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ABSTRACT
We examine the spatial keyword search problem to retrieve objects
of interest that are ranked based on both their spatial proximity to
the query location as well as the textual relevance of the object’s
keywords. Existing solutions for the problem are based on either
using a combination of textual and spatial indexes or using special-
ized hybrid indexes that integrate the indexing of both textual and
spatial attribute values. In this paper, we propose a new approach
that is based on modeling the problem as a top-k aggregation prob-
lem which enables the design of a scalable and efficient solution
that is based on the ubiquitous inverted list index. Our performance
study demonstrates that our approach outperforms the state-of-the-
art hybrid methods by a wide margin.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process
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1. INTRODUCTION
The prevalence of smartphones and social network systems has

enabled users to create, disseminate and discover content on-the-
move. According to a recent study [2], Twitter has 164 million
monthly active users accessing its site from mobile deviceswhile
Facebook has 425 million mobile users doing so. Consequently,
a tremendous amount of social content, including tweets, check-
ins, POIs and reviews, are generated every day and notably, these
data are attached with geo-coordinates and form a large-scale geo-
documentcorpus. Spatial keyword search is an important func-
tionality in exploring useful information from a corpus of geo-
documents and has been extensively studied for years [5, 13,14,
16, 18, 22, 29, 33–36]. The work on spatial keyword search can
be broadly categorized into two classes:distance-insensitiveand
distance-sensitive.

In the traditionaldistance-insensitivekeyword search, the docu-
ments are organized based on a geographical ontology [5, 13,18,
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36]. For example, “University Ave”→ “Palo Alto” →“ South
Bay”→ “Bay Area” [5] is an example hierarchical path in a geo-
graphical ontology. Given a keyword query with a locationalcon-
straint, the constraint is used to restrict the document search within
matching hierachies of the ontology. Thus, the query’s locational
constraint here is used as a filtering criterion. Indistance-sensitive
keyword search, each geo-document is associated with a precise
reference point1 so that its spatial distance from a query location
can be calculated to evaluate its relevance in terms of spatial prox-
imity. Thus, the query location here is used as a ranking criterion.

Distance-sensitive keyword search has many useful applications
that facilitate a user to search for nearby locations/events/friends
based on some keywords with the matching results ranked in in-
creasing proximity to the user’s location. For example, point-of-
interest (POI) applications such as Foursquare and Yelp arevery
useful to search for nearby venues or restaurants. As another ex-
ample, location-based social discovery applications suchas Tinder
are very useful to search for nearby users with mutual interests.

In this paper, we focus on the problem of top-k distance-sensitive
spatial keyword query search:given a spatial keyword query (with
a location and a set of keywords), the objective is to return the best k
documents based on a ranking function that takes into account both
textual relevance as well as spatial proximity.Figure 1 illustrates
a simple example of distance-sensitive spatial keyword search for
a corpus with seven geo-documentsd1, · · · ,d7. Each document is
associated with a location and a collection of keywords together
with their relevance scores. Consider a spatial keyword query Q
with keywords “seafood restaurant” issued at the location marked
by the star. In this example, documentd2 is considered to matchQ
better than documentd4 becaused2 is close to the query location
and it is highly relevant to the query keywords; in comparison, d4
does not match the query keywords well, though it is slightlycloser
to Q thend2.

The efficiency of evaluating top-k distance-sensitive spatial key-
word queries becomes critical for a large-scale geo-document cor-
pus. Existing methods for this problem [14, 16, 22, 29, 35] have
shown that combining the spatial and textual attributes together
can effectively prune the search space. These methods can bedi-
vided into two broad categories:spatial-first and textual-first. In
the spatial-first strategy, a spatial data structure (such as an R-
tree [10]) is first used to organize the geo-documents into spatial
regions based on their locations. Next, each spatial regionis aug-
mented with an inverted index to index all the documents contained
in that region. An example of aspatial-first scheme is the IR-
tree [14]. On the other hand, in thetextual-firststrategy, the search
space of geo-documents is first organized by keywords, and then for

1The location information can be naturally derived from the GPS
of smartphones.
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Figure 1: An example of spatial keyword search scenario

each keyword, a spatial data structure is employed to index the doc-
uments associated with that keyword. S2I [29] andI3 [35] are two
schemes that follow this strategy. Recent extensive performance
studies [29, 35] have demonstrated that both S2I andI3 are signif-
icantly faster than IR-tree. As such, we consider S2I andI3 to be
the state-of-the-art solutions for distance-sensitive spatial keyword
search.

However, there are two key limitations with the state-of-the-art
solutions. First, these solutions are not sufficiently scalable to cope
with the demands of today’s applications. For example, Foursquare
has over 60 millions of venues, and the number of geo-tweets pub-
lished by mobile users per day is in the hundreds of million. None
of existing solutions [29,35] have been evaluated with suchlarge-
scale datasets; indeed, our experimental study reveals that the state-
of-the-art solutions do not perform well for large datasets. Sec-
ond, these solutions employ specialized “hybrid” indexes that inte-
grate the indexing of both textual as well as spatial attributes which
present additional complexity for their adoption in existing search
engines in terms of implementation effort, robustness testing, and
performance tuning.

In this paper, we propose a new approach to address the limita-
tions of the state-of-the-art solutions. Our paper makes three key
contributions. First, we present a simple but effective approach to
solve the top-k distance-sensitive spatial keyword query by mod-
eling it as the well-known top-k aggregation problem. Second,
we propose a novel and efficient approach, namedRank-aware CA
(RCA) algorithm, which extends the well-known CA algorithm with
more effective pruning. In contrast to the specialized hybrid solu-
tions, our RCA algorithm is more practical as it relies only on the
ubiquitous and well-understood inverted index. Third, we demon-
strate that RCA outperforms the state-of-the-art approaches by a
wide margin (up to 5 times faster) on a real dataset with 100 mil-
lion geo-tweets.

