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Abstract
The prevalent use of XML highlights the need for a generic, flexible
access-control mechanism for XML documents that supports effi-
cient and secure query access, without revealing sensitive informa-
tion to unauthorized users. This paper introduces a novel paradigm
for specifying XML security constraints and investigates the en-
forcement of such constraints during XML query evaluation. Our
approach is based on the novel concept of security views, which
provide for each user group (a) an XML view consisting of all and
only the information that the users are authorized to access, and
(b) a view DTD that the XML view conforms to. Security views
effectively protect sensitive data from access and potential infer-
ences by unauthorized users, and provide authorized users with
necessary schema information to facilitate effective query formu-
lation and optimization. We propose an efficient algorithm for de-
riving security view definitions from security policies (defined on
the original document DTD) for different user groups. We also de-
velop novel algorithms for XPath query rewriting and optimization
such that queries over security views can be efficiently answered
without materializing the views. Our algorithms transform a query
over a security view to an equivalent query over the original docu-
ment, and effectively prune query nodes by exploiting the structural
properties of the document DTD in conjunction with approximate
XPath containment tests. Our work is the first to study a flexible,
DTD-based access-control model for XML and its implications on
the XML query-execution engine. Furthermore, it is among the
first efforts for query rewriting and optimization in the presence of
general DTDs for a rich class of XPath queries. An empirical study
based on real-life DTDs verifies the effectiveness of our approach.

1. Introduction
XML is rapidly emerging as the new standard for data represen-

tation and exchange on the Internet. As large corporations and or-
ganizations increasingly exploit the Internet as a means of improv-
ing business-transaction efficiency and productivity, it is increas-
ingly common to find operational data and other business informa-
tion in XML format. In light of the sensitive nature of such business
information, this also raises the important issue of securing XML
content and ensuring the selective exposure of information to dif-
ferent classes of users based on their access privileges.

Specifically, for an XML document T there may be multiple
user groups who want to query the same document. For these user
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groups different access policies may be imposed, specifying what
elements of T the users are granted access to. The problem of
secure XML querying is to enforce these access policies. More for-
mally, given a user query p, our goal is to ensure that the evaluation
of p over T returns only information in T that the user is allowed to
access; in other words, we seek to protect sensitive data from direct
access or indirect inference through queries by unauthorized users.

Addressing such security concerns mandates the development
of generic, flexible access-control mechanisms that can effectively
support multiple access policies for controlling access to XML con-
tent at various levels of granularity (e.g., restricting access to entire
subtrees or specific elements in the document tree based on their
content or location). Perhaps even more importantly, enforcing
such access-control models should not imply any drastic degrada-
tion in either performance or functionality for the underlying XML
query-execution engine. Furthermore, access control should not in-
hibit the availability of necessary schema information (i.e., DTDs)
specifying the structure of accessible data. This is a very impor-
tant requirement, given the crucial role of DTDs in XML data ex-
change and integration, and in XML query formulation and opti-
mization. In other words, XML security policies must be supported
by (a) novel query optimization and processing techniques that can
ensure efficient and secure query access to large XML documents
for a sufficiently rich and powerful query language (i.e., a signifi-
cant fragment of XPath [7]); and, (b) the ability to effectively derive
and publish a number of different DTD-schemas characterizing ac-
cessible data based on different access policies.

A number of recent research efforts have considered access-
control models for XML data [3, 6, 8, 9, 19, 16, 22, 25]. These
models, however, suffer from various limitations. For instance,
they may reject proper queries and access [16, 25], incur costly run-
time security checks for queries [22], require expensive view mate-
rialization and maintenance [8, 9], or complicate integrity mainte-
nance by annotating the underlying data [6]. Perhaps a more subtle
problem is that none of these earlier models provides users with
a DTD characterizing the information that users are allowed to ac-
cess. Worse still, some models expose the full document DTD to all
users, and make it possible to employ (seemingly secure) queries to
infer information that the access control policy was meant to pro-
tect; such a situation is illustrated in the following example.

Example 1.1: Consider the DTD represented as a graph in Fig. 1.
A hospital document conforming to the DTD consists of a list of
departments (dept∗), and each dept has children describing clin-
ical trials, patients, and medical staff (doctors and nurses) in the de-
partment. A staff member can be either a nurse or a doctor,
indicated by dashed edges; similarly for treatment. The patient
data is organized into two separate groups depending on whether
or not the patients are involved in clinical trials.

Suppose that the hospital wants to impose a security policy that
authorizes nurses to access all patient data except for informa-
tion concerning whether a patient is involved in clinical trials. A
plausible solution to enforce this policy is allow nurses to access
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Figure 1: Example Document DTD.

patientInfo, while denying their access to clinicalTrial,
regular, trial, and test; moreover, the document DTD
is revealed to nurses so that they can formulate their queries,
like [6]. However, even though nurses can not explicitly refer to
the clinicalTrial element in their queries, it is still possible
for them to circumvent this restriction and infer the identity of pa-
tients in clinical trials via (multiple) queries by exploiting the DTD
structure. Indeed, the “confidential” information can be deduced
from the results of the following two permissible queries:

p1: //dept//patientInfo/patient/name,
p2: //dept/patientInfo/patient/name.

The difference between the results of p1 and p2 in conjunction
with the full DTD tells exactly which patients are in clinical trials.
Specifically, while p2 finds the names of all patients not involved in
clinical trials (via the path hospital/dept/patientInfo),
p1 actually finds the names of all patients (via hospital/dept/
(ε ∪ clinicalTrial)/patientInfo). 2

Our Contributions. Our first contribution is a novel paradigm
for specifying XML security constraints and effectively enforcing
such constraints during query processing. Given an XML docu-
ment T accompanied by a document DTD, we allow multiple ac-
cess control policies to be declared over T by associating security
annotations with element types in the document DTD. Our security-
specification model supports inheritance and overriding, as well as
content-based predicates (in the form of XPath qualifiers). Our ap-
proach for enforcing these access control polices is based on the
novel notion of security views. Abstractly, a security view is a
restricted view of the original document and the underlying doc-
ument DTD that (a) is automatically derived based on a given se-
curity specification for users, (b) exposes all and only necessary
schema structure and document content to authorized users, and
(c) employs internal XPath query annotations in the view DTD to
describe the access paths to the relevant, accessible parts of the
document. While the security view DTD is exposed to authorized
users, neither the internal XPath annotations nor the full document
DTD is visible. Authorized users can only pose queries over the
security view, making use of the exposed view DTD to formulate
their queries. Our security-view mechanism guarantees that queries
only return data that users are allowed to access, and thus protects
sensitive data from access by unauthorized users; furthermore, it
also provides inference control with respect to a given access pol-
icy/security specification, to an extent (inference using constraints
and external knowledge is beyond the scope of this paper).

While it is common to enforce secure access via views for tradi-
tional databases [5], XML security views introduce new challenges.
For instance, it is non-trivial to construct a sound and complete se-
curity view (i.e., a view that exposes all and only accessible data
elements and schema structure) w.r.t. a given security policy. In
response to this, our second contribution is a novel quadratic-time
algorithm that, given the document DTD and an access-policy spec-
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Figure 2: Security view for nurses.

ification, automatically derives a sound and complete security-view
definition (i.e., view DTD plus internal XPath annotations).

Another challenge is that in the presence of multiple access con-
trol policies, it is expensive to actually materialize and maintain
multiple security views of a large XML document. To avoid the
overheads of view materialization and the complexities of view
maintenance, our third contribution is a novel XML query-rewriting
algorithm that transforms an input XPath query p posed over a se-
curity view to an equivalent, secure query pt over the original docu-
ment. This yields an effective querying mechanism that completely
bypasses view materialization. Our rewriting algorithm is based
on dynamic-programming and runs in low polynomial time in the
size of the query and the view DTD; in contrast, earlier rewriting
schemes (e.g., based on chasing/unification [26] or direct XPath se-
mantics [13]) require (worst-case) exponential time when dealing
with significant XPath fragments [15].

Our fourth contribution is a new query-optimization technique
that leverages the structural properties of DTDs to optimize the
evaluation of the transformed query pt. Given the inherent diffi-
culty of the problem (simple query containment and equivalence
testing in the presence of DTDs ranges from coNP-hard to unde-
cidable [24]), our optimization algorithms are necessarily approxi-
mate. Our key technical idea here is to exploit the document DTD
in conjunction with an approximate XPath containment test by ex-
tending graph simulation [20] concepts to our setting. Note that the
XPath fragment studied in our work completely subsumes the class
of twig queries of [6] and the “purely-conjunctive” XPath queries
considered in earlier studies on XPath optimization [2, 27, 18].

Finally, we conduct an experimental study of our secure query
evaluation techniques using real-life DTDs. Our results show that
our query rewriting and optimization techniques are effective.

