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ABSTRACT
Given a d-dimensional data set, a point p dominates another
point q if it is better than or equal to q in all dimensions and
better than q in at least one dimension. A point is a skyline
point if there does not exists any point that can dominate
it. Skyline queries, which return skyline points, are useful
in many decision making applications.

Unfortunately, as the number of dimensions increases, the
chance of one point dominating another point is very low.
As such, the number of skyline points become too numerous
to offer any interesting insights. To find more important
and meaningful skyline points in high dimensional space,
we propose a new concept, called k-dominant skyline which
relaxes the idea of dominance to k-dominance. A point p
is said to k-dominate another point q if there are k (≤ d)
dimensions in which p is better than or equal to q and is
better in at least one of these k dimensions. A point that is
not k-dominated by any other points is in the k-dominant
skyline.

We prove various properties of k-dominant skyline. In
particular, because k-dominant skyline points are not tran-
sitive, existing skyline algorithms cannot be adapted for k-
dominant skyline. We then present several new algorithms
for finding k-dominant skyline and its variants. Extensive
experiments show that our methods can answer different
queries on both synthetic and real data sets efficiently.

1. INTRODUCTION

1.1 Motivation
Given a d-dimensional data set, a point p is said to dom-

inate another point q if it is better than or equal to q in all
dimensions and better than q in at least one. A skyline is
a subset of points in the data set that are not dominated
by any other points. Skyline queries, which return skyline
points, are useful in many decision making applications that
involve high dimensional data sets. We give two examples
here.
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Example 1.1 Cell Phone Finder
Consider a person looking for a suitable cell phone at a web-
site1. He/she may care about a large number of features
including weight, size, talk time, standby time, screen size,
screen resolution, data rate and camera quality in order to
pick one that suits him/her. There are too many phones
at the website for the user to examine them all manually.
Computing the skyline over these cell phone features may
remove a large number of cell phones whose features are
“worse” than those in the skyline, hopefully leaving only
a manageable number of candidates for manual evaluation.

�

Example 1.2 Movie Rating
Consider a person looking for top-rated movies based on the
ratings given by other users2. In this case, the rating of each
user correspond to a dimension in the data set and given the
large number of users, the data set being handled is obvi-
ously a high-dimensional one. The skyline of the data set
will contain top-rated movies while movies that are consis-
tently ranked worse than others in the data set are pruned
away. �

We note that in both the above cases, ranking can be done
by providing some preference functions [1, 8] and requesting
users to provide some weight assignments for their preferred
features or more trusted users in the latter case. However
providing such weight assignments for a large number of di-
mensions is not always easy without any initial knowledge
about the data. For example, it is not clear how weight as-
signments can be provided to aggregate the talk time and
camera quality of a phone into one grade. In fact, as stated
in the seminal paper on skyline operator [2], the aim of pro-
viding the skyline to the user is to help them to determine
the weight assignment.

Computing skylines in high dimensional data sets is chal-
lenging because of the large number of skyline points [9, 14,
17]. On the movie ranking website, for example, it is nearly
impossible to find a movie which is ranked lower than an-
other movie by all the users. Such a blowup in the answer
set not only renders the skyline operator worthless (with
respect to the desired pruning of candidates), but it also re-
sults in high computational complexity for both index and
non-index methods as many pairwise comparisons are per-
formed without effecting any pruning.

1http://www.phonescoop.com/phones/finder.php?m=e
2http://movielens.umn.edu/
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1.2 k-Dominant Skyline and its Variants
The primary cause for the skyline set size blow up is the

definition of dominance, which is rather stringent in that
p must be better or equal to q in all dimensions before q
can be eliminated from the skyline. Using our movie rating
as an example, this means that movie p is only considered
better than movie q if and only if p is rated higher or equal
to q by all the users. While this is quite possible when
there is a small number of users (say 5 users), this is much
more unlikely for a larger number of users (say 100) as all it
takes is for just one outlier opinion from among the 100 to
invalidate the dominance relationship.

It maybe reasonable to consider movie p better than q if
say, 98 out of 100 users, consider it to be better. With this
intuition, a point p is said to k-dominate another point q if
there are k (≤ d) dimensions in which p is better than or
equal to q and is better in at least one of these k dimensions.
A point that is not k-dominated by any other points is said
to be in the k-dominant skyline. Obviously, the conventional
skyline is a special case of the k-dominant skyline, where k =
d. The chance of a point being excluded from a k-dominant
skyline is higher than the conventional skyline since more
points will be k-dominated than d-dominated. By setting k
to an appropriate value, we hope to find a small set of skyline
points that are dominant in the sense that they remain in the
skyline even with the more relaxed notion of k-dominance.
Note that the set of k-dominant skyline points is a subset
of the original skyline, which we will henceforth refer to as
free skyline for clarity.

Unfortunately, algorithms developed for finding the orig-
inal skyline are not easily adapted for finding k-dominant
skyline, except for the obvious case where k = d. This is
because the transitive property of the original dominance
relationship no longer holds, i.e., for any k < d it is possible
to have three points p,q,r such that p k-dominates q, q k-
dominates r and r k-dominates p, forming a cyclic dominant
relationship. Thus, we cannot ignore a point during process-
ing even if it is k-dominated because that particular point
might be needed to exclude another point from the skyline
through another k-dominant relationship. Existing skyline
computation algorithms do not satisfy this requirement.

In view of this, we propose three algorithms in this paper
for finding k-dominant skyline. The first is a one-scan al-
gorithm which uses the property that a k-dominant skyline
point cannot be worse than any free skyline on more than k
dimensions. This algorithm maintains the free skyline points
in a buffer during a scan of the data set and uses them to
prune away points that are k-dominated. As the whole set
of free skyline points can be large, we avoid keeping all of
them in a buffer with a two-scan algorithm. In the first
scan, a candidate set of dominant skyline points is retrieved
by comparing every point with a set of candidates. The sec-
ond scan verifies whether these points are truly dominant
skyline points. This method turns out to be much more
efficient than the one-scan method. We provide some theo-
retical analysis on the reason for its superiority. Finally, we
propose an algorithm that is motivated by the rank aggrega-
tion algorithm proposed by Fagin et al.[5], which pre-sorts
data points separately according to each dimension and then
“merges” these ranked lists.

A fundamental question is the choice of value for k. We
prove in this paper that it is possible to have an empty
k-dominant skyline even for k = d − 1 due to the cyclic

property. On the other hand, it is still possible to have
too many k-dominant skyline points if k is too large. In
order to guarantee a small but non-empty set of dominant
skyline points, we propose a new type of query, called top-δ
dominant skyline query. The aim is to find the smallest k
such that there are more than δ k-dominant skyline points.
We show that the algorithms proposed for dominant skyline
query can be used to answer top-δ query easily.

