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ABSTRACT

Tree pattern queries (TPQs) provide a natural and easy fiesrma
to query tree-structured XML data, and the efficient procesef
such queries has attracted a lot of attention. Since thedfize
TPQ is a key determinant of its evaluation cost, recent rekea
has focused on the problem of query minimization using ityg
constraints to eliminate redundant query nodes; spedifiCEPQ
minimization has been studied for the class of forward arg su
type constraints (FT-constraints). In this paper, we exgplbe TPQ
minimization problem further for a richer class of FBST-straints
that includes not only FT-constraints but also backward sibel
ling constraints. By exploiting the properties of minimalegies
under FBST-constraints, we propose efficient algorithmbdth
compute a single minimal query as well as enumerate all nahim
queries. In addition, we also develop more efficient minaticn
algorithms for the previously studied class of FT-consiiai Our
experimental study demonstrates the effectiveness acdeffy of
query minimization using FBST-constraints.

Categories and Subject Descriptors
H.2.4 [Database Managemerjt Systems -Query processing

General Terms
Algorithms, Performance

Keywords

XML, XPath, Tree pattern queries, Query minimization, grity
constraints, Chase, Simulation

1. INTRODUCTION

Tree pattern queries (TPQpyovide a very natural and easy for-
malism to query XML data, and constitute a very useful angdar
fragment of queries expressible using XML query languages s
as XPath [17] and XQuery [18]. Since the size of the query (in
terms of the number of query steps) is a key determinant ef/as
uation cost [9], there has been a lot of interest in the mizétidn
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of TPQs given knowledge of data constraints [19, 5, 14, 8]e Th
work in this area can be characterized along two main dinoessi
the class of queries being supported (i.e., query fragnaert)the
types of constraints being considered. The various frageneh
XPath queries explored so far can be denotedktiy” [8], where

F C {/,1l,]], } represents the set of query features supported in-
cludingchild axis“/”, descendant axi¥/”, nested predicate§]”,
andwildcards"«".

In terms of data constraints, besides the simplest caseesf qu
minimization without considering constraints, most of Wk has
focused primarily orforward constraintsand subtype constraints
[5, 14]. There are two types of forward constraints, hamey,
quired child (RC)constraints andequired descendant (Rxpn-
straints. An RC (RD resp.) constraint is of the farm- y (x — y
resp.) which states that for every element of typét has a child
(proper descendant resp.) element of typé\ subtype constraint
is of the formz < y which states that every element of types
also of typey.

In this paper, we examine the minimization of TPQs for the
query fragmentx P{/+//:I} with respect to a richer class of data
constraints that include not only forward and subtype cairsis
but alsobackwardandsibling constraints.

Backward constraints, which are the “opposites” of forwemd-
straints, can be classified into two types, namedguired parent
(RP) constraints andequired ancestor (RAgonstraints. An RP
(RA resp.) constraint is of the form «— y (z « y resp.) which
states that for every element of typeit has a parent (proper an-
cestor resp.) element of type For an example of a RP constraint,
if an elementd’ appears as a sub-element only for the elemeht
then we have. — b. For an example of a RA constraint, if an ele-
ment ‘d’ appears as a sub-element only for elemebitand ‘c’, and
both elementst’ and ‘¢’ appear as sub-elements only for element
‘a’, then we haver « d.

A sibling constraint is of the forma -%5 b which states that for
every element of type, if it has a child element of type, then the
a element must also have a child element of typblote that for a
sibling constraint. -=» bto hold, it is not necessary to hawe— b
anda — c¢. For example, the following are two possible DTD
type definitions for an element” that will result in the sibling
constrainta -<» b: ((c?,b+)x, d) and (b, c) | d).

Despite the fact that backward and sibling constraints baen
largely neglected (with respect to query minimizationgytare ac-
tually rather common in XML data. Table 1 compares the number
of forward and backward constraints that are extracted fiioen
different DTDS. Observe that there are actually more backward
constraints than forward constraints in these DTDs.

!Note that the number of forward and backward constraints ind
cated refer to the number of “basic” constraints that cabeatde-



XML Forward Backward

Database RCTRDJ[RP] RA
GraphML [7] 0 0 6 5
DBLP [11] 0] O 8 | 27
PSDML1] || 26 | O || 57 | 8
XMark [15 57 0 57 | 14
Mondial [3 13 0 30 8

Table 1: Forward & Backward Constraints in XML DTDs
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Figure 1: Minimization with Backward & Sibling Constraints

Furthermore, as pointed out by Bex, et al. [6] and Hinkelman
[10], XML schemas (including industry-level standards) gener-
ally too loosely defined with respect to the data that theyadht
represent. This means that XML data sets generally satisfgm
constraints than what are explicitly specified in their sohs. We
conducted a simple study to identify the sibling constsaiinbm
the data sets maintained at the XML Data Repository [11]. We
found that there are 121, 6, and 3 sibling constraints, msedy,
in the DBLP, Protein Sequence Database, and Mondial dat3 set
although there are only 0, 1 and 0 sibling constraints sgekifi
in their corresponding DTDs respectively. As an examplethin
DBLP data set, thephdthesis’ element does not always have a
‘publisher’ sub-element. However, if @hdthesis’ element has
an ‘isbn’ sub-element, then thephdthesis' element must also
have a publisher’ sub-element. Although the sibling constraint

phdthesis 2% publisher is not explicitly captured by DBLP's
DTD, this constraint is indeed satisfied by the DBLP data[ddts
By considering a richer class of constraints, there are rapre
portunities for query minimization. As an example, consitte
minimization of the TPQY: shown in Figure 1(a) w.r.t. the set of

Agreement
-—>

Licensing

constraintg” = { Patent Licensing, Patent
Agreement, Patent — Licensing, Invention «— Patent, Patent
— Title, Licensing — Contract, Licensing «— Contract }.

Each node inQ: represents an element type, and the special node

that is marked with & (i.e., Studenf represents the output node of
the query. Thug): will return all Studentlements that satisfy a set
of requirements specified by the edges. A single (double? edg-

rived from other constraints.

2Again here, we counted only the “basic” sibling constraitmest
cannot be derived from other constraints.

necting two nodes represents a parent-child (ancesteeddant)
relationship. Thus, two of the requirements specifiedhyare that
eachStudentelement must have a descendémtentionelement,
and eachnventionelement must have a chifhtentelement. Ob-
serve that), cannot be further minimized using only the forward
constraints inC'. However, using the RP constrailmvention«—
Patent Q1 can be simplified t@). (Figure 1(b)). Moreover, by ap-

greemen
-

plying the sibling constrainPatentA ! Licensing Q2 can
be further minimized ta&)s (Figure 1(c)), which turns out to be a
minimal query (w.r.tC).

Query minimization using backward and/or sibling constisi
is a more challenging problem due to two new properties of-min
mal queries under such constraints. First, the minimalygisemot
necessarily unique; and moreover, the minimal queries tdoew
essarily have the same size. Second, a minimal query caaigont
element types that are not present in the input query. Inrasint
the minimal query (with respect to only forward and subtype-c
straints) is always unique, and the element types appedaritige
minimal query is a subset of those in the input query [5, 14].

Referring again to the example in Figurell, actually has three
minimal queries: beside@s, Qs and@Q7 are also minimal queries
of Q1. Note that the sizes @5 andQs are different, and)~ con-
tains the element typ€ontractthat is absent ir),. The second
minimal query@s can be derived frond). as follows: first, apply

the sibling constrainPatent "5 Agreemento minimize Q.
to Q4; next, apply the RP constraifatent«— Licensingto sim-
plify Q4 to Q5. The third minimal query~ is obtained fromys
as follows: first, note thaf)s is equivalent toQs due to the RC
constraintLicensing— Contract next, note that)s is equivalent
to Q7 due to the RP constraihicensing«— Contract

For notational convenience, we use the letters F, B, S, amd T t
represent, respectively, the class of forward, backwalting, and
subtype constraints. In addition, we us&onstraints to denote the
class of constraints of types in wherea: C {F, B, S,T}; braces
and commas i are omitted for simplicity.

The key results of our paper are summarized in Figure 2. Fig-
ure 2(a) compares the key properties of minimal queriesi(oob
2 to 4) for different classes of data constraints (columroliy:new
results are indicated in rows 2 to 4, while the results froevimus
work [5, 14] are indicated in row 1. The lattice structure ig-F
ure 2(b) summarizes the time-complexity of query mininiat
for X P1/»//I} under different constraint classes (represented by
the lattice nodes), where the lattice edges represent tiiainment
relationship between constraint classes. Specificakytithe com-
plexity shown for each class is for computing one minimalrgue
of an input query@ w.r.t. a set of constraint§', wheren denotes
the number of steps i, andX denotes the set of distinct element
types inC.

