
Minimization of Tree Pattern Queries with Constraints

Ding Chen and Chee-Yong Chan
Dept. of Computer Science, School of Computing

National University of Singapore
{chending, chancy}@comp.nus.edu.sg

ABSTRACT
Tree pattern queries (TPQs) provide a natural and easy formalism
to query tree-structured XML data, and the efficient processing of
such queries has attracted a lot of attention. Since the sizeof a
TPQ is a key determinant of its evaluation cost, recent research
has focused on the problem of query minimization using integrity
constraints to eliminate redundant query nodes; specifically, TPQ
minimization has been studied for the class of forward and sub-
type constraints (FT-constraints). In this paper, we explore the TPQ
minimization problem further for a richer class of FBST-constraints
that includes not only FT-constraints but also backward andsib-
ling constraints. By exploiting the properties of minimal queries
under FBST-constraints, we propose efficient algorithms toboth
compute a single minimal query as well as enumerate all minimal
queries. In addition, we also develop more efficient minimization
algorithms for the previously studied class of FT-constraints. Our
experimental study demonstrates the effectiveness and efficiency of
query minimization using FBST-constraints.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems -Query processing

General Terms
Algorithms, Performance

Keywords
XML, XPath, Tree pattern queries, Query minimization, Integrity
constraints, Chase, Simulation

1. INTRODUCTION
Tree pattern queries (TPQs)provide a very natural and easy for-

malism to query XML data, and constitute a very useful and large
fragment of queries expressible using XML query languages such
as XPath [17] and XQuery [18]. Since the size of the query (in
terms of the number of query steps) is a key determinant of itseval-
uation cost [9], there has been a lot of interest in the minimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08,June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

of TPQs given knowledge of data constraints [19, 5, 14, 8]. The
work in this area can be characterized along two main dimensions:
the class of queries being supported (i.e., query fragment)and the
types of constraints being considered. The various fragments of
XPath queries explored so far can be denoted byXP F [8], where
F ⊆ { /, //, [], ∗} represents the set of query features supported in-
cludingchild axis“/”, descendant axis“//”, nested predicates“[]”,
andwildcards“∗”.

In terms of data constraints, besides the simplest case of query
minimization without considering constraints, most of thework has
focused primarily onforward constraintsandsubtype constraints
[5, 14]. There are two types of forward constraints, namely,re-
quired child (RC)constraints andrequired descendant (RD)con-
straints. An RC (RD resp.) constraint is of the formx→ y (x ։ y
resp.) which states that for every element of typex, it has a child
(proper descendant resp.) element of typey. A subtype constraint
is of the formx ≤ y which states that every element of typex is
also of typey.

In this paper, we examine the minimization of TPQs for the
query fragmentXP {/,//,[]} with respect to a richer class of data
constraints that include not only forward and subtype constraints
but alsobackwardandsiblingconstraints.

Backward constraints, which are the “opposites” of forwardcon-
straints, can be classified into two types, namely,required parent
(RP) constraints andrequired ancestor (RA)constraints. An RP
(RA resp.) constraint is of the formx ← y (x և y resp.) which
states that for every element of typey, it has a parent (proper an-
cestor resp.) element of typex. For an example of a RP constraint,
if an element ‘b’ appears as a sub-element only for the element ‘a’,
then we havea ← b. For an example of a RA constraint, if an ele-
ment ‘d’ appears as a sub-element only for elements ‘b’ and ‘c’, and
both elements ‘b’ and ‘c’ appear as sub-elements only for element
‘a’, then we havea և d.

A sibling constraint is of the forma
c

99K b which states that for
every element of typea, if it has a child element of typec, then the
a element must also have a child element of typeb. Note that for a
sibling constrainta

c
99K b to hold, it is not necessary to havea→ b

and a → c. For example, the following are two possible DTD
type definitions for an element ‘a’ that will result in the sibling

constrainta
c

99K b: ((c?,b+)∗, d) and ((b, c) | d).
Despite the fact that backward and sibling constraints havebeen

largely neglected (with respect to query minimization), they are ac-
tually rather common in XML data. Table 1 compares the number
of forward and backward constraints that are extracted fromfive
different DTDs1. Observe that there are actually more backward
constraints than forward constraints in these DTDs.
1Note that the number of forward and backward constraints indi-
cated refer to the number of “basic” constraints that cannotbe de-