In some applications, some attributes are more important
than other. When the user has an opinion on the relative
importance of the different dimensions, we permit the user
to express this opinion in the form of relative weights. We
extend the k-dominant skyline to the weighted case where d
positive weights w1,...,wd are assigned to the d dimensions
and a point is said to be a weighted w-dominant skyline
point if there does not exist any point that can dominate it
on a subset of dimensions with their sum-of-weight assign-
ment over w.

1.3 Contributions
Our contributions in this paper are as follows:

1. We introduce a new concept, called k-dominant skyline
to alleviate the effect of dimensionality curse on skyline
query in high dimensional spaces (Sec. 3).

2. We propose three different algorithms to solve the k-
dominant skyline problem (Sec. 4).

3. We modify the k-dominant skyline algorithm to answer
the top-δ dominant skyline query (Sec. 5).

4. We extend the concept of k-dominant skyline to weighted
space and show how our algorithms work on such spaces
(Sec. 6).

5. We show the computational efficiency benefits of these
new concepts through a comprehensive experimental
study (Sec. 7).

2. RELATED WORK
The basic idea of skyline queries came from some old re-

search topics like contour problem [12], maximum vectors
[10] and convex hull [15].

Borzonyi et al. [2] first introduced the skyline operator
into relational database systems, and proposed three algo-
rithms: the block nested loops (BNL), divide-and-conquer,
and B-tree-based schemes.

Chomicki et al. [4] proposed an algorithm named Sort-
Filter-Skyline (SFS) as a variant of BNL. SFS requires the
dataset to be pre-sorted according to some monotone scoring
function. Since the order of the points can guarantee that
no point can dominate points before it in the order, the
comparisons of tuples are simplified. In [6], Godfrey et al.
further improved the efficiency of this method by combining
the final pass of the external pre-sort with the first skyline-
filter pass.

In [16], Tan et al. proposed two progressive processing
algorithms: Bitmap and Index. In the Bitmap approach,
every dimension value of a point pt is represented by a few
bits. By applying bit-wise and operation on these vectors,
a given point can be checked if it is in the skyline without
referring to other points. The Index approach partitions
the whole data set into some lists, every of which contains
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points with smallest value on the same dimension among
all the dimension values. Every list is further divided into
batches according the index value of the points. Within each
batch, local skyline is computed by comparing every points
with global skyline and is merged into the global skyline
after computation.

Kossmann et al. [9] proposed a Nearest Neighbor (NN)
method to process skyline queries progressively. By index-
ing the dataset by an R∗-tree, the method uses the result
of nearest neighbor query to partition the space recursively.
The nearest neighbor to the origin in the partitioned re-
gion must be part of the skyline. Papadias et al. [13, 14]
proposed a new progressive algorithm named Branch-and-
Bound Skyline (BBS) based on the best-first nearest neigh-
bor (BF-NN) algorithm [7]. Instead of searching for nearest
neighbor again and again, it directly prunes using the R∗-
tree structure.

Yuan et al. [17] proposed two methods that efficiently
find the skylines of all subspaces, in bottom-up and top-
down manner respectively. Their studies aim to find skyline
in a subset of dimensions specified by the users. This is in
contrast with our work which directly determines a set of
interesting skyline points from the full set of dimensions.
In [11], the concept of dominance is generalized to define
three types of queries called dominant relationship queries
(DRQs) to support microeconomic data mining. A data
cube is proposed to answer DRQs efficiently. We believe
that our work here will eventually be useful for this purpose
as well.

To find the top objects under some monotone aggregation
function, Fagin proposed three methods, FA, TA and NRA
in [5] which are optimal in some cases. The FA algorithm
accesses in parallel the sorted lists on every dimension. We
can find the top-k points when there is a set of at least k
points such that each of them has been seen in each list.
The TA algorithm improves the FA algorithm by setting a
threshold by the function from all the smallest value that
have seen from all the lists. The algorithm stops when the
current top-k points all have aggregation value larger than
the threshold. The NRA algorithm works with only sorted
access. The smallest values seen in all dimension lists are
used to calculate the upper bound on the points not seen.
We can get top-k result without exact aggregation value,
when the lower bounds on the current top-k points are larger
than the upper bound on the (k+1)th point.

More recently, there has been work on identifying interest-
ing skylines to address the problem of having too many sky-
line points particularly when the data is high dimensional.
The concept of the skyline frequency of a data point was pro-
posed in [3], which measures the number of subspaces that
a point is a skyline point. Our proposal of k-dominance
offers a different notion of interestingness from skyline fre-
quency. For example, consider two data points p and q on
a 3-dimensional data space S = {s1, s2, s3}, where p is a
skyline point in the four subspaces {s1}, {s1, s2}, {s1, s3},
and {s1, s2, s3}; while q is a skyline point in the four sub-
spaces {s1, s2}, {s1, s3}, {s2, s3}, and {s1, s2, s3}. Note that
although both p and q have the same skyline frequency of
4, q is “stronger” in terms of k-dominance since q is a 2-
dominant skyline but p is only a 3-dominant skyline. On the
other hand, it is also possible for two points to be equally
“strong” in terms of k-dominance but differ in their skyline
frequencies.

Point s1 s2 s3 s4 s5 s6

p1 4 4 4 2 2 2
p2 2 2 2 4 4 4
p3 3 3 3 1 3 3
p4 1 1 1 5 1 1
p5 2 2 2 3 3 3

Figure 1: Example Data Set, D

3. DEFINITION AND ANALYSIS

3.1 Problem Definition
Given a d-dimensional space S = {s1, s2, · · · , sd}, a set

of points D = {p1, p2, . . . , pn} is said to be a data set on
S if every pi ∈ D is a d-dimensional data point on S. We
use pi.sj to denote the jth dimension value of point pi. For
each dimension si, we assume that there exists a total order
relationship, denoted by �i, on its domain values. Here,
�i can be ‘<’ or ‘>’ relationship according to the user’s
preference. For simplicity and without loss of generality, we
assume each �i represents ‘>’ in the rest of this paper.

Definition 3.1. dominate
A point pi is said to dominate another point pj on S if and
only if ∀ sk ∈ S, pi.sk ≥ pj .sk and ∃ st ∈ S, pi.st > pj .st.

Definition 3.2. skyline, SP (D, S)
A point pi is a skyline point on S if and only if there does

not exist a point pj �= pi dominating pi. We use SP (D, S)
to denote the set of skyline points in data set D on space S.

Definition 3.3. k-dominate
A point pi is said to k-dominate pj if and only if ∃ S′ ⊆

S, |S′| = k, ∀ sr ∈ S′, pi.sr ≥ pj .sr and ∃ st ∈ S′, pi.st >
pj .st.