The rest of the paper is organized as follows. Section 2 sover
background material, and related work is presented in @e&i
Section 4 introduces key concepts for query minimizatiorc-S
tion 5 presents properties of minimal queries under diffeckasses
of constraints. Section 6 presents efficient algorithmsetoegate
a minimal query and to enumerate all the minimal queries unde
FBST-constraints. Section 7 presents a more efficient nimaim
tion algorithm for FT-constraints. Section 8 covers theimina-
tion algorithms and results for the remaining subclassd=BST-
constraints. Section 9 presents an experimental evatuafiour
proposed algorithms. Finally, Section 10 concludes thepap

2. BACKGROUND

Tree pattern queries. As illustrated in Figure 1, tree pattern
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(a) Properties of Minimal Queries

Data Number of Element types in | How do minimal O(n?|5[?+n?(3))
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Figure 2: Summary of Key Results (F = forward, B = backward, S =sibling, T = subtype)

queries (TPQs) are represented as trees, where the nod@®qf a
Q are labelled by element types from a finite alphabet he type
of a nodeu is denoted byr(«), and the root node af is denoted
by root(Q). The size of@, denoted byQ|, refers to the number
of nodes inQ. Each quen has a uniqueutput nodedenoted as
op(Q), and its element type label is distinguished with enark.
The nodes irQ are connected by two types of edges: parent-child
edges pc-edges) and ancestor-descendant edgés@ges). Con-
sider an edge = (u,v) with parent node: and child nodev. If
e is aa-edge, wherev € {pc, ad}, we say that is aa-child of u
andu is thea-parent ofv. Moreover, ifv is a leaf nodey is also
known as ax-leaf node.

An embedding of a TP@ onto a tree databask is defined as
a mapping3 from the nodes of) to the nodes ofib such that the
following conditions are satisfied:

1. Preserve node types: for each nade @, eitheru andg(u)
are of the same type, @t(u) is of a subtype of;

2. Preservepc/ad-edge relationships: ib is a pc-child (ad-
child resp.) ofu in @, theng(v) is a child (descendant resp.)
of B(u)in db.

The evaluation of a TP@ on db requires finding all the embed-
dings ofQ in db, and the answer t@ is given by the set of database
nodes3(op(Q)).
Minimal queries. A nodew of a TPQQ is redundantif « is a
non-output node and the query obtained by deletirfgom @ is
equivalent toQ. Here, deleting a leaf node simply removesu
and its incident edge; while deleting an internal nadesquires
removingu and connecting’s parent node (if it exists) to each of
u's child nodes with amd-edge.

Given two TPQsQ and @', and a set of integrity constraints
(ICs) C, Q andQ’ areequivalentw.r.t. C, denoted byQ =¢ Q’,
if and only if @ and@’ have the same answer on all tree databases
that satisfyC. Q' is aminimal queryof Q w.r.t. C'iff (1) Q =¢ Q’
and (2)Q #Zc¢ Q" for every@” that is obtained by deleting some
node(s) fromy’.
Notations. In this paper, we us& to denote the set of distinct
element types in the constraints, antb denote the size a.

3. RELATED WORK

Sihem et al. were the first to study the TPQ minimization prob-
lem for the query fragmerXPt/>//-0} [5]. The state-of-the-art
minimization algorithms for this fragment have time conxties
of O(n?) andO(n*), respectively, for the case without constraints
and the case with FT-constraints [14]. Moreover, for botbesa
every TPQ has a unique minimal query [5, 14]. To the best of our

knowledge, TPQ minimization foxP{/+//-0} using backward or
sibling constraints has not been explored.

Query minimization for the full query fragmetP{/-//-0-*} jn
the absence of constraints was shown by Flesca et al. to ealP-
[8]. For fragmentXP!/-0-*} query minimization in the absence of
constraints has polynomial time complexity, and each Xgagry
has a unique minimal query [19].

A related direction is query containment [12, 13, 20]. Tha-co
tainment problem under DTDs for a smaller XPath fragmépit/ -1
was shown to beoNP-complete [13].

4. REASONING WITH CONSTRAINTS

This section introduces the key concepts for TPQ minimirati
under FBST-constraints.

4.1 Constraint Closure

Given a set of FBST-constraints, let closurgC') denote the set
of FBST-constraints that must hold w.r@:. The following set of
inference rules (R1 to R22) can be used to compligure(C') as
follows: first, initialize closure(C) to be C, and then iteratively
add new constraints that are generated by the rule®taire(C')
until no further rules can be added.

R1.
R2.
R3.
R4.
R5.
R6.
R7.
R8.
R9.
R10.
R11.
R12.
R13.
R14.
R15.
R16.

R17. ifr
R18. ifry
R19.

R20.
R21 ile

R22. ifry

— T2, then7-1 —» T2
—» 1o andme — 73, thenty — 73

< 79 ande < 73, then7-1 < T3

< Ty ande — T3, thenn — T3

< 1o andtm — 73, thenr; — 73

ile — To andrg < T3, thenn — T3

ifT1 » 7 andm < 73, thenm, — 73

7 < T; foreveryr; € &

ifTo < 71, thenms « 7y

ifTo «— 71 and 73 « 7o, thenrs « 1

ifr1 - m andrs «— 7 andm £ 73, thenty — 73
ifr1 — 7 and73 « ™ andny ﬁ 73, thenrs « 71
ifr1 < 7 andrs < 72, thenrs
ifr, <7 andts « 72, thenrs
ifro « 71 and s < 73, thenrs
if7'2 “— T1 andrg < T3, thenrg

ile
ifr1
ile
ile
ifT1

— T1
— T1

T2
— 79,71 --* T3, thent; — 7'3
T2
-2 73,71 BN 74 thenmy AN T4
ifry ER T3, T3 < T4, thenr, BEN T4
. T2 T2
ifr1 -=» 73, 74 < 71, thenty -5 73
T2 T4
-=» 73,74 < T2, thenr; --» 73

T4

— 19, thenty - 7 foreveryr; € &



In each rule;, 72, 73, andt4 represent distinct element types.
We write 71 £ 73 to mean that; is not a subtype ofs. Rules
R1 to R8 were used earlier in [14] for query minimization with
FT-constraints. Rules R9 to R16 are new rules to handle backw
constraints, while rules R17 to R22 are new rules to handlangi
constraints.

Rule R11 follows from the tree structure property: if a nade
of type = has a descendant, of type 7, andu, in turn has a
parentus of type s, thenus must be a descendant of provided
that 71 is not a subtype ofs. Otherwise, ifr1 < 73, thenug
may not be a descendant®f asus andu; can be the same node.
A similar reasoning applies to rule R12. The rest of the rales
straight-forward.

4.2 Constraint Graph

The FBS-constraints idosure(C') can be categorized intav-
ial and non-trivial constraints defined as follows. Every RC and
RP constraint is non-trivial. An RD or RA constraint is taviif
it can be inferred from other constraints using rules thahaokoin-
volve subtype constraints; otherwise it is non-trivial. iling
constraint is trivial if it can be inferred using rule R22hetwise it
is non-trivial.

Constraint graph. The non-trivial FBS-constraints iflosure(C)
can be represented succinctly bycenstraint graph denoted by
Gc = (Ve, Ec), where each node il represents some element
type inX and each edge ifc represents a non-trivial constraint.
Specifically, ifr1 — 12,71 < 72,71 = T2, 71 « T2,0rTy LN T2,

is a non-trivial constraint, the@'c contains, respectively, an edge
1 — 72 (ac-edg®, 1 «— 7= (ap-edg9, m — 72 (ad-edge,

1 « 72 (@ana-edgy, orry --» 75 (ans-edge.

Thus, there are five types of edgesGh:: a-, c-, d-, and p-
edges (all represented by solid arrows) denote RA, RC, RD, an
RP constraints, respectively; aneedges (represented by labelled
dashed arrows) denote sibling constraints. We referstas the

edge labebf ans-edger; --» 7.

In all the above five edge types, we say thais the parentof
To; Or equivalently,m is the child of ;. Note that in the edge
specification,r; is on the left side of the arrow ang is on the
right side of the arrow. Given two nodes andr; in G¢, we say
thatr; is anancestorof 7, (or equivalently,r. is adescendanof
71) if there is a sequence of nodes 72, - - -, 7% in G¢ such that
7; is the parent of1 for i € [1,k). Graphically, each edge in
G is depicted with the parent node shown above the child node.

Consider an edge with parent noder; and child noders. If e
is an/-edge, wherd € {a,c,d, p, s}, we say that is a¢-parent
of 72, and thatr; is a¢-child of 4.

To avoid clutteringG¢, if two nodes inG¢ are connected by
two solid edges (which must necessarily represent one fdrasmd
one backward constraint), then these two edges are combamekd
represented as a single, double-headed solid arrow. Formea
if G¢ contains both edgess — 72 andr; « 72, then they can
simply be represented by a single edge— 7. In this cases;
is ap-parent as well as e-parent ofr,; 72 is ap-child as well as a
c-child of 77.