XML Forward Backward
Database RC RD RP RA

GraphML [7] 0 0 6 5
DBLP [11] 0 0 8 27
PSDML [1] 26 0 57 8
XMark [15] 57 0 57 14
Mondial [3] 13 0 30 8

Table 1: Forward & Backward Constraints in XML DTDs

Student∗

Invention

Patent

Agreement Licensing

Student∗

Patent

Agreement Licensing

Student∗

Patent

Agreement

(a)Q1 (b) Q2 (c) Q3

Student∗

Patent

Licensing

Student∗

Licensing

Student∗

Licensing

Contract

Student∗

Contract

(d) Q4 (e)Q5 (f) Q6 (g) Q7

Figure 1: Minimization with Backward & Sibling Constraints

Furthermore, as pointed out by Bex, et al. [6] and Hinkelman
[10], XML schemas (including industry-level standards) are gener-
ally too loosely defined with respect to the data that they actually
represent. This means that XML data sets generally satisfy more
constraints than what are explicitly specified in their schemas. We
conducted a simple study to identify the sibling constraints from
the data sets maintained at the XML Data Repository [11]. We
found that there are 121, 6, and 3 sibling constraints, respectively,
in the DBLP, Protein Sequence Database, and Mondial data sets2,
although there are only 0, 1 and 0 sibling constraints specified
in their corresponding DTDs respectively. As an example, inthe
DBLP data set, the ‘phdthesis’ element does not always have a
‘publisher’ sub-element. However, if a ‘phdthesis’ element has
an ‘isbn’ sub-element, then the ‘phdthesis’ element must also
have a ‘publisher’ sub-element. Although the sibling constraint

phdthesis
isbn
99K publisher is not explicitly captured by DBLP’s

DTD, this constraint is indeed satisfied by the DBLP data sets[11].
By considering a richer class of constraints, there are moreop-

portunities for query minimization. As an example, consider the
minimization of the TPQQ1 shown in Figure 1(a) w.r.t. the set of

constraintsC = {Patent
Agreement

99K Licensing, Patent
Licensing

99K

Agreement,Patent←Licensing, Invention←Patent, Patent
→ T itle, Licensing → Contract, Licensing ← Contract }.
Each node inQ1 represents an element type, and the special node
that is marked with a∗ (i.e.,Student) represents the output node of
the query. ThusQ1 will return all Studentelements that satisfy a set
of requirements specified by the edges. A single (double) edge con-

rived from other constraints.
2Again here, we counted only the “basic” sibling constraintsthat
cannot be derived from other constraints.

necting two nodes represents a parent-child (ancestor-descendant)
relationship. Thus, two of the requirements specified byQ1 are that
eachStudentelement must have a descendantInventionelement,
and eachInventionelement must have a childPatentelement. Ob-
serve thatQ1 cannot be further minimized using only the forward
constraints inC. However, using the RP constraintInvention←
Patent, Q1 can be simplified toQ2 (Figure 1(b)). Moreover, by ap-

plying the sibling constraintPatent
Agreement

99K Licensing, Q2 can
be further minimized toQ3 (Figure 1(c)), which turns out to be a
minimal query (w.r.t.C).

Query minimization using backward and/or sibling constraints
is a more challenging problem due to two new properties of mini-
mal queries under such constraints. First, the minimal query is not
necessarily unique; and moreover, the minimal queries do not nec-
essarily have the same size. Second, a minimal query can contain
element types that are not present in the input query. In contrast,
the minimal query (with respect to only forward and subtype con-
straints) is always unique, and the element types appearingin the
minimal query is a subset of those in the input query [5, 14].

Referring again to the example in Figure 1,Q1 actually has three
minimal queries: besidesQ3, Q5 andQ7 are also minimal queries
of Q1. Note that the sizes ofQ3 andQ5 are different, andQ7 con-
tains the element typeContract that is absent inQ1. The second
minimal queryQ5 can be derived fromQ2 as follows: first, apply

the sibling constraintPatent
Licensing

99K Agreementto minimizeQ2

to Q4; next, apply the RP constraintPatent← Licensingto sim-
plify Q4 to Q5. The third minimal queryQ7 is obtained fromQ5

as follows: first, note thatQ5 is equivalent toQ6 due to the RC
constraintLicensing→ Contract; next, note thatQ6 is equivalent
to Q7 due to the RP constraintLicensing← Contract.