Definition 3.4. k-dominant skyline, DSP (k, D, S)
A point pi is a k-dominant skyline point, if and only if there
does not exist any point pj �= pi in the data set that pj k-
dominates pi. We use DSP (k, D, S) to denote the set of all
k-dominant skyline points in D on space S.

When k = d, the k-dominant dominance relationship is
equivalent to the original dominance relationship defined in
definition 3.1. The two main problems that we want to solve
are as follows:

Problem 1. Given a specified k, data set D and dimension
space S, find DSP (k, D, S).

Problem 2. Given a threshold δ, data set D and dimension
space S, let k′ be the smallest k which satisfies |DSP (k, D, S)|
≥δ if SP (D, S) > δ, otherwise k′ = d. We will use the term
top-δ dominant skyline to refer to DSP (k′, D, S). Find
DSP (k′, D, S).

Example 3.1 Consider the 6-dimensional data set D =
{p1, · · · , p5} in Fig. 1. There are four free skyline points in
D: p1, p2, p3, and p4. Among these, only p1, p2, and p3

are also 5-dominant skyline points; p4 is 5-dominated by p2.
The top-2 dominant skyline points are p1 and p2 since they
are both 4-dominant skyline points while p3 is not. We will
use this data set as a running example in the rest of this
paper. �
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point s1 s2 s3 s4

p1 4 4 4 4
p2 8 3 3 3
p3 7 8 2 2
p4 6 7 8 1

Figure 2: Cyclic dominance relationship example

3.2 Analysis
In this section, we illustrate several important properties

of dominant skyline points. We first formally show that
lowering k will always result in smaller or equal number of
k-dominant skyline points.

Lemma 3.5. If pi k + 1-dominates pj, then pi must k-
dominate pj.

Theorem 3.6. A point pi ∈ DSP (k, D, S), then pi ∈
DSP (k + 1, D, S).

Corollary 3.7. |DSP (k, D, S)| ≤ |DSP (k + 1, D, S)|
From the last corollary, we can see that the set of dom-

inant skyline points decreases monotonically with the de-
crease of the parameter k and thus we are sure that a suffi-
ciently small k can reduce the number of k-dominant skyline
to a manageable size for presentation to users. However,
one worries that too small a k value might find points which
do not make sense semantically to users. For example, if
k < d/2, this will mean that a point p can k-dominate an-
other point q even if it is only better in fewer than half
the dimensions. We alleviate this worry by showing that k-
dominant skyline points for k < (d + 2)/2 are in fact rather
easy to interpret.

Theorem 3.8. If k < (d + 2)/2, any pair of k-dominant
skyline points must have the same values on at least d−2k+2
dimensions.

The last theorem tells us that when k is too small, either
1) there is only one k-dominant skyline point which has very
strong dominant power in that it dominates all the points on
many dimensions or 2) there are multiple k-dominant skyline
points which are equal on a number of dimensions and have
different relative ordering on the remaining dimensions.

We will next motivate the need to look for a top-δ domi-
nant skyline points. The following theorem shows that there
may not be any k-dominant skyline point in a data set for
any k < d.

Theorem 3.9. For any k < d (d ≥ 2) and a d-dimensional
space S, there exists a data set D with size |D| ≥ d such that
DSP (k, D, S) = ∅.

Example 3.2 Fig. 2 shows an example data set that exhibits
the cyclic dominance relationship when k = 3. Specifically,
we have pi 3-dominates pi+1, ∀ i ∈ [1, 3], and p4 in turn
3-dominates p1. �

4. K-DOMINANT SKYLINE ALGORITHMS
Due to the possibility of cyclic dominance relationships,

the existing algorithms for computing free skylines can not

be used directly for computing k-dominant skyline points.
In this section, we present three novel algorithms, namely,
One-Scan algorithm, Two-Scan algorithm, and Sorted Re-
trieval algorithm, to compute k-dominant skyline points.
Each algorithm takes as input a d-dimensional data set D
(over a set of dimensions S) and a parameter k, and outputs
the set of k-dominant skyline points in D.

4.1 One-Scan Algorithm
Our first approach to compute k-dominant skyline points

from an input data set D (over a set of dimensions S) is
similar in spirit to the nested-loop approach [2] in that it
makes one sequential scan of the data set. The algorithm
(shown in Algorithm 1) is based on the following two key
properties.

Lemma 4.1. Consider a data point p ∈ D that is not a
k-dominant skyline point. Then

P1. There must exist a free skyline point in D that k-
dominates p.

P2. It is possible for p not to be k-dominated by any k-
dominant skyline point.

To determine if a point p is k-dominant, property P2 im-
plies that it is not sufficient to use only k-dominant skyline
points to compare against p since it is possible for p to be
not k-dominant even though it is not k-dominated by any
of the k-dominant points. On the other hand, property P1
implies that it is sufficient to compare p against the set of
free skyline points (instead of all the points in D) to detect
if a point p is k-dominant. Thus, based on Lemma 4.1, our
algorithm computes k-dominant skyline points by actually
computing the free skyline points in D and using them to
eliminate non-k-dominate skyline points. Specifically, two
sets of intermediate points are maintained as D is being
processed: (1) R stores the set of intermediate k-dominant
skyline points in D, and (2) T stores the set of intermediate
skyline points in D that are not k-dominant (i.e., not in R).
Together, R ∪ T gives the set of skyline points in D. Since
T is used only for pruning purpose, we can minimize the
size of T by storing only the unique skyline points; i.e., a
new (non-k-dominant) skyline p is added to T only if p �= p′

∀ p′ ∈ T .
The details of One-Scan algorithm are as follows. For

each point p in D, p is first compared against points in T
(steps 5 to 11). If a point p′ ∈ T is dominated by p, then
p′ (which is not a skyline) is removed from T ; otherwise,
if p′ dominates p (i.e., p is not a skyline) or p = p′ (i.e., p
is not unique), then p can be safely ignored. However, if p
is a unique skyline, then p is further compared against the
points in R (steps 13 to 22) to check if it is k-dominant. For
each p′ ∈ R, if p k-dominates p′, then p′ is moved from R
to T ; and if p′ k-dominates p, then p is not k-dominant. At
the end of comparing p against the points in R, p is inserted
into R if p is k-dominant; otherwise, p is inserted into T
since p is a unique skyline. Once all the points in D have
been processed, R contains the set of all k-dominant skyline
points in D.

