
Stratified Computation of Skylines
with Partially-Ordered Domains

Chee-Yong Chan Pin-Kwang Eng Kian-Lee Tan
Department of Computer Science, National University of Singapore

{chancy,engpk,tankl}@comp.nus.edu.sg

ABSTRACT
In this paper, we study the evaluation of skyline queries
with partially-ordered attributes. Because such attributes
lack a total ordering, traditional index-based evaluation al-
gorithms (e.g., NN and BBS) that are designed for totally-
ordered attributes can no longer prune the space as effec-
tively. Our solution is to transform each partially-ordered
attribute into a two-integer domain that allows us to exploit
index-based algorithms to compute skyline queries on the
transformed space. Based on this framework, we propose
three novel algorithms: BBS

+ is a straightforward adapta-
tion of BBS using the framework, and SDC (Stratification by
Dominance Classification) and SDC

+ are optimized to han-
dle false positives and support progressive evaluation. Both
SDC and SDC

+ exploit a dominance relationship to organize
the data into strata. While SDC generates its strata at run-
time, SDC

+ partitions the data into strata offline. We also
design two dominance classification strategies (MinPC and
MaxPC) to further optimize the performance of SDC and
SDC

+. We implemented the proposed schemes and evalu-
ated their efficiency. Our results show that our proposed
techniques outperform existing approaches by a wide mar-
gin, with SDC

+-MinPC giving the best performance in terms
of both response time as well as progressiveness. To the best
of our knowledge, this is the first paper to address the prob-
lem of skyline query evaluation involving partially-ordered
attribute domains.

1. INTRODUCTION
Many decision support applications are characterized by

several features: (1) the query is typically based on multi-
ple criteria; (2) there is no single optimal answer (or answer
set); (3) because of (2), users typically look for satisfying
answers; and (4) for the same query, different users, dic-
tated by their personal preferences, may find different an-
swers meeting their needs. As such, it is important for the
DBMS to present all interesting answers that may fulfill a
user’s need. In this paper, we focus on the set of inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

esting answers called the skyline. Given a set of points,
the skyline comprises the points that are not dominated by
other points [4]. A point dominates another point if it is as
good or better in all dimensions and better in at least one
dimension. As an example, a tourist looking for budget ho-
tels that are close to the cities may issue the following SQL
query [4]: Select * From hotels Skyline of Price Min,

Distance Min, where Min indicates that the price and the
distance should be minimized. Clearly, if hotel h1 dominates
hotel h2 (i.e., h1 is cheaper and nearer to the city than hotel
h2), then h2 can be pruned away. On the other hand, if h1 is
cheaper but further away to the city than h2, then they are
not comparable and both should be returned to the users
(provided they are not dominated by other hotels).

While much work has been done to develop efficient schemes
to evaluate skyline queries, these deal exclusively with totally-
ordered attribute domains [4, 18, 11, 14]. Partially-ordered
attribute domains which include interval data (e.g., tempo-
ral data), type/class hierarchies, and set-valued domains,
have not been considered. In our hotel example, a hotel
may store a set of interesting places within its vicinity, and
our tourist may prefer a hotel that contains a superset of
interesting places or amenities (e.g., gift shop, gymnasium,
saloon, sauna, etc.).

As another example, categorical data involving roles are
typically partially ordered, e.g., in an employee table, there
is a hierarchy of reporting structure (project member reports
to their project leader who in turn is accountable to the
department head and so on) as well as incomparable roles
(while the Heads of the manufacturing department and the
the finance department report to the president of the orga-
nization, they do not dominate each other).

For totally-ordered attribute domains, index-based algo-
rithms like NN algorithm [11] and BBS algorithm [14] have
been shown to be superior over the nested-loop approach.
However, because of the lack of a total ordering for partially-
ordered attribute domains, it is unclear if index-based schemes
can still maintain their competitiveness given that their ef-
fectiveness to prune the search space is reduced. To the best
of our knowledge, this issue has not been investigated by any
of the previous related work.

In this paper, we address the novel and important prob-
lem of evaluating skyline queries involving partially-ordered
attribute domains. We propose a framework to compute
such skyline queries. The basic idea is to (a) transform each
partially-ordered attribute domain into two integer-domain
attributes, (b) organize the transformed attributes in an ex-
isting indexing method, and compute the skyline answers via

the index. We note that as the skyline computation is per-
formed on the transformed space, false positives may arise
and these have to be pruned away when answering skyline
queries.

We also propose three algorithms based on the above
framework. BBS

+ is a straightforward adaptation of BBS.
Because of false positives, BBS

+ is no longer progressive,
i.e., it needs to find all skyline points before answers can
be returned. The second scheme, SDC (Stratification by
Dominance Classification) exploits the properties of domain
mappings to avoid unnecessary dominance checkings. In
particular, it organizes the data into two strata at runtime
- points that are definitely in the skyline (stratum 1) and
those that may be false positives (stratum 2) . As such, it
can return answers in the former category as soon as they
are produced. In the third scheme, SDC

+, the data is parti-
tioned into two or more strata offline so that points at stra-
tum i cannot dominate points at stratum i− 1. In this way,
skyline points obtained from stratum i − 1 can be returned
before points in stratum i are examined. In addition, we also
design two dominance classification strategies (MinPC and
MaxPC) to further optimize the performance of SDC and
SDC

+.
We have implemented the three proposed schemes, and

evaluated their performance against two variants of the block
nested-loop scheme: BNL that operates on the native do-
mains and BNL

+ that operates on the transformed space.
Our results show that our proposed techniques outperform
the BNL variants by a wide margin (between a factor of 2
and 16), with SDC

+-MinPC offering the best performance
both in terms of response time as well as progressiveness.

2. RELATED WORK
A large number of algorithms have been developed to

compute skyline queries. These can be categorized into
non-index-based (e.g., block nested loop [4], divide and con-
quer [4]), and index-based (e.g., B-tree [4], bitmap [18], in-
dex [18], nearest neighbor [11], BBS [14]). As expected,
the non-index-based strategies are typically inferior to the
index-based strategies. It also turns out the index-based
schemes can progressively return answers without having to
scan the entire data input. The nearest neighbour scheme,
which applies the divide and conquer framework on datasets
indexed by R-trees, was shown to be superior over earlier
schemes in terms of overall performance [11]. BBS was also
shown to be I/O optimal [14] and to outperform nearest
neighbour scheme. It is thus considered currently the state-
of-the-art skyline algorithm reported in the literature. An
evaluation of these schemes can be found in [14]. More re-
cently, algorithm to answer skyline queries over distributed
sources has also been proposed [3]. Now, all these work
on skyline query evaluation handle only totally-ordered at-
tribute domains.

Another related direction is the work on preference query
systems. A framework for quantitative preference queries
that rank answers based on scoring functions has been pro-
posed in [2], and performance issues have been addressed in
work such as [8]. Both [7] and [9] have separately proposed
frameworks for qualitative preference queries that deal with
binary preference relations between tuples. Skyline queries
can be seen as a special class of pareto preference queries [9,
10]. While there are several operators designed to evaluate
preference queries (e.g., winnow operator [6], Best Matches

Algorithm BBS (T, S)

Input: T is an R-tree.
S is an intermediate set of skyline points.

Output: Set of skyline points.
1) Initialize heap H to be empty;
2) Insert all entries in the root node of T into heap H;
3) while (H is not empty) do

4) Remove top entry e from H;
5) if (e is an internal entry) then

6) if (e is not dominated by any entry in S) then
7) for each child entry ei of e do

8) if (ei is not dominated by any entry in S) then

9) Insert ei into H;
10) else

11) S = UpdateSkylines(e, S);
12) return S;

Algorithm UpdateSkylines (e, S)

Input: e is a data point in some leaf node of an R-tree.
S is an intermediate set of skyline points.