For notational convenience, we use the letters F, B, S, and T to
represent, respectively, the class of forward, backward, sibling, and
subtype constraints. In addition, we useα-constraints to denote the
class of constraints of types inα, whereα ⊆ {F, B, S, T}; braces
and commas inα are omitted for simplicity.

The key results of our paper are summarized in Figure 2. Fig-
ure 2(a) compares the key properties of minimal queries (columns
2 to 4) for different classes of data constraints (column 1):our new
results are indicated in rows 2 to 4, while the results from previous
work [5, 14] are indicated in row 1. The lattice structure in Fig-
ure 2(b) summarizes the time-complexity of query minimization
for XP {/,//,[]} under different constraint classes (represented by
the lattice nodes), where the lattice edges represent the containment
relationship between constraint classes. Specifically, the time com-
plexity shown for each class is for computing one minimal query
of an input queryQ w.r.t. a set of constraintsC, wheren denotes
the number of steps inQ, andΣ denotes the set of distinct element
types inC.

The rest of the paper is organized as follows. Section 2 covers
background material, and related work is presented in Section 3.
Section 4 introduces key concepts for query minimization. Sec-
tion 5 presents properties of minimal queries under different classes
of constraints. Section 6 presents efficient algorithms to generate
a minimal query and to enumerate all the minimal queries under
FBST-constraints. Section 7 presents a more efficient minimiza-
tion algorithm for FT-constraints. Section 8 covers the minimiza-
tion algorithms and results for the remaining subclasses ofFBST-
constraints. Section 9 presents an experimental evaluation of our
proposed algorithms. Finally, Section 10 concludes the paper.

2. BACKGROUND
Tree pattern queries. As illustrated in Figure 1, tree pattern

Data Number of Element types in How do minimal
constraints minimal queries minimal queries queries differ?

F / FT One
Subset of original

-query’s types
FB / FBT Possibly multiple minimal Can contain ad-leaf nodes
FS / FST queries of the same size element types that pc-leaf nodes

FBS / FBST
Possibly multiple minimal are not present in

pc/ad-leaf nodesqueries of different sizes original query

FBST (this paper)
O(n2|Σ|2+n3|Σ|)

FBT (this paper)
O(n2|Σ|2+n3|Σ|)

FBSO(n4)
(this paper)

FST O(n|Σ|+n2)
(this paper)

FB O(n4)
(this paper)

FT
O(n4) ([14])

O(n|Σ|+n2) (this paper)

FSO(n2)
(this paper)

F O(n2) ([14])

(a) Properties of Minimal Queries (b) Time Complexity of TPQminimization
(n = size of query,Σ = set of element types in constraints)

Figure 2: Summary of Key Results (F = forward, B = backward, S =sibling, T = subtype)

queries (TPQs) are represented as trees, where the nodes of aTPQ
Q are labelled by element types from a finite alphabetΣ. The type
of a nodeu is denoted byτ (u), and the root node ofQ is denoted
by root(Q). The size ofQ, denoted by|Q|, refers to the number
of nodes inQ. Each queryQ has a uniqueoutput node, denoted as
op(Q), and its element type label is distinguished with a∗ mark.
The nodes inQ are connected by two types of edges: parent-child
edges (pc-edges) and ancestor-descendant edges (ad-edges). Con-
sider an edgee = (u, v) with parent nodeu and child nodev. If
e is aα-edge, whereα ∈ {pc, ad}, we say thatv is aα-child of u
andu is theα-parent ofv. Moreover, ifv is a leaf node,v is also
known as aα-leaf node.

An embedding of a TPQQ onto a tree databasedb is defined as
a mappingβ from the nodes ofQ to the nodes ofdb such that the
following conditions are satisfied:

1. Preserve node types: for each nodeu ∈ Q, eitheru andβ(u)
are of the same type, orβ(u) is of a subtype ofu;

2. Preservepc/ad-edge relationships: ifv is a pc-child (ad-
child resp.) ofu in Q, thenβ(v) is a child (descendant resp.)
of β(u)in db.

The evaluation of a TPQQ on db requires finding all the embed-
dings ofQ in db, and the answer toQ is given by the set of database
nodesβ(op(Q)).
Minimal queries. A node u of a TPQQ is redundantif u is a
non-output node and the query obtained by deletingu from Q is
equivalent toQ. Here, deleting a leaf nodeu simply removesu
and its incident edge; while deleting an internal nodeu requires
removingu and connectingu’s parent node (if it exists) to each of
u’s child nodes with anad-edge.