The rest of the paper is organized as follows. We present the
problem statement in Section 2, and review related work in Sec-
tion 3. In Section 4, we present our new approach to model the
problem and two baseline algorithms. We present our new algo-
rithm, RCA, in Section 5. In section 6, we evaluate the efficiency
of RCA with an extensive performance study. Section 7 concludes
the paper.

2. PROBLEM STATEMENT
We model a geo-document by a quintuple,D = 〈docID, x, y, terms〉;

wheredocID denote the document id,(x,y) denote the (longitude,
latitude) location of the document, andtermsdenote a collection of
weighted terms. Each weighted term is of the form〈termi , φt(D , termi)〉,
wheretermi denote a term in documentD andφt(D , termi) denote
the textual relevance score betweenD andtermi . Here,φt denote
the tf-idf textual reference scoring function [9,25].

A top-k distance-sensitive spatial keyword query is denoted by
Q = 〈xq, yq, w1,w2, . . . ,wm, k〉; where(xq,yq) denote the (longi-
tude, latitude) location of the query,{w1,w2, . . . ,wm} denote the
set of query keywords, andk denote the number of top-matching
documents to be returned for the query.

The relevance score between a documentD and a queryQ is
evaluated by a monotonic aggregation of textual relevance and spa-
tial proximity. The textual relevance is measured by a scoring func-
tion φt(D ,Q) that sums up the relevance score of each query key-
word:

φt(D ,Q) = ∑
wi∈Q

φt(D ,wi) (1)

If a documentD does not contain any query keyword, we consider
it irrelevant and setφt(D ,Q) to be−∞ to prevent it from appearing
in the results. The spatial proximity is measured byφs(D ,Q) which
assigns a score based on the distance betweenD andQ such that
a smaller spatial distance yields a higherφs(D ,Q) value. In this
paper, we use the same spatial ranking function as in [14,29,35].

φs(D ,Q) = 1−
d(D ,Q)

γ
(2)

whered(D ,Q) measures the Euclidean distance between the lo-
cations of the queryQ and documentD, andγ is a parameter to
normalizeφs(D ,Q) between[0,1] which is set to be the maximum
distance among all the pairs of documents. Finally, as in [14, 16,
29, 35], we define the overall ranking functionφ(D ,Q) as a linear
combination of textual relevance and spatial proximity:

φ(D ,Q) = α ·φt(D ,Q)+(1−α) ·φs(D ,Q) (3)

Based on the ranking functionφ, we can formally define the top-
k spatial keyword query as follows:

DEFINITION 1. Top-k spatial keyword query
Given a document corpusC, a top-k spatial keyword query Q re-
trieves a set O⊆ C with k documents such that∀D ∈ O andD

′ ∈
C−O, φ(D ,Q)≥ φ(D ′,Q).

3. RELATED WORK
Spatial keyword search is a well-studied problem and can be cat-

egorized into two classes:distance-insensitiveanddistance-sensitive.

3.1 Distance-insensitive Approaches
The traditional local search engines such as Google Local [1]

and Yahoo! Local [3] belong to the distance-insensitive category.
In these systems, location information is first extracted from web
pages and organized using a hierarchical geographical ontology.
Given a query with a locational constraint, the candidate documents
are retrieved from the matching hierarchies in the ontologyusing
existing information retrieval methods such as TAAT [6–8, 30] or
DAAT [11,31].

In [36], Zhou et al. built separate R-tree [10] and inverted in-
dex for the spatial and textual attributes respectively; and evaluated
a query by first searching with one of the indexes (spatial or tex-
tual) followed by ranking the matching documents using informa-
tion from the other index.

In [13], the locational regions are first extracted from the web
documents which are then used to organize the documents using
the grid file [27] or space-filling curve [19] such that spatially close
documents are clustered near to one another on disk. Given a query,
documents whose locational regions contain the query location are
first retrieved and their textual relevance wrt the query areare then
computed.



In [18], Fontoura et al. proposed query relaxation techniques to
generate top-k results when there are not enough matching docu-
ments in the specified region.

In [22], Hariharan et al. proposed KR*-tree, the first hybridin-
dex to handle spatial keyword query with AND-semantics, where
a matching document must contain all the query keywords and its
query location must intersect with the query region. In KR*-tree,
an inverted index is maintained for each tree node, where both spa-
tial filtering and textual filtering can be employed at the same time
when accessing an index node. In [32], Zhang et al. recently pro-
posed a more efficient hybrid index to process queries with AND-
semantics. The index combines linear quadtree [20] and fixed-
length bitmap for query processing.

3.2 Distance-sensitive Approaches
In the distance-sensitive category of work [12, 14, 16, 29, 35],

matching documents are ranked based on both their textual rele-
vance and spatial proximity to the query.

In [16], Felipe et al. proposedIR2 which is a hybrid index of the
R-tree and signature file; their work is based on the AND-semantics
which sorts the matching documents by their distance to the query
location.

Cong et al. [14] proposed IR-tree which is a spatial-first approach
that integrates the R-tree with inverted index; each R-treenode is
augmented with inverted lists to index documents located within
that node.

More recently, two textual-first approaches, S2I index [29]and
I3 [35], have been proposed. S2I uses aggregated R-tree [28] for
spatial relevance evaluation. The search algorithm expands from
the query location in the spatial index associated with eachquery
keyword untilk best results are found.I3 builds one Quadtree [17]
for each keyword and adopts the best-first search strategy inquery
processing. Performance studies [29,35] have shown that both S2I
andI3 are significantly faster than IR-tree.

4. OUR APPROACH
In this section, we present a new approach for the top-k distance-

sensitive spatial keyword search problem. Our approach is based
on the simple but effective idea of modeling the problem as a top-k
aggregation problem [15].

DEFINITION 2. Top-k aggregation problem
Consider a databaseD where each object o= (x1,x2, . . . ,xn) has n
scores, one for each of its n attributes. Given a monotonic aggrega-
tion function f , where f(o) or f (x1,x2, . . . ,xn) denote the overall
score of object o, the top-k aggregation problem is to find a set of
top-k objects inD with the highest overall scores; i.e., find O⊆ D

with k objects such that∀o∈O and o′ ∈ D−O, f(o)≥ f (o′).