As an additional preprocessing optimization, the points in
D can be first sorted in non-ascending order of the sum of all
their dimension values (step 1). The purpose of this heuris-
tic, which was first proposed in [4], is to try to maximize the
number of skyline points that occur before the non-skyline
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Algorithm 1 One-Scan Algorithm (D, S, k)

1: sort D in non-ascending order of sum of point’s dimension
values

2: initialize set of k-dominant skyline points R = ∅
3: initialize set of unique non-k-dominant skyline points T = ∅
4: for every point p ∈ D do
5: initialize isUniqueSkyline = true
6: for every point p′ ∈ T do
7: if (p dominates p′) then
8: remove p′ from T
9: else if (p′ dominates p) or (p = p′) then
10: isUniqueSkyline = false
11: break out of inner for-loop
12: if (isUniqueSkyline) then
13: initialize isDominant = true
14: for every point p′ ∈ R do
15: if (p′ k-dominates p) then
16: isDominant = false
17: if (p k-dominates p′) then
18: move p′ from R to T
19: if (isDominant) then
20: insert p into R
21: else
22: insert p into T
23: return R

points in D so that the non-skyline points are eliminated as
early as possible thereby reducing the overhead of maintain-
ing them before they are pruned.

Example 4.1 Applying the One-Scan algorithm (with k =
5) on the data set D in Fig. 1, points p1, p2, and p3 will
each be inserted into R. However, p4 will be inserted into T
since it is 5-dominated by p1. Thus, the algorithm returns
{p1, p2, p3} as the set of 5-dominant skyline points. �

4.2 Two-Scan Algorithm
In the One-Scan algorithm, free skyline points (i.e., T )

need to be maintained to compute the k-dominant skyline
points. Since the set of free skyline points could be much
larger than the set of k-dominant skyline points, maintain-
ing T can incur large space and computation overhead. To
overcome this limitation, we present our second approach
(shown in Algorithm 2) which avoids the need to maintain
T by scanning D twice.

In the first scan of D (steps 1 to 10), a set of candidate
k-dominant skyline points, R, is computed progressively by
comparing each point p ∈ D against the computed points in
R. If a point p′ ∈ R is k-dominated by p, then p′ is removed
from R. At the end of the comparison against R, p is added
into R if it is not k-dominated by any point in R. After
the first scan of D, R contains the candidate k-dominant
skyline points. Recall that false positives can exist in R due
to property P2 in Lemma 4.1.

To eliminate the false positives produced by the first scan,
a second scan of D (steps 11 to 14) is necessary. To deter-
mine whether a point p′ ∈ R is indeed k-dominant, it is
sufficient to compare p′ against each point p ∈ D − R that
occurs earlier than p′ in D, since those points that occur
later than p′ in D have been already compared against p′

in the first scan. Note that this optimization can be imple-
mented by associating each point with its position in D, and
using this information to avoid unnecessary comparisons.

The efficiency of the Two-Scan approach is dependent on
how effective are the k-dominant points in pruning non-

Algorithm 2 Two-Scan Algorithm (D, S, k)

1: initialize set of k-dominant skyline points R = ∅
2: for every point p ∈ D do
3: initialize isDominant = true
4: for every point p′ ∈ R do
5: if (p′ k-dominates p) then
6: isDominant = false
7: if (p k-dominates p′) then
8: remove p′ from R
9: if (isDominant) then
10: insert p into R
11: for every point p ∈ D do
12: for every point p′ ∈ R, p′ �= p do
13: if (p k-dominates p′) then
14: remove p′ from R
15: return R

dominant skyline points during the first scan. If the number
of false positives produced by the first scan is small, then
the performance of the second scan and hence the overall ap-
proach will be good. The following result gives an indication
of the pruning ability of dominant skyline points.

Theorem 4.2. Consider a d-dimensional data set D with
more than 2d points such that the dimensions are pairwise
independent, and no two points in D have the same value
for the same dimension. If a data point p ∈ D can not k-
dominate any point in D, then p is a k-dominant skyline

point with probability less than e−2d−k

.

The above theorem shows that when k is small enough, it
is very unlikely that a dominant skyline point does not k-
dominate some other point. Thus, this indicates that each
k-dominant skyline is likely to prune off many false positives
during the first scan of D. For example, when k ≤ 3d/4, the

above probability is smaller than e−2d/4
. For d = 20, this

probability works out to be 1.27 × 10−14, which is a very
small number.

Example 4.2 Applying the Two-Scan algorithm (with k =
4) on the data set D in Fig. 1, we note that both p1 and p2

(which are indeed 4-dominant skyline points) will be inserted
into R at the end of the first scan regardless of the order
of the points in D. This example demonstrates the effective
pruning ability of the dominant skyline points in eliminating
non-dominant skyline points. �

4.3 Sorted Retrieval Algorithm
Our third approach is inspired by the ideas in [5]. The

data points in D are first sorted (in non-ascending order)
for each dimension si ∈ S, and each sorted set of points
is stored in an array Di[1 · · · |D|] (steps 1 to 3)3. Thus,
Di[j].si ≥ Di[j + 1].si, ∀ i ∈ [1, |S|], ∀ j ∈ [1, |D|). Each
sorted array Di is associated with a cursor, denoted by ci,
which is initialized to point to the first array entry (step
3). The algorithm maintains two sets: (1) R, the set of k-
dominant skyline points (which is initialized to empty); and
(2) T , the set of candidate k-dominant skyline points (which
is initialized to D). Non-k-dominant skyline points in T are
progressively eliminated from T , while k-dominant skyline
points in T are progressively moved to R.

3For space efficiency, instead of storing data points in Di,
the array entries can simply store pointers to the points in
D.
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Unlike the first two approaches, which sequentially scans
D to compute dominant skyline points, the Sorted Retrieval
approach iteratively chooses one of the dimensions si (using
a function FindNextDimensions in step 9), and processes
the batch of data points in Di, denoted by D′, that have
the same si value as Di[ci] (steps 10 to 20). The iterative
processing terminates once T becomes empty. Since each
data point p ∈ D is stored a total of |S| times in the sorted
arrays, each point can potentially be processed in |S| differ-
ent iterations. We use a counter, denoted by count(p), to
keep track of the number of times that a point p has been
processed. The counter values are initialized to 0 (steps 4
and 5). In each iteration, the selected batch of points D′

is processed in two phases. The first phase (steps 11 to 16)
uses D′ to eliminate points in T that are determined to be
non-dominnant. Specifically, if p′ ∈ D′ is being processed
for the first time (step 12), then p′ is used to eliminate the
points in T that are k-dominated by p′ (steps 13 to 15). The
counter for each p′ ∈ D′ is updated at the end of the first
phase (step 16).