Given two TPQsQ and Q′, and a set of integrity constraints
(ICs) C, Q andQ′ areequivalentw.r.t. C, denoted byQ ≡C Q′,
if and only if Q andQ′ have the same answer on all tree databases
that satisfyC. Q′ is aminimal queryof Q w.r.t. C iff (1) Q ≡C Q′

and (2)Q 6≡C Q′′ for everyQ′′ that is obtained by deleting some
node(s) fromQ′.
Notations. In this paper, we useΣ to denote the set of distinct
element types in the constraints, andn to denote the size ofQ.

3. RELATED WORK
Sihem et al. were the first to study the TPQ minimization prob-

lem for the query fragmentXP{/,//,[]} [5]. The state-of-the-art
minimization algorithms for this fragment have time complexities
of O(n2) andO(n4), respectively, for the case without constraints
and the case with FT-constraints [14]. Moreover, for both cases,
every TPQ has a unique minimal query [5, 14]. To the best of our

knowledge, TPQ minimization forXP{/,//,[]} using backward or
sibling constraints has not been explored.

Query minimization for the full query fragmentXP{/,//,[],∗} in
the absence of constraints was shown by Flesca et al. to be NP-hard
[8]. For fragmentXP{/,[],∗}, query minimization in the absence of
constraints has polynomial time complexity, and each XPathquery
has a unique minimal query [19].

A related direction is query containment [12, 13, 20]. The con-
tainment problem under DTDs for a smaller XPath fragmentXP{/,[]}

was shown to becoNP-complete [13].

4. REASONING WITH CONSTRAINTS
This section introduces the key concepts for TPQ minimization

under FBST-constraints.

4.1 Constraint Closure
Given a set of FBST-constraintsC, let closure(C) denote the set

of FBST-constraints that must hold w.r.t.C. The following set of
inference rules (R1 to R22) can be used to computeclosure(C) as
follows: first, initialize closure(C) to beC, and then iteratively
add new constraints that are generated by the rules toclosure(C)
until no further rules can be added.

R1. ifτ1 → τ2, thenτ1 ։ τ2

R2. ifτ1 ։ τ2 andτ2 ։ τ3, thenτ1 ։ τ3

R3. ifτ1 ≤ τ2 andτ2 ≤ τ3, thenτ1 ≤ τ3

R4. ifτ1 ≤ τ2 andτ2 → τ3, thenτ1 → τ3

R5. ifτ1 ≤ τ2 andτ2 ։ τ3, thenτ1 ։ τ3

R6. ifτ1 → τ2 andτ2 ≤ τ3, thenτ1 → τ3

R7. ifτ1 ։ τ2 andτ2 ≤ τ3, thenτ1 ։ τ3

R8. τi ≤ τi for everyτi ∈ Σ
R9. ifτ2 ← τ1, thenτ2 և τ1

R10. ifτ2 և τ1 andτ3 և τ2, thenτ3 և τ1

R11. ifτ1 ։ τ2 andτ3 ← τ2 andτ1 � τ3, thenτ1 ։ τ3

R12. ifτ1 → τ2 andτ3 և τ2 andτ1 � τ3, thenτ3 և τ1

R13. ifτ1 ≤ τ2 andτ3 ← τ2, thenτ3 ← τ1

R14. ifτ1 ≤ τ2 andτ3 և τ2, thenτ3 և τ1

R15. ifτ2 ← τ1 andτ2 ≤ τ3, thenτ3 ← τ1

R16. ifτ2 և τ1 andτ2 ≤ τ3, thenτ3 և τ1

R17. ifτ1 → τ2, τ1
τ2

99K τ3, thenτ1 → τ3

R18. ifτ1
τ2

99K τ3, τ1
τ3

99K τ4 thenτ1
τ2

99K τ4

R19. ifτ1
τ2

99K τ3, τ3 ≤ τ4, thenτ1
τ2

99K τ4

R20. ifτ1
τ2

99K τ3, τ4 ≤ τ1, thenτ4
τ2

99K τ3

R21. ifτ1
τ2

99K τ3, τ4 ≤ τ2, thenτ1
τ4

99K τ3

R22. ifτ1 → τ2, thenτ1
τi

99K τ2 for everyτi ∈ Σ

In each rule,τ1, τ2, τ3, andτ4 represent distinct element types.
We write τ1 � τ3 to mean thatτ1 is not a subtype ofτ3. Rules
R1 to R8 were used earlier in [14] for query minimization with
FT-constraints. Rules R9 to R16 are new rules to handle backward
constraints, while rules R17 to R22 are new rules to handle sibling
constraints.