Example 1.2: Given the document DTD and access policy of
Example 1.1, a security view for nurses can be derived. As de-
picted in Fig. 2, the view is defined by a view DTD Dv along
with XPath annotations p1 to p4 (to be elaborated in Exam-
ple 3.2). The view DTD hides confidential information, e.g.,
clinicalTrial, trial, regular, test. The XPath an-
notations specify how to extract relevant accessible data from the
original document. While the view DTD is provided to the nurses,
the XPath annotations are hidden from them. In other words, nurses
only see the view DTD Dv and are not aware of the existence of
clinicalTrial, etc., in the document. (As we discuss later in
the paper, the role of the “dummy” nodes in Fig. 2 is to ensure
that the semantics of the original DTD is preserved in the exposed
view.) The view is not materialized. The nurses may pose a query
p on the security view, and the query is efficiently transformed to
an equivalent query pt over the original document via our query
rewriting algorithm. The query pt is further optimized and then
executed; the result of pt consists of only XML elements that the
nurses are granted access to. 2

In summary, the main contributions of our work include:



• The first XML security model based on security views sup-
porting both access control and DTD-schema availability;

• A novel quadratic-time algorithm for deriving a sound and
complete security view from a given access control policy;

• A new quadratic-time algorithm for rewriting XPath queries
over a view to equivalent queries over the original document;

• Techniques for optimizing queries by taking advantage of
DTD constraints and approximate XPath containment; and,

• An empirical study verifying the feasibility and effectiveness
of our approach.

Our work is the first to study a flexible, DTD- and XPath-based
access-control model for XML and its implications on the XML
query-execution engine. Furthermore, it is among the first efforts
for query rewriting and optimization in the presence of general
DTDs for a rich class of XPath queries.

Related Work. XACML [25] and XACL [16] propose standards for
specifying access control policies for general actions not limited to
queries. The policies are enforced via a decision procedure that,
upon receiving an action request, either grants or denies access. In
particular, a user query is rejected if its result contains sensitive
data. This enforcement strategy is rather brute-force: in practice,
one often wants the query to return the part of the result that the user
is authorized to access, instead of being rejected. Instead, [22] pro-
poses to check each element in the result of a query, and return the
elements that the user is allowed to access. Also proposed in [22] is
a static optimization algorithm for checking whether a query is safe,
i.e., whether it returns only accessible elements. However, expen-
sive run-time security checks are still required for unsafe queries.

Issues like granularity of access, access-control inheritance,
overriding, and conflict resolution have been studied for XML in [3,
8, 9]. In particular, [8, 9] propose to express access policies with
XPath queries. The semantics of access control to a user is a spe-
cific view of the document determined by the XPath access-control
rules. An algorithm is also developed based on tree labeling for
computing a particular user view of the data. The enforcement
strategy is based on materializing and maintaining views, which
can be quite complex and computationally expensive.

A different approach has been explored in [6]. In a nutshell,
their access-control model assumes that access annotations are ex-
plicitly included in the actual element nodes in the data, whereas
nodes in the DTD graph specify “coarse” conditions on the exis-
tence of security annotations in corresponding data nodes. Only
elements with accessible annotations can appear in the result of
a query. Novel optimization algorithms are proposed for finding
minimal and safe rewritings of twig queries with DTD schema in-
formation, in order to minimize redundant security checks and lo-
calize the remaining checks at run-time. However, the rewriting
and optimization techniques are only applicable to twig queries,
which represent only a small fragment of XPath (e.g., no wildcards
or union). Furthermore, even though including access annotations
directly in the data nodes allows for arbitrarily fine-grained access-
control policies, it can also make the definition and maintenance
of such policies rather complicated and expensive. As an exam-
ple, defining a new security policy (e.g., for a new class of users)
would mean having to go over the entire database and appropriately
annotating all relevant data nodes – this could become a problem,
e.g., for massive XML data collections, and worse when updates
are considered. Like other previous models, this mechanism does
not support schema availability, as illustrated in Example 1.1.

A cryptographic technique has recently been proposed in [19].
It assures that published data is visible to anyone but only under-
standable to authorized users via enciphering keys. The technique

is developed particularly for access control to published XML data,
but is not applicable to securing (client) XML queries by a server.

Organization. The remainder of the paper is organized as follows.
Section 2 reviews DTDs and XPath. Our access control model and
security views are defined in Section 3. Sections 4 and 5 present
our query rewriting and optimization algorithms, followed by our
experimental study in Section 6. Section 7 concludes the paper.

2. Preliminaries
In this section we briefly review Document Type Definitions

(DTDs) and the class of XPath queries considered in this paper.

DTDs. Without loss of generality, we represent a DTD by
(Ele, Rg, r), where Ele is a finite set of element types; r is a dis-
tinguished type in Ele, called the root type; Rg defines the element
types: for any A in Ele, Rg(A) is a regular expression of the form:

α ::= str | ε | B1, . . . , Bn | B1 + . . . + Bn | B1

∗

where str denotes PCDATA, ε is the empty word, Bi is a type in
Ele (referred to as a subelement type of A), and ‘+’, ‘,’ and ‘∗’
denote disjunction, concatenation and the Kleene star, respectively
(here we use ‘+’ instead of ‘|’ to avoid confusion). We refer to
A → Rg(A) as the production of A. Note that all DTDs can be
expressed in this form by introducing new element types (entities).

An XML document (tree) T conforms to a DTD D if (1) there
is a unique node, the root, in T labeled with r; (2) each node in T
is labeled either with an Ele type A, called an A element, or with
str, called a text node; (3) each A element has a list of children of
elements and text nodes such that they are ordered and their labels
are in the regular language defined by Rg(A); and, (4) each text
node carries a string value (PCDATA) and is a leaf of the tree. We
call T an instance of D if T conforms to D.

A DTD D can be represented as a graph, referred to as the DTD
graph of D. The graph contains a node for each element type A in
D, referred to as the A node, and the edges depict the parent/child
relation. Specifically, for each production A → α, there is an edge
from the A node to the B node for each element type B in α. If
α = B∗, then the edge has a ‘∗’ as a label indicating that zero or
more B elements can be immediately nested within an A element.
If α is a disjunction, then the edges are indicated by dashed lines to
distinguish from the case of a concatenation. When it is clear from
the context, we shall use the DTD and its graph interchangeably,
both referred to as D; similarly for A element type and A node.

For example, Fig. 1 depicts a DTD graph of the hospital DTD.
Note that a DTD graph can be a DAG (directed acyclic graph); it
may even have cycles if the DTD is recursive, i.e., when some A is
defined in terms of itself directly or indirectly. In contrast to [6], we
consider general DTDs with disjunction and recursion. Attributes
are not considered here, but they can be easily incorporated.

XPath queries. We consider a class of XPath [7] queries, referred
to as C and defined as follows:

p ::= ε | l | ∗ | p/p | //p | p ∪ p | p[q],

where ε, l and ∗ denote the empty path, a label (in Ele) and a
wildcard, respectively; ‘∪’, ‘/’ and ’//’ stand for union, child-axis
and descendant-or-self-axis, respectively; and finally, q in p[q] is
called a qualifier and defined by:

q ::= p | p = c | q ∧ q | q ∨ q | ¬q,

where c is a constant, p is as defined above, and ‘∧’, ‘∨’ and ‘¬’
denote conjunction, disjunction and negation. For p = p1/p2, if p2

is //p′

2, we write p as p1//p′

2. We also use ∅ to denote a special
query, which returns the empty set over all XML trees, with ∅ ∪ p
equivalent to p and p/∅/p′ equivalent to ∅.
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Figure 3: Framework for querying XML via security views.

An XPath query p is evaluated at a context node v in an XML
tree T , and its result is the set of nodes (or str data) of T reach-
able via p from v, denoted by v[[p]]. Qualifiers are interpreted as
follows: at a context node v, the atomic predicate [p] holds iff v[[p]]
is nonempty, i.e., there exists a node reachable via p from v; and
[p = c] is true iff v[[p]] contains a text node whose string value
equals the constant c. The boolean operations are self-explanatory.

Our class C of XPath queries properly contains the twig queries
studied in [6]: C supports wildcard, union, and richer qualifiers with
disjunction and negation. As observed by [18, 24], optimization of
XPath queries with these operators is far more intriguing than twig
queries; among other things, the complexity of XPath containment
with the addition of these operators goes up to coNP-hard from
quadratic time [27] for twig queries.

3. Access Control with Security Views
In this section we present our view-based security model. We

define the concepts of access specifications and security views, and
propose an efficient algorithm for automatically deriving a sound
and complete security view definition from an access specification.

3.1 Overview of our Access Control Model
Consider an XML document T with a document DTD D. Mul-

tiple access control policies are possibly declared over T at the
same time, each specifying, for a class of users, what elements in
T the users are granted, denied, or conditionally granted access
to. We define a language for specifying fine-grained access con-
trol policies. An access specification S expressed in the language
is a simple extension of the document DTD D associating element
types with security annotations (XPath qualifiers), which specify
structure- and content-based accessibility of the corresponding el-
ements of these types in T . Since we are primarily concerned with
querying XML data, i.e., we focus on query as the operation, our
specification language adopts a simple syntax instead of the con-
ventional (subject, object, operation) syntax [5, 16, 25].

An access specification S is enforced through an automatically-
derived security view V = (Dv, σ), where Dv is a view DTD and σ
is a function defined via XPath queries. The view DTD Dv exposes
only accessible data w.r.t. S, and is provided to users authorized by
S so that they can formulate their queries over the view. The func-
tion σ is transparent to authorized users, and is used to extract ac-
cessible data from T . The only structural information about T that
the users are aware of is Dv , and no information beyond the view
can be inferred from user queries. Thus, our security views support
both access/inference control and schema availability. We provide
an efficient algorithm that, given a specification S, derives a sound
and complete security view definition V , i.e., V characterizing all
and only those accessible elements of T w.r.t. S.

