Processing Spatial Keyword Query as a Top-k Aggregation
Query

Dongxiang Zhang

Chee-Yong Chan

Kian-Lee Tan

Department of Computer Science
School of Computing, National University of Singapore

{zhangdo,chancy,tankl}@comp.nus.edu.sg

ABSTRACT

We examine the spatial keyword search problem to retriejectdb
of interest that are ranked based on both their spatial mioxito
the query location as well as the textual relevance of theatlj
keywords. Existing solutions for the problem are based treei
using a combination of textual and spatial indexes or usegisil-
ized hybrid indexes that integrate the indexing of bothuekand
spatial attribute values. In this paper, we propose a newoaph
that is based on modeling the problem as a top-k aggregatidn p
lem which enables the design of a scalable and efficientisalut
that is based on the ubiquitous inverted list index. Ourqrernce
study demonstrates that our approach outperforms thecftlbe-
art hybrid methods by a wide margin.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process
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Spatial keyword search, Top-k aggregation

1. INTRODUCTION

The prevalence of smartphones and social network systess ha

enabled users to create, disseminate and discover comteheo
move. According to a recent study [2], Twitter has 164 millio
monthly active users accessing its site from mobile devideite
Facebook has 425 million mobile users doing so. Consequentl
a tremendous amount of social content, including tweetsclch
ins, POIs and reviews, are generated every day and nothbbet
data are attached with geo-coordinates and form a larde-gee-

documentcorpus. Spatial keyword search is an important func-

tionality in exploring useful information from a corpus oéa
documents and has been extensively studied for years [5413,

16, 18, 22, 29, 33-36]. The work on spatial keyword search can

be broadly categorized into two classefistance-insensitivand
distance-sensitive

In the traditionaldistance-insensitivkeyword search, the docu-
ments are organized based on a geographical ontology [5813,
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36]. For example, “University Ave™ “Palo Alto” —* South
Bay”"— “Bay Area” [5] is an example hierarchical path in a geo-
graphical ontology. Given a keyword query with a locatiooah-
straint, the constraint is used to restrict the documerntheaithin
matching hierachies of the ontology. Thus, the query'stiocal
constraint here is used as a filtering criteriondistance-sensitive
keyword search, each geo-document is associated with &@rec
reference point so that its spatial distance from a query location
can be calculated to evaluate its relevance in terms ofapmatix-
imity. Thus, the query location here is used as a rankingrioib.

Distance-sensitive keyword search has many useful apiplita
that facilitate a user to search for nearby locations/es/ferends
based on some keywords with the matching results ranked-in in
creasing proximity to the user’s location. For example hpoi-
interest (POI) applications such as Foursquare and Yelweme
useful to search for nearby venues or restaurants. As anexhe
ample, location-based social discovery applications sischinder
are very useful to search for nearby users with mutual intsre

In this paper, we focus on the problem of thpistance-sensitive
spatial keyword query searchiven a spatial keyword query (with
alocation and a set of keywords), the objective is to rethentest k
documents based on a ranking function that takes into addmath
textual relevance as well as spatial proximifyigure 1 illustrates
a simple example of distance-sensitive spatial keywordchkeimr
a corpus with seven geo-documedntis- -- ,d;. Each document is
associated with a location and a collection of keywords ttugye
with their relevance scores. Consider a spatial keyworayqQ@e
with keywords “seafood restaurant” issued at the locatianked
by the star. In this example, documehtis considered to matc
better than documenty becauseal, is close to the query location
and it is highly relevant to the query keywords; in companjsty
does not match the query keywords well, though it is sligblihser
to Q thend,.

The efficiency of evaluating tok-distance-sensitive spatial key-
word queries becomes critical for a large-scale geo-dootio-
pus. Existing methods for this problem [14, 16, 22, 29, 35}eha
shown that combining the spatial and textual attributesttogy
can effectively prune the search space. These methods odin be
vided into two broad categoriespatial-first and textual-first In
the spatial-first strategy, a spatial data structure (such as an R-
tree [10]) is first used to organize the geo-documents in&tialp
regions based on their locations. Next, each spatial regiang-
mented with an inverted index to index all the documentsaioet
in that region. An example of apatial-first scheme is the IR-
tree [14]. On the other hand, in thextual-firststrategy, the search
space of geo-documents is first organized by keywords, amdftm

1The location information can be naturally derived from theSs
of smartphones.
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Figure 1: An example of spatial keyword search scenario

each keyword, a spatial data structure is employed to iftegdc-
uments associated with that keyword. S2I [29] &4~§B5] are two
schemes that follow this strategy. Recent extensive pedoce
studies [29, 35] have demonstrated that both S2lldrate signif-
icantly faster than IR-tree. As such, we consider S2I Ehtd be
the state-of-the-art solutions for distance-sensitivaiapkeyword
search.

However, there are two key limitations with the state-ad-trt
solutions. First, these solutions are not sufficiently alok to cope
with the demands of today’s applications. For example, quare
has over 60 millions of venues, and the number of geo-twadis p
lished by mobile users per day is in the hundreds of millioon&!
of existing solutions [29, 35] have been evaluated with dacie-
scale datasets; indeed, our experimental study revealththstate-
of-the-art solutions do not perform well for large datase®ec-
ond, these solutions employ specialized “hybrid” indexes inte-
grate the indexing of both textual as well as spatial attebuvhich
present additional complexity for their adoption in exigtisearch
engines in terms of implementation effort, robustnessngsand
performance tuning.

In this paper, we propose a new approach to address the-limita
tions of the state-of-the-art solutions. Our paper makes=etlkey
contributions. First, we present a simple but effectiverapph to
solve the topk distance-sensitive spatial keyword query by mod-
eling it as the well-known top- aggregation problem. Second,
we propose a novel and efficient approach, naRadk-aware CA
(RCA) algorithmwhich extends the well-known CA algorithm with
more effective pruning. In contrast to the specialized ti/bolu-
tions, our RCA algorithm is more practical as it relies ontytbe
ubiquitous and well-understood inverted index. Third, veendn-
strate that RCA outperforms the state-of-the-art appresdly a
wide margin (up to 5 times faster) on a real dataset with 100 mi
lion geo-tweets.