The reformulation of the top-k distance-sensitive spatial key-
word search problem as a top-k aggregation problem is straight-
forward. Given a queryQ with mkeywords, each geo-documentD
in a databaseD can be modeled as am+1-tuple(x1,x2, . . . ,xm+1);
wherexi (1≤ i ≤m) is the textual relevance score (defined byφt )
betweenD and theith query keyword, andxm+1 is spatial proximity
score (defined byφs) betweenD and the query location. By setting
the aggregation function to beφ in Equation 3, the top-k distance-
sensitive spatial keyword query problem is now reformulated as a
top-k aggregation problem.

EXAMPLE 1. Consider again the example spatial keyword search
problem in Figure 1. Since all the documents contain at leasta
query keyword, we haveD = {d1,d2, . . . ,d7}. Each document D

Ψt(seafood) (d2, 0.9) (d3, 0.2) (d4, 0.2)

Ψt(restaurant) (d2, 0.8) (d5, 0.6) (d6, 0.5) (d1, 0.4) (d7, 0.3)

(d7, 0.1)

Ψs

(d1, 0.0) (d5, 0.0) (d6, 0.0)

(d3, 0.0) (d4, 0.0)

(d4, 0.8) (d2, 0.7) (d1, 0.6) (d3, 0.55) (d6, 0.5) (d5, 0.47) (d7, 0.42)

Figure 2: An example of top-k aggregation for query “seafood
restaurant”

is now modelled as a three-dimensional vector(x1,x2,x3); where
x1 is the D’s textual relevance to the keyword “seafood”, x2 is D’s
textual relevance to the keyword “restaurant”, and x3 is the spa-
tial proximity between D and the query. If we set the aggregation
function to beφ, the top-k aggregation problem for this example
would return the results with the highest scores ranked byφ which
are exactly the results for the spatial keyword search problem.

By formulating the problem as a top-k aggregation problem, we
are able to design an efficient solution that relies only on the simple
and widely used inverted index in contrast to existing hybrid solu-
tions. The rest of this section is organized as follows. We first re-
view top-k aggregation algorithms in Section 4.1, and then explain
how they are adapted as baseline algorithms for the top-k distance-
sensitive spatial keyword search problem in Section 4.2.

4.1 Top-k Aggregation Algorithms
In this section, we present an overview of top-k aggregation al-

gorithms. A comprehensive survey of these algorithms are given
in [23].

For convenience, we present the algorithms in the context ofspa-
tial keyword search as follows. Given a query withmkeywords and
a geo-location, assume that we have constructedm+1 sorted lists,
L1,L2, . . . ,Lm, wrt a database of geo-documents. EachLi , i ∈ [1,m],
is sorted (in non-ascending order) by the documents’ textual rele-
vance scores wrt theith query keyword; andLm+1 is sorted (in non-
ascending order) by the documents’ spatial proximity to thequery
location. Thus, each sorted list entry is a pair of document identifier
and a score (textual relevance or spatial proximity).

The first algorithm is the TA algorithm proposed by Fagin et
al. [15], which consists of two main steps.

1. Perform a sorted access in parallel to each of them+1 sorted
lists Li . For each document accessed, perform a random
access to each of the other listsLi to find its score inLi .
Then, compute the aggregated score of the document using
the ranking functionφ in Equation 3. If the computed ag-
gregated score is one of thek highest we have seen so far,
remember the document and its score.

2. For each listLi , let high[i] be the score of the last document
seen under sorted access. Define the threshold valueBk to be
the aggregated score ofhigh[i] by the ranking functionφ. As
soon as at least k documents have been seen whose score is
at least equal toBk, the algorithm terminates.

Although the TA algorithm has been proven to be instance op-
timal, the optimality depends on the cost of random access. The
algorithm does not perform well if the cost of random access is
too high. Subsequently, an improved variant of the TA algorithm,
the CA algorithm [15], was proposed to achieve a good tradeoff
between the number of sequential access and random access.

The CA algorithm uses a parameterh to control the depth of
sequential access. In each iteration,h documents in each list are



sequentially accessed.h is set to be the ratio of the cost of a random
access to the cost a sequential access. For each accessed document
doc, let B(doc) denote an upper bound of the aggregated score of
doc. A documentdocis defined to beviableif B(doc) is larger than
thekth best score that has been computed so far. At the end of each
iteration, the viable document with the maximumB(doc) value is
selected for random access to determine its aggregated score. The
algorithm terminates when at leastk distinct documents have been
seen and there are no viable documents.

Besides the TA and CA algorithms, there are a number of other
variants that optimizes the approach for early termination. In [21],
an improved TA variant,Quick-Combine, was proposed where in-
stead of accessing the sorted lists in a round-robin manner,Quick-
Combinefirst estimates the influence of each sorted list and selects
the most influential list in each iteration for random access. In [26],
Marian et al. proposed theUpper and Pickalgorithm to conduct
random access by minimizing the upper and lower bounds of all
objects.

4.2 Baseline Algorithms
In this section, we explain how the standard top-k aggregation

algorithms described in the previous section are adapted asbaseline
algorithms for the top-k distance-sensitive spatial keyword search
problem.

First, note that while it is possible to precompute the sorted lists
for the textual attributes (i.e.,L1,L2, . . . ,Lm) since the tf-idf scores
are independent of the query, this is not the case for the listLm+1
for the spatial attribute as the spatial proximity score is dependent
on the query location. Thus, the sorted listLm+1 needs to be created
at query time.

Second, since the documents matching a query’s keywords are
generally not clustered together (i.e., their docIDs are not related),
performing random access to matching documents to retrievethe
overall relevance score typically incurs a large number of random
disk I/O. To further minimize the number of random disk I/O for
such retrievals, we introduce a simple optimization to organize the
single, large document list into multiple smaller ones by maintain-
ing a document list of matching documents for each keyword. By
clustering the document entries that match the same keyword, this
optimization helps to reduce the number of random disk I/O in-
curred for document identifier lookups. However, this advantage is
at the cost of additional storage for the document lists as a docu-
ment’s information is now replicated among several lists.