In summary, we propose an access control model based on se-
curity views for XML, as depicted in Fig. 3. For each access con-
trol policy, a security administrator (or DBA) defines a specifica-
tion S by annotating the document DTD D (e.g., through a simple
GUI tool). For each specification S, a sound and complete secu-
rity view definition V = (Dv, σ) is automatically derived by our
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view-derivation algorithm. The security-view DTD Dv is exposed
to users authorized by S so that they can formulate and pose their
queries over V . The security view is virtual, and a query p over
V is efficiently rewritten to an equivalent query pt over the origi-
nal document T by incorporating XPath queries in σ; furthermore,
our algorithms optimize pt by exploiting the document DTD D.
Finally, the optimized query pt is executed over T and its result
is returned to the users. Note that S, σ, and D are invisible to
users. Security issues are handled at the query-rewriting level and
are completely hidden from users of the view. This yields a flexi-
ble, secure framework for querying XML data that overcomes the
limitations of earlier proposals.

The remainder of this section focuses on access specifications,
security views, and our view-derivation algorithm. We study query
rewriting and optimization in Sections 4 and 5.

3.2 Security Specifications
An access specification S is an extension of a document DTD

D associating security annotations with productions of D. Specif-
ically, S is defined to be (D, ann), where ann is a partial mapping
such that, for each production A → α and each element type B in
α, ann(A,B), if explicitly defined, is an annotation of the form:

ann(A, B) ::= Y | [q] | N,

where [q] is a qualifier in our fragment C of XPath (Section 2). In-
tuitively, a value of Y , [q], or N for ann(A,B) indicates that the B
children of A elements in an instantiation of D are accessible, con-
ditionally accessible, and inaccessible, respectively. If ann(A, B)
is not explicitly defined, then B inherits the accessibility of A. On
the other hand, if ann(A, B) is explicitly defined it may override
the accessibility of A. The root of D is annotated Y by default.

Example 3.1: An access control policy for nurses over the hospital
document of Example 1.1 can be specified as follows:

hospital → dept∗ /* production */
ann(hospital,dept) = [*/patient/wardNo=$wardNo] /*q1*/

dept → clinicalTrial, patientInfo, staffInfo
ann(dept, clinicalTrial) = N

clinicalTrial → patientInfo
ann(clinicalTrial, patientInfo) = Y

treatment → trial + regular
ann(treatment, trial) = N
ann(treatment, regular) = N

trial → bill
ann(trial, bill) = Y

regular → bill, medication
ann(regular, bill) = Y
ann(regular, medication) = Y

This specification is depicted in Fig. 4, where bold edges represent
‘Y ’ or ‘[q]’ annotations, while normal edges represent ‘N ’ annota-
tions. Thus, nurses can only access the patient and staff informa-
tion in a dept having a certain ward (restricted by the qualifier q1),
and moreover, that they are not authorized to know which patients
are involved in clinical trials as well as the form of treatment,



except for bill and medication information. Observe that
$wardNo is treated as a constant parameter; i.e., when a concrete
value, e.g., 6, is substituted for $wardNo, the specification defines
the access control policy for nurses working in ward number 6.

Observe that ann(dept,patientInfo) is not explicitly de-
fined, which means that the patientInfo children of dept
nodes inherit the accessibility (Y ) of dept; similarly for
staffInfo nodes and their descendants. On the other hand,
ann(dept,clinicalTrial) is defined to be N , which over-
rides the accessibility (Y ) of dept and indicates that the
clinicalTrial children of dept nodes are not accessible;
similarly for ann(clinicalTrial,patientInfo), etc. We
omit annotations of productions in which the parent and all its chil-
dren have the same accessibility, e.g., the one for staff. 2

For an XML instance T of a DTD D, an access specification
S = (D, ann) can be easily defined, e.g., using a simple GUI tool
over D’s DTD graph. Furthermore, S unambiguously defines the
accessibility of document nodes in T . To see this, note that DTD
D must be unambiguous by the XML standard [4]. Since T is an
instance of D, this implies that each B element v of T has a unique
parent A element and a unique production that “parses” the A sub-
tree; thus, we can define v’s accessibility ann(v) to be exactly the
ann(A, B) associated with the production for A. We say that v is
accessible w.r.t. S if and only if either (1) ann(v) is Y or ann(v) is
[q] and [q] is true at v, and, moreover, for all ancestors v′ of v such
that ann(v′) = [q′], the qualifier [q′] is true at v′; or, (2) ann(v) is
not explicitly defined but the parent of v is accessible w.r.t. S. Note
that we require that for v to be accessible, the qualifiers associated
with all ancestors of v must be true. Referring to Example 3.1,
for a nurse to access the information of a department d, the qual-
ifier q1 associated with dept must be true at d, so that the nurse
is prevented from unauthorized access to information of different
departments. The accessibility of document nodes is well defined:

Proposition 3.1: For any specification S = (D, ann) and any XML
instance T of D, the accessibility of each node in T w.r.t. S is
uniquely defined, i.e., it is either accessible or inaccessible. 2

Observe the following. First, as shown by Example 3.1, our ac-
cess specifications support inheritance and overriding. Indeed, if a
node does not have an annotation but its parent is accessible (inac-
cessible), then the node is accessible (resp., inaccessible); that is,
the node’s accessibility is inherited from that parent. On the other
hand, an explicit annotation at a node may override the accessibility
of its parent. Second, content-based access privileges are supported
via XPath qualifiers. Third, the accessibility of elements in a doc-
ument is context-sensitive: it is determined by the paths from the
root to these elements in the document. For example, the bill in-
formation of a patient is accessible only if the patient is in a dept
that satisfies the qualifier [q1]. Thus, elements of the same type in a
document may have different accessibility. Compared to the access
control model of [6], our security-specification model also allows
for fine-grained access-control, but is significantly more flexible
and easier to specify/modify, since security constraints are defined
over DTD-schemas rather than on XML documents.

3.3 Security Views
Syntax. Abstractly, a security view defines a mapping from in-
stances of a document DTD D to instances of a view DTD Dv that
is, once again, automatically derived from a given access specifica-
tion. Let S = (D, ann) be an access specification. A security view
definition (or simply a security view) V from S to a view DTD Dv ,
denoted by V : S → Dv , is defined as a pair V = (Dv , σ), where
σ defines XPath query annotations used to extract accessible data

from an instance T of D. Specifically, for each production A → α
in Dv and each element type B in α, σ(A,B) is an XPath query
(in our class C) defined over document instances of D such that,
given an A element, σ(A,B) generates its B subelements in the
view by extracting data from the document. A special case is the
unary parameter usage with σ(rv) = r, where rv is the root type
of Dv and r is the root of D, i.e., σ maps the root of T to the root
of its view. The view is said to be recursive if Dv is recursive.

Example 3.2: Figure 2 depicts a security view V from the access
specification of Example 3.1 to a view DTD Dv for nurses. The
view DTD removes information about clinicalTrial, and in-
troduces “dummy” labels dummy1,dummy2 to hide the label in-
formation of regular and trial, while retaining the disjunc-
tive semantics at the accessible treatment node. Specifically,
V = (Dv, σ), where σ (computed by our view-derivation algo-
rithm in Fig. 5) is as follows.

production: hospital → dept∗

σ(hospital,dept) = dept[*/patient/wardNo=$wardNo] /*p1*/

production: dept → patientInfo
σ(dept,patientInfo) = p2

where p2 = (clinicalTrial ∪ ε)/patientInfo

production: treatment → dummy1 + dummy2
σ(treatment, dummy1) = trial /*p3*/
σ(treatment, dummy2) = regular /*p4*/

production: A → α /*for all other productions*/
σ(A, B) = B /*for all B ∈ α */

/* e.g., σ(dummy1, bill) = bill */

Recall that ε denotes the empty path. The view DTD is provided to
the nurses, while the XPath mapping σ is not visible to them. Since
the nurses can not see the document DTD, they have no knowledge
about what the dummies stand for. 2

Semantics. We give the semantics of a security view definition
V : S → Dv by presenting a materialization strategy for V . We
should once again stress that security views are never materialized
in our access-control framework; the sole purpose of the material-
ization algorithm described below is to illustrate the semantics of
security views. Given an instance T of the document DTD, we
build a view of T , denoted by Tv , that conforms to the view DTD
Dv and consists of all and only accessible nodes of T w.r.t. S. The
computation is top-down: first extract the root of T and treat it as
the root of Tv , and then iteratively expand the partial tree by gen-
erating the children of current leaf nodes. Specifically, in each iter-
ation, we inspect each leaf v. Assume that the element type of v is
A and that the A production in Dv is P(A) = A → α. The chil-
dren of v are generated by extracting nodes from T via the XPath
annotation σ(A,B) for each child type B in α. The computation
is based on the structure of production P(A) as follows.

(1) Nothing needs to be done when P(A) is A → ε.

(2) P(A) = A → str. Then, the query p defined in σ(A,str) is
evaluated at context node v in T . If v[[p]] returns a single text node
in T that is accessible w.r.t. S, then the text node is treated as the
only child of v; otherwise, the computation aborts.