A top-k distance-sensitive spatial keyword query is denoted by
Q= (Xg; Yg, W1,Wo,...,Wm, K); where(xq,Yq) denote the (longi-
tude, latitude) location of the querywi,ws,...,wyn} denote the
set of query keywords, ankldenote the number of top-matching
documents to be returned for the query.

The relevance score between a docum@nand a quenQ is
evaluated by a monotonic aggregation of textual relevandespa-
tial proximity. The textual relevance is measured by a sepfiinc-
tion @ (D, Q) that sums up the relevance score of each query key-
word:

aD.Q =3 a(Dw) (1)

wi€Q
If a documentD does not contain any query keyword, we consider
itirrelevant and sefx (9, Q) to be—o to prevent it from appearing
in the results. The spatial proximity is measuredg?, Q) which
assigns a score based on the distance betwzandQ such that
a smaller spatial distance yields a highg(®, Q) value. In this
paper, we use the same spatial ranking function as in [13329,
d(D,Q)

o(D,Q =1 )
whered(D,Q) measures the Euclidean distance between the lo-
cations of the quer® and documentD, andy is a parameter to
normalizegs(D, Q) between0, 1] which is set to be the maximum
distance among all the pairs of documents. Finally, as in, 164

29, 35], we define the overall ranking functig@tD, Q) as a linear
combination of textual relevance and spatial proximity:

Based on the ranking functiagp we can formally define the top-
k spatial keyword query as follows:

DEFINITION 1. Top-k spatial keyword query
Given a document corpuS, a top-k spatial keyword query Q re-
trieves a set GC C with k documents such thst) € O and D’ €
C- O’ (p(@7Q) 2 (p(@/Q)

3. RELATED WORK

Spatial keyword search is a well-studied problem and carabe c
egorized into two classedistance-insensitivenddistance-sensitive

3.1 Distance-insensitive Approaches

The traditional local search engines such as Google Logal [1
and Yahoo! Local [3] belong to the distance-insensitiveegaty.
In these systems, location information is first extracteanfrveb

The rest of the paper is organized as follows. We present the Pages and organized using a hierarchical geographicalogyto

problem statement in Section 2, and review related work itr Se
tion 3. In Section 4, we present our new approach to model the
problem and two baseline algorithms. We present our new-algo
rithm, RCA, in Section 5. In section 6, we evaluate the efficie

of RCA with an extensive performance study. Section 7 catedu
the paper.

2. PROBLEM STATEMENT

We model a geo-document by a quintuple= (doclD, x, y, terms;
wheredoclD denote the document idx,y) denote the (longitude,
latitude) location of the document, atefmsdenote a collection of
weighted terms. Each weighted term is of the fdterm, @ (D,term)),
whereterm denote a term in documem? and@ (D, term ) denote
the textual relevance score betweBrandterm. Here,@ denote
the tf-idf textual reference scoring function [9, 25].

Given a query with a locational constraint, the candidataidtents
are retrieved from the matching hierarchies in the ontologiyng
existing information retrieval methods such as TAAT [6-@, 8r
DAAT [11, 31].

In [36], Zhou et al. built separate R-tree [10] and inverted i
dex for the spatial and textual attributes respectively; eraluated
a query by first searching with one of the indexes (spatiakrr t
tual) followed by ranking the matching documents using tinfa-
tion from the other index.

In [13], the locational regions are first extracted from thebw
documents which are then used to organize the documentg usin
the grid file [27] or space-filling curve [19] such that sphialose
documents are clustered near to one another on disk. Givesrg,q
documents whose locational regions contain the queryitotare
first retrieved and their textual relevance wrt the queryaaecthen
computed.



In [18], Fontoura et al. proposed query relaxation techesgto
generate topx results when there are not enough matching docu-
ments in the specified region.

In [22], Hariharan et al. proposed KR*-tree, the first hyhinel
dex to handle spatial keyword query with AND-semantics, rehe
a matching document must contain all the query keywords &nd i
query location must intersect with the query region. In KiRge,
an inverted index is maintained for each tree node, whette $y-
tial filtering and textual filtering can be employed at the sdime
when accessing an index node. In [32], Zhang et al. recendly p
posed a more efficient hybrid index to process queries witliDAN
semantics. The index combines linear quadtree [20] and -fixed
length bitmap for query processing.

3.2 Distance-sensitive Approaches

In the distance-sensitive category of work [12, 14, 16, 39, 3
matching documents are ranked based on both their textigal re
vance and spatial proximity to the query.

In [16], Felipe et al. proposedR? which is a hybrid index of the
R-tree and signature file; their work is based on the AND-sg&its
which sorts the matching documents by their distance to tiegyq
location.

Cong et al. [14] proposed IR-tree which is a spatial-firsrapph
that integrates the R-tree with inverted index; each R-tede is
augmented with inverted lists to index documents locatetimwi
that node.

More recently, two textual-first approaches, S2I index [264l

13 [35], have been proposed. S2I uses aggregated R-tree [28] fo

spatial relevance evaluation. The search algorithm expédn
the query location in the spatial index associated with epary
keyword untilk best results are found? builds one Quadtree [17]
for each keyword and adopts the best-first search strategyery
processing. Performance studies [29, 35] have shown that3#i
and|3 are significantly faster than IR-tree.

4. OUR APPROACH

In this section, we present a new approach for the top-krlista
sensitive spatial keyword search problem. Our approaclased
on the simple but effective idea of modeling the problem ampakt
aggregation problem [15].

DEFINITION 2. Top-k aggregation problem
Consider a databas® where each object & (xg,X2,...,%Xy) hasn
scores, one for each of its n attributes. Given a monotonigex-
tion function f, where fo) or f(x1,Xo,...,Xn) denote the overall
score of object o, the top-k aggregation problem is to findtaoge
top-k objects irD with the highest overall scores; i.e., findOD
with k objects such thatoe O and 6 e D— O, f(0) > f(0').