Global Document List

Memory
3 5 7 9 10 13 15

Disk I/O

Disk
One document list

Multi document lists

Memory
3 5 7 910 13 15

doc list for w1 doc list for w2

5 10

Disk

Disk I/O

Figure 3: One global document list v.s. multiple small lists

EXAMPLE 2. Figure 3 illustrates how the use of multiple docu-
ment lists can help reduce disk I/O. In this example, keywordw1 ap-
pears in documents L1 = {3,5,7,10,13} and keyword w2 appears
in documents L2 = {5,9,10,15}. If we need to perform random
access on all the documents in L1 and L2, using a single, global

document list could incur a total of7 disk I/O (one for each distinct
document); in contrast, with the use of multiple document lists,
the number of disk I/O could be reduced to only 2 if each of the
keyword-based document lists fits on one disk page.

5. RANK-AWARE CA ALGORITHM
While the baseline algorithms presented in the previous section

could be easily incorporated into existing search engines that sup-
port the ubiquitous inverted list index, the baseline algorithms have
a performance drawback in that the spatial attribute list cannot be
precomputed statically but need to be sorted at runtime using the
query location to compute the spatial proximity values. In this sec-
tion, we present an optimized variant of the CA algorithm, termed
Rank-aware CA (RCA), to address this limitation.

The key idea of our optimization is to sort the spatial attribute list
offline based on an approximate spatial order preserving encoding
such that the two-dimensional location attribute values are encoded
into totally ordered values with the desirable property that a pair
of encoded location values that are close together in the total order
represents a pair of locations that are likely to be spatially close to
each other. In this paper, we apply the well-known Z-order [4] to
obtain such a mapping.
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EXAMPLE 3. Figure 4 illustrates an application of Z-order to
encode location values for a two-dimensional space that is parti-
tioned into8×8 cells. Applying the Z-order encoding, each cell is
assigned a unique Z-order value from1 to 64. Since each document
is located within some cell, the document’s location is represented
by the Z-order value of its cell location. Note that the Z-order en-
coding provides an approximate preservation of spatial proximity.

There are two useful properties of Z-order encoding that we ex-
ploit in our RCA algorithm. First, given any rectangular region R
in the location space, the top-left corner cell ofR has the smallest
Z-order value (denoted byRmin) and the bottom-right corner cell
of Rhas the largest Z-order value (denoted byRmax) among all the
cells inR. Thus, all the cell locations in a regionRare contained in
the range of Z-order values[Rmin,Rmax]. As an example, consider
a queryQ that is located in cell 51 and a regionR that is centered
atQ with a radius ofr1 as shown in Figure 4. We have[Rmin,Rmax]
= [38,58] which contains the Z-order values of all the cells inR.



Second, for any cell with a Z-order valuec that is outside of a re-
gionRcentered atQ with radiusr1 (i.e.,c< Rmin or c> Rmax), the
distance of this cell fromQ must be larger thanr1.

Based on the properties of the Z-order encoding, the RCA algo-
rithm progressively accesses the documents in the spatial attribute
list in iterations in ascore-boundedmanner. In each iteratoin, un-
like conventional CA algorithm which explores a fixed numberof
items, our RCA algorithm accesses all the documents with spatial
proximity score within a fixed-length score interval.

5.1 Score-bounded Access of Spatial Attribute
Lists

In this section, we elaborate on the score-bounded access ofthe
spatial attribute lists.

Similar to the rationale for organizing a document list intomulti-
ple shorter lists as explained in Section 4.2, the spatial attribute list
is also organized as multiple shorter lists with one spatialinverted
list Lw for each keywordw; i.e., the entries inLw represent all the
documents that contain the keywordw. The entries inLw are sorted
in ascending order of their Z-order encodings of the document lo-
cations, and these spatial inverted lists are created offline without
incurring any runtime sorting overhead.

Assume that the spatial relevance scores are normalized to the
range(0,1] by the scoring functionφs. Let ηs denote the maximum
number of iterations to be used to access all the documents inthe
spatial attribute lists. Therefore, spatial score range(0,1] is parti-
tioned intoηs disjoint intervals (each of length1ηs

): T1 =(1− 1
ηs
,1],

T2 = (1− 2
ηs
,1− 1

ηs
], . . ., Tηs = (0, 1

ηs
]; whereTi denotes the range

of spatial proximity score values for the documents accessed in the
ith iteration. By Equation 2, it follows that for theith iteration, we

haveφs = 1− d(D,Q)
γ > 1− i

ηs
. Thus,d(D ,Q) < iγ

ηs
for the ith it-

eration. In other words, in theith iteration of the score-bounded
access, the search radius for that iteration is set tor i =

iγ
ηs

; and the
radius progressively increases over the iterations.

At each iteration of the score-bounded access, the search ona
spatial inverted list is actually performed in terms of a forward-
scan and a backward-scan. Consider again the example in Figure 4
where the Z-order encoding of the query location (denoted byzq)
is in cell 51 (i.e.,zq = 51). With an initial radius ofr1, we access
the documents located in the Z-order rangeI1 = [38,58] as shown
in Figure 4. At the next iteration when the radius is increased to
r2, we have the Z-order rangeI2 = [15,63] which containsI1. To
access only the documents contained inI2 but not inI1, the spatial
search is split into a backward-scan of Z-order range[15,37] and a
forward-scan of Z-order range[58,63].

Based on the properties of Z-order, it is possible that some of
the documents accessed in the searched spatial region (specified
by some range of Z-order values) could be false positives; i.e, the
actual distance between the accessed document and query could be
larger than the current search radiusr i at theith iteration. To avoid
processing these false positives too early, we maintainηs buffers
to temporarily store these false positive documents: a false positive
document that should have been processed later in thej th iteration
(i.e., j > i) will be temporarily stored in thej th buffer. Thus, the
documents in thej th buffer will be considered later during thej th

iteration.