(3) P(A) = A → B1, . . . , Bn. Then, for each i ∈ [1, n], the
query pi = σ(A,Bi) is evaluated at context node v in T . If for all
i ∈ [1, n], v[[pi]] returns a single node vi accessible w.r.t. S, then vi

is treated as the Bi child of v; otherwise, the computation aborts.

(4) P(A) = A → B1 + . . . + Bn. Then, for each i ∈ [1, n], the
XPath query pi = σ(A,Bi) is evaluated at context node v in T . If
there exists one and only one i ∈ [1, n] such that v[[pi]] returns a
single node accessible w.r.t. S, then the node is treated as the single
child of v; otherwise, the computation aborts.



(5) P(A) = A → B∗. Then, the query p = σ(A,B) is evaluated
at context node v in T . All the nodes in v[[p]] accessible w.r.t. S are
treated as the B children of v, ordered by the document order of T .
Note that, if v[[p]] is empty, no children of v are created.

The construction proceeds until either no leaf node can be further
expanded (successful termination), or abortion takes place.

Example 3.3: Given a document T of the hospital DTD shown in
Fig. 1, a nurse view Tv of Fig. 2 can be materialized as follows.
The root hospital of Tv is first created. Then, the annotation
p1 is executed over T , which extracts only the dept d that pos-
sesses the particular ward. The staffInfo subtree of d is copied
from T to Tv, while both the patientInfo child of d and the
patientInfo under clinicalTrial of d are extracted from
T via p2 at d (note that clinicalTrial of T is not copied
to Tv). Similarly, the patient children of patientInfo are
generated, and so are the children of each patient. At the
treatment child of each patient in Tv , queries p3 and p4 are eval-
uated to extract either the bill child of a trial or both bill
and medication children of a regular, whereas trial and
regular are mapped to dummy1 and dummy2 respectively. Note
that the document DTD ensures that either trial or regular is
under the treatment in T , but not both. The construction termi-
nates successfully after each patient subtree is completed. 2

A security view V = (Dv , σ) is said to be sound and complete
w.r.t. an access specification S = (D, ann) if for all instances T of
the document DTD D, Tv is an XML document that both conforms
to the view DTD Dv and consists of all and only those nodes in T
that are accessible w.r.t. S.

3.4 Security-View Derivation Algorithm
We now present a novel algorithm (termed derive) that, given

an access specification S = (D, ann), automatically computes a
security view definition V = (Dv , σ) w.r.t. S such that, for any in-
stance T of the document DTD, if the computation of Tv terminates
(i.e., does not abort), it comprises all and only accessible elements
of T w.r.t. S. In particular, V is sound and complete w.r.t. S if and
only if such a view definition exists for S.

Algorithm derive is shown in Fig. 5. In a nutshell, when build-
ing V = (Dv, σ), the algorithm hides inaccessible nodes in the
document DTD D by either short-cutting them, or renaming them
using dummy labels. It uses two procedures, Proc Acc(S, A) and
Proc InAcc(S, A), to deal with accessible and inaccessible ele-
ment types A of D, respectively. It traverses the document DTD
D top-down by invoking Proc Acc(S, r), where r is the root el-
ement type of D. For each accessible element type A encoun-
tered, Proc Acc(S,A) constructs a production Pv(A) = A → α
in the view DTD Dv , and computes appropriate XPath queries
σ(A,B) = pB for each type B in α, based on the A-production in
the document DTD D (cases 1 – 4). More specifically, (a) if B is
accessible, then pB is simply ‘B’ (steps 6,7); (b) if B is condition-
ally accessible (i.e., ann(A, B) = [q]), then pB is ‘B[q]’, i.e., qual-
ifiers in S are preserved (steps 8,9); and, (c) if B is inaccessible,
then derive either prunes the entire inaccessible subgraph below B
if B does not have any accessible descendants (step 11), or “short-
cuts” B by treating the accessible descendants of B as children
of A if this does not violate the DTD-schema form of Section 2
(steps 12–15), or renames B to a “dummy” label to hide the label
B while retaining the DTD structure and semantics (steps 16–20).
Children of the B node are then processed in the same manner.
Again, the key intuition behind the above process is that we want
the view DTD Dv to preserve the structure and semantics of the
relevant and accessible parts of the original document DTD.

Procedure Proc Acc(S,A)

Input: specification S = (D, ann()) and an accessible type A in D.
Output: security view V = (Dv , σ) for A and its descendants in D.

1. if visited[A, acc] then return else visited[A, acc] := true;
2. case the A-production A → α in the document DTD D of
3. (1) A → B1, . . . , Bn:
4. Pv(A) := A → B1, . . . , Bn; /*production in the view DTD Dv */
5. for i from 1 to n do
6. if ann(A,Bi) = Y
7. then σ(A, Bi) := Bi; Proc Acc(S,Bi);
8. else if ann(A, Bi) = [q]
9. then σ(A, Bi) = B[q]; Proc Acc(S,Bi);
10. else Proc InAcc(S,Bi);
11. if reg(Bi) = ∅ then remove Bi from Pv(A);
12. if reg(Bi) = C1, . . . , Ck

13. then replace Bi with reg(Bi) in Pv(A);
14. for j from 1 to k do
15. σ(A, Cj) := Bi/path[Bi, Cj ];
16. else replace Bi with a distinct new label X in Pv(A);
17. add production X → reg(Bi) to the view DTD Dv ;
18. σ(A, X) := Bi;
19. for j from 1 to k do
20. σ(X, Cj): = path[Bi, Cj ];
21. (2) A → B1 + . . . + Bn:
22. /* similar to (1), except that for an inaccessible Bi, if reg(Bi)
23. is C1 + . . . + Ck , then replace Bi with reg(Bi) in Pv(A) */
24. (3) A → B∗:
25. /* similar to (1), except that for an inaccessible Bi, if reg(Bi)
26. is C or C∗, then replace Bi with reg(Bi) in Pv(A) */
27. (4) A → str:
28. /* similar to (1), except that if ann(A, str) = N, then
29. Pv(A) := A → ε; */
30. return;

Procedure Proc InAcc(S, A)

Input: specification S = (D, ann()) and an inaccessible type A in D.
Output: regular expression reg(A) and path[A,C] for each C in reg(A).

1. if visited[A, inacc] then return else visited[A, inacc] := true;
2. case the A-production A → α in the document DTD D of
3. (1) A → B1, . . . , Bn:
4. reg(A) := B1, . . . , Bn; /* analogous to A-production in Dv */
5. for i from 1 to n do
6. if ann(A,Bi) = Y
7. then path[A,Bi] := Bi; Proc Acc(S,Bi);
8. else if ann(A, Bi) = [q]
9. then path[A,Bi] = B[q]; Proc Acc(S,Bi);
10. else Proc InAcc(S,Bi);
11. if reg(Bi) = ∅ then remove Bi from reg(A);
12. if reg(Bi) = C1, . . . , Ck

13. then replace Bi with reg(Bi) in reg(A);
14. for j from 1 to k do
15. path[A,Cj ] := Bi/path[Bi, Cj ];
16. else replace Bi with a distinct new label X in reg(A);
17. add production X → reg(Bi) to the view DTD Dv ;
18. σ(A, X) := Bi;
19. for j from 1 to k do
20. σ(X, Cj): = path[Bi, Cj ];

/* similar for productions of other forms */

Figure 5: Algorithm derive
The procedure Proc InAcc(S, A) processes an inaccessible

node A in a similar manner. One difference is that it computes
(1) reg(A) instead of α in the A-production A → α in the view
DTD Dv , and (2) path[A, B] for each element type B in reg(A)
rather than σ(A,B). Intuitively, reg(B) is a regular expression
identifying all the closest accessible descendants of B in D, and
path[A, B] stores the XPath query that captures the paths from A
to B in the document DTD. Another difference concerns the treat-
ment of recursive node A. If an inaccessible A is encountered again
in the computation of Proc InAcc(S, A), then A is renamed to a



dummy label and retained in the regular expression returned. Re-
taining the recursive structure of the document DTD is essential to
simplifying query rewriting. To simplify the discussion, we omit
from Fig. 5 this treatment of recursive inaccessible nodes.