Output: Return an updated set S.
1) for each p ∈ S do

2) if (e is dominated by p) then
3) return S;
4) Insert e into S;
5) return S;

Figure 1: Algorithm BBS

Only [9] and the Best operator [19]), these schemes are de-
signed for more general preference queries. Moreover, they
require at least one scan through the dataset, making it
unattractive for producing fast initial response time.

Computing the skyline of a set of points is also known
as the maximum vector problem [12]. Early works on solv-
ing the maximum vector problem typically assume that the
points fit into the main memory. Algorithms devised in-
clude divide-and-conquer paradigm [12], parallel algorithms
[17] and those that are specifically designed to target at 2 or
very large number of dimensions [13]. Other related prob-
lems include top k [5], nearest neighbor search [16], convex
hull [16], and multi-objective optimization [15]. These re-
lated problems and their relationship to skyline queries have
been discussed in [4].

For the rest of this section, we shall review the BBS algo-
rithm which our proposed algorithms are based upon. An
overview of the BBS algorithm [14], is shown in Fig. 1. The
set of skyline points is computed by invoking BBS(R, ∅),
where R is an R-tree index and S, which represents an in-
termediate set of computed skyline points, is initialized to
the empty set1.

The algorithm recursively traverses the R-tree, performs a
nearest neighbour search to find regions/points that are not
dominated by the current skyline points in S, and inserts
these into a main-memory heap structure H . Because BBS

visits entries in ascending order of their distances from the
origin, each computed point is guaranteed to be a skyline
point, and hence can be returned to the user immediately.

Note that our proposed algorithms (to be described in
Section 4) are all based on the framework of BBS shown
in Fig. 1 with modifications mainly to the UpdateSkylines

function.

1We present a slightly more general form of the BBS algo-
rithm (with an input parameter S) to facilitate the presen-
tation of our proposed schemes in Section 4.

a

b c

d

A
a
b
c
d

A1 A2

1 1
−→ 0 1

1 0
0 0

Figure 2: Example of domain transformation

3. MOTIVATION
In this section, we consider the possible evaluation strate-

gies and motivate our proposed algorithms for processing
skyline queries with partially-ordered attribute domains. For
convenience, we refer to such queries as partially-ordered
skyline queries (or POS-queries) in contrast to the totally-
ordered skyline queries (or TOS-queries) that involve only
totally-ordered attribute domains.

The most direct method to process POS-queries is to ap-
ply the well-known block nested loop approach (BNL) [4],
which is the simplest and most versatile approach that works
for all types of attribute domains. However, the performance
of BNL has been shown to be inferior to that of index-based
approaches (such as NN algorithm [11] and BBS algorithm
[14]) due to the pruning effectiveness of index-based meth-
ods. Another limitation of BNL is that it is a “blocking”
algorithm and lacks progressiveness (i.e., answers can only
be returned after all skylines are computed).

Another strategy to evaluate POS-queries is to try to
leverage the effectiveness of previous index-based approaches
for TOS-queries by first transforming the partially-ordered
attribute domains into totally-ordered domains such that
the partial ordering of the original domains are “preserved”
in the transformed domains. The most obvious transforma-
tion technique is to map each partially-ordered attribute do-
main into a set of boolean attribute domains, as illustrated
by the following simple example.

Example 3.1 Consider the simple poset shown in Fig. 2 for
an attribute A consisting of four domain values {a, b, c, d}
indicated by the nodes in the DAG representation shown.
Attribute A can be transformed into a set of two boolean-
valued attributes {A1, A2} depicted by the mapping tables.
Thus, given two records r and r′, r.A dominates r′.A if r

also dominates r′ in the transformed domain (i.e., r.A1 dom-
inates r′.A1 and r.A2 dominates r′.A2). 2

By applying a suitable partial-to-total domain mapping
to each partially-ordered attribute, the collection of trans-
formed attributes is now amenable to be indexed using one of
the efficient techniques proposed for TOS-queries (e.g., [11,
14]), which is particularly convenient for set-valued attribute
domains. However, this boolean transformation suffers from
the well-known “dimensionality curse” problem which will
result in a large number of transformed boolean-valued at-
tributes when the size of the partially-ordered attribute do-
main is large. Thus, the simple boolean mapping is not
suitable for index-based methods.

4. AN INTERVAL-BASED APPROACH
To both enable the use of efficient index-based techniques

(that are designed for totally-ordered attributes) as well as

avoid the “dimensionality curse” problem with using simple
domain transformations, the approach that we propose is a
“middle-ground” solution that is based on using an approx-
imate, space-efficient domain transformation. In a nutshell,
our approach is based on using an approximate interval rep-
resentation (in the form of a pair of integer attributes) for
each partially-ordered attribute. This strategy, which in-
creases the dimensionality by one for each partially-ordered
attribute, provides a reasonable and practical approximate
domain mapping that is amenable to efficient indexing.

In this section, we present three novel algorithms, namely,
BBS

+, SDC, and SDC
+, that are all based on the interval-

domain mapping idea to process POS-queries.

4.1 Basic Idea
For each partially-ordered attribute Ai with domain Di,

our approach constructs a one-to-one domain mapping fi

that transforms each value v ∈ Di into an interval fi(v) ∈
N×N , where N denotes the set of natural numbers. The do-
main mapping fi is defined such that for any pair of distinct
values v, v′ ∈ Di, if fi(v) contains fi(v

′), then v dominates
v′.

Example 4.1 Consider again the poset for attribute A in
Fig. 2. We can construct the following mapping f:

f(v) =

8

>

>

<

>

>

:

[0, 3] if v = a,

[0, 2] if v = b,

[1, 3] if v = c,

[1, 2] if v = d.

Here, f is an isomorphic mapping in the sense that v domi-
nates v′ iff f(v) contains f(v′). 2

In general, since the transformed values fi(v) is an ap-
proximate representation of the actual values v, it is possible
for a pair of transformed attribute values to be incompara-
ble (i.e., neither one of the transformed values contains the
other) even though the original attribute values are actually
comparable. This implies that when skyline points are com-
puted using the transformed attribute values, it is possible
to have false positives – points that are considered skylines
in the transformed domains but are actually not skylines in
the original domains. While appropriate domain mappings
can be constructed for the special case of hierarchical par-
tial orders (i.e., trees) to avoid false positives, false positives
are generally inevitable for non-hierarchical partial orders.
Therefore, skyline computation algorithms that are based
on approximate domain representations need to take into
account of false positives.

The idea of our proposed algorithms comprises two main
steps:

(S1) For each partially-ordered attribute Ai, construct a
domain mapping function fi to transform its domain
values v to fi(v). This effectively replaces each Ai

attribute with two integer-domain attributes.

(S2) Organize the transformed data using an efficient index-
ing method, and use it to compute the skyline points
taking into account of possible false positives.

We note that the above two steps are orthogonal, i.e.,
the design of the domain mapping function is independent
of the choice of the index-based skyline computation algo-
rithm. Moreover, any existing domain mapping functions

and index-based skyline computation schemes could be used
in the two steps. As a first cut, we have adapted the encod-
ing scheme of [1] in step (S1) and employ the BBS scheme
[14], which has been shown to be very efficient for TOS-
queries, in step (S2).