EXAMPLE 4. Figure 5 illustrates an example of scored-based
access for the spatial attribute. The algorithm starts fromthe region
with radiusλs =

γ
ηs

which is then progressively increased to2λs,
3λs, etc. until it has found k documents with the highest scores.For
the iteration with radius =λs, the Z-order range in this iteration is
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Figure 5: Buffering false positives in spatial search

[38,58] and two documents{d3,d4} are accessed during the scan
of the spatial list. Among them, only d4 is a true candidate. d3 is a
false positive and it is temporarily stored in the appropriate buffer
to be considered in a subsequent iteration.

In contrast to the CA algorithm, which accesses a fixed number
of documents in each iteration, the documents accessed by RCA
is determined by a score interval corresponding to the iteration.
This difference between CA and RCA is motivated by two reasons.
First, the upper bound score for the ranking functionφs (Equa-
tion 2) relies on the minimum distance of all the unseen objects
to the query location and this distance computation is complex as
each Z-order range in general corresponds to an irregular polygon.
Second, the upper bound score forφs could decrease very slowly
if a fixed number of documents is accessed per iteration. Thisis
because the Z-order encoding only preserves spatial proximity ap-
proximately and spatially close objects could have Z-ordervalues
that are far apart in the linear order. For example, in Figure4, al-
though the minimum distance between cells 16 and 49 is zero, the
difference in their Z-order values is 33. As another example, if
RCA were to adopt CA’s approach of accessing a fixed number of
objects per iteration, then there is actually no change in the upper
bound spatial relevance score from the objects accessed in cell 49
to cell 17.

5.2 Score-bounded Access of Textual Attribute
Lists

Recall that our ranking functionφ is a linear weighted combi-
nation of spatial proximity and textual relevance with the weight
parameterα. Intuitively, when the value ofα is small, the spatial
relevance is more important than textual relevance; and it is there-
fore desirable to examine more documents in the spatial inverted
lists than the textual inverted lists so that the upper boundtextual
relevance score for the unseen documents can decrease more sig-
nificantly to enable an earlier termination of the algorithm.

To achieve the above property, the RCA algorithm also adopts
the score-bounded access method for the textual attribute lists. Specif-
ically, let ηt denote the maximum number of iterations to be used
to access the textual attribute lists. Then, the textual relevance
score domain(0,1] is partitioned intoηt intervals where documents
whose textual relevance score is within(1− i

ηt
,1− i−1

ηt
] are ac-



cessed in theith iteration. In this way, our RCA algorithm enables
more relevant documents to be accessed before less relevantones.
At the end of theith iteration, the upper bound textual relevance
score for the unseen documents is given by

Bt(i) = 1−
i

ηt
(4)

It follows that the parametersηs andηt are related as follows:

ηt =
(1−α)

α
·ηs (5)

EXAMPLE 5. Consider once more the spatial keyword query
with keywords “seafood restaurant”, and assume thatηt = 4 (i.e.,
the length of the score interval isλt = 0.25). Figure 6 shows the
documents that are score-bounded accessed for each of the four
iterations w.r.t. the two inverted lists for the query keywords. In
the first iteration, we access documents whose textual relevance
score is within(0.75,1] and d2 is accessed in both inverted lists.
The upper bound textual relevance score for the unseen documents
in each list is updated to be0.75. In the second iteration, no docu-
ments are accessed for keyword “seafood” and only d5 is accessed.
In this way, our score-bounded approach prioritises the document
retrievals to access documents that are more likely to be in the top-
k results earlier. In contrast, the conventional CA algorithm will
access the documents d4, d3 and d7 with low relevance scores in
the inverted list of “seafood” very early.

Ψt(seafood)
(d2, 0.9)

(d3, 0.2)

(d4, 0.2)

Ψt(restaurant)
(d2, 0.8) (d5, 0.6) (d6, 0.5)

(d1, 0.4)

(d7, 0.3)

(d7, 0.1)

1
st

iteration

2
nd

iteration

3
rd

iteration

4
th

iteration

Figure 6: Score-bounded sequential access for keywords
“seafood restaurant”

5.3 Overall Approach
In this section, we discuss the overall approach for our RCA al-

gorithm. Our approach adopts a different random access strategy
and termination criteria from the traditional CA algorithm. Recall
that the CA algorithm selects theviabledocument with the maxi-
mum upper bound score for random access and the algorithm ter-
minates if this upper bound score is no greater than the scoreof
thekth best document seen so far (denoted byWk). In contrast, our
RCA algorithm does not maintainB(doc) to store the upper bound
score for each viable document. Moreover, our random accessis
applied to the viable documents in the min-heap storing top-k re-
sults so thatWk can be increased as much as possible towards an
early termination. Based on our score-bounded sequential access
approach, we can also compute a tighter upper bound for a docu-
ment’s aggregated score (denoted byBk). Specifically, after theith

iteration,Bk is given by is calculated by

Bk = α ·m·Bt(i)+(1−α) ·Bs(i)2 (6)

2More precisely, the upper bound of textual relevance can be fur-
ther reduced toα ·∑1≤ j≤msj , wheresj is the score last seen in each
textual list. Since theith iteration in thej th textual list terminates
when we access a document with a scoresj /∈ Ti , we can be assured
thatsj ≤ Bt(i).

If Bk ≤Wk, we stop the sequential access on the sorted lists as it is
guaranteed that that no unseen document could have an aggregated
score higher thanWk. However, the algorithm cannot be terminated
at this point because there could be some viable documents not in
the top-k heap but with a upper bound score larger thanWk. For
these documents, we need to conduct random access to get their
full aggregated score and update the top-k heap if we find a better
result. In this way, we can guarantee no correct result is missed.