To efficiently compute V , Algorithm derive associates two
boolean variables visited[A, acc] and visited[A, inacc] (initially
false) with each element type A in the document DTD D. These
variables indicate whether A has already been processed as an ac-
cessible or inaccessible node, respectively, to ensure that each ele-
ment type of D is processed only once in each case. In light of this,
the algorithm takes at most O(|D|2) time, where |D| is the size of
the document DTD.1 Moreover, one can verify its correctness:

Theorem 3.2: Given an access specification S = (D, ann), algo-
rithm derive computes a sound and complete security view w.r.t. S
in quadratic time if and only if such a view exists. 2

Example 3.4: Given the access specification S of Fig. 4, Algo-
rithm derive computes the security view (Dv , σ) of Example 3.2
as follows. It starts by invoking Proc Acc(S, hospital), and
finds that dept is accessible w.r.t. S and is annotated q1. Thus it
adds production hospital → dept∗ to the view DTD Dv , and
defines σ(hospital, dept) to be dept[q1]. It then proceeds
to process dept, and encounters inaccessible clinicalTrial.
Now it invokes Proc InAcc(S, clinicalTrial), which
yields reg(clinicalTrial) = {patientInfo} as well
as path[clinicalTrial,patientInfo] = patientInfo.
Given these, it shortcuts the inaccessible node and de-
fines the view DTD production dept → patientInfo1,
patientInfo2, staffInfo, where patientInfo1 comes
from the inaccessible clinicalTrial with XPath query p1

1 =
clinicalTrial/patientInfo, while patientInfo2 is
the accessible child of dept with query p2

1 = patientInfo.
A more compact form of this production is dept →
patientInfo∗, staffInfo, where patientInfo is an-
notated by p1 = p1

1 ∪ p2

1 (see Example 3.2). The algorithm
then processes staffInfo and patientInfo. The former
is simple: the productions remain unchanged from the document
DTD for each element type involved. The latter is similar, until
the inaccessible trial and regular are encountered. Since
treatment is defined with a disjunction, while reg(trial)
and reg(regular) are concatenations, the inaccessible nodes are
renamed, and productions dummy1 → bill and dummy2 →
bill,medication are added to Dv . The algorithm yields the
security view of Example 3.2 upon its termination. 2

4. Query Rewriting
We next study querying XML via security views. Consider a se-

curity view V : S → Dv , where S = (D, ann) and V = (Dv , σ).
Recall that users of V are provided with the view DTD Dv and
are allowed to pose queries over V . A naive way to evaluate such
queries is: given an instance T of the document DTD D, compute
and store Tv , and evaluate queries directly over Tv . However, this
introduces the overhead of materialization and the difficulties of
view maintenance. These problems are more evident when multi-
ple views of a large document are materialized at the same time.

We take a different approach, based on query rewriting: given an
XPath query p over the security view, we automatically transform
p to another XPath query pt over the document DTD D such that,
for any instance T of D, p over Tv and pt over T yield the same
answer. In other words, p over the view is equivalent to pt over the

1We implicitly assume here that qualifiers in the specification can be copied to the
result security view in constant time.

original document (i.e., pt(T ) = p(Tv)). This eliminates the need
for materializing views and its associated problems.

We present a query-rewriting algorithm for our class C of XPath
queries, which, given a query p, computes pt in O(|p|∗|Dv |

2) time.
Our algorithm is not only useful in the security context, but is also
interesting in its own right. First, it is among the first efforts for
XPath query rewriting. Second, based on dynamic programming,
our algorithm can be generalized to handle XPath queries beyond
C, without a significant increase in complexity.

Below we first present our query-rewriting algorithm for non-
recursive views, i.e, views with a non-recursive (i.e., DAG) view
DTD; we then generalize our algorithm to handle recursive views.

4.1 Query Rewriting for Non-recursive Views
Given a query p over the view DTD Dv , our rewriting algorithm

“evaluates” p over the DTD graph Dv . For each node A reached
via p from the root r of Dv , we rewrite every label path leading
to A from r by incorporating the security-view XPath annotations
σ along the path. As σ maps view nodes to document nodes, this
yields a query pt over the document DTD D.

To implement this idea, our algorithm works over the hierarchi-
cal, parse-tree representation2 of the view query p and uses the fol-
lowing set of variables. For any sub-query p′ of p and each node A
in Dv , we use rw(p′, A) to denote the local translation of p′ at A,
i.e., a query over D that is equivalent to p′ when p′ is evaluated at a
context node A. Thus, rw(p, r) = pt is what our algorithm needs to
compute. We also use reach(p′, A) to denote the nodes in Dv that
are reachable from A via p′. Finally, we use N to denote the list
of all the nodes in Dv , and Q to denote the list of all sub-queries
of p in “ascending” order, such that all sub-queries of p′ (i.e., its
descendants in p’s parse tree) precede p′ in Q.

Given these, we present our rewrite algorithm in Fig. 6. The
algorithm is based on dynamic programming: for each sub-query
p′ of p and node A in Dv , rewrite computes the local translation
rw(p′, A). To do this, rewrite first computes rw(pi, Bi) for each
(immediate) sub-query pi of p′ at each possible view DTD node
Bi under A; then, it combines these rw(pi, Bi)’s to get rw(p′, A).
The details of this combination are, of course, determined based
on the formation of p′ from its immediate sub-queries pi, if any
(cases 1-12). The computation is carried out bottom-up via a nested
iteration over the lists of sub-queries Q and DTD nodes N . Each
step of the iteration computes rw(p′, A) for some p′ and A, starting
from the “smallest” sub-queries of p. At the end of the iteration
pt = rw(p, r) is obtained.

For example, the algorithm rewrites ‘∗’ (case 3) at a view DTD
node A to the query rw(∗, A) over the original document; the
rewritten query is the union of σ(A, l)’s for all child node l of A in
the view DTD. As another example, it rewrites ‘p1/p2’ (case 4) to
rw(p1, A)/qq, where qq is the union of rw(p2, B)’s for all node B
in the view DTD reachable from A via p1 (i.e., B ∈ reach(p1, A)).

A special case concerns the fixed query ‘//’ (case 5). In order to
reduce the overall processing costs, we assume that reach(//, A)
and rw(//, A) have been precomputed by a procedure recProc (see
Fig. 6) for each Dv node A, once and for all, and are made available
to rewrite. Furthermore, for each B in reach(//, A), procedure
recProc also returns an XPath query recrw(A, B) that captures all
the paths from A to B, and translates it to an equivalent query over
the document DTD D. Note that simply enumerating all the paths
from A to a descendant B may lead to an exponential explosion;
to avoid this, our recProc procedure employs symbolic variables

2As an example, for the simple query p = “//patient”, its parse tree is a binary tree
with root node representing p; its left and right (single-node) subtrees represent the
sub-queries // and patient, respectively.



Algorithm rewrite

Input: a security view V : S → Dv , a query p in C over view DTD Dv .
Output: an equivalent C query pt over the document DTD D of S.

1. compute the ascending list Q of sub-queries of p;
2. compute the list N of all the nodes in Dv ;
3. for each p′ in Q do
4. for each A in N do
5. rw(p′, A) := ∅; reach(p′, A) := ∅;

6. for each p′ in the order of Q do
7. for each A in N do
8. case p′ of
9. (1) ε: rw(p′, A) := ε; reach(p′, A) := {A};

10. (2) l: if l is a child type of A
11. then rw(p′, A) := σ(A, l); reach(p′, A) := {l};

/* XPath annotation σ(A, l) is given in V */
12. else rw(p′, A) := ∅; reach(p′, A) := ∅;

13. (3) ∗: for each child type v of A in Dv do
14. rw(p′, A) := rw(p′, A) ∪ σ(A, v);
15. reach(p′, A) := reach(p′, A) ∪ {v};

16. (4) p1/p2: if rw(p1, A) = ∅
17. then rw(p′, A) := ∅; reach(p′, A) := ∅;
18, else qq := ∅;
19. for each v in reach(p1, A) do
20. qq := qq ∪ rw(p2, v);
21. reach(p′, A) :=

reach(p′, A) ∪ reach(p2, v);
22. if qq 6= ∅
23. then rw(p′, A) := rw(p1, A)/qq;
24. else reach(p′, A) := ∅; rw(p′, A) := ∅;

25. (5) //p1: /* reach(//, A), recrw(A, B) are precomputed */
26. for each B in reach(//, A) do
27. if rw(p1, B) 6= ∅
28. then rw(p′, A) := rw(p′, A) ∪ recrw(A, B)/rw(p1, B);
29. reach(p′, A) := reach(p′, A) ∪ reach(B, p1);

30. (6) p1 ∪ p2: rw(p′, A) := rw(p1, A) ∪ rw(p2, A);
31. reach(p′, A) := reach(p1, A) ∪ reach(p2, A);

32. (7) ε[q]: rw(p′, A) := ε[rw(q, A)]; reach(p′, A) := {A};

33. (8) [p1]: rw(p′, A) := [rw(p1, A)];
34. (9) [p1 = c]: rw(p′, A) := [rw([p1]) = c];
35. (10) [p1 ∧ p2]: rw(p′, A) := [rw([p1], A) ∧ rw([p2], A)];
36. (11) [p1 ∨ p2]: rw(p′, A) := [rw([p1], A) ∨ rw([p2], A)];
37. (12) [¬p1]: rw(p′, A) := [¬rw([p1], A)];

38. return rw(p, r); /* r is the root of Dv */

procedure recProc(A) /* static precomputation for // */

Input: a node A in Dv .
Output: reach(//, A), and for each B in reach(//, A), recrw(A, B).