Step (S1) is discussed in Section 4.3; and the three algo-
rithms that we propose for step (S2) are presented in Sec-
tions 4.4 to 4.6. Our first algorithm, BBS

+, which is the least
progressive, is a simple extension of BBS that explicitly de-
tects for false positives as the skyline points are computed.
Both our second and third algorithms, SDC and SDC

+, ex-
ploit properties of domain mappings to avoid unnecessary
dominance checkings. While SDC stratifies the data at run-
time, SDC

+ creates the strata offline. SDC
+ is the most

progressive, and processes the data in stages in such a way
that there are no false positives in the intermediate results.
Section 4.5.3 presents dominance classification schemes to
further optimize the performance of SDC and SDC

+.

4.2 Definitions
We first introduce some notations and definitions.
Let A = {A1, A2, · · ·An} denote the set of attributes of in-

terest, where A = Atotal ∪ Apartial with Atotal and Apartial

denote, respectively, the subset of totally- and partially-
ordered attributes. For each attribute Ai ∈ A, we use
(Di,�i) to denote the partially order set (or poset) for its
domain values Di. Each �i is a reflexive, antisymmetric,
and transitive binary relation on Di. We denote by ≺i the
strict ordering associated with Di; i.e., y ≺i x if y �i x and
x 6= y. Given x, y ∈ Di, x and y are said to be comparable
if either y ≺i x or x ≺i y; otherwise, they are said to be
incomparable. We say that x dominates y if y ≺i x. A value
v ∈ Di is a maximal value (resp. minimal value) if there is
no value v′ ∈ Di such that v ≺i v′ (resp. v′ ≺i v).

Consider a finite set of data records R over the set of
attributes in A; i.e., R ⊆ D1 × D2 × · · · × Dn. Given two
records r1, r2 ∈ R, we say that r1 dominates r2, denoted by
r2 ≺ r1, if (1) r2.Ai �i r1.Ai for each attribute Ai ∈ A, and
(2) there exists some Aj ∈ A such that r2.Aj ≺j r1.Aj .

Each partial order (Di,�i) can be represented by a DAG
Gi = (Di, Ei), where (v, w) ∈ Ei if w �i v and there does
not exist another value x ∈ Di such that w �i x �i v. For
simplicity and without loss of generality, we assume that Gi

is a single connected component.
For each partially-ordered attribute Ai ∈ Apartial with

domain Di, let fi : Di → N × N denote the mapping
function constructed for Ai that maps each value v ∈ Di

into some interval of values (i.e., fi(v) = [v1, v2], v1, v2 ∈ N)
such that for any pair of distinct values v, v′ ∈ Di, if the
interval fi(v) contains the interval fi(v

′), then v dominates
v′.

Based on the transformed values for partially-ordered at-
tributes, we can define a more restrictive form of domi-
nance, called m-dominance, as follows. Given two records
r1, r2 ∈ R, we say that r1 m-dominates r2, denoted by
r2 ≺m r1, if (1) r2.Ai �i r1.Ai for each attribute Ai ∈ Atotal;
(2) fi(r2.Ai) is equal to or contained in fi(r1.Ai) for each
attribute Ai ∈ Apartial; and (3) there exists (a) some Aj ∈
Atotal such that r2.Aj ≺j r1.Aj , or (b) some Aj ∈ Apartial

such that fj(r2.Aj) is contained in fj(r1.Aj).
Observe that m-dominance is a stronger form of domi-

nance in that if r2 ≺m r1, then r2 ≺ r1; but the converse
does not necessarily hold.

The definition of dominance between records can be fur-
ther generalized to between a record r ∈ R and a subset of
records e ⊆ R as follows: we say that r dominates e (resp,
r m-dominates e), denoted by e ≺ r (resp, e≺m r), if r

dominates (resp, m-dominates) each record in e.
In both algorithm BBS as well as our proposed algorithms,

we refer to the data points maintained in S as intermediate
skyline points. In the case of BBS (which deals with only
totally-ordered attributes), an intermediate skyline point is
guaranteed to be a definite skyline point; thus, once a point
is inserted into S, it can be output immediately. On the
other hand, for two of our proposed algorithms (BBS

+ and
SDC), the intermediate skyline points in S could be false
positives.

4.3 Domain Mapping Function
For each partially-ordered attribute Ai, the domain map-

ping function fi that we use to transform its domain Di is
adapted from the encoding scheme of [1] and works as fol-
lows: a spanning tree STi is first computed from the DAG
Gi, and STi is then traversed in postorder with each node
v being assigned a unique postorder number post(v). Then,
fi(v) is given by [x, y], where y = post(v) and x is the
smallest postorder number assigned to a descendant of v.
This mapping scheme satisfies the following domain map-
ping property:

If (v, v′) ∈ Ei is also an edge in the spanning tree STi, then
fi(v) contains fi(v

′).

It follows that given any two nodes v and v′ in Gi, fi(v)
contains fi(v

′) iff there is a path from v to v′ in the spanning
tree STi.

Example 4.2 Refer once more to the poset for attribute
A in Fig. 2. The domain mapping function f for A is con-
structed as follows. Let the spanning tree computed from
the poset be equivalent to the DAG shown but without the
edge (c, d). Then, the postorder numbers assigned to a, b,
c, and d are respectively, 4, 2, 3, and 1; and their respec-
tive assigned interval values are [1, 4], [1, 2], [3, 3], and [1, 1].
Observe that although c dominates d (w.r.t. the original
domain), c does not m-dominate d (w.r.t. the transformed
domain). 2

Note that there are other alternative schemes that could
be used for the domain mapping function (e.g., [20]). How-
ever, as our focus in this paper is mainly on skyline compu-
tation algorithms, we have selected a simple mapping func-
tion for our work here. It is important to point out that our
optimized algorithms (to be presented in Sections 4.5 and
4.6) are orthogonal to the choice of the mapping function.
Indeed, in Section 4.7, we present a new domain mapping
scheme that is inspired by the properties of our optimiza-
tions to improve the efficiency and progressiveness of skyline
computation.

4.4 Algorithm BBS
+

In this section, we present our first algorithm, called BBS
+,

which represents the simplest extension of BBS [14] to pro-
cess POS-queries.

Algorithm BBS
+ is similar to BBS (shown in Fig. 1) ex-

cept for the following two changes shown in Fig. 3. First,
since the R-tree index used in BBS

+ is based on trans-
formed attribute domains for partially-ordered attributes,

Algorithm BBS+ (T, S)

Same as Algorithm BBS in Fig. 1 except that each “dominated”
comparison is replaced by a “m-dominated ” comparison.

Algorithm UpdateSkylines (e, S)
Input: e is a data point in some leaf node of an R-tree.

S is an intermediate set of skyline points.
Output: Return an updated set S.
1) for each p ∈ S do
2) if (e is dominated by p) then

3) return S;
4) else if (p is dominated by e) then
5) Delete p from S;
6) Insert p into S;
7) return S;

Figure 3: Algorithm BBS
+

the two dominance comparisons in BBS (steps 6 and 8) are
replaced with m-dominance comparisons in BBS

+. Second,
since there could be false positives in the set of intermediate
skyline points maintained in S, the UpdateSkylines func-
tion in BBS

+ needs to detect and remove any false positives
(steps 4 to 5) while comparing the new data point e against
the intermediate skyline points in S.

4.5 Algorithm SDC

One major drawback of BBS
+ is that it is a non-progressive

algorithm due to the possibility of false positives in the com-
puted intermediate skyline points. Another limitation of
BBS

+ is that it can incur many unnecessary comparisons
for dominance; in the worst case, the UpdateSkyline func-
tion might need to compare the new data point e against
every intermediate skyline point in S.