The reformulation of the topg-distance-sensitive spatial key-
word search problem as a té&paggregation problem is straight-
forward. Given a quer®) with mkeywords, each geo-document
in a databas® can be modeled asra+ 1-tuple(Xq, X2, . .., Xm+1);
wherex (1<i < mg is the textual relevance score (definedgpy
betweerD and the'" query keyword, anely, 1 is spatial proximity
score (defined bys) betweerD and the query location. By setting
the aggregation function to kggin Equation 3, the togdistance-
sensitive spatial keyword query problem is now reformuae a
topk aggregation problem.

Wi(seafood) | (dz, 0.9)] (d5, 0.2)] (de, 0.2)] (&7, 0.1)[(ch, 0.0)[(ds, 0.0)[(d, 0.0)|

We(restaurant) ‘ (d2, o.s)‘ (ds, o.e)‘ (ds, o.s)\(dl, 0.4) ‘(dv, 0.3) ‘ (ds, o.o)\ (ds, 0.0)\

W |(ds,08)](c, 0.7)|(d, 0.6) [ds, 0.55) (ds, 0.5) 5, 0.47)(e, 0.42]

Figure 2: An example of topk aggregation for query “seafood
restaurant”

is now modelled as a three-dimensional vedpar, x2,x3); where

X1 is the D’s textual relevance to the keyword “seafood’,ix D's
textual relevance to the keyword “restaurant”, ang is the spa-
tial proximity between D and the query. If we set the aggiegat
function to beg, the top-k aggregation problem for this example
would return the results with the highest scores rankeg lahich
are exactly the results for the spatial keyword search mobl

By formulating the problem as a tdpaggregation problem, we
are able to design an efficient solution that relies only esimple
and widely used inverted index in contrast to existing hylsélu-
tions. The rest of this section is organized as follows. Wt fie-
view topk aggregation algorithms in Section 4.1, and then explain
how they are adapted as baseline algorithms for théidigtance-
sensitive spatial keyword search problem in Section 4.2.

4.1 Top-k Aggregation Algorithms

In this section, we present an overview of topggregation al-
gorithms. A comprehensive survey of these algorithms arengi
in [23].

For convenience, we present the algorithms in the contesqpaf
tial keyword search as follows. Given a query wittkeywords and
a geo-location, assume that we have constructedl sorted lists,
Lq,Lo,...,Lm, wrt a database of geo-documents. Eghe [1,m],
is sorted (in non-ascending order) by the documents’ téxale-
vance scores wrt th&' query keyword; andl ;1 is sorted (in non-
ascending order) by the documents’ spatial proximity toghery
location. Thus, each sorted list entry is a pair of docunemiifier
and a score (textual relevance or spatial proximity).

The first algorithm is the TA algorithm proposed by Fagin et
al. [15], which consists of two main steps.

1. Perform a sorted access in parallel to each ofrthel sorted
lists Li. For each document accessed, perform a random
access to each of the other lidtsto find its score inL;.
Then, compute the aggregated score of the document using
the ranking functionp in Equation 3. If the computed ag-
gregated score is one of thkehighest we have seen so far,
remember the document and its score.

2. For each list;, let high|i] be the score of the last document
seen under sorted access. Define the threshold Baltebe
the aggregated score ligh(i] by the ranking functiorp. As

soon as at least k documents have been seen whose score is

at least equal t8y, the algorithm terminates.

Although the TA algorithm has been proven to be instance op-
timal, the optimality depends on the cost of random accese T
algorithm does not perform well if the cost of random access i
too high. Subsequently, an improved variant of the TA athoni
the CA algorithm [15], was proposed to achieve a good trddeof

EXAMPLE 1. Consider again the example spatial keyword searchbetween the number of sequential access and random access.

problem in Figure 1. Since all the documents contain at l@ast
query keyword, we hav® = {dj,dy,...,d7}. Each document D

The CA algorithm uses a parametetto control the depth of
sequential access. In each iteratibrdocuments in each list are



sequentially accesselis set to be the ratio of the cost of a random
access to the cost a sequential access. For each accessstedbc
dog let B(doc) denote an upper bound of the aggregated score of
doc. A documentdocis defined to beiableif B(doc) is larger than
thek!" best score that has been computed so far. At the end of each
iteration, the viable document with the maximifdoc) value is
selected for random access to determine its aggregatee. Stioe
algorithm terminates when at ledstlistinct documents have been
seen and there are no viable documents.

Besides the TA and CA algorithms, there are a number of other
variants that optimizes the approach for early terminatiorj21],
an improved TA variantQuick-Combinewas proposed where in-
stead of accessing the sorted lists in a round-robin magneck-
Combin€first estimates the influence of each sorted list and selects
the most influential list in each iteration for random accés$26],
Marian et al. proposed thdpper and Pickalgorithm to conduct
random access by minimizing the upper and lower bounds of all
objects.

4.2 Baseline Algorithms

In this section, we explain how the standard topggregation
algorithms described in the previous section are adaptbdsaine
algorithms for the topk distance-sensitive spatial keyword search
problem.

First, note that while it is possible to precompute the sblids
for the textual attributes (i.eL,;, Lo, . ..,Lm) since the tf-idf scores
are independent of the query, this is not the case for thé Jist
for the spatial attribute as the spatial proximity scoreepahdent
on the query location. Thus, the sorted ligt, 1 needs to be created
at query time.

Second, since the documents matching a query’s keywords are
generally not clustered together (i.e., their docIDs ateralated),
performing random access to matching documents to rettieve
overall relevance score typically incurs a large numberaofiom
disk 1/0. To further minimize the number of random disk I/0 fo
such retrievals, we introduce a simple optimization to nizathe
single, large document list into multiple smaller ones byntzin-
ing a document list of matching documents for each keyworng. B
clustering the document entries that match the same keywasd
optimization helps to reduce the number of random disk 1/0 in
curred for document identifier lookups. However, this adgga is
at the cost of additional storage for the document lists ascai-d
ment’s information is now replicated among several lists.