1. for each B in N do
2. recrw(A,B) := ∅; visited(B) := false;
3. traverse(A);
4. sort reach(//, A) such that x precedes y if ‘Zx’ is in recrw(A, y)
5. for each y in the topological list do
6. substitute each recrw(A, x) for ‘Zx’, for each x
7. return (reach(//, A), recrw);

procedure traverse(x); /* invoked by procedure recProc */
1. for each child type y of x do
2. recrw(A, y) := recrw(A, y) ∪ ‘Zx’/σ(x, y);

/* σ(x, y) is the query associated with y in the x production */
3. if not visited(y)
4. then visited(y) := true; reach(//, A) := reach(//, A) ∪ {y};
5. traverse(y);
6. return;

Figure 6: An algorithm for XPath query rewriting
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Figure 7: Query rewriting in the presence of recursion

(‘Zx, Zy’) to ensure that, for each intermediate node C between
A and B, any path from A to C (or, from C to B) is included in
recrw(A, B) only once. Since Dv is a DAG, this guarantees that the
size of recrw(A, B) is bounded by |Dv |. As an example, consider
the view DTD shown in Fig. 7 (a), in which each element type X
is associated with an XPath query lx. Then the query recrw(a, g)
computed by procedure recProc(a) is (lb∪ε)/lc/(le∪ lf )/lg . It is
easy to verify that recProc(A) takes O(|Dv | ∗ log|Dv|) time (due
to the topological sort in step 4), and thus the precomputation takes
O(|Dv |

2 ∗ log|Dv|) time for all Dv nodes.

Example 4.1: Given the XPath query //patient//bill over
the nurse view of Fig. 2, Algorithm rewrite generates an equiva-
lent query p1/p2/p3, where

p1 = hospital/dept[*/patient/wardNo=$wardNo]
p2 = (clinicalTrial ∪ ε)/patientInfo/patient
p3 = treatment/(trial ∪ regular)/bill

It is defined over the hospital document DTD of Fig. 1. 2

Observe that each step in the iteration takes at most O(|Dv |)
time. Since the list Q is linear in the size of p, one can verify:

Theorem 4.1: Given a non-recursive security view V : S → Dv

and an XPath query p (in C) over Dv , Algorithm rewrite com-
putes an equivalent query pt over the original document in at most
O(|p| ∗ |Dv |

2) time. 2

Algorithm rewrite and security views provide a general access
control mechanism; no further treatment for security constraints is
needed for a query generated by the algorithm. Furthermore, the
algorithm can be generalized to deal with larger XPath fragments
with upward and sideways axes, without significantly increasing its
complexity. Indeed, recently [15] presented an algorithm for eval-
uating queries of the full XPath language in low polynomial time,
which is essentially based on dynamic programming. Although the
query rewriting problem is different from query evaluation, Algo-
rithm rewrite can be generalized to deal with the full XPath lan-
guage along the same lines as [15]. In contrast, query rewriting
based on direct implementation of XPath semantics may, as pointed
out by [15], take exponential time in the size of queries.

4.2 Coping with Recursive Views
Query rewriting becomes more intriguing when the view DTD is

recursive. For example, consider the view DTD shown in Fig. 7 (b),
which is derived from the specification S of Fig. 7 (c) (where, as in
Fig. 4, normal edges point to inaccessible nodes). Consider query
//b over the view. Although the view DTD is merely a sub-graph
of the document DTD D for S, this query cannot be evaluated di-
rectly over instances of D since it returns the inaccessible b child
of a. Algorithm rewrite no longer works here since a direct trans-
lation of ‘//’ leads to infinitely many paths. Although the query is
equivalent to the regular expression (a/c)∗/b, such regular expres-
sions are beyond the expressive power of the XPath standard; thus,
it is not always possible to rewrite an XPath query over a recursive
view to an equivalent XPath query over a document DTD.



A solution to this problem is by unfolding recursive nodes. By
unfolding a recursive DTD node A we mean creating distinct chil-
dren for A following the A production. Referring to Fig. 7 (b), un-
folding c by one level means creating a distinct a child for c instead
of referring to the existing a node, as shown in Fig. 7 (d). Remem-
ber that a security view V : S → Dv is defined over a concrete
XML document T . Since the height of T is known, one can deter-
mine by how many levels recursive nodes need to be unfolded, and
such an unfolding yields a non-recursive (DAG) view DTD that the
document is guaranteed to conform to. This allows us to use algo-
rithm rewrite as before. Unfolding Dv to a DAG is possible since,
as long as Dv is consistent (i.e., there exist documents conforming
to it), each recursive A must have a non-recursive rule. For exam-
ple, a → b is the non-recursive rule for a → a|b, and a → b, ε is
the non-recursive rule for a → b, a∗. Thus, for a fixed T , one can
determine the unfolding levels and apply the non-recursive rules at
certain stages. Note that when T is updated, the adjustment to the
DTD unfolding is rather mild and does not introduce any serious
overhead. It is worth mentioning that while access-control specifi-
cations, security views and their derivation are all conducted at the
schema-level (i.e., on DTDs only), query rewriting over recursive
security views needs the height information of the concrete XML
tree over which the queries are evaluated.

5. Evaluation Optimization
The rewriting algorithm given in Section 4 transforms an XPath

query over a security view to an equivalent XPath query over the
original document. However, the rewritten query may not be ef-
ficient. This motivates us to consider XPath query optimization
in the presence of a DTD D: given an XPath query p, find another
query po such that over any instance T of D, (1) p and po are equiv-
alent, i.e., p(T ) = po(T ); and (2) po is more efficient than p, i.e.,
po(T ) takes less time/space to compute than p(T ). This is not only
important in our access control model where queries generated by
Algorithm rewrite are optimized using the document DTD, but is
also useful for XPath query evaluation beyond the security context.

Ideally, one might want to find an optimal po with the least cost
among all the queries equivalent to p over D. Unfortunately, one
cannot find po efficiently: XPath optimization involves contain-
ment test, i.e., for two XPath queries p1, p2, to check whether p1 is
contained in p2; recent study has shown that containment is coNP-
hard even for simple non-recursive DTDs and for a small XPath
fragment with union ‘∪’ but without ’//, ∗’ and qualifiers [24]. It
is even undecidable for some more complex cases.

In light of these negative results, we develop our optimization
algorithm based on approximate XPath containment tests and the
structural properties of DTDs. We first present our approximate
test and then develop our optimization algorithm.

5.1 Approximate XPath Containment
To simplify the discussion, we consider a fragment C- of the

class C of XPath queries defined in Section 2. Queries of C- allow
‘//, /, ∗,∪’, but restrict qualifiers to be conjunctive like [2, 27]:

q ::= ρ | q ∧ q | ρ := l | ∗ | //ρ | ρ/ρ | ε[q].

It should be mentioned that our approximate containment test can
be generalized to deal with qualifiers with other boolean operators
by using approximate satisfiability checking, a well studied tech-
nique (see, e.g., [28]).

We optimize C- queries p using a DTD D with two techniques.
First, we exploit the structural properties of DTD D to prune re-
dundant sub-queries of p. The idea is to “evaluate” p over the DTD
graph of D. When a sub-query p1 is evaluated at a node A of D, we
inspect p1 and the DTD constraints imposed by the production of

a

r

cb

(a) co-existence

a

r

cb

(b) exclusive

ba

r

c

(c) non-existence

Figure 8: Query optimization in the presence of DTDs

A, and decide whether p1 can be reduced to ∅ and/or its qualifiers
are equivalent to true or false at A, as illustrated below.

Example 5.1: First, the query //a[b ∧ c] over any instance of the
DTD shown in Fig. 8 (a) is equivalent to //a, since the production
of a in the DTD is defined with a concatenation, which imposes
a co-existence constraint: b and c children must exist at the same
time under a. Second, //a[b∧c] is equivalent to ∅ over the DTD of
Fig. 8 (b), because the production of a in the DTD is a disjunction,
which asserts an exclusive constraint: either b or c is under a, but
not both. Third, (a ∪ b)/c can be reduced to a/c over the DTD
of Fig. 8 (c), because the production for b asserts a non-existence
constraint: b cannot have a c child. 2

Except for co-existence constraints (called child/descendant con-
straints [2, 27]), these DTD constraints have not been explored for
optimizing XPath queries. Graph schema has been studied for regu-
lar path query optimization over semistructured data [14], but graph
schema does not impose DTD constraints considered above.

Our second optimization technique is based on approximate con-
tainment test for XPath queries. We say that p1 is contained in p2

at a DTD node A if for any instance T of D and at any A-element
n in T , n[[p1]] ⊆ n[[p2]]. If p1 is contained in p2, we can reduce
p1 ∪ p2 to p2 at A, i.e., p1 is redundant and is thus removed. Sim-
ilarly, if [q1] is contained in [q2], i.e., n[[ε[q1]]] ⊆ n[[ε[q2]]], then
[q1 ∧ q2] can be reduced to [q1] since [q1] is implied by [q2] at A

To implement these techniques we need a notion of image
graphs. Below we first introduce the notion, and then outline our
algorithms for approximate XPath containment test and redundant
subquery pruning based on image graphs.

Image graphs. The image graph of p at a DTD node A, denoted
by image(p,A), is a graph that is rooted at A and consists of all
the nodes reached from A via p in the DTD graph, along with the
paths leading to them. Specifically, image(p, A) is computed as fol-
lows. To simplify the discussion we consider non-recursive DTDs
(DAGs); recursive DTDs is handled as described in Section 4.2.

(1) p is l. If A has an l child, then image(p, A) consists of an A-
node, an l-node and an edge from A to l; otherwise it is empty.

(2) p is ∗. If A does not have any child, then image(p, A) is empty.
Otherwise it consists of an A-node, all children of A and edges
from A to these nodes.