In this section, we present our second algorithm, called
SDC (Stratification by Dominance Classification), which im-
proves over BBS

+ in terms of both progressiveness (by sep-
arating the intermediate skyline points into definite skylines
and potential false positives) as well as speed (by avoiding
unnecessary checkings for dominance).

4.5.1 Dominance Classification
To overcome the limitations of BBS

+, Algorithm SDC ex-
ploits two simple characterizations of partially-ordered at-
tribute values based on their domain mapping functions.

Recall that there is a spanning tree STi associated with
each partially-ordered attribute Ai (induced by its domain
mapping fi) that is contructed from its partial order DAG
Gi = (Di, Ei). We can classify each value in Di based on
its relationship with incoming and outcoming values (w.r.t.
Gi and STi) in two ways as follows. A value v ∈ Di is said
to be completely covered if every directed incoming path to
v in Gi is also in STi; otherwise, v is said to be partially
covered. A value v ∈ Di is said to be completely covering
if every directed outgoing path from v in Gi is also in STi;
otherwise, v is said to be partially covering.

Example 4.3 Consider the poset (D,�) with D = {a, b,
· · · , j} in Fig. 4, where the edges included in (excluded from)
its spanning tree are indicated by solid (dotted) arrows. The
set of values {a, b, c, d, f, h} are partially covering; and the
set of values {f, g, h, i, j} are partially covered. 2

The above classifications of attribute values can be eas-
ily generalized to data points as follows. A data point r ∈

a

b c d

e f

g h

i j

Figure 4: Example Poset (D,�)

R is said to be completely covered if the value of each of
its partially-ordered attributes is completely covered; other-
wise, r is said to be partially covered. Similarly, r ∈ R is said
to be completely covering if the value of each of its partially-
ordered attributes is completely covering; otherwise, r is said
to be partially covering.

Based on these two orthogonal classifications, given a set
of data points S, S can be partitioned into four disjoint
subsets:

S = Sc,c ∪ Sc,p ∪ Sp,c ∪ Sp,p

where each Si,j denote the subset of points in S that are (1)
partially covered (resp. completely covered) if i = p (resp.
i = c), and (2) partially covering (resp. completely covering)
if j = p (resp. j = c).

c,p

p,p c,c

p,c

Figure 5: Dominance Graph DG

The dominance relationship among the four subsets of
data points is depicted by the dominance graph shown in
Fig. 5 and has the following property:

Lemma 4.1. A data point p ∈ Si,j dominates another
data point p′ ∈ Si′,j′ only if there is a directed edge (normal
or bold) from node (i, j) to node (i′, j′) in the dominance
graph DG shown in Fig. 5.

Observe that the dominance relationship among the four
subsets in Fig. 5 is reflexive, antisymmetric, and transitive.
The significance of the bold edges will be explained in Sec-
tion 4.5.3.

In the following subsections, we present three optimiza-
tions used in SDC that are based on the properties of the
dominance graph.

4.5.2 Minimizing Dominance Comparisons
To avoid unnecessary dominance comparisons, SDC ex-

ploits Lemma 4.1 to organize the intermediate set of skyline
points into four subsets. In contrast to BBS

+ which com-

Algorithm SDC (T, S)

Same as Algorithm BBS+ in Fig. 3.

Algorithm UpdateSkylines (e, S)

Input: e is a data point in some leaf node of an R-tree.
S is an intermediate set of skyline points,
where S = Sc,c ∪ Sc,p ∪ Sp,c ∪ Sp,p.

Output: Return an updated set S.
1) Let (i, j) be the category that e belongs, i, j ∈ {c, p};
2) Let C = {(x, y) | edge from (x,y) to (i,j) in DG};
3) Let C′ = {(p, y) | edge from (i,j) to (p,y) in DG};
4) for each p ∈ Sx,y, (x, y) ∈ C ∪ C′ do
5) ret = CompareDominance (e, p);
6) if (ret == 1) then

7) return S;
8) else if (ret == −1) then
9) Delete p from Sx,y;
10) Insert e into Si,j ;
11) return S;

Algorithm CompareDominance (x, y)

Input: x and y are two data points.
Output: Return −1 if x dominates y, or

1 if x is dominated by y, or
0 if neither x nor y dominates each other.

1) if (x is m-dominated by y) then
2) return 1;
3) else if (y is m-dominated by x) then

4) return −1;
5) if (x is partially covering) and (y is partially covered) then

6) if (x is dominated by y) then

7) return 1;
8) else if (y is dominated by x) then
9) return −1;
10) return 0;

Figure 6: Algorithm SDC

pares each new leaf entry e against all the intermediate sky-
line points in S, SDC only compares e against the necessary
subsets of intermediate skyline points.

Referring to SDC’s UpdateSkylines function in Fig. 6,
step 1 first determines the category, denoted by Si,j , of the
input leaf entry e. Once this is known, step 2 then selects
the categories of data points, denoted by C, that can pos-
sibly dominate e (based on Lemma 4.1), and step 3 selects
the categories of data points, denoted by C′, that e can pos-
sibly dominate (to be explained in Section 4.5.4). Steps 4
to 9 then compare e against the intermediate skyline points
that belong to the selected categories by using an optimized
function called CompareDominance. This function accepts
two input data points x and y and returns −1 if x domi-
nates y, 1 if y dominates x, and 0 otherwise; the details of
CompareDominance are elaborated in Section 4.5.3.

4.5.3 Optimizing Dominance Comparisons
The second optimization in SDC aims to maximize the

use of dominance comparisons that are based on the trans-
formed domains (i.e., m-dominate comparisons) over domi-
nance comparisons that are based on the original domains
for partially-ordered attributes. This optimization is use-
ful when dominance comparisons based on the original do-
mains (e.g., set-valued domains) are more expensive to eval-
uate than dominance comparisons based on the transformed
domains which involve two integer comparisons. There-
fore, to improve performance for such cases, the more costly

dominance comparisons involving the original domains for
partially-ordered attributes should be used only as a last
resort.

SDC exploits the following property to maximize m-dominate
comparisons:

Lemma 4.2. If x is a completely covering point or y is
a completely covered point, then x dominates y iff x m-
dominates y.

This lemma is depicted by the bold edges in Fig. 5: if p ∈
Si,j , p′ ∈ Si′,j′ , and there is a bold edge from (i, j) to (i′, j′)
in DG, then p dominates p′ iff p m-dominates p′.

We briefly explain the correctness of the above lemma.
Clearly, if x m-dominates y, then by the domain mapping
property, x must necessarily dominate y. On the other hand,
if x dominates y, then for each partially-ordered attribute
Ai ∈ Apartial, there is at least one directed path p from x.Ai

to y.Ai in Gi. Since x is a completely covering point or y is a
completely covered point, this implies that the path p must
also be in STi which means that fi(x.Ai) contains fi(y.Ai);
therefore, x m-dominates y.

Based on Lemma 4.2, SDC performs dominance compar-
isons in the UpdateSkylines function by using a new func-
tion called CompareDominance (shown in Fig. 6).
CompareDominance first compares x and y using m-dominance,
and only when the points are incomparable in terms of m-
dominance but could be comparable in terms of dominance
(by Lemma 4.2), CompareDominance then resorts to compar-
ing them using their original domain values.

4.5.4 Enabling Progressive Computation
The third optimization in SDC aims to enable skyline

points to be computed progressively.
SDC exploits the following property to identify definite

skyline points from the intermediate skyline points.

Lemma 4.3. An intermediate skyline point that is com-
pletely covered is a definite skyline point.