Memory

e

TDisk 1/0

One document list
’ Global Document List

Memory

CEEEE 2 EEEE
Disk 1/0
Multi document lists Disk

Figure 3: One global document list v.s. multiple small lists

EXAMPLE 2. Figure 3illustrates how the use of multiple docu-
ment lists can help reduce disk I/O. In this example, keywgrap-
pears in documentsil= {3,5,7,10,13} and keyword w appears
in documents = {5,9,10,15}. If we need to perform random
access on all the documents in Bnd Ly, using a single, global

document list could incur a total afdisk 1/O (one for each distinct
document); in contrast, with the use of multiple documestsi
the number of disk 1/0 could be reduced to only 2 if each of the
keyword-based document lists fits on one disk page.

5. RANK-AWARE CA ALGORITHM

While the baseline algorithms presented in the previoussec
could be easily incorporated into existing search engihassup-
port the ubiquitous inverted list index, the baseline athars have
a performance drawback in that the spatial attribute lishoabe
precomputed statically but need to be sorted at runtimegusia
query location to compute the spatial proximity values.his sec-
tion, we present an optimized variant of the CA algorithmmted
Rank-aware CA (RCAJjo address this limitation.

The key idea of our optimization is to sort the spatial attrédist
offline based on an approximate spatial order preservingding
such that the two-dimensional location attribute valuesssicoded
into totally ordered values with the desirable propertyt gogair
of encoded location values that are close together in tlaéaoder
represents a pair of locations that are likely to be spgt@dse to
each other. In this paper, we apply the well-known Z-ordétd¢4
obtain such a mapping.
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Figure 4: An example of Z-order encoding

ExAmMPLE 3. Figure 4 illustrates an application of Z-order to
encode location values for a two-dimensional space thatitp
tioned into8 x 8 cells. Applying the Z-order encoding, each cell is
assigned a unique Z-order value frdnto 64. Since each document
is located within some cell, the document’s location is espnted
by the Z-order value of its cell location. Note that the Zearén-
coding provides an approximate preservation of spatiakprty.

There are two useful properties of Z-order encoding thatxve e
ploit in our RCA algorithm. First, given any rectangular i@mgR
in the location space, the top-left corner cellRhas the smallest
Z-order value (denoted bRnin) and the bottom-right corner cell
of Rhas the largest Z-order value (denotedRaysy) among all the
cellsinR. Thus, all the cell locations in a regidhare contained in
the range of Z-order valug&min, Rmay. As an example, consider
a queryQ that is located in cell 51 and a regi@tthat is centered
atQ with a radius ofr1 as shown in Figure 4. We ha{®nin, Rmax
= [38,58 which contains the Z-order values of all the cellsRn



Second, for any cell with a Z-order valuehat is outside of a re-
gion R centered a® with radiusrq (i.e.,¢ < Rmin Or ¢ > Rnay), the
distance of this cell fronQ must be larger tham,.

Based on the properties of the Z-order encoding, the RCA-algo
rithm progressively accesses the documents in the spétidiute
list in iterations in ascore-boundednanner. In each iteratoin, un-
like conventional CA algorithm which explores a fixed numbér
items, our RCA algorithm accesses all the documents wittiadpa
proximity score within a fixed-length score interval.

5.1 Score-bounded Access of Spatial Attribute
Lists

In this section, we elaborate on the score-bounded accehs of
spatial attribute lists.

Similar to the rationale for organizing a document list intolti-
ple shorter lists as explained in Section 4.2, the spatidbate list
is also organized as multiple shorter lists with one spatiarted
list Ly for each keywordy; i.e., the entries iy, represent all the
documents that contain the keyward The entries iy, are sorted
in ascending order of their Z-order encodings of the docurten
cations, and these spatial inverted lists are created efflithout
incurring any runtime sorting overhead.

Assume that the spatial relevance scores are normalizdteto t
range(0, 1] by the scoring functios. Letns denote the maximum
number of iterations to be used to access all the documerigin
spatial attribute lists. Therefore, spatial score raf@é] is parti-
tioned intons disjoint intervals (each of Iengtﬁg): Ti=(1- % 1],
To=(1-Z,1- ],..., To, = (0, 1-]; whereT; denotes the range
of spatial proximity score values for the documents acakssthe
ith iteration. By Equation 2, it follows that for th&" iteration, we
havegs =1— 459 > 1— 1 Thus,d(D,Q) < Y for theit" it-
eration. In other words, in thi" iteration of the score-bounded
access, the search radius for that iteration is satio%; and the
radius progressively increases over the iterations.

At each iteration of the score-bounded access, the seareh on
spatial inverted list is actually performed in terms of award-
scan and a backward-scan. Consider again the example ireFigu
where the Z-order encoding of the query location (denotedypy
is in cell 51 (i.e.,zg = 51). With an initial radius of 1, we access
the documents located in the Z-order ramge- [38,58] as shown
in Figure 4. At the next iteration when the radius is increase
ro, we have the Z-order rande = [15,63 which containd;. To
access only the documents containedbibut not inly, the spatial
search is split into a backward-scan of Z-order rajige37] and a
forward-scan of Z-order randé8, 63.

Based on the properties of Z-order, it is possible that some o
the documents accessed in the searched spatial regiorifigghbec
by some range of Z-order values) could be false positivesthe
actual distance between the accessed document and quéahbeou
larger than the current search radiyst theit" iteration. To avoid
processing these false positives too early, we mainjgibuffers
to temporarily store these false positive documents: a fadsitive
document that should have been processed later ijfftieration
(i.e., j > i) will be temporarily stored in thg'" buffer. Thus, the
documents in thgt" buffer will be considered later during tH&"
iteration.