Following [14], we assume thdt is available as part of the data,
and therefore botblosure(C) andG¢ are computed only once of-
fline. The closure o, closure(C), can be computed i@ (|Z]?).
The size ofclosure(C) is O(|Z]?). Ge consists 0f0(|2]) nodes
andO(||?) edges.

Reachable subgraph.Givenr;, € Vo and L C X, we define
GE = (V2 EL) to be thereachable subgrapbf noder; in Ge,
whereV," C Ve andEE C Ec is the set of edges induced by

b t\
"
e

\ [b] &
d (I: a* , // ‘\ a*
' le c/’/// cl\ \\d
¥ ¥ \
e ‘f b c2 di IE' ‘@ ar a*
g ¢ d e1 €2 d e c
@Ge ()Q (©)Qc M@ ©Q2 Qs

Figure 3: Minimization with FBST-Constraints

in Ge. V% is defined as followsr; € V- if one of the following
conditions hold:

R1. 75 = m; or

R2. 1, € fo and there is am/c/d/p-edge fromr to 7; in G¢;

or

R3. 7; -%» TjisinGe andt € L; or

R4. 7 -%» 75 isin Go, {k,t} C V.2, andt is ac/pls-child of
Tk in Ge.

Intuitively, a reachable subgrap}fi represents all the nodes@fy
that are reachable from nodgby traversing the edges #¢; L C

3 can be used as edge labels in the traversal of s-edges (oondit
R3).

PCC-pair. For eachs-edger; -2 75in Ge, we refer to the type
pair (11, 72) as aparent-conditional-child pair (PCC-pairwith
parent typer; and conditional child types.

Type & PCC-pair Equivalence. For each type; € V¢, we define
G?i to be the reachable subgraph for and for each PCC-pair

(15, 75) In Ge, we defineGi:j} to be the reachable subgraph for
(Ti7 Tj)'

Let X andY be a type inVe or a PCC-pair inG¢c. We say
that X andY areequivalent denoted byX = Y, if the reach-
able subgraphs faK andY are equal. We usgX] to denote the
equivalence class foX (based on type/PCC-pair equivalence); i.e.,
[X]={Y |YisatypeinVc ora PCC-pairirGe, Y = X }.

Given an equivalence clag&], a membely” € [X] is defined to
beminimalif (1) Y is a type; or (2)Y is a PCC-paif;, 7;) such
thatm; ¢ [X]andr; ¢ [X]. An equivalence clasisX] is atrivial
equivalence clas$ [X] has only one minimal member; otherwise,
[X] is anon-trivial equivalence class

The concept of an equivalence class is very fundamentaltin ou
TPQ minimization approach as it is used to characterize itapb
properties of multiple minimal queries in Section 5.

Example 4.1Consider® = {a,b,¢,d, e, f, g} with a set of con-
straintsC = {b -+ d, b-s e, d— e, d—»e d-1se de
e,b—d, b«e f—yg,c -5 f}. The set of non-trivial con-
straintsC’ = {b -S> d, b -Ys¢,d e, d—e bed f—



g, ¢ -5» f}. The constraint grapli’c built from C’ is shown
in Figure 3(a). G¢ has ac-edge p-edge resp.) fromi to e (b
resp.); thus € VY (b € V resp.). Nowb € V) has ans-child

de VP andb -2 ¢ €Ge; thuse € V2. Therefore, we have!?
={b,c,d, e}. Similarly, V2 = V,\*} = v,!* = {p, ¢, d, e}. We have
an equivalence clasgb, c¢), (b,d), d, e}, of which (b, c), d ande
are the only minimal members. a

5. PROPERTIES OF MINIMAL QUERIES

Previous work on TPQ minimization has shown that for F/FT-
constraints, each query has a unique minimal query [5, 146w-H
ever, beyond these results for F/FT-constraints, theraenbbeen
any systematic study and characterization of the propeofienin-
imal queries.

In this section, we characterize important properties afimal
queries under various subclasses of FBST-constraintst, ke
present a necessary condition for the existence of multijémal
queries under FBST-constraints. Then, for each of the cainst
classes FBT, FST, and FBST, we characterize the conditmmns f
query to have multiple minimal queries.

The following result states a necessary condition for this-ex
tence of multiple minimal queries under FBST-constraints.

PrRoPOSITION 5.1. Consider the minimization of a que€yun-
der a set of FBST-constraints. A necessary condition fof)
to have multiple minimal queries is the existence of a nivialr
equivalence class i6/c.

The intuition behind Proposition 5.1 is as follows. Consitteo
distinct minimal querie€),,, and Q’,, for a queryQ. SinceQ,
and@),, are distinct, each minimal query must contain some com-
ponents that are different from each other. 4 and C;, de-
note these components &f,, and Q;,,, respectively. However,

since®,, and(Q),, are equivalent, the reachable subgraphs of these

components must be the same; i.e., they must both belongrte so
equivalence clasgX] in G¢. Furthermore, botiC,,, andC;,, are
necessarily minimal members @K | given thatQ,, andQ;, are
minimal queries. Thus, it follows thdfX] must be a non-trivial
equivalence class i ¢.

The following result characterizes minimal queries undBif+
constraints.

PROPOSITION 5.2. Let Q. be a minimal query of) under a
set of FBT-constraint€’. Then@ has another distinct minimal
queryQ@,,, iff the following two conditions hold:

1. @~ has anad-edge(p, ), wherex is a non-output leaf
node; and

2. there exists, € [r(z)] such that

(@) 7(x) «— 1y € Gec andt(p) £ 7(x); or
(b) 7y — 7(z) € G¢ and7(p) £ 7y.

Under FBT-constraints, the absence of sibling constraimans
that each equivalence class contains only element types.

Based on Proposition 5.2,G. is a minimal query ofp under a
set of FBT-constraint€’, then another minimal query @ can be
derived from@... by changing node: to ar,-node. Furthermore,
all the minimal queries of) must be of the same size and they
differ only in theirad-leaf nodes.

Example 5.1ConsiderC' ={c «— d, ¢ —d, a > e, e — f, e —
f}. We have the two non-trivial equivalence classe§'it: {c, d}

and{e, f}. Consider TPQQ in Figure 4(a) and a minimal query
Q1 of Q (w.r.t. C) in Figure 4(b). Sinc&): has a non-output ad-
leaf nodec, and there is a typé € [c] such that — d anda £ ¢,
by Proposition 5.2() has multiple minimal queries. Indee@).

in Figure 4(c) is another minimal query ¢f that is obtained from
Q1 by changinge to d. Note that ifC had an additional constraint
a < ¢, then@2 would not be a minimal query a. To see this,
consider a single data chain <a><d/><a/>. Clearly, thia lahich
satisfies”) is an answer t@)-, but not toQ; . a

a* a* a* a*
/ \e . - b/\b b
a b
| L AAA
@Q ®Q ©Q: Q" (@ Q4

Figure 4: lllustration of Properties of Minimal Queries

The following result characterizes minimal queries undsi+
constraints.

PrROPOSITION 5.3. Let Q. be a minimal query of) under a
set of FST-constraint€’. Then@ has another distinct minimal
query (., iff all the following conditions hold:

1. @~ has anpc-edge (p,z), wherez is a non-output leaf
node; and

2. there exist§7(p), ) € [(7(p), 7(z))], wherer, € ¥ and

Ty # T().

Under FST-constraints, the absence of backward constramt

plies that each equivalence class contains only PCC-pairs.
Based on Proposition 5.3, ., is a minimal query of) under

a set of FST-constraints, then another minimal query ¢} can be

derived from@... by changing node: to ar,-node. Furthermore,

all the minimal queries fo) must be of the same size and they

differ only in theirpc-leaf nodes.

Example 5.2ConsiderC’ = {b -*» d,b 4 c}. We have(b, ¢) =
(b,d). TPQQs (Figure 4(e)) is a minimal query of TPQ’ (Figure
4(d)). SinceQs has a non-outpytc-leaf d, andG¢ has an equiv-
alence clasg(b, d)] where(b,c) € [(b,d)], by Proposition 5.3,
Q' has another minimal quei@. (Figure 4(f)), which is obtained
from Q3 by changingd to c. O

Finally, the following result characterizes minimal q@sruinder
FBST-constraints.

PROPOSITION 5.4. Let Q,,, be a minimal query of) under a
set of FBST-constraints’. Then(@ has another distinct minimal
query(@,, iff one of the following conditions hold:

1. Q. satisfies conditions 1 and 2 of Proposition 5.2;
2. Q. satisfies conditions 1 and 2 of Proposition 5.3;
3. Q., satisfies all of the following conditions:

(a) @m has anad-edge(p, x), wherex is a non-output leaf
node; and



Algorithm 1 SingleMinimizeFBST (Q)

1: compute the chase queB«

computersim(u) andFBsin(u) for each query node € Q¢
Qc = ChaseMinimizeFBSbp(Q¢))

delete the remaining chase nodegja to obtain a minimal
queryQm

2:
3:
4.