The correctness of the above lemma is based on the property
of the BBS algorithm [14], and Lemmas 4.1 and 4.2.

Therefore, based on Lemma 4.3, the UpdateSkylines func-
tion in SDC is optimized by checking for false positives only
from intermediate skyline points that are partially covered;
this explains step 3 of SDC’s UpdateSkylines which selects
the categories of data points (denoted by C′) that the input
data point e could dominate. Thus, SDC is more efficient
than BBS

+ which checks for false positives from all the in-
termediate skyline points in S.

More importantly, SDC enables the set of skyline points
to be computed progressively: each newly determined in-
termediate skyline point e that is completely covered (i.e.,
e ∈ Sc

c ∪ Sc
p) can be output immediately since it is a definite

skyline point.

4.6 Algorithm SDC
+

In this section, we present our third algorithm, called
SDC

+, which aims to further increase the progressiveness of
SDC. Recall that SDC essentially organizes the intermediate
skyline points into two strata at runtime - the completely
covered intermediate skyline points (stratum 1) and the in-
termediate skyline points that are partially covered (stratum
2). While skyline points in stratum 1 can be progressively
returned, those in stratum 2 could be false positives and

therefore need to be compared against all the intermediate
skyline points to verify that they are indeed definite skyline
points. This limitation restricts the progressiveness of SDC

since the skyline points in stratum 1 are generally only a
small percentage of the entire set of skyline points as indi-
cated by our experimental results. To increase progressive-
ness, SDC

+ statically partitions the data into two or more
strata.

4.6.1 Data Stratification
In SDC

+, the set of data points R is partitioned into a
sequence of subsets called strata < R0, R1, · · · , Rk > for
some value k, such that each Ri ⊆ R and

Sk

i=0 Ri = R.
By judiciously partitioning the data into separate strata,
the skyline points can be computed one stratum at a time
starting from R0 to Rk such that each “local” skyline point
in a stratum Ri can not be dominated by skyline points in
the succeeding strata (i.e., Rj , j > i), which therefore guar-
antees that none of the computed skyline points from each
stratum are false positives (as explained earlier). Thus, by
computing skyline points from a sequence of smaller subsets
instead of from a single large set, the skyline computation
becomes more progressive.

An obvious strategy is to organize the data points based
on the dominance graph into the following sequence of four
strata: < Rc,p, Rc,c, Rp,p, Rp,c >. However, as the last
two strata Rp,p and Rp,c are generally large which limits
progressiveness, SDC further refines the last two strata based
on the notion of uncovered level of attribute values and data
points.

We define the uncovered level of an attribute value v ∈
Di, denoted by L(v), as the maximum number of edges in
a directed path to v that are in Gi but not in STi. The
uncovered level of each value v can be computed recursively
as follows:

L(v) =

(

0 if v is a maximal value in Di,
max

(w,v)∈Ei

{L(w) + c(w, v)} otherwise.

(1)

where c(w, v) = 0 if (w, v) is an edge in STi, and c(w, v) = 1
otherwise.

Example 4.4 Consider again the poset (D,�) in Fig. 4. We
have L(v) = 0 if v ∈ {a, b, c, d, e}, L(v) = 1 if v ∈ {f, g, h, j},
and L(v) = 2 if v = i. 2

The uncovered level of a data point r, denoted by L(r),
is defined as the maximum of the uncovered levels of its
partially-ordered attribute values; i.e.,

L(r) = max
Ai∈Apartial

{L(r.Ai)}.

The notion of uncovered level is useful for refining the dom-
inance relationship among partially covered points as given
by the following result.

Lemma 4.4. A partially covered data point p can not dom-
inate another partially covered data point p′ if L(p) > L(p′).

The correctness of the above lemma follows from the fact
that for any pair of attribute values v, v′ ∈ Di, v dominates
v′ iff there is a directed path from v to v′ in Gi.

Lemma 4.4 provides a simple and effective way to fur-
ther partition the data points in the strata Rp,p and Rp,c

to increase progressiveness. Rp,p is partitioned into k =
max

r∈Rp,p

{L(r)} strata, where each stratum Ri
p,p, 1 ≤ i ≤ k,

represents the subset of data points in Rp,p with an uncov-
ered level of i. It follows from Lemma 4.4 that intermedi-
ate skyline points from stratum Ri

p,p will not be dominated

by any data point in Rj
p,p, j > i. Similarly, Rp,c is parti-

tioned into k
′ = max

r∈Rp,c

{L(r)} strata, where each stratum

Ri
p,c, 1 ≤ i ≤ k′, represents the subset of data points in Rp,c

with an uncovered level of i.
Thus, SDC

+ partitions the data points in R into (k+k′+2)
strata, where the data points in each stratum Ri

x,y is (con-

ceptually) indexed using a separate R-tree T i
x,y. The strata

is processed in the following sequence: < Rc,p, Rc,c, R1
p,p,

R1
p,c, R2

p,p, R2
p,c, · · · > as shown in Fig. 7. Each stratum is

processed by calling the function SDC
+
-sub with two input

parameters: the R-tree T for the stratum, and the interme-
diate set of skyline points S computed so far. The set of
skyline points returned by SDC

+-sub for the input stratum
can be output immediately as they are all definite skyline
points. For the special cases of strata Rc,p and Rc,c, the
intermediate skyline points (which are completely covered)
can be output even earlier: by Lemma 4.3, each interme-
diate skyline point e is a definite skyline point and can be
output before it is inserted into L (step 12 in Fig. 7). Note
that SDC

+
-sub is similar to BBS

+ except for some minor
changes.

SDC
+ progressively computes the skyline points in as-

cending order of their uncovered levels starting with the
completely covered data points in Rc,p and Rc,c (which have
uncovered level of 0) in steps 1 and 2. Steps 3 to 7 compute
the partially covered skyline points. SDC

+ organizes the
computed skyline points using two main sets: S stores the
definite skyline points computed from the processed strata,
while L stores the skyline points computed from the current
stratum being processed (which could contain false posi-
tives). Thus, the UpdateSkylines function in SDC

+ pro-
cesses an input data point e against L and S separately.
First, e is compared against L (steps 1 to 6) to both check
if e could be dominated by the points in L as well as check
if there are any false positives in L that could be dominated
by e. Next, e is compared against S (steps 7 to 11) to check
if e could be dominated by the points in S. SDC

+ uses the
same CompareDominance function as SDC.

Although each stratum is conceptually indexed indepen-
dently by a separate R-tree, multiple consecutive strata can
actually be indexed using a single R-tree by including an
additional stratum number attribute for indexing to facili-
tate the conceptual approach of processing the sequence of
strata.

4.7 Optimizing Dominance Classification
In this section, we present our final optimization tech-

nique, which is applicable to both SDC and SDC
+, that

aims to reduce the number of dominance comparisons and
maximize the use of m-dominance comparisons. The idea is
to optimize the construction of the spanning tree for each
partially-ordered attribute (Section 4.3) to maximize the oc-
curence of certain dominance categories of attribute values
over others. The following example illustrates the effect of
the spanning tree structure on the dominance classification
of the attribute values.

Example 4.5 Consider the two almost similar spanning
trees ST and ST ′ that differ by only one edge for the same
DAG in Figs. 8(a) and (b). The solid edges represent the

Algorithm SDC+ (T)

Input: T = {Tc,p, Tc,c, T 1
p,p · · · T k

p,p, T 1
p,c · · ·T

k′

p,c }
is a set of (k + k′ + 2) R-trees.