Our rank-aware CA algorithm to process top-k spatial keyword
queries is shown in Algorithm 1. The input parameterLt is the
collection of textual lists sorted byφt values andLs is the collec-
tion of spatial lists sorted by Z-order encoding values. In lines 1
and 2, a top-k heap andηs buffers are initialized, wherebu f[i]
is used to temporarily store any false positive documents tobe
processed during theith iteration. Three pointerspt , pf and pb
are used for sequential access:pt is used for the textual lists and
ps (resp. pb) is used for the forward (resp. backward) scan in
the spatial lists (lines 6-8). In each iteration, we performsequen-
tial access in the textual lists by callingexploreTextList (line 10)
and forward/backward scans in the spatial lists by callingexplore-
ForwardSpatialList and exploreBackwardSpatialList (lines 11-13).
The functionexploreTextList accepts the parameterBt(i) defined
in Equation 4 so as to scan the documents whose relevance is inthe
range(Bt(i),Bt(i−1)]. Similarly, we calculate the Z-order range
from the current search radius and perform forward and backward
sequential access of documents within the computed Z-orderrange
in the spatial lists. Any false positive documents are stored in the
appropriate buffers inbu f and examined in subsequent iterations
(lines 14-15 in Algorithm 1). After the sequential access, we per-
form random access on the viable documents in the top-k heap
(lines 16-17 in Algorithm 1). Finally, we updateBk according to
Equation 6. IfBk ≤Wk, we stop the sequential access and for each
viable document not intopk, we perform random access to obtain
its complete score and update the top-k results if it is a better result.

6. EXPERIMENT EVALUATION
In this section, we compare the methods derived from top-k ag-

gregation with state-of-the-art indexes that combine spatial parti-
tioning and textual partitioning. More specifically, we compare
the performance of TA, CA and RCA proposed in this paper with
S2I [24] andI3 [35] in processing top-k spatial keyword queries.
We seth = 8 in the CA Algorithm andηt = 20 in the RCA algo-
rithm. All the methods are disk-based and implemented in Java. We
conduct the experiments on a server with 48GB memory and Quad-
Core AMD Opteron(tm) Processor 8356, running Centos 5.8.

6.1 Twitter Datasets
We use a Twitter dataset for the experiments. Our collectioncon-

tains 100 million real geo-tweets that take up to 7.7GB in storage in
the raw data format. For scalability evaluation, we sample four sub-
sets whose sizes vary from 20 million to 80 million. The statistics
of these datasets are shown in Table 1, where we report the dataset
size, number of distinct keywords, average number of keywords in
a document and amount of disk storage for each dataset.

In Table 2, we report the disk size of our inverted index and the
comparison indexes. To support Rank-aware CA (RCA), we build
three inverted lists for each keyword and use MapDB3 to store all
the lists. Since TA and CA do not need the lists sorted by z-order,
we let them share the inverted lists of RCA that are sorted by tex-
tual relevance and document id. As shown in Table 2, invertedin-
dex consumes only slightly more disk space than S2I. Although we

3http://github.com/jankotek/mapdb



Table 1: The Twitter Datasets
DataSets Number of geo-tweets Number of distinct keywords Average number of keywords Disk storage

Twitter20M 20,000,000 2,719,087 6.92 1.6GB
Twitter40M 40,000,000 4,261,582 6.94 3.1GB
Twitter60M 60,000,000 5,530,216 6.95 4.6GB
Twitter80M 80,000,000 6,652,879 6.94 6.2GB
Twitter100M 100,000,000 7,672,170 6.94 7.7GB

maintain three inverted lists for one keyword while S2I builds one
R-tree for one keyword, the inverted lists have higher disk utiliza-
tion than R-tree and can be easily compressed to save disk space. I3

allocates at least one disk page for an infrequent keyword but S2I
merges them in one file. Thus,I3 consumes the most disk space.

6.2 Query Set
We use real keyword queries from AOL search engine4 to gen-

erate spatial keyword queries. First, we select hotel and restaurant
as two typical location-based queries. All the keyword queries in
the log containing “hotel” or “restaurant” are extracted. Among
them, we keep the queries whose number of keywords are from 2
to 6. After removing duplicate queries, we note that, as shown in
Table 3, queries with 3 keywords are the most common and ho-
tel queries are more frequently submitted by users than restaurant
queries. Next, we attach to each keyword query a spatial location.
The location is randomly sampled and follows the same distribution
as the tweet location.

6.3 Parameter Setup
In the following experiments, we will evaluate the performance

of query processing in terms of increasing dataset size (from 20
million to 100 million), varying number of query keywordsm(from
2 to 6), the number of query resultsk (from 10 to 200) and textual
relevance weightα in the ranking function (from 0.1 to 0.9). The
values inbold in Table 4 represent the default settings. In each ex-
periment, we vary one parameter and fix the remaining parameters
at their default values. The performance is measured by the average
latency of query processing. Given a query set with thousands of
hotel or restaurant queries, we start the timing when the first query
arrives and stop when the last query finishes. Thus, the querypro-
cessing time includes the I/O cost to load the index into memory.
We do not set a cache limit for query processing. The part of index
that is loaded in memory will stay as cached until all the keyword
queries are processed.

6.4 Query Results
The query results are top-k geo-tweets sorted by spatial prox-

imity and textual relevance. Since tweets are normally short text,
we merge the tweets with the same location into one geo-document.
For example, a restaurant may be checked in multiple times and the
term frequency can reflect the popularity of the location. Table 5
illustrates an example of top-10 geo-tweets for a query “seafood
restaurant” submitted at location(40.7312,−73.9977), correspond-
ing to Washington Square Park in Manhattan, New York City. In
this example,α is set to 0.3 in favor of geo-tweets closer to the user
location. If there are multiple tweets at the same location,we only
select a representative one for presentation purpose.

