the performance of the four approaches as a
function of the parameter L. As L increases, the derived PO do-
main becomes more complex resulting in a larger number of sky-
line points. Specifically, the number of skyline points for L = 4,
L = 5, and L = 6 are 1103, 2412, and 2783, respectively. The
respective depths of the PO domains are 13, 15, and 19; and the
respective ratios of the size of regular regions (in terms of the num-
ber of regular nodes) over the whole PO domain size are 51%,
46%, and 40%. Thus, the PO domain becomes less regular as L
increases.

The results show that ZINC outperforms the three competing
methods in all cases. Observe that the processing time increases
as a function of L due to the increased number of skyline points.
Moreover, as the PO domain becomes less regular with increasing
L, the performance gain of ZINC over the competing methods also
decreases. For example, the performance gain of ZINC over TSS
decreases from a factor of 20 to 5.5.

B.2 Effect of Number of PO Domains
In this experiment, we derive three PO domains from the six

yearly movie ratings in the Netflix dataset. Each PO domain is
constructed from two yearly ratings (i.e., 2000 and 2001, 2002 and
2003, and 2004 and 2005). For each partial order, a movie mi

dominates another movie mj iff the yearly average rating of mi is
higher than that of mj in one year and not lower than that of mj in
the other year. As before, we also derive two TO domains; thus the
derived dataset has three PO domains and two TO domains. The
average ratio of the regular regions over these three PO domains is
up to 65%, and there are a total of 2572 skyline points. The per-

205

 1

 10

 100

 1000

P
ro

ce
ss

in
g

 T
im

e
(s

ec
)

3 PO and 1 TO Domains

TSS+ZB
TSS

CHE+ZB
ZINC

Figure 5: Effect of number of PO domains

 1

 10

 100

 1000

 10000

H=2 H=4 H=6 H=8 H=10

C
lu

st
er

in
g

Height

TSS+ZB
TSS

CHE+ZB
ZINC

Figure 6: Comparison of Index Clustering

formance results in Fig. 5 show that ZINC outperforms CHE+ZB,
TSS, and TSS+ZB by a factor of 3.0, 7.2, and 6.3, respectively.

C. INDEX CLUSTERING COMPARISON
In this section, we compare the clustering effectiveness of the

four index methods. Given an index I , we define the clustering of
I , denoted by clustering(I), to be the average distance of each
consecutive pair of data points in the leaf level of I , the distance of
two data points measure the proximity of the points in the multi-
dimensional attribute space. Intuitively, an index I with a smaller
value of clustering(I) is considered to be more effective in clus-
tering the data points and hence more effective in pruning index
nodes to be traversed.

Given two m-dimensional data points p and p′ (with attributes
A1,· · · ,Am), we define the distance between p and p′, denoted
by dist(p, p′), based on the L2 norm distance function given by
the square root of the sum of the squares of the normalized dis-
tance, denoted by ndist(.), between p and p’ for each attribute;
i.e., dist(p, p′) =

√∑m
i=1 ndist(p.Ai, p′.Ai)2. For two TO do-

main values v and v′, ndist(v, v′) = |v−v′|
vmax−vmin

, where vmax

and vmin denote the maximum and minimum values of that do-
main.

For two PO domain values v and v′ in a partial order G, we de-
fine their normalized distance to be ndist(v, v′) = L(v,v′)+f(v,v′)

3 Lmax(G)
.

Here, L(v, v′) denote the distance between v in v′ in G which
is defined in terms of two cases. If v and v′ are along the same
chain in G, then L(v, v′) denote the path length between them in
G; otherwise, L(v, v′) is defined to be the length of the shortest
path from v to v′ via some common ancestor node in G. The func-
tion f(v, v′) = 0 if v and v′ are along the same chain in G; oth-
erwise, f(v, v′) = Lmax(G), where Lmax(G) denote the path
length of the longest chain in G. The intuition behind the definition
of ndist() is that the distance of two PO values along the same
chain are considered to be closer than two PO values that are on
different chains; therefore, a penalty of Lmax(G) is added to the
distance between two PO values that are not along the same chain.

Figure 6 compares the the clustering metric for the four meth-
ods as a function of the height parameter of the PO domain using
the synthetic dataset. Note that the y-axis shown is in logarithmic
scale; and an index method with a smaller y-axis value is consid-
ered to be more effective in clustering the data points. The results
show that ZINC produces the best clustering. In particular, when
height = 6, the clustering value of ZINC is about 50%, 62%, and
66% of CHE+ZB, TSS, and TSS+ZB, respectively. When the PO
domain becomes more complex (i.e., height is 8 or 10), the perfor-
mance gain of ZINC reduces because the proportion of irregular
regions in the partial order increases.

D. COMPARISON OF ZINC AND TSSOPT
In this section, we compare the performance of ZINC against

an optimized variant of TSS, denoted by TSS-opt. In TSS-opt,
the set of intervals associated with each data/index entry’s PO value
are not stored explicitly in the index structure. Instead, each index
entry is associated with a range of ordinal values (denoted by its
start and end value) for each PO domain, and the actual collection
of intervals associated with an data/index entry’s PO domain is re-
trieved from a separate precomputed structure that is indexed by the
start and end pair of ordinal values [8]. In this way, the index struc-
ture is more compact with fixed-sized index entries independent
of the number of intervals associated with each PO domain value.
The implementation of TSS-opt, obtained from the authors of
[8], uses a more aggressive optimization that precomputes a three-
dimensional boolean array for each PO domain to determine the
dominance relationship between an index entry’s PO domain value
(represented by a pair of start and end ordinal values) and a data
entry’s PO domain value (represented by an ordinal value). This
approach provides very efficient dominance checking in constant
time at the cost of requiring more space. In this section, TSS-opt
refers to this optimized variant.

Fig. 7 shows the comparison of ZINC against TSS-opt for the
experiments corresponding to those shown in Fig. 3. Observe that
TSS-opt outperforms TSS as expected, and ZINC still outper-
forms TSS-opt demonstrating the effectiveness of the nested en-
coding scheme used in ZINC.

206

1

10

10
2

10
3

10
4

2 4 6 8 10

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Height

TSS-opt
ZINC

 0

 50

 100

 150

 200

0.2 0.4 0.6 0.8 1.0

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Node density

TSS-opt
ZINC

(a) Effect of height (b) Effect of node density

 0

 10

 20

 30

 40

 50

 60

 70

0.2 0.4 0.6 0.8 1.0

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Edge density

TSS-opt
ZINC

1

10

10
2

10
3

10
4

2 4 6 8

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Height

TSS-opt
ZINC

(c) Effect of edge density (d) Anti-correlated dataset

10
-2

10
-1

1

10

10
2

10
3

2 4 6 8 10

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

Height

TSS-opt
ZINC

 0

 10

 20

 30

 40

 50

20 40 60 80 100

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

% of answers ouput

TSS-opt
ZINC

(e) Correlated dataset (f) Comparison of progressiveness

 0

 5

 10

 15

 20

 25

 30

 35

 40

(2,1) (3,1) (4,1) (2,2) (3,2) (4,2)

Pr
oc

es
si

ng
 ti

m
e

(s
ec

)

(|TO|, |PO|)

TSS-opt
ZINC

 0

 5

 10

 15

 20

 25

2 4 6 8 10

In
de

x
co

ns
tr

uc
tio

n
tim

e
(s

ec
)

Height

TSS-opt
ZINC

(g) Effect of dimensionality (h) Comparison of index construction time

Figure 7: Comparison of ZINC and TSS-opt

207