The second phase (steps 17 to 19) moves the points in
T that are determined to be k-dominant skyline points to
R. Specifically, a point p′ ∈ D′ is determined to be a k-
dominant skyline point if it satisfies two conditions: (C1) p′

has not yet been k-dominated by any processed point (i.e.,
p′ is still in T ); and (C2) p′ has been processed d − k + 1
times (i.e., counter(p′) = d−k+1). The correctness of these
conditions is based on the following observation: if a point
p′ is k-dominated by some other point p, then p′ can be pro-
cessed in an earlier batch of points than p in at most d − k
iterations. This is because the definition of k-dominance im-
plies that p must be processed in an earlier batch than p′ or
in the same batch as p′ in at least k iterations. Therefore,
condition (C2) implies that any point p that could possibly
k-dominate p′ would have been processed at least once, and
together with condition (C1), it means that p′ is guaranteed
to be a k-dominant skyline point. At the end of each itera-
tion, the cursor ci is updated accordingly to beyond the last
processed point in Di (step 20).

The performance of this approach depends crucially on the
choice of the heuristic function FindNextDimension which
selects the next dimension and hence sorted array to be
processed. There are several straightforward options for this
function, such as round-robin iteration and one-dimensional
iteration. In Algorithm 3, we use the round-robin iteration
heuristic which chooses the dimension that has been selected
the least often; ties are broken by selecting the dimension
with the smallest dimension index number.

Example 4.3 Applying the Sorted Retrieval approach (with
k = 4) on D in Fig. 1, we first sort D to obtain D1, · · · , D6 as
shown in Fig. 3, where for clarity, points having the same si

values are enclosed within braces. The first three iterations
all select dimension s1. At the end of the first iteration, the
points p3 and p4 (which are 4-dominated by p1) are removed
from T , count(p1) = 1, and c1 = 2. At the end of the second
iteration, we have count(p1) = 2, and c2 = 2. At the end of
the third iteration, we have count(p1) = 3; since count(p1)
= d − k + 1 = 3, the algorithm concludes that p1 is a 4-
dominant point and p1 is moved from T to R. The point
p5 is eliminated from T (as it is 4-dominated by p2) at the
end of the fifth iteration. Finally, at the end of the tenth
iteration, count(p2) = 3 and p2 is moved from T to R as a
4-dominant point. Since T becomes empty, the processing

Algorithm 3 Sorted Retrieval (D, S, k)

1: for each dimension si ∈ S do
2: sort D in non-ascending order of each point’s si value and

store the sorted points in array Di[1 · · · |D|]
3: initialize the cursor for Di, ci = 1
4: for each p ∈ D do
5: initialize count(p) = 0
6: initialize the set of k-dominant points R = ∅
7: initialize T = D
8: while (T �= ∅) do
9: si = FindNextDimension (c1, · · · , c|S|)
10: let D′ = {Di[ci], Di[ci + 1], · · · , Di[ci + m − 1]},

where Di[ci + m].si �= Di[ci].si, and
Di[ci].si = Di[ci + 1].si = · · · = Di[ci + m − 1].si

11: for each p′ ∈ D′ do
12: if (count(p′) = 0) then
13: for each p ∈ T do
14: if (p′ k-dominates p) then
15: remove p from T
16: count(p′) = count(p′) + 1
17: for each p′ ∈ D′ do
18: if (p′ ∈ T ) and (count(p′) = d − k + 1) then
19: move p′ from T to R
20: ci = ci + m
21: return R

Function FindNextDimension(c1, · · · , c|S|)
1: return the dimension si ∈ S with the smallest ci and smallest

i

terminates and the algorithm returns R = {p1, p2} as the
answer. �

4.3.1 Analysis
In this section, we use the concept of instance optimality

[5] to show that our proposed round-robin iteration method
is instance optimal with a constant factor.

Let A be a class of algorithms, and let D be a class of
legal inputs with at most O(1) points having same value on
any dimension. If the time cost of the algorithm A ∈ A on
data D ∈ D is C(A, D), an algorithm Ai ∈ A is said to be
instance optimal if it satisfies the following condition.

Definition 4.3. [5] An algorithm Ai ∈ A is instance op-
timal in A on D if C(Ai, D) = O(C(Aj , D)) for any Aj ∈ A
and D ∈ D.

In the following part of the section, we prove that round-
robin iteration is such an instance optimal iteration method
based on the sorted arrays.

Lemma 4.4. If a point p can be pruned by any iteration
method after t comparisons, it can be pruned by round-robin
after at most O(td) comparisons.

Lemma 4.5. If any iteration method can assert that point
p is a k-dominant skyline point after t comparisons, round-
robin method can assert it after at most O(td) comparisons.

Theorem 4.6. Round-robin iteration is instance optimal
in the iteration method class A and data sets D.

5. TOP-δ DOMINANT SKYLINE
The goal of computing k-dominant skyline points is to re-

duce the number of interesting points returned by the skyline
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Figure 3: Sorted Data Sets of D from Fig. 1

Algorithm 4 Ext-One-Scan Algorithm (D, S, δ)

1: initialize set of top-δ dominant skyline points R = ∅
2: for every point p ∈ D do
3: initialize maxkdom(p) = 0
4: for every point p′ ∈ R do
5: maxkdom(p) = max{maxkdom(p), maxDom(p′, p)}
6: maxkdom(p′) = max{maxkdom(p′), maxDom(p, p′)}
7: if (maxkdom(p′) = |S|) then
8: remove p′ from R
9: else if (maxkdom(p) = |S|) then
10: break out of inner for-loop
11: if (maxkdom(p) < |S|) then
12: insert p into R
13: return the δ points in R with smallest maxkdom(.) values

operator. However, the number of dominant skyline points
can still be large when k is not sufficiently small. On the
other hand, if k is too small, no (or too few) k-dominant
skyline points may be returned. To avoid the difficulty of
choosing the right value of k, we consider instead computing
top-δ dominant skyline queries, which are queries to find the
smallest k such that there are at least δ number of dominant
skyline points (i.e., |DSP (k, D, S)| ≥ δ).

In this section, we describe how to extend the dominant
skyline algorithms in the previous section to evaluate top-
δ dominant skyline queries. The input parameters to each
algorithm are D, S, and δ (instead of k).

Given two points p and p′, we use maxDom(p, p′) to de-
note the largest value k ∈ [0, |S|] such that p k-dominates
p′.

5.1 One-Scan Algorithm
The key idea behind the extension of One-Scan approach

(shown as Algorithm 4) is to keep track, for each point
p ∈ D, the maximum value of k for which p has been k-
dominated. We use maxkdom(p) to denote this value for
p. A point is maintained in R so long as maxkdom(p) <
|S| (i.e., p is at least a free skyline point). At the end of
processing all the points in D, for each point p ∈ R, p is a k-
dominant skyline point ∀ k ∈ [maxkdom(p) + 1, |S|]. Thus,
the top-δ dominant skyline points are the δ points in R with
the smallest value of maxkdom(.).