6.5 Increasing Dataset Size
In this experiment, we examine the scalability in terms of in-

creasing dataset size. We increase the number of geo-tweetsfrom

4http://www.gregsadetsky.com/aol-data/

20 million to 100 million and run the sets of 3-keyword hotel and
restaurant queries (the number is 7,831 and 3,844 respectively).
We report the average query processing latency of differentmeth-
ods in Figure 7. As can be seen, the inverted-index-based solutions,
including TA, CA and RCA, achieve much better performance than
the hybrid indexes that combine spatial partitioning and textual par-
titioning. S2I andI3 maintain a spatial index for each keyword.
Given a set of keywords, they start from the query location and
expand the search region from the spatial attribute only. The docu-
ments closest to the query location will be accessed first, regardless
of the textual relevance. In addition, the spatial index is disk-based
and the tree nodes are accessed with a large number of random I/Os.
Therefore, their performance do not scale well. When the dataset
size increases to 100 million, the query latency is 5 times worse
than that of RCA.
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Figure 7: Query latency of increasing dataset size

TA and CA demonstrate comparable performance. Although
they need to sort the lists by the distance to the query location,
the performance is still around 2 times better than state-of-the-art
solutions. TA terminates earlier than CA because most of thedoc-
uments only contain part of the query keywords. For these docu-
ments, even if all the contained keywords have been accessed, their
upper bound score is still higher than the real score. Therefore,Bk



Algorithm 1: RCA(Q, Lt , Ls, m, k, ηt , ηs)
1. initialize a min-heaptopkwith k dummy documents with score 0
2. initialize ηs buffersbu f[1..ηs] for false positive documents
3. Wk← 0 // Wk is the minimum score intopk
4. Bk← 1 // Bk is the upper bound score for all the unseen documents
5. for i = 1;i ≤m; i++ do
6. pt [i]← 0
7. pf [i]← binary_search(slists[i],zq) // zq is the Z-order ofQ
8. pb[i]← pf [i]−1
9. for i = 1;i ≤max(ηt ,ηs); i++ do

10. exploreTextList(Bt(i))
11. obtain the minimum Z-orderzmin and maximum Z-orderzmax from

the rectangle(Q.lat − iλs, Q.lat + iλs, Q.lng− iλs, Q.lng+ iλs)
12. exploreForwardSpatialList(zmin, i ·λs)
13. exploreBackwardSpatialList(zmax, i ·λs)
14. for doc∈ bu f[i] do
15. seqAccess(doc, m+1, (1−α) ·φs(doc,Q))
16. for each viable documentdoc in topkdo
17. randomAccess(doc)
18. Bk← α ·m·Bt (i)+(1−α) ·Bs(i)
19. if Wk ≥ Bk then
20. for doc∈W do
21. if doc /∈ topkanddoc is viablethen
22. randomAccess(doc)
23. break
24. returntopk

exploreTextList(minT)
1. for i = 1;i ≤m; i++ do
2. while Lt [i][pt [i]].score> minT do
3. doc← Lt [i][pt [i]]
4. seqAccess(doc, i,α ·φt (doc,Q.wi ))
5. pt [i]← pt [i]+1

exploreForwardSpatialList(maxZ, radius)
1. for i = 1;i ≤m; i++ do
2. while Ls[i][pf [i]].order≤maxZdo
3. doc← Ls[i][pf [i]]
4. if d(doc,Q) ≤ radius then
5. seqAccess(doc,m+1,(1−α) ·φs(doc,Q))
6. else
7. putdoc in bu f[ ⌊ d(doc,Q)

λs
⌋ ]

8. pf [i]← pf [i]+1

exploreBackwardSpatialList(minZ, , radius)
1. for i = 1;i ≤m; i++ do
2. while Ls[i][pb[i]].order≥minZ do
3. doc← Ls[i][pb[i]]
4. if d(doc,Q) ≤ radius then
5. seqAccess(doc,m+1,(1−α) ·φs(doc,Q))
6. else
7. putdoc in bu f[ ⌊ d(doc,Q)

λs
⌋ ]

8. pb[i]← pb[i]−1

seqAccess(doc, i, s)
1. W(doc)←W(doc)+s
2. E(doc)← E(doc) ∪ i
3. updateTopk(doc)

randomAccess(doc)
1. if doc is not accessedthen
2. for i = 1;i ≤m; i++ do
3. W(doc)←W(doc)+α ·φt (doc,Q.wi )
4. W(doc)←W(doc)+(1−α) ·φs(doc,Q)
5. updateTopk(doc)

updateTopk(doc)
1. if W(doc) >Wk then
2. updatedoc in topk
3. Wk←mindoc∈topkW(doc)

Table 2: Disk space occupation of different indexes
DataSets Inverted Index S2I I3

Twitter20M 12GB 11GB 24GB
Twitter40M 21GB 21GB 43GB
Twitter60M 35GB 31GB 62GB
Twitter80M 47GB 41GB 79GB
Twitter100M 58GB 51GB 97GB

Table 3: Statistics of hotel and restaurant queries
Number of keywords Hotel Queries Restaurant Queries

2 3,471 3,319
3 8,436 5,314
4 7,831 3,844
5 4,116 1,758
6 1,619 587

decreases slowly in CA. TA does not need to maintain the upper
bound score for each document and terminates earlier. However, it
incurs the overhead of a larger number of random accesses. Each
random access includes at mostm times of binary search on the
sorted lists that have been loaded in memory and the cost of ran-
dom access is moderate. Consequently, the query processingtime
in TA and CA is close.

RCA achieves the best performance among all the methods. Even
in the dataset with 100 million tweets, it takes around 200msto an-
swer a query which is 2 times better than TA and CA. The main
reason is that it does not need to sort the spatial lists online and
the rank-aware expansion is effective in saving the cost of sequen-
tial access. Table 6 shows the average fraction of documentsse-
quentially traversed by the different top-k aggregation algorithms.
TA uses much smaller number of sequential access than CA but
it requires a random access for each document retrieved fromthe
sequential traversal. RCA can be considered as a compromisebe-
tween TA and CA with a moderate number of sequential access and
random access.

Finally, restaurant queries take a relatively longer time than ho-
tel queries to answer. This is not because restaurant is a more fre-
quent keyword in the Twitter dataset. In fact, the average length
of an inverted list for keyword that appears in restaurant queries
is 53,967 but this number is 73,045 for hotel queries. Instead,
our investigation shows that this performance difference is due to
the memory cache. In this experiment, we run 7,831 hotel queries,
which is much higher than the 3,844 restaurant queries. This means
more inverted lists about hotels are cached in memory and thedisk
I/Os can be saved when the cached keyword appears in subsequent
queries. Note that the comparison among different methods is fair
enough because all of them adopt the same caching mechanism.