EXAMPLE 4. Figure 5 illustrates an example of scored-based
access for the spatial attribute. The algorithm starts ftberegion
with radiusAs = ls which is then progressively increased2s,
3\, etc. until it has found k documents with the highest scdres.
the iteration with radius =As, the Z-order range in this iteration is

1 2 | 5 6 | 17 | 18 | 21 | 22
Olds
3| 4 7 8 | 19 | 20 | 23 | 24
di
9 | 10% 13| 14| 25| 26| 20| 30
O 4 1) 0
©|de

11 12 15 16 27 | 28 31 32

4
3&@75 55 | 56
L _|—1

41 | 42 | 45 | 46 | 57 | 58 | 61 | .62

° d7

43 d‘h 47 | 48 | 59 | 60 | 63 | 64

ds dist
Buffers

As 2As  3As  4As 5As 6As

Figure 5: Buffering false positives in spatial search

[38,58 and two document$ds,ds} are accessed during the scan
of the spatial list. Among them, only @& a true candidate. glis a
false positive and it is temporarily stored in the appropeiduffer
to be considered in a subsequent iteration.

In contrast to the CA algorithm, which accesses a fixed number
of documents in each iteration, the documents accessed By RC
is determined by a score interval corresponding to thetitera
This difference between CA and RCA is motivated by two reason
First, the upper bound score for the ranking functign(Equa-
tion 2) relies on the minimum distance of all the unseen dbjec
to the query location and this distance computation is cempb
each Z-order range in general corresponds to an irregulpgqo.
Second, the upper bound score f@rcould decrease very slowly
if a fixed number of documents is accessed per iteration. ihis
because the Z-order encoding only preserves spatial pityxap-
proximately and spatially close objects could have Z-orddues
that are far apart in the linear order. For example, in Fighjral-
though the minimum distance between cells 16 and 49 is Z&go, t
difference in their Z-order values is 33. As another examifle
RCA were to adopt CA's approach of accessing a fixed number of
objects per iteration, then there is actually no change enughper
bound spatial relevance score from the objects accessedl ihc
to cell 17.

5.2 Ecore-bounded Access of Textual Attribute
Ists

Recall that our ranking functiop is a linear weighted combi-
nation of spatial proximity and textual relevance with theight
parameten. Intuitively, when the value oft is small, the spatial
relevance is more important than textual relevance; argithtare-
fore desirable to examine more documents in the spatiattege
lists than the textual inverted lists so that the upper baertual
relevance score for the unseen documents can decreaseigiore s
nificantly to enable an earlier termination of the algorithm

To achieve the above property, the RCA algorithm also adopts
the score-bounded access method for the textual attrilstge $pecif-
ically, let n¢ denote the maximum number of iterations to be used
to access the textual attribute lists. Then, the textuavesice
score domairt0, 1] is partitioned intay; intervals Whe_reldocuments

e

whose textual relevance score is withiih— #1— T} are ac-



cessed in thé" iteration. In this way, our RCA algorithm enables
more relevant documents to be accessed before less reteesit
At the end of theth iteration, the upper bound textual relevance
score for the unseen documents is given by

Be(i)=1—

4
Nt @
It follows that the parametergs andn; are related as follows:
_ (-
Nt = o Ns (%)

ExamMpPLE 5. Consider once more the spatial keyword query
with keywords “seafood restaurant”, and assume that 4 (i.e.,
the length of the score interval ¥ = 0.25). Figure 6 shows the
documents that are score-bounded accessed for each of uhe fo
iterations w.r.t. the two inverted lists for the query keydg In
the first iteration, we access documents whose textual aetey
score is within(0.75,1] and & is accessed in both inverted lists.
The upper bound textual relevance score for the unseen deaasm
in each list is updated to b&75. In the second iteration, no docu-
ments are accessed for keyword “seafood” and onlyschccessed.

In this way, our score-bounded approach prioritises theloent
retrievals to access documents that are more likely to bhertap-
k results earlier. In contrast, the conventional CA algbnit will
access the documentsg,dlz and d; with low relevance scores in
the inverted list of “seafood” very early.

da, 0.2
Wt(seafood) 3, 0 Ed: 0.2;
(d7,0.1)
(d2,0.8) (ds,0.6) | (ds0.5)
We(restaurant) (d1, 0.4)
(d7,0.3)
lst 2ncl 3rd 4th

iteration iteration iteration iteration
Figure 6: Score-bounded sequential access for keywords

“seafood restaurant”

5.3 Overall Approach

In this section, we discuss the overall approach for our REA a
gorithm. Our approach adopts a different random accesegjra
and termination criteria from the traditional CA algorithiRecall
that the CA algorithm selects théable document with the maxi-
mum upper bound score for random access and the algorithm ter
minates if this upper bound score is no greater than the sifore
thekih best document seen so far (denotedMyy. In contrast, our
RCA algorithm does not maintal(doc) to store the upper bound
score for each viable document. Moreover, our random agsess
applied to the viable documents in the min-heap storingktop-

sults so thail, can be increased as much as possible towards an

early termination. Based on our score-bounded sequerntiaisa
approach, we can also compute a tighter upper bound for a docu
ment's aggregated score (denoteddpy. Specifically, after thé"
iteration,By is given by is calculated by

Bk=a-m-By(i) + (1—a)-Bs(i)? (6)
2More precisely, the upper bound of textual relevance carube f

ther reduced ta- § 1< j<mSj, Wheres; is the score last seen in each

textual list. Since thé iteration in thejt" textual list terminates
when we access a document with a ser¢ T, we can be assured

thats; < B(i).