5.2 Two-Scan Algorithm
Since the Two-Scan algorithm maintains only candidate

k-dominant skyline points but not the free skyline points
that are not k-dominant, it is not possible to precisely main-
tain the maxkdom(.) values as in the extended One-Scan ap-
proach. Instead, we apply a binary search technique to de-
termine the smallest k value such that |DSP (k, D, S)| ≥ δ.
The details are given in Algorithm 5.

Although the Two-Scan algorithm might be invoked log(|S|)
times in the worst case, when the minimum value of k for
|DSP (k, D, S)| ≥ δ to hold turns out to be small (which

Algorithm 5 Ext-Two-Scan Algorithm (D, S, δ)

1: initialize set of top-δ dominant skyline points R = ∅
2: initialize kmin = 1 and kmax = |S|
3: repeat
4: k = (kmin + kmax)/2
5: T = Two-Scan (D, S, k)
6: if (|T | = δ) then
7: R = T
8: kmin = kmax + 1
9: else if (|T | > δ) then
10: R = T
11: kmin = k + 1
12: else
13: kmax = k − 1
14: until (kmin > kmax)
15: return δ points in R

is necessary when δ is small), Theorem 4.2 indicates that
the Two-Scan algorithm and hence its extended variant are
very efficient due to the pruning effectiveness of the domi-
nant skyline points.

5.3 Sorted Retrieval Algorithm
To extend the Sorted Retrieval approach to evaluate top-

δ dominant queries, we need to maintain two variables for
each point p ∈ T : (1) maxkdom(p) (as defined in Sec-
tion 5.1); and (2) maxkdomBound(p), which is the upper
bound for maxkdom(p). The values for maxkdom(p) and
maxkdomBound(p), which are initialized to 0 and |S|, re-
spectively, are updated as points in the sorted arrays are
being processed. This information enables efficient check-
ing of whether or not a point p ∈ T is a top-δ dominant
skyline point and is based on the following two properties:
(P1) A point p ∈ T can not be in the answer (i.e., can be
removed from T ) if maxkdom(p) is larger than the δth small-
est maxkdomBound(.) values in R ∪ T ; and (P2) A point
p ∈ T can be confirmed to be in the answer (i.e., can be
moved from T to R) if maxkdomBound(p) is smaller than
the δth smallest maxkdom(.) values in R ∪ T . The details
of the algorithm are shown as Algorithm 6.

Example 5.1 Consider finding the top-2 dominant skyline
points in D from Fig. 1. Initially, each point in D has val-
ues of 0 and 6 for maxkdom(p) and maxkdomBound(p),
respectively. After p1 ∈ D1 has been processed, we have
maxkdom(p2) = 3, maxkdom(p3) = 4, maxkdom(p4) = 5,
and maxkdom(p5) = 3. After p1 ∈ D3 has been processed,
maxkdomBound(p1) is reduced to 3. The processing of
p4 ∈ D4 does not affect any variable values. But after
p2 ∈ D6 has been processed, the points p3, p4 and p5 can all
be eliminated from T because their maxkdom(.) values are
larger maxkdomBound(p2). Thus, p1 and p2 are returned
as the top-2 dominant skyline points. �

6. WEIGHTED DOMINANT SKYLINE
The dominant skyline problem so far gives every dimen-

sion equal importance in the result. This may not be enough
in all the cases, since sometimes the user may want to give
some bias to some attributes of greater interest. A sim-
ple extension from the original problem is to assign some
weights to the dimensions and determine the (dominant)
skyline points over some subset of dimensions with enough
weights. In the basketball players’ statistics data, for exam-
ple, the user may want to find those exceptional players who
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Algorithm 6 Ext-Sorted Retrieval (D, S, δ)

1: for each dimension si ∈ S do
2: sort D in non-ascending order of each point’s si value and

store the sorted points in array Di[1 · · · |D|]
3: initialize the cursor for Di, ci = 1
4: for each p ∈ D do
5: initialize count(p) = 0
6: initialize maxkdom(p) = 0 and maxkdomBound(p) = |S|
7: initialize the set of top-δ dominant skyline points R = ∅
8: initialize T = D
9: while (T �= ∅) do
10: si = FindNextDimension (c1, · · · , c|S|)
11: let D′ = {Di[ci], Di[ci + 1], · · · , Di[ci + m − 1]},

where Di[ci + m].si �= Di[ci].si, and
Di[ci].si = Di[ci + 1].si = · · · = Di[ci + m − 1].si

12: for each p′ ∈ D′ do
13: if (count(p′) = 0) then
14: for each p ∈ T do
15: maxkdom(p) = max{maxkdom(p), maxDom(p′, p)}
16: maxkdom(p′) =

max{maxkdom(p′), maxDom(p, p′)}
17: let α be the δth smallest maxkdomBound(q), q ∈

R ∪ T
18: if (maxkdom(p) > α) then
19: remove p from T
20: count(p′) = 1
21: if (maxkdom(p′) < maxkdomBound(p′)) then
22: maxkdomBound(p′) = maxkdomBound(p′) − 1
23: else
24: maxkdomBound(p′) = maxkdom(p′)
25: for each p′ ∈ D′ do
26: let β be the δth smallest maxkdom(q), q ∈ R ∪ T
27: if (p′ ∈ T ) and (maxkdomBound(p′) < β) then
28: move p′ from T to R
29: ci = ci + m
30: return R

are better at defense than attack, by giving more weight to
defensive attributes, such as block and steal.

To support this type of weighted query, our previous algo-
rithms need to be extended only slightly. Specifically, when
comparing two points p1 and p2, we record the weights of
the dimensions on which p1 dominates p2 and sum them up.
If the sum exceeds a threshold w, we say that p1 dominates
p2 with weight w. A point p is said to be a w-dominant sky-
line if no point can dominate p on dimensions whose weight
sum is over w. The following lemma shows that weighted
dominant skyline shares similar properties as the original
dominant skyline.

Lemma 6.1. Given a subset of dimensions S = {s1, s2,
· · · , sd} and a corresponding positive weight set W = {w1, w2,
· · · , wd}, if a point p ∈ S w-dominates another point q, then
p also w′-dominates q for w′ ≤ w.

From the simple lemma above, we can restate almost all
of the earlier theorems in a weighted form. Since the one-
scan and two-scan algorithms are based on point compar-
ison, the weight assignments for the dimensions have no
impact on its correctness. The structure of these two al-
gorithms remain largely unchanged and only the pair-wise
domination comparison procedure must be modified to cater
to the weights. For the sorted retrieval method, instead of
counting the number of times a point has been processed
from the sorted arrays, we need to sum up all the weights
of the processed dimensions.