(3) p is p1/p2. Combine image(p1, A) and image(p2, B) to
create image(p,A) for each node B reached from A via p1 if
image(p2, B) is not empty, by merging the nodes representing B in
these graphs. If image(p1, A) is empty or if image(p2, B) is empty
for each B reachable from A via p1, then so is image(p, A).

(4) p is //p1. The treatment is similar to (3).

(5) p is p1 ∪ p2. The graph image(p, A) is a combination of
image(p1, A) and image(p2, A) by merging the nodes represent-
ing A in these graphs.

(6) p is ε[q]. If [q] is true, then image(p,A) consists of a
single node A. If [q] is false, then it is empty. Otherwise
image(p,A) contains an A-node with an edge from A to the root
of image([q], A), which is labeled ‘[ ]’.

For a qualifier [q], image([q], A) is defined similarly, except that
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we attempt to evaluate [q] at A to true/false by exploiting the
co-existence, exclusive and non-existence constraints of the DTD
D, as illustrated in Example 5.1. Specifically, we inspect the pro-
duction of A and the structure of [q] to determine the truth value of
[q] at A, denoted by bool([q], A). If bool([q], A) can be determined,
then image([q], A) is empty. The graph is constructed only when
bool([q], A) is not fixed, and it has the same structure as described
above except that it has a distinguished root labeled ‘[ ]’. Due to
the lack of space, we only define image([q], A) and bool([q], A) for
some cases of [q] as follows. Let the production of A be A → α.

(7) q is ∗. If α is ε or str, then bool([∗], A) is false. If α is a
concatenation or disjunction, then bool([∗], A) is true; otherwise
bool([∗], A) is undefined and image(∗, A) is created as in case (2).

(8) q is q1 ∧ q2. We consider the following cases.

• If either bool([q1], A) or bool([q2], A) is false, then so is
bool([q], A). If bool([q1], A) is true, then bool([q], A) and
image([q], A) are bool([q2], A) and image([q2], A), respec-
tively; similarly if bool([q2], A) is true.

• If α is a disjunction with B1, B2 in it, and in image(q1, A)
and/or image(q2, A), the roots have B1, B2 children, then
bool([q], A) is false, due to the exclusive constraint.

• If q1 is contained in q2 at A (via an approximate algorithm
for XPath containment test given below), then image([q], A)
is image([q1], A); similarly if q2 is contained in q1.

• Otherwise, we combine image([q1], A) and image([q2], A)
to create image([q], A) as in case (5) above.

One can verify that the size of image(p, A) is bounded by |D| ∗
|p|, and it can be constructed in O(|D| ∗ |p|) time.

Example 5.2: At the node a of the DTD graph shown in Fig. 9 (a),
consider queries p1 = a[b]/ ∗ /d/ ∗ /g, p2 = a[b]/(b ∪ c)/d/(e ∪
f)/g, and p3 = a[b]/b/d/e/g ∪ a/b/d/f/g. The image graph
image(p1, a) is the same as Fig. 9 (a), while image(p2, a) and
image(p3, a) are given in Fig. 9 (b) and Fig. 9 (c), respectively.
The qualifier [b] is evaluated to true at a and is thus removed. 2

Qualifier optimization based on DTD constraints. Taking ad-
vantage of image graphs, a procedure, evaluate([q], A), can be im-
plemented to rewrite a qualifier [q] at A to an equivalent yet simpli-
fied qualifier, denoted by opt([q], A). Specifically, if bool([q], A) is
defined then opt([q], A) = bool([q], A). Otherwise, opt([q], A) is a
qualifier that is easily constructed based on image([q], A).

Approximate containment test for XPath queries. Our approx-
imate test is based on a simulation relation on image graphs, de-
fined as follows. Given two image graphs G1, G2, a node v1 in G1

is simulated by a node v2 in G2, denoted by simu(v1, v2), if (1)
v1 and v2 have the same label; (2) for any child x of v1, if x is
not labeled ‘[ ]’ (i.e. x is not a qualifier), then v2 has a child such
that simu(x, y) returns true; and (3) for any child y of v2 that
is labeled ‘[ ]’, v1 has a ‘[ ]’-labeled child x such that simu(y,x)
holds. Intuitively, all the ‘non-qualifier’ children of v1 are simu-
lated by some children of v2; on the other hand, if v2 has a qualifier

y then v1 must have a qualifier x such that x implies y, i.e., the sub-
graph rooted at y in G2 is a subgraph of the subgraph rooted at x in
G1. In contrast to the conventional simulation relation on labeled
graphs (see, e.g., [1]), our simulation relation alters direction when
qualifiers are encountered. We say that G1 is simulated by G2 if
the root of G1 is simulated by the root of G2.

Our simulation relation leads to a sound algorithm for testing
containment of XPath queries in the presence of DTDs:

Proposition 5.1: If graph image(p1, A) is simulated by graph
image(p2, A), then p1 is contained in p2 at A. 2

Note that the simulation-based test is approximate since the other
direction of the proposition may not hold. Similar approximation
has also been used in, e.g., indexing for semistructured data [21].

Example 5.3: Referring to Example 5.2 and Fig. 9, observe
that p2 and p3 are contained in p1 at a while image(p2, a) and
image(p3, a) are simulated by image(p1, a). Similarly, p3 is con-
tained in p2 at a and image(p3, a) is simulated by image(p2, a).
However, image(p2, a) is not simulated by image(p3, a) although
p2 is indeed contained in p3 at a. 2

An algorithm for testing whether image(p1, A) is simulated by
image(p2, A), Algorithm simulate(image(p1, A), image(p2, A)),
can be easily developed as a mild extension of the well-known
quadratic time algorithm for testing conventional graph simulation.
The algorithm takes at most O(|n1| |n2|) time, where n1 and n2

are the sizes of image(p1, A) and image(p2, A), respectively.
The containment test given above is quite different from the

simulation-based technique proposed by [27]. Our simulation test
is conducted on image graphs derived from a DTD graph w.r.t. a
query, while the simulation of [27] is defined for tree pattern
queries. Previous XPath optimization algorithms [2, 27, 18] do not
support union, and at best consider simple DTD constraints only,
e.g., the existence of child or descendant. There have also been op-
timization techniques based on classical integrity constraints [10,
11], which are complementary to our optimization technique.

5.2 Optimization Algorithm
Based on the approximate XPath containment test and structural

constraints of DTDs, we present an optimization algorithm, Algo-
rithm optimize, in Fig. 10. Given a DTD D and a C- query p,
Algorithm optimize(D, r, p) rewrites p to an equivalent yet more
efficient po, where r is the root of D. The algorithm uses the fol-
lowing variables. (1) For each sub-query p′ of p and each type A
in the DTD D, opt(p′, A) denotes optimized p′ at A, i.e., a query
equivalent to but more efficient than p′ when being evaluated at an
A element. The variable is initially ‘⊥’ indicating that opt(p′, A) is
not yet defined, which ensures that each sub-query is processed at
each DTD node at most once. (2) reach(p′, A) is the set of nodes in
D reachable from A via p′, with an initial value ∅. (3) image(p′, A)
is the image graph of p′ at A. The algorithm also invokes the fol-
lowing procedures. (1) recProc(A,B) is a mild variation of the
version given in Fig. 6. It precomputes reach(//, A) and moreover,
for each B in reach(//, A), derives an XPath query recrw(A, B)
that captures all the paths from A to B. It differs from the one of
Fig. 6 in that there is no need to substitute XPath annotations for
a node label. (2) simulate(image(p1, A), image(p2, A)) checks
whether image(p1, A) is simulated by image(p2, A), as described
earlier. (3) evaluate([q], A) evaluates a qualifier q at A by exploit-
ing the DTD constraints, as given earlier.

Given these, Algorithm optimize(D, A, p) rewrites query p at
A elements based on the structures of p and A (cases 1–7). It
recursively prunes redundant sub-queries of p by exploiting the
structural constraints of the DTD D. For example, given a query



Algorithm optimize (D, A, p)

Input: an XPath query p in C-, a DTD D and a node A in D.
Output: an optimized C- query over D, equivalent to p at A elements.