(b) there exists a minimal member,, 7.) € [r(z)], where
Ty € X andT, € 3.

4. Q. satisfies all of the following conditions:

(a) Qm has anpc-edge(p, x), wherez is a non-output leaf
node;

(b) pis an ad-child; and
(c) there exists some element types [(7(p), 7(x))].

Under FBST-constraints, an equivalence class may contatim b
single types as well as PCC-pairs.

Based on Proposition 5.4, ,, is a minimal query of) under
a set of FBST-constraint§', then another minimal quer§;,, of
@ can be derived frond),,, as follows. IfQ,, satisfies condition
1 or 2, then@),,, can be derived frond),, by changing node: to
ar,-node. IfQ,, satisfies condition 3, the@;, can be derived
from Q.. by changing noder to a pc-edge(ry,7.). Finally, if
Q. satisfies condition 4, the®,, can be derived fron®),, by
changing thepc-edge(p, ) to a;-node. Furthermore, i) has
multiple minimal queries, their sizes could differ.

Example 5.3(continued from Example 4.1) TPQ: (Figure 3(d))
is a minimal query of TP@) (Figure 3(b)). From Example 4.1, we
have[d] = {d, e, (b,d), (b, c)}. By the condition set 1 of Proposi-
tion 5.4 Q1 has a non-outpuid-leafd; e € [d] andd < e¢), Q has
distinct minimal queries. By changingl-leafd € Q1 to minimal
members ofd], e or (b, ¢), we have two other minimal queri€g,
(Figure 3(e)) and)s (Figure 3(f)). ad

6. MINIMIZEWITHFBST-CONSTRAINTS

In this section, we present algorithms to minimize TPQs unde
the broadest class of FBST-constraints. We first presehhigges
for computing a single minimal query (Sections 6.1 to 6.4)d a
then extend the approach to enumerate all minimal queries-(S
tion 6.5).

Our overall approach to compute a single minimal query for a
TPQQ (w.r.t. a set of constraints§’) is shown in Algorithm 1 and
consists of four main steps. The first step is to compute thsech
query Q¢ of the input query; the goal is to integrate the relevant
constraints fronC' into ) to created an augmented quépy: that
contains additional chase nodes. The details of the chasey qu
computation are discussed in Sections 6.1 and 6.3. Thedstem
(Section 6.2) is to compute simulation relations for the esth
Qc; the purpose of this step is to enable the detection of rezhind
nodes inQ to generate a minimal query &f, which is performed in
the third step (Section 6.4). Finally, the fourth step siymeimoves
any remaining chase nodes frag to obtain a minimal query of

While our overall approach follows the same principle agifee
vious work for query minimization with FT-constraints [14he
TPQ minimization problem with FBST-constraints is a moraleh
lenging task due to the intricacies of dealing with BS-craists
which requires the development of several new techniques:

1. The computation aflosure(C') requires new inference rules
to handle BS-constraints (R9-R21 presented in Section 4.1)

2. When buildingQ¢, the presence of B-constraints requires
a more intricate augmented chase computation (i.e qdhe
edge augmentation in Section 6.3) to address the inadequacy
of the conventional chase computation (Section 6.1). More-
over, the detection of redundant nodes now requires comput-
ing forward & backward simulation which is more involved
rather than computing forward simulation.

3. The presence of S-constraints, which represent conditio
constraints, also demands some subtle extensions to tee cha
and minimization process (Sections 6.1 and 6.4).

4. The presence of BS-constraints leads to some fundamental
new properties of minimal queries identified in Section 5;
specifically, the possibility of multiple minimal queriesttv
different sizes requires new techniques that exploit prope
ties of minimal queries to efficiently enumerate all minimal
queries (Section 6.5).

6.1 The Chase Procedure

Given a TPQQ, the chase query ap, denoted byQ¢, is com-
puted using a two-step procedure:

S1. InitializeQc to be@. For every query node in Q¢, attach
the reachable subgraphf(u) tou, whereL = {7(v) | vis
apc-child of uin@}.

S2. Augment) ¢ with additionalad-edges.

Step S1 initialize®) ¢ to be@, and then enhances each nade
in @ with additional nodes from its reachable subgraph based on
7(u) and the types ofi’s child nodes inQ. The nodes and edges
in Q¢ can be classified into two types: the nodes (edges) that are
originally in Q are calledoriginal nodes (edgesand the attached
nodes (edges) added - are calledchase nodes (edges)

Step S2, which is referred to as taegment chase stethen in-
serts intaQ) ¢ a set (possibly empty) of additionadi-edges referred
to asaugmented edged his important augmentation step is neces-
sary due to the presence of backward constraints. The neéukfo
augment chase step will be illustrated in Example 6.1; heweve
will defer a detailed discussion of this step to Section 6t&8rave
have explained the identification of redundant node® i using
FBsimulation in Section 6.2.

Graphically, we distinguish between original and chasessaod
Qc by showing the former as boxed nodes and the latter as un-
boxed nodes. For ease of identification of nodes of the sape ty
in Q¢, we also add subscripts to the node labels when convenient.
For consistency of edge notations, the non-arrowed olligidges
in Q are represented using arrowed edgegin as follows. Let
e = (z,y) be an original edge i) with parent noder and child
nodey. Thene is represented iQ)c asz < vy if e is apc-edge;
otherwise e is anad-edge and it is represented asx  Rinally,
to distinguish normakd-edges from augmentegi-edges (intro-
duced by step S2), the latter are shown as bold edges.

Note that the conventions and definitions introduced iniSeet
for G¢ also apply taQc.

The following example illustrates step S1 of the chase cdaipu
tion and motivates the need for the augment chase step S2.

Example 6.1ConsiderQ in Figure 5 with constraint§’ = {c «
e,e « a}. We explain how step S1 of the chase is performed on
Q to deriveQ¢ (shown in Figure 5(b)). The reachable subgraph
GQ is attached to nodes®, i.e., two chase nodes andc;. The



reachable subgraph? is attached to nodes i.e., chase node.
Specifically, no chase nodes are attached to the remainitesraf
Q since their reachable graphs contain only the node itself.

Note that there is an augmented edge betweeandb; in Q¢;
this is added by the augment chase step S2. To appreciatehighy t
addition is necessary, assume for the moment that the adgden
edge is not present i . Observe that the output nodehas two
ancestor paths of nodes: one leads while the other leads to; .
The purpose of adding the augmented e@ge b:1) is to explic-
itly connect these two related paths to enable a correctti@teof
redundant nodes using FBsimulation (to be discussed inake n
section). Specifically, the original nodese, andb, are all actually

(3) Preserve child-relationships:iifhas ac-child «’, thenv has
ap-child or c-child or s-child v’ s.t. ' <rp v';

(4) Preserve ancestor-relationshipsz Hias am-parentu’, then
v has an ancestar s.t.v’ <pp v';

(5) Preserve descendant-relationships lifas ad-child v, then
v has a descendant s.t.v' <rp v'.

The forward simulation< » on the nodes of) ¢ is computed using
only conditions (1), (3), and (5); while the backward sintida
<p on the nodes of) ¢ is computed using only conditions (1), (2),

redundant and need to be removed to generate a correct rhinimaand (4).

query@2. However, without the augmented edge, b: ), the FB-
simulation technique would wrongly identify these threele® as
non-redundant. |

A

b a*

-
o

:
!

@Q (b) Qc (©) Q2

Figure 5: Example of the Chase Procedure

Complexity of the chase.For a nodeu in @, the reachable sub-
graphGY,,,, is added tau in step S1. Sinc€/%,, can be as large
asGc, it consists of0(|%]) nodes and(|3|?) edges; thus the re-
sultant graph of step S1 comprisestfz|>|) nodes ana (n|x|?)
edges. Theid-edge augmentation in step S2 addsdn’|%))
edges. Thus the chase@f Q¢, comprises 0D (n|3|) nodes and
O(n?|Z| + n|%|?) edges.

For each node, wa can be computed by at most one traversal

on G, which takesO(|%|?) time. Hence step S1 can be done in
O(n|X|?) time. Step S2 take®(n3|x|) time. The overall time
complexity of the chase proceduredsn?|| + n|Z|?). O

6.2 Forward & Backward Simulation

Once the chase que®c has been computed, any redundant

If u <F v (u 2B v,u XFp vresp.), we say thatis a forward
(backward, forward-backward resp.) simulatonofGiven a node
u in Qc¢, we useFsimu), Bsim(u), and FBsim(u) to refer to the
set of forward, backward, and forward-backward simulatdrs,
respectively. Note that' Bsim (u) is always a subset df'sim (u)
andBsim(u).

Algorithms for computing forward simulation Fsim)in TPQs
were presented in [14]. These algorithms could be extended t
computeF Bsim relation onQ¢ for our context. Such modified
algorithms takeO (n®|%| 4+ n?|2|?) time to compute Fsim() and
FBsim(u) for every original node: in Qc.