Output: Set of skyline points.
1) S = SDC+-sub(Tc,p , ∅);
2) S = S ∪ SDC+-sub(Tc,c , S);
3) for i = 1 to max{k, k′} do

4) if (i ≤ k) then

5) S = S ∪ SDC+-sub(T i
p,p , S);

6) if (i ≤ k′) then

7) S = S ∪ SDC+-sub(T i
p,c, S);

8) return S;

Algorithm SDC+-sub (T, S)

Input: T is an R-tree.
S is an intermediate set of skyline points.

Output: Return an updated set L.
0) Initialize L to be empty;
1-10) Same as Algorithm BBS+ in Fig. 3

except that in steps 6 and 8, S is replaced by S ∪ L.
11) L = UpdateSkylines(e, S, L);
12) return L;

Algorithm UpdateSkylines (e, S, L)

Input: e is a data point in some leaf node of an R-tree.
S is an intermediate set of skyline points,

where S = Sc,c ∪ Sc,p ∪ Sp,c ∪ Sp,p.
L is the set of skyline points

generated from the current stratum.
Output: Return an updated set L.
1) for each p ∈ L do

2) ret = CompareDominance (e, p);
3) if (ret == 1) then

4) return L;
5) else if (ret == −1) then
6) Delete p from L;
7) Let (i, j) be the category that e belongs, i, j ∈ {c, p};
8) Let C = {(x, y) | edge from (x,y) to (i,j) in DG, (x, y) 6= (i, j) };
9) for each p ∈ Sx,y, (x, y) ∈ C do
10) if (CompareDominance (e, p) == 1) then

11) return L;
12) Insert e into L;
13) return L;

Algorithm CompareDominance (x, y)
Same as that in Algorithm SDC in Fig. 6.

Figure 7: Algorithm SDC
+

a

b c

d e

f g

h

a

b c

d e

f g

h

(a) ST (b) ST ′

Figure 8: Optimizing Dominance Classification

edges that are in the spanning tree, and the dotted edges
represent the edges that are in the DAG but excluded from
the spanning tree. Completely and partially covered values
are represented by shaded and unshaded nodes, respectively;
and completely and partially covering values are represented
by nodes with thick and thin lines, respectively. We observe
the following differences: (1) b, d, and f are completely
covering in ST but partially covering in ST ′; and (2) e and
g are partially covering in ST but completely covering in
ST ′. 2

The above example shows that the dominance classifica-
tion of the values for an attribute can be varied (to some
extent) by changing the structure of the spanning tree con-
structed from the DAG representation of its poset.

More generally, the structure of the DAG determines whether
the nodes are completely or partially covered, while the
structure of the spanning tree determines whether the nodes
are completely or partially covering. Specifically, a node v in
a DAG G is a partially covered node in any spanning tree of
G if v or an ancestor of v has multiple incoming edges in G;

otherwise, v is a completely covered node in any spanning
tree of G. The choice of the edges included in the span-
ning tree will determine whether the nodes are partially or
completely covering. In particular, if an edge (v, w) is ex-
cluded from the spanning tree, then each ancestor node of
v (including v itself) will be partially covering.

Thus, the spanning tree can affect the relative number
of nodes between the categories (p, c) and (p, p), and be-
tween the categories (c, c) and (c, p). Comparing the two
categories (p, p) and (p, c), having more data points in (p, p)
relative to (p, c) can reduce the number of dominance com-
parisons since data points in (p, p) need not be compared
against data points in (c, c) (refer to Fig. 5). On the other
hand, having more data points in (p, c) can maximize the
use of m-dominance comparisons, whereas comparisons in-
volving data points in (p, p) must be performed in terms
of the actual domain values. Thus, the two categories (p, p)
and (p, c) have different tradeoffs. Comparing the categories
(c, p) and (c, c), having more data points in (c, c) relative to
(c, p) is better for performance because it not only reduces
the number of dominance comparisons (since points in (c, c)
need not be compared against points in (p, p)), but it also
enables all the comparisons to be done using m-dominance.
Thus, it is better to maximize the number of (c, c) nodes
relative to the number of (p, c) nodes in the spanning tree.

Based on the above analysis, there are two main strate-
gies, referred to as MinPC and MaxPC, for optimizing
the spanning tree construction:

MinPC: Minimizes the number of (p, c) nodes relative to
the number of (p, p) nodes.

MaxPC: Maximizes the number of (p, c) nodes relative to
the number of (p, p) nodes.

For the above strategies, the primary optimization criterion
is to minimize/maximize the number of (p, c) nodes (relative
to the number of (p, p) nodes), and maximizing the number
of (c, c) nodes (relative to the number of (c, p) nodes) is

Algorithm OptimizeSpanningTree (G)

Input:G = (D, E) is the DAG representation of a poset
for a partially-ordered attribute.

Output:A spanning tree ST.
1) Initialize ST to be G;
2) for each node v in ST in topological order do
3) if (v has more than one parent in ST) or

(v’s parent is classified as (p, c) in ST) then

4) Classify v as (p, c);
5) else
6) Classify v as (c, c);
7) Let V = {v ∈ D | |parent(v)| > 1};
8) while (V is not empty) do
9) Choose v ∈ V , w ∈ parent(v) such that

|PCSetv(w)| ≥ |PCSetv′(w′)|, ∀ v′ ∈ V, w′ ∈ parent(v′);
Break ties by choosing v ∈ V , w ∈ parent(v) such that
|CCSetv(w)| ≤ |CCSetv′(w′)|, ∀ v′ ∈ V, w′ ∈ parent(v′);

10) for each u ∈ parent(v), u 6= w do

11) Delete (u, v) from ST;
12) Update u’s classification from (x, y) to (x, p);
13) for each u ∈ PCSetv(w) do

14) Update u’s classification to (p, p);
15) for each u ∈ CCSetv(w) do

16) Update u’s classification to (c, p);
17) Delete v from V ;
18) return ST;

Figure 9: Algorithm to optimize spanning tree

used as a secondary criterion (see Fig. 9). In Fig. 8, the
spanning trees ST and ST ′ are created using the MaxPC
and MinPC strategies, respectively.

Note that we have also experimented with two other vari-
ations of the above strategies, where the primary and sec-
ondary optimization criteria are swapped. Our experimental
results indicate that these variations performed worse than
their coumterpart strategies, showing that minimizing the
number of (p, c) nodes is more important than minimizing
the number of (c, c) nodes.

Algorithm OptimizeSpanningTree in Fig. 9 takes as in-
put the poset of a partially-ordered attribute, G = (D, E),
and computes a spanning tree ST from G that is optimized
based on the MinPC strategy2. Steps 2 to 6 of the algo-
rithm first initializes the spanning tree ST to be the input
DAG G and classifies the nodes into either completely or
partially covered nodes, with a default completely covering
classification. The classification is computed by a topolog-
ical traversal of ST since the category of a node depends
on the categories of its ancestor (but not descendant) nodes
as explained earlier. Next, steps 7 to 17 then construct a
spanning tree by using a greedy heuristic to delete edges to
minimize the number of (p, c) nodes. Here, parent(v) de-
notes the set of parent nodes of a node v in ST. PCSetv(w)
denotes the set of nodes in category (p, c) that would become
in category (p, p) when all the incoming edges to v, except
for (w, v), are deleted from ST. In other words, PCSetv(w)
is the set of nodes in category (p, c) such that each node is
an ancestor of some node in parent(v) − {w}. CCSetv(w)
is defined similarly for nodes in category (c, c) that would
become nodes in category (c, p).