Rule R11 follows from the tree structure property: if a nodeu1

of type τ1 has a descendantu2 of type τ2, andu2 in turn has a
parentu3 of typeτ3, thenu3 must be a descendant ofu1 provided
that τ1 is not a subtype ofτ3. Otherwise, ifτ1 ≤ τ3, thenu3

may not be a descendant ofu1 asu3 andu1 can be the same node.
A similar reasoning applies to rule R12. The rest of the rulesare
straight-forward.

4.2 Constraint Graph
The FBS-constraints inclosure(C) can be categorized intotriv-

ial andnon-trivial constraints defined as follows. Every RC and
RP constraint is non-trivial. An RD or RA constraint is trivial if
it can be inferred from other constraints using rules that donot in-
volve subtype constraints; otherwise it is non-trivial. A sibling
constraint is trivial if it can be inferred using rule R22; otherwise it
is non-trivial.
Constraint graph. The non-trivial FBS-constraints inclosure(C)
can be represented succinctly by aconstraint graph, denoted by
GC = (VC , EC), where each node inVC represents some element
type inΣ and each edge inEC represents a non-trivial constraint.

Specifically, ifτ1 → τ2, τ1 ← τ2, τ1 ։ τ2, τ1 և τ2, orτ1
τ3

99K τ2,
is a non-trivial constraint, thenGC contains, respectively, an edge
τ1 → τ2 (a c-edge), τ1 ← τ2 (a p-edge), τ1 ։ τ2 (a d-edge),

τ1 և τ2 (ana-edge), or τ1
τ3

99K τ2 (ans-edge).
Thus, there are five types of edges inGC : a-, c-, d-, andp-

edges (all represented by solid arrows) denote RA, RC, RD, and
RP constraints, respectively; ands-edges (represented by labelled
dashed arrows) denote sibling constraints. We refer toτ3 as the

edge labelof ans-edgeτ1
τ3

99K τ2.
In all the above five edge types, we say thatτ1 is theparentof

τ2; or equivalently,τ2 is the child of τ1. Note that in the edge
specification,τ1 is on the left side of the arrow andτ2 is on the
right side of the arrow. Given two nodesτ1 andτk in GC , we say
thatτ1 is anancestorof τk (or equivalently,τk is adescendantof
τ1) if there is a sequence of nodesτ1, τ2, · · · , τk in GC such that
τi is the parent ofτi+1 for i ∈ [1, k). Graphically, each edge in
GC is depicted with the parent node shown above the child node.

Consider an edgee with parent nodeτ1 and child nodeτ2. If e
is anℓ-edge, whereℓ ∈ {a, c, d, p, s}, we say thatτ1 is aℓ-parent
of τ2, and thatτ2 is aℓ-child of τ1.

To avoid clutteringGC , if two nodes inGC are connected by
two solid edges (which must necessarily represent one forward and
one backward constraint), then these two edges are combinedand
represented as a single, double-headed solid arrow. For example,
if GC contains both edgesτ1 → τ2 andτ1 ← τ2, then they can
simply be represented by a single edgeτ1 ↔ τ2. In this case,τ1

is ap-parent as well as ac-parent ofτ2; τ2 is ap-child as well as a
c-child of τ1.

Following [14], we assume thatC is available as part of the data,
and therefore bothclosure(C) andGC are computed only once of-
fline. The closure ofC, closure(C), can be computed inO(|Σ|2).
The size ofclosure(C) is O(|Σ|2). GC consists ofO(|Σ|) nodes
andO(|Σ|2) edges.
Reachable subgraph. Given τi ∈ VC and L ⊆ Σ, we define
GL

τi
= (V L

τi
, EL

τi
) to be thereachable subgraphof nodeτi in GC ,

whereV L
τi
⊆ VC andEL

τi
⊆ EC is the set of edges induced byV L

τi

b

d c

e f

g

c

e

d

a∗

b

c d

a∗

b b1

c2 d1 c d c1

e1 e2

c dd

a∗

d

a∗

e

a∗

b

c

(a)GC (b) Q (c)QC (d) Q1 (e)Q2 (f) Q3

Figure 3: Minimization with FBST-Constraints

in GC . V L
τi

is defined as follows:τj ∈ V L
τi

if one of the following
conditions hold:

R1. τj = τi; or

R2. τk ∈ V L
τi

and there is ana/c/d/p-edge fromτk to τj in GC ;
or

R3. τi
t

99K τj is in GC andt ∈ L; or

R4. τk
t

99K τj is in GC , {τk, t} ⊆ V L
τi

, andt is ac/p/s-child of
τk in GC .