6.6 Increasingk

The average query latency of the various algorithms ask in-
creases from 10 to 200 is shown in Figure 8(a) and 8(b). The perfor-
mance of S2I andI3 degrade more significantly than the solutions

Table 4: Parameter Setting
Dataset size 20M, 40M,60M, 80M, 100M

Number of query keywords 2, 3, 4, 5, 6
k 10, 50, 100, 150, 200
α 0.1, 0.3, 0.5, 0.7, 0.9



Table 5: Example tweet results for query “seafood restaurant”

1 40.717 -73.997 I’m at Dun Huang Seafood Restaurant (New
York, NY) http://t.co/jxx7FRg56i

2 40.715 -73.996 APALA holiday dinner! #union #labor #aapi
@ Sunshine 27 Seafood Restaurant

3 40.714 -73.996 Moms picking out a fish for dinner
#chinatown @ Fuleen Seafood Restaurant

4 40.714 -73.996 I’m at East Seafood Restaurant (New York,
NY) http://t.co/IGA8Am8ph9

5 40.707 -74.018 Mediterranean (@ Miramar Seafood Restau-
rant) https://t.co/W9ZhS0ZKD0

6 40.759 -73.982 Dinner. (@ Oceana Seafood Restaurant Bar)
7 40.813 -73.955 I’m at Seafood Boca Chica Restaurant (New

York, NY) http://t.co/oAEjm15drA
8 40.645 -73.995 I’m at New Fulin Kwok Seafood Restaurant

(Brooklyn, NY) http://t.co/qr7rdhpbk0
9 40.768 -73.911 Seafood Egyptian restaurant @ Sabrys
10 40.814 -73.956 good 1 (@ Seafood Restaurant)

http://t.co/INvKPKNNHF

Table 6: Fraction of sequential access for hotel queries
TA CA RCA

Twitter20M 0.085 0.449 0.230
Twitter40M 0.073 0.369 0.227
Twitter60M 0.065 0.320 0.223
Twitter80M 0.060 0.294 0.219
Twitter100M 0.057 0.277 0.217

based on top-k aggregation. This is because they access the docu-
ments in the order of the distance to the query location. Hence, their
pruning power only relies on the spatial attribute and the textual rel-
evance is not taken into account. The remaining methods consider
the spatial and textual relevance as a whole and demonstratebetter
scalability tok. The results also shed insight on the effectiveness of
search space pruning among TA, CA and RCA. In TA and CA, the
query processing time include the cost to sort by spatial proximity
and the cost of sequential and random access. Ask increases, the
overhead of sorting is fixed and the running time increases because
more documents are accessed whenk becomes larger. Hence, we
can compare the pruning effectiveness of TA, CA and RCA from
the experiment figures. Ask increases from 10 to 200, the running
time of RCA increases much slower than TA and CA, which means
our rank-aware expansion is effective in reducing the access cost in
the sorted lists.

6.7 Increasing Number of Query Keywords
In this experiment, we increase the number of query keywords

m from 2 to 6 and evaluate the performance in Twitter60M dataset.
Since a document is considered relevant if it contains at least one
query keyword, the number of candidates grows dramaticallyas
m increases. The average query latency is reported in Figure 8(c)
and 8(d). As can be seen, the performance of spatial keyword query
processing degrades dramatically asm increases. When the number
of keywords increases from 5 to 6, the running time doubles for S2I
and I3. This is because asm increases, the number of documents
(containing at least one of the query keywords) whose locations
are near the query location also increases. Though many of these
documents’ relevance scores are too low to be among the top-k
results, they still need to be accessed. In comparison, TA, CA and
RCA scale smoothly withm; the pruning mechanism takes into

account both spatial and textual relevance which is clearlymore
effective.

6.8 Increasingα
In the last experiment, we evaluate the effect of the weightα in

the ranking functionφ on the performance. Asα decreases, the spa-
tial relevance plays a more important role in determining the final
score. We can see from Figure 8(e) and 8(f) that the performance of
S2I andI3 improves significantly asα decreases. This is because
S2I andI3 examine documents near the query location first while
the textual relevance is ignored. Whenα is 0.9, the textual rele-
vance dominates spatial relevance and the spatial proximity is no
longer important. However, S2I andI3 access documents based on
their distance to the query location. Even if the nearby documents
are not textually relevant, they need to examine all of them.When
α decreases, the spatial relevance becomes more important and the
top-k results are more likely to be located around the query loca-
tion. This is advantageous for the expansion strategy of S2IandI3.
That’s why the running time ofα = 0.1 is nearly two times faster
than that ofα = 0.9.

TA and CA are not sensitive toα. They build inverted lists sorted
by textual relevance and spatial proximity. Hence, when therank-
ing function is biased on textual relevance, sayα = 0.9, the most
relevant documents are likely to appear in the front of the inverted
lists sorted by textual relevance. Similarly, whenα is small, the
spatial proximity is more important and the documents closeto the
query location will be accessed first by TA and CA algorithms.
RCA, however, is affected byα. When α decreases, its perfor-
mance improves because its inverted lists on the spatial attribute
are not strictly sorted by the distance to the query location. When
α is small, the top-k documents are close and the spatial expansion
on the z-order list can be terminated earlier.

7. CONCLUSION
In this paper, we processdistance-sensitivespatial keyword query

as a top-k aggregation query and present the revised TA and CA
algorithm for query processing. Furthermore, we propose a rank-
aware CA algorithm that works well on inverted lists sorted by tex-
tual relevance and spatial curving order. We conduct experiments
on Twitter dataset with up to 100 million geo-tweets. Our exper-
imental results show that our proposed rank-aware CA schemeis
superior over state-of-the-art solutions.
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