We use SDC-MinPC and SDC-MaxPC, to denote SDC

that is optimized using the MinPC and MaxPC strategies,
respectively. SDC

+-MinPC and SDC
+-MaxPC are defined

2Changing the comparison operator in step 9 to ≤ would
result in the MaxPC strategy.

Parameter Values

|Atotal|, # of totally-ordered attributes 2, 1, 4
|Apartial|, # of partially-ordered attributes 1, 2
Attribute correlation independent,

anti-correlated
Poset size (# nodes) 450, 1000
Poset height (# levels) 6, 13
Data size (# data points) 500K, 1000K

Table 1: Experimental parameters and values used

similarly.

5. PERFORMANCE STUDY
To evaluate the effectiveness of our proposed algorithms,

we conducted an extensive set of experiments to study their
performance. Our results show that our proposed algo-
rithms (BBS

+, SDC, and SDC
+) outperform existing tech-

niques by a wide margin, with SDC
+-MinPC, which is SDC

+

using the MinPC strategy to optimize dominance classifica-
tion, giving the best performance in terms of both response
time as well as progressiveness.

Data Sets: We generated synthetic data sets by varying the
number of attributes, the correlation among the attributes,
the complexity of the posets for partially-ordered attributes,
and the size of the data sets. The parameters and their val-
ues used are shown in Table 1, where the first value listed is
the default value. In our experimental presentations, default
parameter values are used unless stated otherwise.

For totally-ordered attributes, we used integer values from
the domain (0, 1000], where values are generated as described
in [4] with possible correlation among different attributes.
For partially-ordered attributes, we used set-valued attributes
where dominance is based on set containment. The poset
for each partially-ordered attribute is created by first gen-
erating a forest of trees, by varying the number of trees,
their heights and branching factors. Next, the poset is then
formed by randomly connecting nodes among the trees, such
that two nodes can be linked only if their levels differ by one.
The density of edges in the poset is controlled by the number
of iterations of adding inter-tree edges and the probability
of adding an edge for a node. The domain of the set-valued
attribute values is then derived from the constructed poset.
Each data point is generated by choosing a random attribute
value from its domain; in particular, for a partially-ordered
attribute, a value is selected by randomly choosing a node
from its domain’s poset.

Algorithms: We compared our proposed techniques (de-
noted by BBS

+, SDC, and SDC
+), and two variants of the

block nested-loop algorithm, denoted by BNL and BNL
+.

BNL is the basic algorithm proposed in [4], while BNL
+ is

our optimized extension of BNL that works in a two-stage
filter-and-postprocess manner as follows. First, BNL

+ exe-
cutes the standard BNL algorithm (using the transformed
attribute values) to quickly obtain a set of intermediate
skyline points (possibly with false positives), which is then
pipelined to a second BNL algorithm (using the actual at-
tribute values) to eliminate any false positives. We also
evaluated the effectiveness of our dominance classification
optimization strategies (MinPC and MaxPC) on SDC and
SDC

+. For our proposed algorithms, the transformed data
values are indexed using R∗-trees with page sizes of 4K bytes

0

26

52

78

104

130

156

182

208

234

260

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(a) 2 numerical & 1 set at-
tributes

0

283

566

849

1132

1415

1698

1981

2264

2547

2830

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(b) 1 numerical & 2 set at-
tributes

0

72

144

216

288

360

432

504

576

648

720

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(c) 4 numerical & 1 set attributes

Figure 10: Varying the number of numerical/set-valued attributes.

and node capacity of 50. Each R-tree index is constructed
by first scanning the data points to extract the distinct do-
main values of each partially-ordered attribute. Their posets
are then constructed, and each value in each poset is then
mapped to an integer interval as explained in Section 4.3.
Finally, the data points are then indexed with an R-tree
on the set of totally-ordered attribute values and the trans-
formed partially-ordered attribute values. Note that each
entry in the index nodes has two additional bits indicating
whether the entry is partially/completed covered/covering.
The posets are therefore not needed once the index is built.

Our experiments were carried out on a Pentium 4 PC with
a 2.4 GHz processor and 256 MB of main memory running
the Linux operating system.

5.1 Response Time & Progressiveness
In this experiment, we examine the performance of the

various algorithms in returning first answers as well as how
fast all answers are returned progressively. For each algo-
rithm, we recorded the time it took to output various per-
centages of the answers (20%, 40%, 60%, 80% and 100%),
as well as the time it took to output the first answer (close
to 0%). Although we also captured the time to output ev-
ery 10 answers, up to 100, we found that the timings are
generally the same as the time to output the first tuple and
hence, the time to output the first answer is sufficient to
illustrate the response time of the initial set of answers re-
turned. Fig. 10(a) illustrates the performance when 2 nu-
merical attributes and 1 set-valued attribute are used. In
Figs. 10(b) and (c), we compare the algorithms’ performance
when the queries consist of more set-valued attributes and
numerical attributes respectively.

From Fig. 10(a), we can see that SDC and SDC
+ have fast

initial response times and are progressive. Among them,
SDC

+ has the best overall performance. There are 662 sky-
line points and 561 false positives in this experimental run.
For BBS

+, it is not progressive because it cannot output
any answers as they become available due to the possibility
of false positives. Instead, each available answer has to be
checked against the current skyline using actual set represen-
tation to ensure that it is not a false positive. Nonetheless,

its performance is still better than the block nested loop
algorithms.

For SDC, it is progressive as it can immediately output
those intermediate skyline points that are completely cov-
ered. Furthermore, to find skyline points efficiently, inter-
mediate skyline points are organized into subsets and m-
dominate comparisons are used whenever possible. Com-
paring with BBS

+, this results in a 59% drop in actual set-
valued comparisons. Consequently, the initial set of answers
can be found very quickly and since most of them are definite
skyline points, they can be output immediately. However, as
processing continues, its progressiveness drops as remaining
skyline points belong to Sp,p and hence, cannot be output
immediately. Moreover, since the various subsets are getting
bigger as processing continues, this results in more compar-
isons and hence a poorer performance towards the end.

For SDC
+, it is clear that it is more progressive and pro-

duces answers faster than SDC. This is because the initial
set of strata being processed consists of points belonging
only to Sc,p and Sc,c and hence, any answer found can be
output immediately. Since 80% of the skyline points belong
to Sc,p, this explains why SDC

+ can output the first 80%
of the answers significantly faster. Moreover, we found that
SDC

+ incurs 30% fewer actual set-valued comparisons and
16% fewer m-dominate comparisons compared to SDC. This
is because in SDC

+, data points belonging to subsets Sc,p

and Sc,c (which have the highest potential of being in the
skyline) are processed first while in SDC, the data points
can belong to any subsets. Consequently, more comparisons
which do not result in any meaningful outcome are incurred
for SDC. Thus, SDC

+ has a better overall performance than
SDC.

For BNL, its performance is relatively poor throughout as
comparing using actual set representation is more expensive
than comparing numerical values on the transformed data.
This explains why BNL

+ can outperform BNL even though
it requires a post-processing step.

Consider Figs. 10(b) and (c) where we increase the num-
ber of set-valued and numerical attributes respectively. It is
a well known fact in the literature that the number of sky-
line points increases with increasing number of attributes.

0

22

44

66

88

110

132

154

176

198

220

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(a) Increasing poset size

0

31

62

93

124

155

186

217

248

279

310

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(b) Increasing poset height

Figure 11: Effect of poset structure.