Example 6.2(continued from Example 4.1) F@p¢ in Figure 3,
we haveF'sim(a) = F Bsim(a) = {a}, F'sim(b) = FBsim(b) =
{b, b1}, Fsim(c) = FBsim(c) = {¢, c1, c2}, and Fsim(d) =
FBsim(d) ={d, di}. O

We can now identify redundant nodes@v based on the fol-
lowing result.

LEMMA 6.1. Letu € Q¢ be a non-redundant original node.

(1) An original p-parentp of u is redundant iffu has another
p-parentp’ € F Bsim(p);

(2) An original a-parentp of v is redundant iffu has another
ancestorp’ € FBsim(p);

(3) An original c-child ¢ of w is redundant iffu has anotherc-
child or s-child ¢’ € Fsim(c);

(4) An originald-child ¢ of u is redundant iffu has another de-
scendant’ € Fsim(c).

Lemma 6.1 is extension of a result in [14], where the focusethe
was identifying redundantchild andd-child nodes using only for-
ward simulation; i.e. conditions (3) and (4). The new twodien
tions (1) and (2) for identifying redundaptparent andz-parent
nodes, however, require a stronger test based on FBsiomulatie
illustrate the necessity of FBsimulation using the follog/iexam-

nodes inQ¢ can be detected and eliminated based on the conceptp|e~

of forward-backward simulation (FBsimulation) [4].

The FBsimulation on the nodes @f¢ is the largest binary re-
lation <rp on the nodes of)c such thatu <pp v iff all the
following conditions hold:

(1) Preserve node typesi(u) < 7(v); moreover, ifu = op(Q),
thenv = op(Q);

(2) Preserve parent-relationshipsuihas ap-parentu’, thenv
has ap-parent orc-parent ors-parenty’ s.t.u’ <rp v';

Example 6.3ConsiderQ in Figure 6(a) withC' = {a «— b,b —
d,b — c}. Gec andQc are shown in Figures 6(b)&(c). Note
that the original nodé is not redundant. IrQc, we haveb; ¢

F Bsim(b), which is consistent with the fact thatis not redun-
dant. Thus, nodé remains inQ’s minimal query@.,, shown in
Figure 6(d). Observe that nodehas anothep-parentb; in Q¢
such thab; € F'sim(b) andb, € Bsim(b). However, it is incor-
rect to conclude frond; € Fsim(b) andb; € Bsim(b) thatb is
redundant. |



az a1 to their forward-backward simulators, e1, andb;, respectively),

leading to the minimal querg),, in Figure 7(d). Without the aug-
/ \ a mentedad-edges,@,. cannot be derived based on FBsimulation.

a
AN B I R AN .
1
d b b d b An important point to emphasize is that it is only necessary t

perform edge augmentation fad-edges: addingc-edges between
related ancestor nodes is not sound. We illustrate thetimhube-
dq o hind this with the following example.

Example 6.5Consider@; in Figure 8 withC' = {b — c}. If
pc-edge augmentation is done, then the resultant chase Qiery
(@)Q (b) Ge (©) Qc (d) Qum is shown in Figure 8 with an augmented-edge betwee and
b1. We then havé, € F Bsim(b), leading to a wrong conclusion
thatb is redundant and an incorrect minimization@f to Q- that
Figure 6: FBsimulation in Checking Redundant Parent results from the removal df from @Q’. To see that); andQ- are
not equivalent, consider data:><d><b><c/><b/><d/><a/>.
Q2 matches the data, whil@; does not. O

6.3 Augmented Chase

We are now ready to explain the details of the important aug- @
ment chase step (step S2 in Section 6.1). Due to the presénce o
backward constraints, a node @i could have multiple path of
ancestor nodes which are necessarily related since eaehimed
query tree cannot have multiple unrelated paths of ancesubes.
Thus, the augment chase step S2 is hecessary to check fdslposs
implied relationships among multiple ancestor paths. W@ittthis
important step, redundant nodes might not be correctlyctiede
leading to incorrect minimal queries.

Recall that Example 6.1 illustrated the need to perfariredge c* c*
augmentation between an original node and a chase nagle .ifn
general ad-edge augmentation is necessary for any pair of related
ancestor nodes. In the next example, we illustrate anotesrasio
wheread-edge augmentation is required between a pair of related @Q: b)Q: (c)Q2
chase nodes.

/

o
—
\

Q

f1 Figure 8: Example of ad-edge Augmentation

’ 6.3.1 Augmentation Algorithm

f2 . This section presents the algorithm to perform the augnteade
\ step S2. The key challenge of this step is: given a noile Q¢
which has two ancestor paths of nodes, how to characterie th
b1 pair(s) of related nodes along these paths that need to Ineciau
with augmented edges. We shall formalize this using the eisc
of ancestor pathy-path and compatible nodes.
@ A path of nodeqwi,--- ,wn) IN Qc, n > 1, is said to be an
ancestor path ofw; if (1) w; is ap/a-parent ofw;—; for each
i € (1,n]; and (2)w, has nop/a-parent node irQc. A path of
nodes(vi, - -+ ,um) iN Qc, m > 1, is said to be @-path ofv; if
|E| @ g (1) v; is ap-parent ofv;_, for eachi € (1, m]; and (2)v., has no
p-parent node iQ¢.
A nodew; is said to be compatible with another node iff
7(vs) < 7(w;) or m(w;) < 7(vs).

@Q (b)Ge (©)Qc (d) Qm Consider a node in Q¢ that has both a-pathp, = (u, v1, - -,
vj, <+, Uk, -+, Um) as well as another ancestor path =
) . (u,wi, -+, wj, --+, wn), Wherel < j < k < mandj < n.
Figure 7: Example of ad-edge Augmentation Figure 9 illustrates the situations where an augmented isdge
quired to connect a pair of related nodepinandp,,, which are
Example 6.4Considerq in Figure 7(a) withC' = {b — c, e « characterized as follows. Adad-edge needs to be augmented for

d, f — e}. Ge andQc¢ are shown in Figures 7(b) and (c), respec- the following two cases.

tively. Note thatQ¢ has an augmentedi-edge between the chase ~ Case 1.An ad-edge is added between. ., (the ancestor) and;
nodesbl ande1 due to the tree structure properm GS ap_parent (the descendant), if the fO”OWing two conditions hold:

of ¢, ¢ is ap-parent ofd, ande; is ana-parent ofd). Similarly
there is an augmentedti-edge between; and f. FromQc, we
can identify that the original node§ e, andb are redundant (due 2. w41 IS ana-parent ofwy, .

1. v; is compatible withw; for eachi € [1, k]; and



Case 2. An ad-edge is added between; (the ancestor) andy
(the descendant), if all the three conditions hold:

1. v; is compatible withw; for eachi € [1, 7 — 1]; and
2. wj is ana-parent ofw;_1; and

3. (@) vk is the last node i, (i.e., & = m), andv; is not
compatible withw; for eachs € [, k]; or

(b) wj; is not compatible withy; for eacht € [j, k], and
vg+1 IS compatible withw; wherek € [j, m — 1].

Figure 9(a) shows Case 1, whergandp,, have pairwise com-
patible nodesv; andw; for i € [1, k], andwgy1 is ana-parent of
wy,. The tree-structure property requires., to be an ancestor of
vg. Figure 9(b) shows Case 2 where condition 3(a) holds. Here,
andp., have pairwise compatible nodes andwv; for i € [1,j).
Nodew;_1 has aru-parentw;, andvs_1 has gp-parentvs which
is not compatible withv; for s € [, k]. Clearly, nodev,, must be
a descendant ab; based on the tree structure property. Note that
if w; andwvi, were compatible, then adding the-edge(w;, vi)
would be incorrect as; andv, might be the same node instead of
being an ancestor-descendant pair of nodes. The reasaniGga$e
2 where condition 3(b) holds (depicted in Figure 9(c)) isiEm

Note that for all such augmented-edges, the implied descen-
dant always belongs to thepath. The nodes in Figure 9 can be
chase or original nodes. The edge:, v) can be either ac-edge
or anad-edge.

Wn Um
Wn wj Vk}1
W K

Wn Um

uL K wj—1 Vi1 wj.,l 1)]‘.71
w1 U1

Voo V

(b) Case 2 Condition 3(a)

(a) Case 1 (c) Case 2 Condition 3(b)

Figure 9: lllustration of Augmentation Algrithm

We propose an algorithrad- augrent at i on (Algorithm 2),
to augment all the necessatyi-edges between eaghpath and
ancestor path of an original node which essentially follows the
above fundamental principle.