Intuitively, a reachable subgraphGL
τi

represents all the nodes inGC

that are reachable from nodeτi by traversing the edges inGC ; L ⊆
Σ can be used as edge labels in the traversal of s-edges (condition
R3).

PCC-pair. For eachs-edgeτ1
τ2

99K τ3 in GC , we refer to the type
pair (τ1, τ2) as aparent-conditional-child pair (PCC-pair)with
parent typeτ1 and conditional child typeτ2.
Type & PCC-pair Equivalence. For each typeτi ∈ VC , we define
G∅

τi
to be the reachable subgraph forτi; and for each PCC-pair

(τi, τj) in GC , we defineG
{τj}
τi

to be the reachable subgraph for
(τi, τj).

Let X andY be a type inVC or a PCC-pair inGC . We say
that X andY areequivalent, denoted byX ≡ Y , if the reach-
able subgraphs forX andY are equal. We use[X] to denote the
equivalence class forX (based on type/PCC-pair equivalence); i.e.,
[X] = {Y | Y is a type inVC or a PCC-pair inGC , Y ≡ X}.

Given an equivalence class[X], a memberY ∈ [X] is defined to
beminimal if (1) Y is a type; or (2)Y is a PCC-pair(τi, τj) such
thatτi 6∈ [X] andτj 6∈ [X]. An equivalence class[X] is a trivial
equivalence classif [X] has only one minimal member; otherwise,
[X] is anon-trivial equivalence class.

The concept of an equivalence class is very fundamental in our
TPQ minimization approach as it is used to characterize important
properties of multiple minimal queries in Section 5.

Example 4.1ConsiderΣ = {a, b, c, d, e, f, g} with a set of con-

straintsC = {b
c

99K d, b
d

99K c, d → e, d ։ e, d
f

99K e, d ←

e, b ← d, b և e, f → g, c
e

99K f}. The set of non-trivial con-

straintsC′ = {b
c

99K d, b
d

99K c, d → e, d ← e, b ← d, f →

g, c
e

99K f}. The constraint graphGC built from C′ is shown
in Figure 3(a). GC has ac-edge (p-edge resp.) fromd to e (b
resp.); thuse ∈ V ∅

d (b ∈ V ∅
d resp.). Nowb ∈ V ∅

d has ans-child

d ∈ V ∅
d , andb

d
99K c ∈GC ; thusc ∈ V ∅

d . Therefore, we haveV ∅
d

= {b, c, d, e}. Similarly,V ∅
e = V

{c}
b = V

{d}
b = {b, c, d, e}. We have

an equivalence class{(b, c), (b, d), d, e}, of which (b, c), d ande
are the only minimal members. 2

5. PROPERTIES OF MINIMAL QUERIES
Previous work on TPQ minimization has shown that for F/FT-

constraints, each query has a unique minimal query [5, 14]. How-
ever, beyond these results for F/FT-constraints, there hasnot been
any systematic study and characterization of the properties of min-
imal queries.

In this section, we characterize important properties of minimal
queries under various subclasses of FBST-constraints. First, we
present a necessary condition for the existence of multipleminimal
queries under FBST-constraints. Then, for each of the constraint
classes FBT, FST, and FBST, we characterize the conditions for a
query to have multiple minimal queries.

The following result states a necessary condition for the exis-
tence of multiple minimal queries under FBST-constraints.

PROPOSITION 5.1. Consider the minimization of a queryQ un-
der a set of FBST-constraintsC. A necessary condition forQ
to have multiple minimal queries is the existence of a non-trivial
equivalence class inGC .