For example, with 4 numerical attributes and 1 set-valued
attribute, the number of skyline points is 8831 with 9990
false positives. Moreover, adding an additional set attribute
increases the skyline points more rapidly than adding a nu-
merical attribute. For example, in Fig. 10(b), an additional
set-valued attribute alone increases the number of skyline
points to 9203. As illustrated from these figures, the runtime
of the algorithms increases with more numerical/set-valued
attributes although their relative performance remain sim-
ilar. Notice that SDC can be slower than BBS

+ after 60%
of the answers are output. Furthermore, its progressive-
ness drops with increasing number of skyline points. This
is because there are now more skyline points belonging to
subsets Sp,p and Sp,c (they cannot be output immediately),
resulting in more comparisons and thus, the progressiveness
drops. Finally, notice in Fig. 10(c) that BNL

+’s performance
is worse than BNL. Since each set-valued attribute is trans-
formed to two numerical attributes, BNL

+ now need to find
the skyline for a 6 numerical attributes dataset which by
itself, is time-consuming. Coupled with a post-processing
step using actual set representation, this results in a poorer
performance compared to BNL.

Finally, by looking at the time 100% of the results are

produced, we observe the algorithms’ performance in terms
of overall runtime. We can see that SDC

+ has the best
overall runtime as it incurs fewer dominance comparisons
compared to the rest.

5.2 Effect of poset structure
Size of poset. Fig. 11(a) shows the performance of the
various algorithms when we increase the size of the poset
from the default value of 450 nodes (in Fig. 10(a)) to 1000
nodes. We observe that the performance of our proposed
algorithms remain relatively unchanged except for a slight
increase in runtime for both SDC and SDC

+. Increasing the
size of the poset has the effect of increasing the number of
skyline points. For example, there are 1051 skyline points
and 1881 false positives in this experiment. This, in turn,
affects the runtime of the algorithms. We can see that BNL

+

is most significantly affected and performs worse than BNL.
Height of poset. Fig. 11(b) shows the performance of
the various algorithms when we increase the height of the
poset to 13 by generating a tall and relatively sparse poset
to make the number of answers comparable to Fig. 10(a).
This resulted in 25 strata for SDC

+. Again, the relative per-
formance is unchanged compared to previous experiments.
However, notice that both BNLand BNL

+ have a higher run-
time. This is because a poset with more levels results in sets
whose cardinalities are larger. Consequently, the set com-
parisons become more expensive and this has the largest
impact on both BNLand BNL

+.

5.3 Other experiments
Effect of Large Dataset Fig. 12(a) shows the results when
the size of the data set is increased to one million data
points. We see that the overall runtime for all the algorithms
increased significantly due to the need to process more data
tuples. However, both SDC and SDC

+ still maintain an ad-
vantage over the rest by being able to produce nearly all the
answers before the rest do so.

Effect of Anti-Correlated Attributes Fig. 12(b) shows
the results when the totally-ordered attributes are anti-correlated.
This means that if a numerical attribute of a data point has
a low value for one attribute, it would have another attribute
with high value and so on. From the figure, the relative per-
formance of the various algorithms remain unchanged except
for higher runtime. This is because anti-correlation increases
the number of skyline points. For example, in this exper-
iment, there are 898 answers compared to 662 when the
attributes are independent. With more skyline points, the
overall runtime of all algorithms are thus higher compared
to the case when independent attributes are used.

Effect of Optimization Schemes Fig. 12(c) compares
the effect of optimizing the dominance classification (dis-
cussed in Section 4.7) for SDC

+. From the figure, we can
see that SDC

+-MaxPC has only slight improvement over
SDC

+ while a more significant improvement is observed in
SDC

+-MinPC. This significant improvement is due to the
decrease in the number of dominance comparisons involving
data points in the category (c, c). We also conducted experi-
ments comparing SDC against SDC-MinPC and SDC-MaxPC,
and our results (not shown) indicate that the impact of opti-
mized dominance classification on SDC is not too significant.

We have also studied the effect of the various optimiza-
tion techniques discussed in Sections 4.5.2-4.5.4 on SDC (re-

0

52

104

156

208

260

312

364

416

468

520

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(a) Increasing size of data set

0

27

54

81

108

135

162

189

216

243

270

0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+
SDC

SDC+

(b) Anti-correlated dataset

0

4

8

12

16

20

24

28

32

36

40

0 20 40 60 80 100

tim
e

(s
)

% of answers output

SDC+
SDC+-maxPC
SDC+-minPC

(c) Optimizing dominance clas-
sification

Figure 12: Results of other experiments.

sults not shown). Among the three optimizations, optimiz-
ing dominance comparisons has the most impact and could
improve the performance by as much as a factor of 18. Min-
imizing dominance comparison turns out to have little im-
pact with only marginal improvement. While the progres-
sive optimization alone does not contribute to performance
improvement, it is the key to progressiveness.

6. CONCLUSIONS
In this paper, we have addressed the novel problem of eval-

uating skyline queries with partially-ordered attributes. Our
solution transforms each partially-ordered attribute into a
two-integer domain that enables us to exploit index-based
algorithms to compute skyline queries on the transformed
space. Based on the framework, we have proposed three
novel algorithms: BBS

+ is a straightforward extension of
BBS, and SDC and SDC

+ are optimized versions that han-
dle false positives and facilitates progressive evaluation. Our
extensive performance study show that our proposed algo-
rithms outperform existing techniques by a wide margin (be-
tween a factor of 2 and 16), with SDC

+-MinPC, which is
SDC

+ using the MinPC strategy to optimize dominance
classification, giving the best performance in terms of both
response time as well as progressiveness.

For future work, we intend to explore the tradeoffs of using
different domain mapping functions, and examine the evalu-
ation of other skyline-related queries that involved partially-
ordered domains. We are also exploring efficient methods to
update the domain mappings and indexes when the data
points are modified.

7. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

management of transitive relationships in large data
and knowledge bases. In SIGMOD’89.

[2] R. Agrawal and E. Wimmers. A framework for
expressing and combining preferences. In SIGMOD’00.

[3] W. Balke, U. Güntzer, and X. Zheng. Efficient
distributed skylining for web information systems. In
EDBT’04.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE’01.

[5] M. Carey and D. Kossmann. On saying “enough
already!” in SQL. In SIGMOD’97.

[6] J. Chomicki. Querying with intrinsic preferences. In
EDBT’02.

[7] J. Chomicki. Preference formulas in relational queries.
ACM TODS, 24(4), 2003.

[8] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
PREFER: a system for the efficient execution of
multi-parametric ranked queries. In SIGMOD’01.

[9] W. Kießling. Foundations of preferences in database
systems. In VLDB’02.

[10] W. Kießling and G. Köstler. Preference SQL - design,
implementation, experiences. In VLDB’02.

[11] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: an online algorithm for skyline queries. In
VLDB’02.

[12] H. Kung, F. Luccio, and F. Preparata. On finding the
maxima of a set of vectors. JACM, 22(4), 1975.

[13] J. Matousek. Computing dominances in En.
Information Processing Letters, 38(5):277–278, 1991.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In SIGMOD’03.

[15] C. H. Papadimitriou and M. Yannakakis.
Multiobjective query optimization. In PODS’01.

[16] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, 1985.

[17] I. Stojmenovic and M. Miyakawa. An optimal parallel
algorithm for solving the maximal elements problem
in the plane. Parallel Computing, 7(2), June 1988.

[18] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB’01.

[19] R. Torlone and P. Ciaccia. Which are my preferred
items? In Workshop on Recommendation and
Personalization in E-Commerce, May 2002.

[20] Y. Zibin and J. Y. Gil. Efficient subtyping tests with
PQ-encoding. In OOPSLA’01.