Let Q¢ be the subgraph @) consisting ofu, and the ancestor
nodes ofu that are also chase nodesiofLet Q%" be the subgraph
of Q¢ consisting ofu and all ancestor nodes af which can be
original or chase nodes. Thu® is a subgraph o). Each
original query node has exactly opepathl. in Q¢, and one or
more p-pathsi; in Q¢. We have noted that all the ancestor paths
of u are contained iRt and that every-pathi; of u (I; # Ic)
is necessarily a-path ofu’s original p-parent. Instead of directly
applying the above principle to every combination gf-path and

Algorithm 2 ad-augmentation (Q¢)
1: for each original node in bottom-up ordedo
2: . :=thep-path inQY
3:  ad-PathToGraplic, Q1)
4:  for eachp-pathl; # I in Q¥T do
5 ad-PathToGrapli;, Q%)

an ancestor path af, we apply the principle to (1), with Q%"
(line 3 of Algorithm 2), and (2); with Q¢ for eachl; # I. (lines
4-5 of Algorithm 2).

The functionad-PathToGraphused in Algorithm 2 augments
the necessaryd-edges from the nodes in @path of u, I, to
the nodes in the subgrapl, (either Q¢ or Q") rooted atu,
which closely follows the above fundamental principle. &ion
ad-PathToGraphtakesO(n|Vs|) time and adds at mosD(|V;|)
ad-edges, wher®’ is the set of nodes iQ);.

Example 6.6Consider@ in Figure 3 with the same constraints as
in Example 4.1.Q¢ is shown in Figure 3(c). The chase nodes in
Qc is added during step S1 of the chase by attaching the reachabl
subgraphs. Note that the chase edge betweand b, is added
during step S2 of the chase. a

Complexity of ad-augmentationQt (may be as big agc¢) has
O(n|X|) nodes, and)¢: (may be as big a&'¢) hasO(|2]|) nodes.
The number op-paths ofu in Q¢ is bounded by)(n). Algorithm
ad- augnent at i on takes =O(n?|%|) time, and add®)(n?|Y)|)
ad-edges. |

6.4 Generating a Minimal Query

In this section, we present the algoriti@nhaseM ni m zeFBST
(shown in Algorithm 3) to compute a single minimal query of an
input query@ w.r.t. a set of FBST-constraints.

The input toChaseM ni m zeFBST is a non-redundant orig-
inal nodewu in Q¢, and all redundant original nodes @¢ are
detected (by applying Lemma 6.1) and removed via recursiile ¢
to ChaseM ni m zeFBST. Each queryQ has at least one non-
redundant node given by its output nog€Q), u = op(Q) in the
first call to ChaseM ni m zeFBST. Steps 2 to 6 check whether
the p-parent andz-parentv of u in Q¢ is redundant. Ifv is re-
dundant,v as well as its chase nodes (if any) are removed. if
not redundant, a recursive call@haseM ni m zeFBST is made
with v as the input parameter. Similarly, steps 7 to 13 check and
remove any redundamtchild andd-child nodes ofu. Nodes that
have been checked are marked to avoid repeated redundakt che
ings.

Itis important to point out that due to possible sibling doaisits
in C, the removal of redundantchild nodes inQ¢ entails some
additional checking (in steps 10 and 11) for correctnes®cifip
cally, if an originalc-child v of u is detected to be redundant, it is
necessary to also check whethehnas anothee-child of typer (v).

If there is no sucle-child, thens-child nodes ofu with edge label
7(v) must also be deleted. This is due to the fact that the comditio
(u has ac-child of type (v)) no longer exists. We illustrate this
subtle point using the following example.

Example 6.7ConsiderQ in Figure 10(a) withGc shown in Fig-
ure 10(b).Q¢ is shown in Figure 10(c)ChaseM ni mi zeFBST
identifies the originat-child b of nodea to be redundant (because
a has another-child by € FBsim(b)) andb is deleted. In ad-
dition, due to steps 10 and 1ChaseM ni m zeFBST also finds
that a has no othek-child of typeb. Consequently, the-child

c1 with edge labeb is deleted together with, leading to a mini-



Algorithm 3 ChaseMinimizeFBST (u)
1: marku as visited
2: while (u has an original parentthat is unvisitedpo
3: if (v is ap-parent ofu and v has anothep-parentq €
FBsim(p)) or (v is ana-parent ofu andu has another an-
cestorg € F Bsim(p)) then
deletev and its chase nodead-edges are added between
v's original parent and children if any)
else
ChaseMinimizeFBST)
: while (u has an original child that is unvisitedgo
if (v is ac-child of w andu has anothee-child or s-child
w € Fsim(v)) or (v is ad-child of v andwu has another
descendanty € F'sim(v)) then
9: deletev and its chase nodead-edges are added between
u andv’s original children if any)

B

oNod

10: if u has no more-child of 7(v) then

11: deleteu’s s-edge(u, w) with edge labet-(v)
12: else

13: ChaseMinimizeFBST]

mal queryQ- (Figure 10(e)). Note that had the chase noedeot
been deleted together witha's original c-child ¢ would have been
wrongly detected to be redundant (due to the factdéheds another

c-child c1 € FBsim(c)), leading to an incorrect result. O
* 7/ | * *
a /a\ C// | a a
c/ \\b , |b
b, d IE v
b ¢ b c " ‘1 c
@Q (Ge (©) Qe dQ:1 (6)Q:

Figure 10: Lines 10 and 11 ofChaseM ni m zeFBST

Example 6.8(continued from example 6.2) F@¢ in Figure 3(c),
starting from output node, Si ngl eM ni m zeFBST finds the
d-child b of a is redundant as* has another descendant node
b1 € FBsim(b). Thenb andb's chase nodescf, di ande;)
are deleted. Child nodesandd of b are connected ta using
ad-edges. Now is ad-child of ¢, and Lemma 6.1 finds it redun-
dant asz has another descenddnte F Bsim(b). Nodec is then
deleted. Si ngl eM ni mi zeFBST outputs a minimal query):
(Figure 3(d)) after deleting the remaining chase nodes. O

Complexity of ChaseMinimizeFBSTThe worst case of algorithm
ChaseM ni m zeFBST occurs when each redundancy check of
Lemma 6.1 enables only one node removal (i.e., one nodedtedel
at atime). For a non-redundant ngaddor each child (parent resp.)
u Of p, it takes time proportional to the number of descendant (an-
cestor resp.) nodes @fto check whether is redundant. Hence
the time of checking whether is redundant using Lemma 6.1 is
O(|Ve]) = O(n|X]) whereVe is the set of nodes i@ ¢. Deleting
u and its chase nodes takes|>|) time. Thus the worst case of al-
gorithmChaseM ni ni zeFBST takesO(n# (n|%])) = O(n?|X))
time. O

For algorithmSi ngl eM ni mi zeFBST, we have Lemma 6.2 .

LEMMA 6.2. Algorithm SingleMinimizeFBST correctly computes
a minimal query of a given TP@ in the presence of a set of
FBST-constraints. The time-complexity of SingleMiniFEST is
O(n*[B| +n?|Ef).

6.5 Enumerating All Minimal Queries

In this section, we present an algorithm (referred to as
Mul ti pl eM ni m zeFBST)to enumerate all the minimal queries
of an input quen@ w.r.t. a set of FBST-constraints. The algorithm
consists of two key steps. Fir&j ngl eM ni m zeFBST is used
to generate a single minimal que€y,, of Q. Next, by applying
Proposition 5.4, the remaining minimal queries@f(if any) can
be generated by modifyin@.... Specifically, additional minimal
queries of@ are enumerated frof,,, by replacing eacX’, where
X is anad-leaf node or a parent-child edge @, that satisfies
the conditions of Proposition 5.4, with the minimal membarthe
equivalence class].

The time complexity oMul t i pl eM ni m zeFBST is
O(maz{n?|S| + n?|Z%, |Qum|}), whereO(n?|Z| + n?|T)?) is
the time complexity of algorithn®i ngl eM ni m zeFBST; and
Q@ is the set of distinct minimal queries ¢}, which could be
exponential in the input query size.

Example 6.9(continued from Example 6.8) From Example 6.8, we
know thatQ: (Figure 3(d)) is a minimal query @ (Figure 3(b)).
Q1 has onaud-leaf noded and no parent-child edgés, v) where

v is a leaf. Following Proposition 5.491 has two other minimal
queries, as shown in Figures 3(e) and (f). m|

7. MINIMIZE WITH FST-CONSTRAINTS

In this section, we consider the TPQ minimization problem un
der FST-constraints. Our key result here is that in the ateseh
backward constraints, a query can be minimized withoutiexpl
itly computing the chase of the query, resulting in a more- effi
cient approach. Section 7.1 first presents a new algorithiri To
constraints. Our algorithm has a time complexity(n|Z|+n?),
which improves over the(n*) time-complexity of the state-of-
the-art algorithm [14]. In Section 7.2, we extend our apphoto
handle FST-constraints.

For convenience, we usgmulateto mean forward simulate and
sim(u) to meanF'sim(u) in this section.