If Bx < W, we stop the sequential access on the sorted lists as it is
guaranteed that that no unseen document could have an atgteg
score higher thaw. However, the algorithm cannot be terminated
at this point because there could be some viable documentas no
the topk heap but with a upper bound score larger thign For
these documents, we need to conduct random access to get thei
full aggregated score and update the kopeap if we find a better
result. In this way, we can guarantee no correct result isedis

Our rank-aware CA algorithm to process togpatial keyword
queries is shown in Algorithm 1. The input parameteris the
collection of textual lists sorted bg values and_s is the collec-
tion of spatial lists sorted by Z-order encoding values. ihed 1
and 2, a topgk heap andhs buffers are initialized, wheréuf|i]
is used to temporarily store any false positive documentbeto
processed during thé" iteration. Three pointerg:, p; and py
are used for sequential accegs:is used for the textual lists and
ps (resp. pp) is used for the forward (resp. backward) scan in
the spatial lists (lines 6-8). In each iteration, we perfa@gquen-
tial access in the textual lists by callirgploreTextList (line 10)
and forward/backward scans in the spatial lists by cakixgore-
ForwardSpatialList and exploreBackwardSpatialList (lines 11-13).
The functionexploreTextList accepts the paramet&(i) defined
in Equation 4 so as to scan the documents whose relevancthis in
range(B(i),Bt(i — 1)]. Similarly, we calculate the Z-order range
from the current search radius and perform forward and bakw
sequential access of documents within the computed Z-oatge
in the spatial lists. Any false positive documents are stanethe
appropriate buffers ibuf and examined in subsequent iterations
(lines 14-15 in Algorithm 1). After the sequential access, per-
form random access on the viable documents in thektbpap
(lines 16-17 in Algorithm 1). Finally, we updat® according to
Equation 6. 1B, <W, we stop the sequential access and for each
viable document not ihopk we perform random access to obtain
its complete score and update the topesults if it is a better result.

6. EXPERIMENT EVALUATION

In this section, we compare the methods derived fromktag-
gregation with state-of-the-art indexes that combineiapptrti-
tioning and textual partitioning. More specifically, we qoane
the performance of TA, CA and RCA proposed in this paper with
S21 [24] andI® [35] in processing tofk spatial keyword queries.
We seth = 8 in the CA Algorithm and; = 20 in the RCA algo-
rithm. All the methods are disk-based and implemented ia.Ja&le
conduct the experiments on a server with 48GB memory and-Quad
Core AMD Opteron(tm) Processor 8356, running Cent8s 5

6.1 Twitter Datasets

We use a Twitter dataset for the experiments. Our collection
tains 100 million real geo-tweets that take up f86GB in storage in
the raw data format. For scalability evaluation, we sample §ub-
sets whose sizes vary from 20 million to 80 million. The stits
of these datasets are shown in Table 1, where we report thsedat
size, number of distinct keywords, average number of kegie/ar
a document and amount of disk storage for each dataset.

In Table 2, we report the disk size of our inverted index ara th
comparison indexes. To support Rank-aware CA (RCA), wedbuil
three inverted lists for each keyword and use Mapb store all
the lists. Since TA and CA do not need the lists sorted by 2wrd
we let them share the inverted lists of RCA that are sorteceky t
tual relevance and document id. As shown in Table 2, invarted
dex consumes only slightly more disk space than S2I. Althaug

Shttp://github. conjankot ek/ mapdb



Table 1: The Twitter Datasets

[ DataSets [ Number of geo-tweets| Number of distinct keywords | Average number of keywords | Disk storage|
Twitter20M 20,000,000 2,719,087 6.92 1.6GB
Twitter40M 40,000,000 4,261 582 6.94 3.1GB
Twitter60M 60,000,000 5,530 216 6.95 4.6GB
Twitter80M 80,000,000 6,652 879 6.94 6.2GB
Twitter100M 100,000,000 7,672,170 6.94 7.7GB

maintain three inverted lists for one keyword while S2I dsibne
R-tree for one keyword, the inverted lists have higher diglkza-

tion than R-tree and can be easily compressed to save dis&.$pa
allocates at least one disk page for an infrequent keywot&au
merges them in one file. Thus’ consumes the most disk space.

6.2 Query Set

We use real keyword queries from AOL search endine gen-
erate spatial keyword queries. First, we select hotel asichueant
as two typical location-based queries. All the keyword gqgem
the log containing “hotel” or “restaurant” are extractedmaéng

20 million to 100 million and run the sets of 3-keyword hotabtla
restaurant queries (the number i831 and 3844 respectively).
We report the average query processing latency of differeth-
ods in Figure 7. As can be seen, the inverted-index-basatiau,
including TA, CA and RCA, achieve much better performaneamth
the hybrid indexes that combine spatial partitioning amtu par-
titioning. S2I andl® maintain a spatial index for each keyword.
Given a set of keywords, they start from the query locatiod an
expand the search region from the spatial attribute onlg ddcu-
ments closest to the query location will be accessed firgarddess
of the textual relevance. In addition, the spatial indexis&-dbased

them, we keep the queries whose number of keywords are from 2 and the tree nodes are accessed with a large number of rafdem |

to 6. After removing duplicate queries, we note that, as shiow

Table 3, queries with 3 keywords are the most common and ho-

tel queries are more frequently submitted by users thaauestt
queries. Next, we attach to each keyword query a spatiatitota
The location is randomly sampled and follows the same bigtion

as the tweet location.

6.3 Parameter Setup

In the following experiments, we will evaluate the perfonna
of query processing in terms of increasing dataset sizen(f20
million to 100 million), varying number of query keywords(from
2 to 6), the number of query resukgfrom 10 to 200) and textual
relevance weightt in the ranking function (from @ to 09). The
values inbold in Table 4 represent the default settings. In each ex-
periment, we vary one parameter and fix the remaining paemet
at their default values. The performance is measured byirage
latency of query processing. Given a query set with thousarfid
hotel or restaurant queries, we start the timing when thedirsry
arrives and stop when the last query finishes. Thus, the query
cessing time includes the 1/O cost to load the index into nrgmo
We do not set a cache limit for query processing. The partdsxn
that is loaded in memory will stay as cached until all the kesav
queries are processed.