Note that these modification do not affect the computa-
tional complexities of all the proposed methods. However,

Table 1: Parameters in Experiments
Parameter Description

d Dimension Number
Size Data Size
Dist Distribution

k Constraint Parameter
δ Top Dominant Skyline Point Number
w Constrained Parameter in Weighted Query
R the ratio of maximum weight to minimum weight

having weight assignments on the dimensions can impact the
effectiveness of the pruning and the frequency distribution
of w-dominant skyline points with varying w. We will show
how these affect the running time of the algorithms in our
experimental study.

7. EXPERIMENTS
We have implemented all the algorithms proposed in this

paper: One-Scan Algorithm (OSA), Two-Scan Algorithm
(TSA) and Sorted Retrieval Algorithm (SRA). In this sec-
tion, we compare their performances, and report our find-
ings.

7.1 Experiment Setting
We use both synthetic data sets and real data sets in the

experiments. The generation of the synthetic data sets is
controlled by the parameters listed in Table 1.

The dimension number d is the number of attributes of
the points, while the data size Size is the number of points
in the data set. There are three optional distributions in
the synthetic data sets: Correlated, Independent and Anti-
Correlated. In the correlated data set, all dimensions are
positively correlated to each other. As such, there are very
few skyline points, free or k-dominant, in the data set. In
the independent data set, dimensions are independent of
each other. Under this assumption, points rarely dominate
each other when the dimension number grows, so the free
skyline set becomes large. In the anti-correlated data set,
dimensions are negatively correlated. Almost all points are
free skyline points in this type of data sets. In Table 2,
we show the number of the dominant skyline points on a
15-dimensional data set with 100K points on different dis-
tributions and different constraint parameter k. This table
shows that when k is close to dimension number d, the num-
ber of dominant skyline point in the anti-correlated data
set is much larger than that in the independent and corre-
lated data sets. However, when k is small, the correlated
data set can still have some dominant skyline points, while
no dominant skyline points can be found on the other two
distributions. The constraint parameter k, w and the top
dominant skyline parameter δ have the same meaning as
that described in the paper. When we assign weights to the
dimensions, we ensure that the sum of the weights on all
dimensions is equal to the number of dimensions. In the
weight generation, we use the ratio of maximum weight to
minimum weight, R, to control the degree of bias on the
weights. Given the ratio R, the d weights of the dimensions
are generated by normalizing d random numbers between 1
and R.

The default parameter setting in our synthetic data set
test is: d = 15, Size = 100K, Dist =Independent, k = 11,
δ = 100, w = 11 and R = 2.
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Table 2: Dominant Skyline Point Number
k Correlated Independent Anti-Correlated

8 0 0 0
9 0 0 0
10 8 3 0
11 24 61 33
12 57 960 3175
13 134 7881 28305
14 436 33087 67866

We also study two different real data sets. The first is
the NBA statistics data set4. This data set contains 17000
players’ season records on 17 attributes from the first sea-
son of NBA in 1945. Every record contains the statisti-
cal value of a player’s performance in one season, such as
game played(GP), points(PT), rebounds(RB) and so on.
One player may have several records if he played in NBA
for more than one season. The second data set is Movie-
Lens data set5, which contains 100,000 ratings (1-5) from
943 users on 1682 movies. The data was collected by the
MovieLens web site from September 1997 to April 1998. All
the users in this data set has rated at least 20 movies. To
make the records comparable, we insert 0 to all the empty
entries of the movies a user did not rate.

All the experiments are conducted on a PC with Intel
Pentium 2.4GHz CPU and 2G main memory, running Linux
with kernel 6.2.14.

7.2 On Synthetic Data Sets

7.2.1 On k-Dominant Skyline
We evaluate the computational costs of the algorithms on

three different distributions with respect to the constraint
parameter k. From the results in Fig. 4, we observe that
TSA is more efficient than the other two methods on all
distributions when k < 12. This is because the dominant
skyline points can prune almost all other points in the first
scan (as implied in Theorem 4.2). However, as k increases,
TSA becomes slower than SRA since there are too many
false candidates left after the first scan. It is even worse
than OSA on anti-correlated data set when k = 14. The
performance of OSA is stable in all cases because the com-
putation of free skyline cannot be reduced with small k, and
this computation dominates the computation time.

In Fig. 5, we show the influence of dimensionality on the
efficiencies of the three algorithms. When k is small, both
TSA and SRA are much faster than OSA on all three distri-
butions. When k is close to the dimensionality d, TSA is less
efficient than OSA. With increasing dimensionality, this dis-
advantage grows so great that TSA is several times slower
than the other two algorithms on 20-dimensional data set
with k = 19. As shown in the figure, SRA is more scalable
on high dimensional data sets.

We also study the effect of the size of the datasets on the
performances of the three algorithms. The results, depicted
in Fig. 6, show that when the size of the data set grows from
50K to 200K, the computation time of the three algorithms
all increase by about one order of magnitude. Moreover,
the relative performance of the schemes remain largely the

4http://www.basketballreference.com/
5http://movielens.umn.edu/

same as that in earlier experiments: TSA performs best
while OSA is the most inferior.

7.2.2 On Top-δ Dominant Skyline
For top-δ dominant skyline query, the most important pa-

rameter is δ, the number of dominant skyline points desired.
The efficiency of TSA on top-δ query is strongly related to
the distribution of the dominant skyline points. On the 15-
dimensional correlated data set, for example, there are 57
dominant skyline points when k = 12 (shown in Table 2).
When δ grows from 50 to 100, TSA has to run on k = 13
instead of k = 12 before finding all these top dominant sky-
line points. Since the computation time of TSA on k = 13 is
much more than that on k = 12 (shown in Fig. 4), it spends
much more time on top-100 query than top-50 query. Using
the same logic, we can explain all the sudden increase in
time of TSA on Fig. 7. For SRA, the increase of computa-
tion time of SRA is much smaller because fewer points in
the candidate set do not improve the pruning threshold of
lower bounds greatly in the early stages of SRA. Unlike the
other two algorithms, OSA’s efficiency is worst but it is the
most stable since the final number of points desired does not
have impact on its computing process until the final step.

When tested on data sets with different dimensions, we
observe from Fig. 8 that TSA is faster on higher dimen-
sional data set on anti-correlated distribution. This phe-
nomenon is still related to the distribution of the dominant
skyline points. When dimensionality grows, the top dom-
inant skyline points can be obtained at a lower level of k,
which contributes to TSA’s efficiency. OSA and SRA can-
not take advantage of this since both schemes’ efficiency are
proportional to the dimension number but not to the level
where the top-dominant skyline can be obtained.