Let V denote the set of nodes in a quépy and letS C V be
a subset of query nodes, and BtC 3 be a subset of element
types. We defineype(S) = {r(v) | v € S}, node(T) = {v €
V| 7(v) € T}, par(S) = {v € V | v has apc-child in S}, and
anc(S) = {v € V | v has a descendant 8.

7.1 Minimize with FT-constraints

Our new improved algorithm is based on the ideaype sim-
ulators The complexity reduction of our algorithm is essentially
achieved by avoiding the construction of the chase qdgsyand
the subsequent computation of simulation relatiorgan, both of
which are costly.

Type simulators. Consider a query node and a typet € 3.
Formally, we say that simulatesu (denoted byu < ¢) if all the
following conditions hold:

1. w is neither the query output node nor its ancestor;
2. t < 7(u) € closure(C);

3. for eachpe-child v of u, there exists a typ& € X such that
t — t' € closure(C) and =< t;



4. for eachad-child v of u, there exists a typg € X such that
t — t' € closure(C) and < t'.

The above conditions (2) to (4) are straightforward as tbégw
the definition of simulation. Condition (1) follows from aqperty
of FT-constraints: if a query nodeis redundant, then any descen-

dant query node of is necessarily also redundant [14]. Since the

query output node is non-redundant, all its ancestor nodss afso
be non-redundant.

We usesimtype(u) to denote the set of types I that sim-
ulate u; i.e, simtype(u) = {t € ¥ | u = t}. The function
simtype() can be computed efficiently using two auxiliary func-
tionspartype() andanctype() which are defined as follows.

Given a sefl’ C X, partype(T) is defined to be the set of types
in X having a requiré-child type inT"; andanctype(T') is defined
to be the set of types iR having a required-descendant typelin
as follows:

partype(T) = {t € & |t — t' € closure(C),t' € T};
anctype(T) ={t € ¥ |t - ' € closure(C),t' € T}.

Based onpartype() and anctype(), simtype(u) can be de-

fined as follows: ifu is the output query node or its ancestor, then

simtype(u) = 0; otherwise,

simtype(u) = {t € |t < 7(u) € closure(C),
t € partype(simtype(v)) for eachpe-child v of u,
t € anctype(simtype(v)) for eachad-child v of u}.

Node simulators. Recall thatsim (u) denotes the set of forward
simulators ofu. The functionsim() can be defined in terms of two
additional auxiliary functions, namelyugpar(), andauganc(),
which are defined as follows:

o augpar(sim(u)) = par(sim(u)) U{v e V | r(v) €
partype(simtype(u))}; and

o auganc(sim(u)) =anc(sim(u)) U Sra Uanc(Sra), where
Sra ={v € V| 7(v) € anctype(simtype(u))}.

Based omugpar() andauganc(), sim(u) can now be defined
in terms of three cases as follows:

e if u is the output node, thesim (u) = {u};

e if wis anon-output leaf node, theim (u) = {v € V| 1(v) <
7(u) € closure(C)};

e if u is neither the output node nor a leaf node, then

sim(u) = {v € V| 7(v) < 7(u) € closure(C), v €
augpar(sim(u')) for eachpc-child v’ of u, andv €
auganc(sim(u'")) for eachad-child u” of u}.

Example 7.1Consider queryQ shown in Figure 11(a) with con-
straintsC ={b < B, b—d, f < F, a— f, f — c}. We have
sim(d) = {d}, sim(e1) = {e1, e2}, augpar(sim(d)) = {B, b},
par(sim(d)) = {B}, andaugpar(sim(e1)) = {B,b}. Since
b € augpar(sim(d)) andb € augpar(sim(e1)), andb < B, we
haveb € sim(B). We also haveim(c) = {c}, augpar(sim(c))
={F}, simtype(F) = {f} andpartype(simtype(F))={a}. O

Algorithm M ni m zeQuer y- FT minimizes a given TP@ in
the presence of a sét of FT-constraints. It first computes a re-
duced queryR(Q), which is the resultant query @} after repeat-
edly removing a leaf node that is redundant duelésurg C') until

A\

a*

a* B a*

/B/b\F b E/ \e |f b

d e e|2 c L c/ \d f|
@Q (b) @m ©Q dQm

Figure 11: Minimization with FST-constraints

Algorithm 4 MinimizeQuery-FT (TPQQ)

1: Compute the reduced query@f R(Q)
2: Compute the simulation aR(Q) as follows:
for each node: in R(Q) in bottom-up order do
computesimtype(u), partype(simtype(u)),
anctype(simtype(u)), sim(u), augpar(sim(u)),
andauganc(sim(u)).
3: Minimize-FT @ro0t), Wherev,.qo¢ is the root node oRR(Q)

no leaf is redundant [14]. As defined in [14]peleaf nodev (with
parentu) of @ is redundant ifr(u) — 7(v) € closurdC); anad-
leaf nodev (with parentu) of @ is redundant ifr(u) — 7(v) €
closurdC). R(Q) can be computed i@ (n?) time and has at most
n nodes.

Algorithm M ni mi zeQuer y- FT then computes the type sim-
ulators and node simulators. Then it calls the recursiverdlgn
M ni mi ze- FT to remove the redundant nodes as follows.

For a non-redundant nodestarting from the root oR(Q),

e apc-child v of w is redundant ifu has anothepc-child w €
sim(v) or 7(u) € partype(simtype(v));

e anad-child v of v is redundant ifu has another childy €
sim(v)Uauganc(sim(v))orr(u) € anctype(simtype(v)).

If v is redundant, the subtree rootedvat deleted. Otherwise,
M ni m ze- FT continues minimization on.

Example 7.2(continued from Example 7.1) The:-child of a, B,

is redundant as has anothepc-child b € sim(B). Thus the
subtree rooted aB is deleted. At the same time, we hafeis
redundant as € partype(simtype(F)). Thus the subtree rooted
at F' is also deleted, leading to the minimal quépy, as shown in
Figure 11(b). O

Complexity of MinimizeQuery-FT Computing the reduced query

R(Q) takesO(n?) time. The simulation relations are computed in

O(n|X|) time. Minimize-FT@,.0:) takesO(n?) time. Hence the

time-complexity of MinimizeQuery-FT i©(n|%|+n?). o
ForM ni m zeQuer y- FT, we have the following result.

LEMMA 7.1. Algorithm MinimizeQuery-FT correctly generates
the minimal query for a given TPQ in the presence of FT-constraints
in O(n|Z]+n?) time.

7.2 Extensions for FST-constraints

The minimization algorithms for FST-constraints are eglént
to those for FT-constraints except that we need to use extetef-
initions of bothaugpar() and auganc() to take into account of
sibling constraints.
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Figure 12: Experimental Results: Minimization Time

Algorithm 5 Minimize-FT (nodeu)
1: for eachpc-child v of u do

2: if u has anothepc-child w € sim(v) that has not been
deletedthen
3: delete the subtree rootedwat
4:  elseifr(u) € partype(simtype(v)) then
5: delete the subtree rootechat
6. else
7: Minimize-FT @)
8: for eachad-child v of u do
9:  if u has another chiley € sim(v) U auganc(sim(v)) that
has not been deleteten
10: delete the subtree rootedwat
11:  elseifr(u) € anctype(simtype(v)) then
12: delete the subtree rootedwat
13: else
14: Minimize-FT @)

If v has apc-child w and(v) ™ t € closure(C), thenv
must necessarily have anothet-child of typet. When sibling

constraints are included i, the following extensions are needed:

e augpar(sim(u)) =par(sim(u))U{v € V | 7(v) €
partype(simtype(u)) U P};

e auganc(sim(u)) = anc(sim(u)) U Sra U anc(Sra) U P
U anc(P)}

whereSra = {v € V| 7(v) € anctype(simtype(u))}; and P

={v € V| v has apc-child w, 7(v) Ty € closure(C), t €
simtype(u)}.
Similarly, we have the following result.

LEMMA 7.2. In the presence of FST-constraints, a TEXZan
be minimized irO(n|S|+n?) time.

Example 7.3 Consider minimization ofp’ in Figure 11(c) with

constraintsC = {b< B,e< FE,e—c¢ e—d, b N e} Q
itself is a reduced query. We haven(c) = {c}, sim(d) = {d},
andsimtype(c) = {c}, simtype(d) = {d}; andaugpar(sim(c))
={E, e}, augpar(sim(d))={E,e}; we havesim(E) = {E, e},
sim(e) = {e}, andsimtype(F) = simtype(e) = {e}. We have
auganc(sim(E)) = {B, a, b} andauganc (sim(e)) = {B,a,
b} due to the extensions of definitionsa@igpar() andauganc():

b has apc-child f such thad J, e holds wheree € simtype(E)
(e € simtype(e) too). Then we havé € sim(B). The subtree
rooted atB is then deleted, which leads to minimal qué&p, as
shown in Figure 11(d). |

8. OTHER MINIMIZATION ALGORITHMS

In this section, we summarize the time complexity results fo
computing a single minimal query for the remaining clasgesn-
straints shown in Figure 2(b). For FBT-constraints, thestitom-
plexity is the same as that for FBST-constraints.