6.4 Query Results

The query results are tdp-geo-tweets sorted by spatial prox-
imity and textual relevance. Since tweets are normally tsteot,
we merge the tweets with the same location into one geo-desum
For example, a restaurant may be checked in multiple time $han
term frequency can reflect the popularity of the locationbld@&
illustrates an example of top-10 geo-tweets for a queryftsxh
restaurant” submitted at locati¢40.7312 —73.9977), correspond-
ing to Washington Square Park in Manhattan, New York City. In
this exampleq is set to 03 in favor of geo-tweets closer to the user
location. If there are multiple tweets at the same locatiompnly
select a representative one for presentation purpose.

6.5 Increasing Dataset Size

In this experiment, we examine the scalability in terms of in
creasing dataset size. We increase the number of geo-tiveets

“http: // wwv. gr egsadet sky. conl aol - dat a/

Therefore, their performance do not scale well. When thasgat
size increases to 100 million, the query latency is 5 timesseo
than that of RCA.
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Figure 7: Query latency of increasing dataset size

TA and CA demonstrate comparable performance. Although
they need to sort the lists by the distance to the query loeati
the performance is still around 2 times better than statiz@fart
solutions. TA terminates earlier than CA because most ofltee
uments only contain part of the query keywords. For these-doc
ments, even if all the contained keywords have been accetbsid
upper bound score is still higher than the real score. TheseBy



Algorithm 1: RCA(Q, L, Ls, m, k, ¢, Ns)

1. initialize a min-heapopkwith k dummy documents with score 0
2. initialize ns buffersbuf[1..ns| for false positive documents

3. W « 0 // W is the minimum score itopk
4. By + 1// By is the upper bound score for all the unseen documents
5. fori=1;i <m;i++ do
6. ptfij«<0
7. psli] < binary_searchslistdi],zy) // zq is the Z-order oQ
8. pofi] + prfi]—1
9. for i = 1;i <max(nt,Ns);i++ do
10.  exploreTextList(Bx(i))
11.  obtain the minimum Z-ordeg,in, and maximum Z-ordernay from

the rectangléQ.lat —iAs, Q.lat +iAs, Q.INg—iAs, Q.Ing+iAs)
12.  exploreForwardSpatialList(Zmin, i - As)
13.  exploreBackwardSpatialList(zmax, | - As)
14. for doce buf[i] do
15. seqAccess(dog m+1, (1—a) - @s(doc Q)
16. for each viable documemtocin topkdo
17. randomAccess(dog)
18. Bx<+a-m-Bi(i)+(1—a)-Bg(i)
19. if W > By then
20. for doce W do

21. if doc¢ topkanddocis viablethen
22. randomAccess(doc)
23. break

24. returntopk

exploreTextList(minT)
1. fori=1;i <mi++do
while Lt[i][pt [i]].score> minT do
doc+ L¢fi][pt[i]]
seqAccess(dogi,a - @ (doc Q.w;))
pufi] < pefi]+1

arwn

exploreForwardSpatialList(maxZ radius)
1. fori=1;i <mi++do
while Lg]i][ps [i]].order < maxZdo
doc L [p il
if d(doc Q) < radiusthen
segAccess(dogm+1,(1—a) - @s(doc Q))
else
putdocin buf[ | 49262 ||

peli] < prli]+1

© NookwhN

exploreBackwardSpatialList(minZ, , radius)
1. fori=1;i <mi++do
while Lsi][pp|i]].order > minZ do
doc+« L|i][poli]]
if d(doc Q) < radiusthen
segAccess(dogm+1,(1—a) - @s(doc Q))
else
putdocin buf| [%SQQU ]

poli] < ppli] —1

© NookrwN

segAccess(dog i, S)

1. W(dog) + W(doc) +s
2. E(doc) - E(dog) U i
3. updateTopk(dog)

randomAccess(doc)
1. if docis not accessethen

2. fori=1;i<mi++do

3. W(doo) <~ W(doc) +a- @ (docQ.w)
4.  W(doc) + W(doc)+ (1—a) - @s(doc Q)
5.  updateTopk(dog

updateTopk(dog)

1. if W(doc) > W then
2. updatedocin topk
3. Wk < MingogztopkW(doc)

Table 2: Disk space occupation of different indexes

| DataSets [ Invertedindex [ S2I [ I° |
Twitter20M 12GB 11GB | 24GB
Twitter40M 21GB 21GB | 43GB
Twitter60M 35GB 31GB | 62GB
Twitter80M 47GB 41GB | 79GB
Twitter100M 58GB 51GB | 97GB

Table 3: Statistics of hotel and restaurant queries

Number of keywords| Hotel Queries| Restaurant Querie$
2 3,471 3,319
3 8,436 5,314
4 7,831 3,844
5 4,116 1,758
6 1,619 587

decreases slowly in CA. TA does not need to maintain the upper
bound score for each document and terminates earlier. Haowiev
incurs the overhead of a larger number of random accesset. Ea
random access includes at mostimes of binary search on the
sorted lists that have been loaded in memory and the cosnhef ra
dom access is moderate. Consequently, the query processing

in TA and CAis close.

RCA achieves the best performance among all the methods. Eve
in the dataset with 100 million tweets, it takes around 206man-
swer a query which is 2 times better than TA and CA. The main
reason is that it does not need to sort the spatial lists erdimd
the rank-aware expansion is effective in saving the coseqfisn-
tial access. Table 6 shows the average fraction of docunsents
quentially traversed by the different tdpaggregation algorithms.
TA uses much smaller number of sequential access than CA but
it requires a random access for each document retrieved thhem
sequential traversal. RCA can be considered as a comprdiaise
tween TA and CA with a moderate number of sequential accabs an
random access.

Finally, restaurant queries take a relatively longer titmntho-
tel queries to answer. This is not because restaurant is e fresr
quent keyword in the Twitter dataset. In fact, the averagegtle
of an inverted list for keyword that appears in restaurargrigs
is 53967 but this number is 7845 for hotel queries. Instead,
our investigation shows that this performance differerscdue to
the memory cache. In this experiment, we ru831 hotel queries,
which is much higher than the 844 restaurant queries. This means
more inverted lists about hotels are cached in memory andiske
1/Os can be saved when the cached keyword appears in subseque
queries. Note that the comparison among different metreotisri
enough because all of them adopt the same caching mechanism.