1. opt(p,A) := ∅;
2. case p of
3. (1) ε: opt(p,A) := ε; reach(p, A) := {A};

4. (2) l: if A has an l child v
5. then opt(p,A) := l; reach(p, A) := {v};
6. else opt(p,A) := ∅; reach(p,A) := ∅;

7. (3) ∗: for each child B of A in D do
8. opt(p, A) := opt(p, A) ∪ B;
9. reach(p, A) := reach(p,A) ∪ {B};
10. (4) p1/p2:
11. if opt(p1, A) = ⊥
12. then optimize(D, A, p1);
13. for each B in reach(p1, A) do
14. if opt(p2, B) = ⊥
15. then optimize(D,B, p2);
16. if opt(p2, B) 6= ∅
17. then opt(p,A) := opt(p,A) ∪ opt(p1, A)/opt(p2, B);
18. reach(p,A) := reach(p, A) ∪ reach(p2, B);

19. (5) //p1: /* reach(//, A) and recrw(A, B) have been */
precomputed by procedure recProc(A) given in Fig. 6 */

20. for each B in reach(//, A) do
21. if opt(p1, B) = ⊥
22. then optimize(D, B, p1);
23. if opt(p1, B) 6= ∅
24. then opt(p, A) := opt(p,A) ∪ recrw(A, B)/opt(B, p1);
25. reach(p, A) := reach(p,A) ∪ reach(B, p1);

26. (6) p1 ∪ p2: if opt(p1, A) = ⊥
27. then optimize(D,A, p1);
28. if opt(p2, A) = ⊥
29. then optimize(D,A, p2);
30. if simulate(image(p1, A), image(p2, A))
31. then opt(p, A) := opt(p2, A); reach(p, A) := reach(p2, A);
32. else if simulate(image(p2, A), image(p1, A))
33. then opt(p, A) := opt(p1, A); reach(p, A) := reach(p1, A);
34. else opt(p, A) := opt(p1, A) ∪ opt(p2, A);
35. reach(p,A) := reach(p1, A) ∪ reach(p2, A);

36. (7) ε[q]: if opt([q], A) = ⊥
37. then evaluate(A, [q]);
38. if opt([q], A) = true

39. then opt(p,A) := ε; reach(p,A) := {A};
40. else if opt([q], A) = false

41. then opt(p,A) := ∅; reach(p, A) := ∅;
42. else opt(p,A) := ε[opt([q], A)]; reach(p, A) := {A};

43. return opt(p,A);

Figure 10: An algorithm for XPath query optimization

p1∪p2 and a DTD node A (case 6), the algorithm first optimizes p1

and p2 at A (i.e., it computes opt(D, p1, A) and opt(D, p2, A)). It
then checks whether p1 is (approximately) contained in p2 by test-
ing whether image(p1, A) is simulated by image(p1, A). If so, it
rewrites p1 ∪ p2 to p2; similarly if p2 is contained in p1. Along the
same lines, case 7 may remove a qualifier [q] if it is true, reduce
ε[q] to an empty set if [q] is false, or simplifies [q].

Example 5.4: Consider a query p = p1∪p2 over the hospital DTD
shown in Fig. 1, where p1 is //patient and p2 is //(patient
∪ staff)[//medication]. The algorithm optimize con-
verts p to a query po1/po2, where po1 = hospital/dept, and
po2 = (clinicalTrial ∪ ε)/patientInfo/patient.
Specifically, it first transforms p1 to p′

1 = po1/po2 and p2 to
p′

2 = po1/po2[treatment/regular/medication]; then, it
finds that the image graph of p′

2 is simulated by the image graph of
p′

1. Now it concludes that p′

2 is contained in p′

1 and thus returns p′

1

as the result of optimizing p. 2

One can verify that the algorithm takes O(|D|3 ∗ |q|3) time in
the worse case. This is because opt(p′, A) is computed at most
once for each sub-query p′ and DTD node A. Each step takes at
most O(|D|2 ∗ |q|2) time, which comes from invoking the pro-
cedure simulate for approximate XPath containment test, while
the image graphs involved in procedure simulate are bounded by
|D| ∗ |q| in size. Observe that |D| and |q| are small in practice.

6. Experimental Results
To verify the effectiveness of our approach and optimization al-

gorithms, we have conducted a performance study using real-life
DTDs and various XPath queries. Our experimental results clearly
demonstrate both the efficiency of our query rewriting approach
over a straightforward query rewriting approach (that is based on
element-level security annotations) as well as the benefits of our
optimization techniques, particularly for large documents. Specifi-
cally, our query rewriting approach can achieve an improvement by
up to a factor of 40 over naive query rewriting, which can be further
improved by up to factor of 2 using our optimization algorithm.
XML Documents. Our data sets are generated with the real-life
Adex DTD [23], which is a standard proposed by the Newspaper
Association of America for electronic exchange of classified ad-
vertisements. We generated XML documents using IBM’s XML
Generator tool [12] by varying the maximum branching factor pa-
rameter to obtain four documents: D1(3.2MB), D2(16.7MB),
D3(51.55MB), and D4(77.0MB).
Security Views. For the Adex DTD, we created a security view for
a user where he is permitted to access only data related to real estate
advertisements and data related to buyers. This security view is cre-
ated by simply annotating the children of the root element adex as
“N” and both the real-estate and buyer-info descendants
as “Y” in the Adex DTD.
XPath Queries. We consider the following four XPath queries on
the Adex security view:

Q1: //buyer-info/contact-info
Q2: //house/r-e.warranty | //apartment/r-e.warranty
Q3: //buyer-info[company-id and contact-info]
Q4: //house[//r-e.asking-price and //r-e.unit-type]

Q1 simply retrieves the contact information of all buyers. Q2
retrieves the real estate warranty information for houses and
apartments. Q3 retrieves information of buyers who have both
company-id and contact-info subelements. Q4 retrieves houses that
have both asking price and unit type information.
Approaches. We compared three different approaches (naive,
rewrite, optimize) in our experiments, all of which are based on the
use of security views for querying. The first (“naive”) approach,
which does not use DTD for query rewriting, requires the data
documents to be annotated with additional element accessibility
information and works as follows. A new attribute called acces-
sibility is defined for each element in the XML document which
is used to store the accessibility value of that element. The naive
approach uses two simple rules to rewrite an input query to en-
sure that (a) it accesses only authorized elements and (b) it is con-
verted to a query over the document. The first rule adds the quali-
fier [@accessibility = ”1”] to the last step of the query to ensure
(a). The second rule replaces each child axis in the query with
the descendant axis to ensure (b)3. The second rule is necessary
since an edge in a security view DTD can represent some path in
the document DTD. Thus, the naive approach represents a simple
rewriting approach that relies on element-level annotations instead

3This rule is sound so long as the DTD has unique element names.



Query Data Set Naive Rewrite Optimize

D1 4.12 0.44 -
Q1 D2 39.75 2.69 -

D3 416.85 13.09 -
D4 917.64 22.53 -
D1 8.49 0.54 -

Q2 D2 72.41 2.81 -
D3 916.15 11.42 -
D4 1406.56 19.16 -
D1 4.1 0.54 0.50

Q3 D2 41.20 2.92 2.67
D3 464.66 11.39 8.15
D4 1128.12 36.07 15.89
D1 3.89 0.51 0

Q4 D2 40.58 3.17 0
D3 466.61 11.31 0
D4 1021.55 38.03 0

Table 1: Performance Comparison

of DTD for query rewriting. The second (“rewrite”) approach is
our proposed method of rewriting queries using DTD. The third
(“optimize”) approach is an enhancement of the second approach
that further optimizes the rewritten queries using our proposed op-
timizations. To compare the performance of the three approaches,
we used a state-of-the-art XPath evaluation implementation [17]
that has been shown to be more efficient and scalable than several
existing XPath evaluators [15]. Our experiments were conducted
on a 2.4 GHz Intel Pentium IV machine with 512 MB of main
memory running Microsoft Windows XP.

Experimental Results. The experimental results are shown in Ta-
ble 1, where each row compares the query evaluation time (in sec-
onds) of naive, rewrite, and optimize approaches for a given doc-
ument and query. For queries that can not be further improved by
the optimize approach, we indicate this with a ”-” value under the
optimize column.

For Q1, the naive approach evaluates it as //buyer-info//contact-
info[@accessibility=”1”], while the rewrite approach utilizes the
DTD to expand Q1 into a more precise query /adex/head/buyer-
info/contact-info.

The naive approach rewrites Q2 to //house//r-e.warranty [@ac-
cessibility=”1”] | //apartment//r-e.warranty [@accessibility=”1”]
while the rewrite approach expands the query to /adex/body/ad-
instance/real-estate/house/r-e.warranty. Note that the rewrite ap-
proach has simplified the second sub-expression to empty since the
r-e.warranty element is not a sub-element of apartment.

For Q3, the naive approach evaluates the query as //buyer-
info[//company-id and //contact-info][@accessibility=”1”], while
the rewrite approach expands the query to /adex/head/buyer-
info[company-id and contact-info]. The optimize approach fur-
ther exploits the co-existence constraint that each buyer-info ele-
ment has both company-id and contact-info sub-elements to sim-
plify the rewritten query to /adex/head/buyer-info.

The query Q4 shows the benefit of exploiting the exclusive con-
straint. The rewrite approach expands the query to /adex/body/ad-
instance/real-estate [house/r-e.asking-price and apartment/r-e.unit-
type], which is further refined by the optimize approach to an empty
query since the real-estate element can not have both house and
apartment sub-elements; thus the evaluation of Q4 can be avoided.

Overall, our experimental results have demonstrated the effec-
tiveness of our proposed query rewriting technique for processing
secured XML queries. Our results have also emphasized the impor-
tance of using DTD constraints to optimize the evaluation of XPath
queries on large XML documents.

7. Conclusions
We have proposed a new paradigm for securing XML data (based

on the novel notion of security views) and thoroughly studied its
implications on the XML query-execution engine. To enable the
efficient evaluation of user queries over security views, we have
introduced novel query rewriting and optimization algorithms for
a significant fragment of XPath. This yields the first XML secu-
rity model that provides both access/inference control and schema
availability. Our query rewriting and optimization techniques are
not only important for XML access control but also useful for XML
view processing in general. Our experimental results show that
these techniques yield substantial reductions in processing time.

We plan to extend our rewriting and optimization techniques to
handle larger fragments of XPath and other XML query languages
such as XSLT and XQuery. We are also studying extensions of our
notion of security views based on XML Schema instead of DTD.
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