However, for FB/FBS-constraints, the time computing rexsuc
to O(n*). The improvement in complexity is due to an optimized
chase procedure: during step S1 of the chase procedurethanly
types that exist in the query prior to chase are attached [€ads
to a smaller chase quefyc with O(n?) nodes andD(n?) edges.
Consequently, the simulation relations can be computed(if*)
time.

9. EXPERIMENTAL RESULTS

In this section, we present an experimental study on the effi-
ciency and effectiveness of our minimization algorithmseTl-
gorithms being compared include both of our proposed alyos
Si ngl eM ni m zeFBST (FBST for short) andvul ti pl eM -
ni m zeFBST (MFBST for short), as well asCTPQM ni i ze
(CTPQfor short) proposed in [14] for forward constraints. We used
both real (DBLP records [11]) as well as synthetic (XMark])15
datasets in our experiments. Our experimental results tmthe
XMark and DBLP datasets show the efficiency and scalability o
FBST. All the algorithms were implemented in Java, and the ex-
periments were run on a Pentium 4 PC with a 3.0Ghz processor, 1
GB of main memory, and a 30 GB hard disk.

9.1 Efficiency and Scalability of Minimization

In our first set of experiments, we study the effect of the num-
ber of constraints and the effect of query size ondbery mini-
mization timeof FBST. This metric measures the time to generate
a minimal query for an input query. Our experimental resatts
both the XMark and DBLP datasets show the efficiency and scala
bility of FBST; however, due to space limitation, we only present
the experimental results on the DBLP dataset.

For the DBLP dataset of 127MB, we extracted 160 non-trivial
constraints (29 forward, 10 backward and 121 sibling cairsts).
The purpose of using such a large number of constraints isia-e
ate the scalability of our algorithms; the minimal querieayever,
can actually be obtained using a set of no more than 20 camtstra



| Input query

| Minimal query produced by FBST |

X1: //site/people/person[name]//profile//education
X2: //site/open_auctions/open_auction/bidder/inaepd/increase
X3: //site/open_auctions/open_auction/reserve

/leducation
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Table 2: Queries in comparison with CTPQMinimize
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Figure 13: Experimental Results: Total Processing Time (Maimization + Evaluation)

Effect of #/Cs on minimization time. This experiment studies the
effect of the number of ICs on the minimization timeFEBST for
the following three queries by varying the input set of nowidl
constraints used:

Q1: /ldblp/inproceedings[booktitle][year][author][uidfossref[number][pages]/title
Q2: /ldblp/article[volume][author][url][title][year][purnal]/cite
Q3: /ldblp/book][cite][author][year][isbn][publisherfte]

The sizes 061, Q2, and@Q3 are 10, 9, and 8 nodes, respectively,
and their minimal queries (w.r.t. 160 ICs) have 3, 2, and Zsa0e-
spectively Q.nin1 = /inproceedings//[number]/title Q,in2 = Narticle/cite,
Qumin3 = Ilbook(cite)).

The results shown in Figure 12(a) indicate that the minitiora
time increases with the number of ICs (as expected). Note tha
the minimization times reported are rather small: the migdtion
time for Q1, Q2, and@3 (w.r.t. 160 ICs) is only 12ms, 9ms, and
9Ims respectively; which is a negligible overhead in a tylpidzath
query evaluation process.

Effect of query size on minimization time. This experiment stud-
ies the effect of the query size on the minimization timé&BST.

We generated a set of 10 test queries of increasing sizeslitom
to 100 nodes. The 10 test queries are composed using a amilect
of five query fragments@,, throughQ.) together with a query root
fragmentQ, = //dblp. Note thatQ, has 9 nodes, and each @},
through@. has 10 nodes.

Q. phdthesis[ee][series][title][year][school][publsfilauthor][number]

Qy: proceedings|cite][journal][volume][number][publistj[editor][isbn][series]/title
Q.: inproceedingstitle][booktitle][year][number][cdntj[author][pages][url]/crossref
Q4: incollection[chapter][isbn][publisher][ee][url][ees][author][cite]/booktitle

Q. book[url][isbn][title][month][year][cdrom][cite][ublisher])/author

The first test quer® 10, which consists of 10 nodes, is composed
using@, and@,; and the remaining 9 test queries are composed
by appending query fragments frofi®,, - - - Q.} to Q10 under
Q. as branches repeatedly. For each test query, we measure its
minimization time w.r.t. 4 different collections of ICs csisting of
40, 80, 120, and 160 constraints, respectively.

Figure 12(b) shows the minimization time for the 10 test tpser
w.r.t. the 4 sets of ICs. As expected, the minimization time.{. a
given set of ICs) increases with a larger query size. Thdtealso
demonstrate the scalability dFBST algorithm: the minimization
time for the largest test query (with 100 nodes) w.r.t. thgdat set
of 160 ICs is only 99ms. We note that for each of the test qegerie
the size of its minimal query (w.r.t. to the complete set of)IG
no more thar80% of the size of the original query.

We also conducted experiments comparing the performance of
FBST and MFBST on both DBLP and XMark datasets. Our results
indicate that the minimization time ofMFBST (to enumerate all
minimal queries) is no more than 10% longer than the minitioza
time of FBST (to compute a single minimal query).



9.2 Comparison of Total Processing Time

In our second set of experiments, we comparetttal query
processing timef algorithm FBST and CTPQ. This metric mea-
sures both the time taken to generate a minimal query for@ut in
query as well as the time taken to evaluate the minimizedyquer
against a dataset. We also compare the total processingofime
FBST and CTPQ with the evaluation time of the original query
without minimization.

We first ran bothFBST and CTPQto minimize the input queries
on both XMark and DBLP datasets, and then evaluated theaespe
tive minimized queries on the XML datasets using the efficien
query evaluation engine, GCX [16].

The test queries on XMark are shown in the first column of Ta-
ble 2. QueriesX2 corresponds to XMark’s benchmark queries Q2;
while X 1 andX 3 are slightly modified versions of XMark’s bench-
mark queries1 and@4. As there are no benchmark queries for
DBLP, we used the same synthetic querigs Q2 andQ3 as in
Section 9.1.

The constraints used for query minimization are derivethftioe
XMark DTD and DBLP datasets. The minimized queries produced
by FBST for X1, X2 and X 3 are shown in the second column of
Table 2. The minimal queries o1, X2 and X3 produced by
CTPQare the same as their input queries except for quéty of
which the minimized query issite/people/person//profile//educatideom-
paring the minimized queries produced BBST and CTPQ it is
clear that using additional backward and sibling constsane ef-
fective for query minimization.

In terms of query minimization time, the minimization time r
quired by both CTPQ and FBST is less than 10 ms for each of
the test queries. Thus, the overhead incurredBST using more
constraints is negligible.

The minimized queries aK 1 throughX 3, andQ1 through@3
were then evaluated to measure their evaluation times oXitie
datasets. We used two datasets of different sizes for botarkKM
and DBLP. For XMark, datasets of 111MB (the standard XMark
dataset [15]) and 384MB (generated using XMark data gemerat
[15]) were used; for DBLP, the 127MB dataset [11] and the 4B1M
dataset [2] were used.

Figure 13 compares compare the total processing time fanthe
put queries:Original refers to the non-minimized original query,
CTPQrefers to the query minimized usifgy PQ, andFBSTrefers
to the query minimized usingBST. Essentially, the minimization
overhead is negligible compared to the gain in total queny pr
cessing time FBST gives the best performance compared to both
CTPQandOriginal. Our experimental results demonstrate the ef-
fectiveness and efficiency of TPQ minimization using a nicliass
of constraints.

10. CONCLUSION

In this paper, we examined the problem of tree pattern query
minimization using a richer class of integrity constrai(fB8ST
constraints) that includes not only forward and subtypestraints
but also backward and sibling constraints. Our study rexksév-
eral interesting properties about minimal queries unde3 FBon-
straints that makes the query minimization problem mordehg:
ing. First, there can be multiple minimal queries of differsizes
for an input query; and second, a minimal query can include el
ment types that are not present in the input query. We havacha
terized the properties of minimal queries for various sagets of
FBST constraints, and have developed efficient algorithrased
on these properties, to both compute a single minimal quewed
as enumerate all minimal queries. In addition, we have a¢so d

veloped more efficient minimization algorithms for the pomsly
studied class of FT constraints. Our experimental studyaiem
strated the effectiveness and efficiency of query mininoratsing
FBST constraints.

11. REPEATABILITY ASSESSMENT RESULT

All the results in the submitted paper were verified by the-SIG
MOD repeatability committee. However, Figures 12(a)&(b}he
proceedings version of this paper include additional testiiat
have not been verified.
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