In Fig. 9, we present the impact of data size on the ef-
ficiency of top-δ dominant skyline query. The trends of
the algorithms are similar to the performance to that on
k-dominant skyline query shown in Fig. 6: TSA performs
the best, followed by SRA, and OSA is the worst.

7.2.3 On Weighted Dominant skyline
In this set of experiments, we examine the performance of

the three algorithms on weighted dominant skyline queries.
When the ratio R of the weights increases, most of the
weight is assigned to a smaller fraction of the dimensions.
If a point is not dominated on those dimensions with heavy
weights, they are very likely to be dominant skyline points
since any subspace with weight sum over w must contain
some of these dimensions. This impact is not large but is
still observable in Fig. 10. TSA and SRA turn out to be
faster on independent and anti-correlated data sets when
the weight ratio is varied from 2 to 5. This improvement in
efficiency is not as significant in correlated data set because
the dominant skyline does not change with the variation
of weights on correlated distribution. Since the dominating
set is independent of dimension weights, no matter what the
weights are, the OSA algorithm stays at the same level in
all three types of data sets.

To summarize, from the experiments on synthetic data
sets, we can conclude that when k, δ and Size are small,
TSA is the most efficient algorithm. In other cases, SRA is
faster than the others and has more stable performance on
different data sets.
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Figure 4: k-Dominant Skyline Test on varying k
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Figure 5: k-Dominant Skyline Test on varying dimension
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Figure 6: k-Dominant Skyline Test on varying data size
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Figure 7: top-δ Dominant Skyline Test on varying δ
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Figure 8: top-δ Dominant Skyline Test on varying dimension

7.3 On Real Data Sets

7.3.1 On NBA Data Set
In Figs. 11(a) and 11(b), we show several experimental

results on the NBA data set with equal weights on all at-

tributes. When varying the constraint parameter k, TSA
is the most efficient algorithm when k < 14, but is worst
among the three algorithms when k > 15. SRA is faster
than the other two when k is large. For top-δ dominant sky-
line query, SRA is much more efficient than TSA because of
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Figure 9: top-δ Dominant Skyline Test on varying data size
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Figure 10: k-Dominant Skyline Test with different Weight Assignments

Table 3: Top-5 Dominant Skyline Results on NBA data set
Equal Weight Defender Biased Shooter Biased

Wilt Chamberlain 1961 Wilt Chamberlain 1961 Wilt Chamberlain 1961
Bob Mcadoo 1974 Artis Gilmore 1974 Rick Barry 1971
George Mcginnis 1974 George Mcginnis 1974 Michael Jordan 1986
Kareem Abdul-jabbar 1975 Kareem Abdul-jabbar 1975 Michael Jordan 1987
Julius Erving 1975 Julius Erving 1975 Michael Jordan 1988
Artis Gilmore 1975 Michael Jordan 1987 Michael Jordan 1989
Michael Jordan 1986 Gary Payton 1999
Michael Jordan 1987 Kobe Bryant 2002
Michael Jordan 1988

its great advantage over TSA on k-dominant skyline query
with large k.

In Table 3, we show the top-5 dominant skyline results on
NBA data set with three different weights assignments. The
first assignment is equal-weight assignment, i.e., all dimen-
sions are assigned the same weight. With the same weight on
all dimensions, we successfully find the superstars in NBA’s
history, such as Chamberlain and Jordan, listed in the first
column. In the second weight assignment, six attributes
related to defense, such as block, steal and rebound, are
given weights two times more than all other dimensions.
From the result of the defender biased weights in the sec-
ond column of the table, we can find famous defenders in
NBA. The third weight assignment concentrates on shoot-
ers, which gives shooters’ strengths, such as points scored
and three pointers, two times more weight than other at-
tributes. Legendary shooters appear in the third column as
expected.

Since the NBA data set is fairly correlated, especially on
those attacking attributes, TSA is faster on shooter biased
weights than the other weights assignments in Fig. 11(c).
This shows that TSA is more sensitive to weight assignment
than the other two algorithms.

7.3.2 On Movie-Lens Data Set
We also evaluate the impact of parameters on the movie-

lens data set with equal weights in Figs. 12(a) and 12(b).
Although TSA and SRA are much faster than OSA on k-
dominant skyline query, they cannot beat OSA on top-δ

Table 4: Top-5 Dominant Skyline Result on Movie-
Lens data set

Equal Weight Rate Number Based

Star Wars (1977) Star Wars (1977)
Fargo (1996) Pulp Fiction (1994)
Contact (1997) Silence of the Lambs (1991)
English Patient (1996) Fargo (1996)
Scream (1996) Godfather (1972)

dominant skyline query because of the large dimensionality
of the data set. For TSA, the binary search on large k
consumes too much time to locate the best level of k. For
SRA, too many different top rated movies by different users
reduces its pruning efficiency.

On the movie-lens data set, we also try two different weight
assignments. With the equal weight assignment to every
user, five top movies are found and listed in the first column
of Table 4. When the weights for every user is set propor-
tional to the number of movies he or she rated, we see some
different results in the second column. The difference comes
about because, in the movie-lens data set, most users have
rated only a small fraction of the movies. If we give equal
weights to all users, a movie A has advantage over another
movie B only if more users rated A, no matter how many
users like B more than A. Since the data set was collected
from 1997 to 1998, 4 out of 5 top dominant skyline points
of equal weight are movies from 1996 to 1997, which had
been just watched by the users. From the result in second
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Figure 11: Tests on NBA data set
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Figure 12: Tests on Movie-Lens data set

column, we believe this problem is alleviated in the biased
weight assignment.

With heavier weights on the users with more ratings, the
computation times of TSA and SRA increase in Fig. 12(c),
since the data set is so sparse that those heavily weighted
users can have very few common movies rated, which makes
it even harder to find dominant skyline points.

8. CONCLUSION
The skyline operator has been used as an effective mecha-

nism to identify “dominating” points in a multi-dimensional
data set. Unfortunately, as the dimensionality of the data
set grows, the skyline operator begins to lose its discriminat-
ing power and returns a large fraction of the data. In this
paper, we proposed a generalization of the skyline concept,
called k-dominant skyline, to overcome this difficulty. We
presented three different algorithms to solve the k-dominant
skyline problem. We defined notions of a top-δ dominant
skyline query and a weighted (dominant) skyline query, and
showed how the three algorithms for the k-dominant sky-
line problem could be extended to address these problems
as well. Our experimental results showed that our meth-
ods can find interesting objects in the data set efficiently.
In summary, the notion of k-dominant skylines proposed in
this paper gracefully extends traditional skylines, and leads
to both more meaningful skyline results as well as more ef-
ficient computation.
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