6.6 Increasingk

The average query latency of the various algorithmsk és-
creases from 10 to 200 is shown in Figure 8(a) and 8(b). THermper
mance of S2I and® degrade more significantly than the solutions

Table 4: Parameter Setting
Dataset size 20M, 40M, 60M, 80M, 100M
Number of query keywords 2, 3,4,5, 6
K 10, 50, 100, 150, 200
o 0.1,0.3 05,0.7,0.9




Table 5: Example tweet results for query “seafood restaurat?

1 [ 40.717( -73.997 | I'm at Dun Huang Seafood Restaurant (Néw
York, NY) http://t.co/jxx7FRg56i

2 | 40.715] -73.996 | APALA holiday dinner! #union #labor #aap|i
@ Sunshine 27 Seafood Restaurant

3 | 40.714] -73.996 | Moms picking out a fish for dinne
#chinatown @ Fuleen Seafood Restaurant

4 | 40.714| -73.996 | I'm at East Seafood Restaurant (New Yoik,
NY) http://t.co/lGA8BAmM8ph9

5 | 40.707| -74.018 | Mediterranean (@ Miramar Seafood Restau-
rant) https://t.co/lW9ZhS0ZKDO

6 | 40.759]| -73.982| Dinner. (@ Oceana Seafood Restaurant Bar)

7 | 40.813] -73.955| I'm at Seafood Boca Chica Restaurant (New
York, NY) http://t.co/oAEjm15drA

8 | 40.645( -73.995( I'm at New Fulin Kwok Seafood Restauramt
(Brooklyn, NY) http://t.co/gr7rdhpbk0

9 | 40.768]| -73.911| Seafood Egyptian restaurant @ Sabrys

10 | 40.814 -73.956] good 1 (@ Seafood Restaurarit)
http://t.co/INVKPKNNHF

Table 6: Fraction of sequential access for hotel queries

TA CA RCA
Twitter20M | 0.085 0.449 0.230
Twitter4OM | 0.073 0.369 0.227
Twitter60OM | 0.065 0.320 0.223
Twitter8OM | 0.060 0.294 0.219
Twitter100M | 0.057 0.277 0.217

based on tofc aggregation. This is because they access the docu-
ments in the order of the distance to the query location. Elgheir
pruning power only relies on the spatial attribute and tikase rel-
evance is not taken into account. The remaining methodddems
the spatial and textual relevance as a whole and demonbtties
scalability tok. The results also shed insight on the effectiveness of
search space pruning among TA, CA and RCA. In TA and CA, the
query processing time include the cost to sort by spatiatipridy

and the cost of sequential and random accessk isreases, the
overhead of sorting is fixed and the running time increaseause
more documents are accessed wkdrecomes larger. Hence, we
can compare the pruning effectiveness of TA, CA and RCA from
the experiment figures. Asincreases from 10 to 200, the running
time of RCA increases much slower than TA and CA, which means
our rank-aware expansion is effective in reducing the accest in

the sorted lists.

6.7 Increasing Number of Query Keywords

In this experiment, we increase the number of query keywords
mfrom 2 to 6 and evaluate the performance in Twitter60M datase
Since a document is considered relevant if it contains &t leae
query keyword, the number of candidates grows dramaticely
mincreases. The average query latency is reported in Figaje 8
and 8(d). As can be seen, the performance of spatial keywand/q
processing degrades dramaticallyamcreases. When the number
of keywords increases from 5 to 6, the running time doubleS &
and|I3. This is because am increases, the number of documents
(containing at least one of the query keywords) whose lonati
are near the query location also increases. Though manyeséth
documents’ relevance scores are too low to be among the top-k
results, they still need to be accessed. In comparison, PAa@i
RCA scale smoothly withm; the pruning mechanism takes into

account both spatial and textual relevance which is cleadye
effective.

6.8 Increasinga

In the last experiment, we evaluate the effect of the weigint
the ranking functiorpon the performance. As decreases, the spa-
tial relevance plays a more important role in determiningfthal
score. We can see from Figure 8(e) and 8(f) that the perfacenah
S21 and!® improves significantly ast decreases. This is because
S21 andI® examine documents near the query location first while
the textual relevance is ignored. Wharis 0.9, the textual rele-
vance dominates spatial relevance and the spatial proxisino
longer important. However, S2! ad access documents based on
their distance to the query location. Even if the nearby dusnts
are not textually relevant, they need to examine all of thévhen
o decreases, the spatial relevance becomes more importhtiiean
topk results are more likely to be located around the query loca-
tion. This is advantageous for the expansion strategy oa6a13.
That’s why the running time ofi = 0.1 is nearly two times faster
than that ofo = 0.9.

TA and CA are not sensitive . They build inverted lists sorted
by textual relevance and spatial proximity. Hence, wherr&m-
ing function is biased on textual relevance, sey 0.9, the most
relevant documents are likely to appear in the front of thverited
lists sorted by textual relevance. Similarly, wheris small, the
spatial proximity is more important and the documents ctosbe
query location will be accessed first by TA and CA algorithms.
RCA, however, is affected bg. Whena decreases, its perfor-
mance improves because its inverted lists on the spatiibut
are not strictly sorted by the distance to the query locatidinen
a is small, the topgk documents are close and the spatial expansion
on the z-order list can be terminated earlier.

7. CONCLUSION

In this paper, we procesbstance-sensitivepatial keyword query
as a topk aggregation query and present the revised TA and CA
algorithm for query processing. Furthermore, we proposané-r
aware CA algorithm that works well on inverted lists sortgdedx-
tual relevance and spatial curving order. We conduct exparis
on Twitter dataset with up to 100 million geo-tweets. Ourexp
imental results show that our proposed rank-aware CA sclieme
superior over state-of-the-art solutions.
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