The intuition behind Proposition 5.1 is as follows. Consider two
distinct minimal queriesQm andQ′

m for a queryQ. SinceQm

andQ′
m are distinct, each minimal query must contain some com-

ponents that are different from each other. LetCm andC′
m de-

note these components ofQm and Q′
m, respectively. However,

sinceQm andQ′
m are equivalent, the reachable subgraphs of these

components must be the same; i.e., they must both belong to some
equivalence class[X] in GC . Furthermore, bothCm andC′

m are
necessarily minimal members of[X] given thatQm andQ′

m are
minimal queries. Thus, it follows that[X] must be a non-trivial
equivalence class inGC .

The following result characterizes minimal queries under FBT-
constraints.

PROPOSITION 5.2. Let Qm be a minimal query ofQ under a
set of FBT-constraintsC. ThenQ has another distinct minimal
queryQ′

m iff the following two conditions hold:

1. Qm has anad-edge(p, x), wherex is a non-output leaf
node; and

2. there existsτy ∈ [τ (x)] such that

(a) τ (x)← τy ∈ GC andτ (p) 6≤ τ (x); or

(b) τy ← τ (x) ∈ GC andτ (p) 6≤ τy .

Under FBT-constraints, the absence of sibling constraintsmeans
that each equivalence class contains only element types.

Based on Proposition 5.2, ifQm is a minimal query ofQ under a
set of FBT-constraintsC, then another minimal query ofQ can be
derived fromQm by changing nodex to aτy-node. Furthermore,
all the minimal queries ofQ must be of the same size and they
differ only in theirad-leaf nodes.

Example 5.1ConsiderC = {c← d, c→ d, a→ e, e→ f, e←
f}. We have the two non-trivial equivalence classes inGC : {c, d}

and{e, f}. Consider TPQQ in Figure 4(a) and a minimal query
Q1 of Q (w.r.t. C) in Figure 4(b). SinceQ1 has a non-output ad-
leaf nodec, and there is a typed ∈ [c] such thatc← d anda � c,
by Proposition 5.2,Q has multiple minimal queries. Indeed,Q2

in Figure 4(c) is another minimal query ofQ that is obtained from
Q1 by changingc to d. Note that ifC had an additional constraint
a ≤ c, thenQ2 would not be a minimal query ofQ. To see this,
consider a single data chain <a><d/><a/>. Clearly, this data (which
satisfiesC) is an answer toQ2, but not toQ1. 2

a∗

c e

f

a∗

c

a∗

d

a∗

b b

d e c

a∗

b

d e

a∗

b

c e

(a)Q (b) Q1 (c) Q2 (d) Q′ (e)Q3 (f) Q4

Figure 4: Illustration of Properties of Minimal Queries

The following result characterizes minimal queries under FST-
constraints.

PROPOSITION 5.3. Let Qm be a minimal query ofQ under a
set of FST-constraintsC. ThenQ has another distinct minimal
queryQ′

m iff all the following conditions hold:

1. Qm has anpc-edge(p, x), wherex is a non-output leaf
node; and

2. there exists(τ (p), τy) ∈ [(τ (p), τ (x))], whereτy ∈ Σ and
τy 6= τ (x).

Under FST-constraints, the absence of backward constraints im-
plies that each equivalence class contains only PCC-pairs.

Based on Proposition 5.3, ifQm is a minimal query ofQ under
a set of FST-constraintsC, then another minimal query ofQ can be
derived fromQm by changing nodex to aτy-node. Furthermore,
all the minimal queries forQ must be of the same size and they
differ only in theirpc-leaf nodes.

Example 5.2ConsiderC = {b
c

99K d, b
d

99K c}. We have(b, c) ≡
(b, d). TPQQ3 (Figure 4(e)) is a minimal query of TPQQ′ (Figure
4(d)). SinceQ3 has a non-outputpc-leaf d, andGC has an equiv-
alence class[(b, d)] where(b, c) ∈ [(b, d)], by Proposition 5.3,
Q′ has another minimal queryQ4 (Figure 4(f)), which is obtained
from Q3 by changingd to c. 2

Finally, the following result characterizes minimal queries under
FBST-constraints.

PROPOSITION 5.4. Let Qm be a minimal query ofQ under a
set of FBST-constraintsC. ThenQ has another distinct minimal
queryQ′

m iff one of the following conditions hold:

1. Qm satisfies conditions 1 and 2 of Proposition 5.2;

2. Qm satisfies conditions 1 and 2 of Proposition 5.3;

3. Qm satisfies all of the following conditions:

(a) Qm has anad-edge(p, x), wherex is a non-output leaf
node; and

Algorithm 1 SingleMinimizeFBST (Q)
1: compute the chase queryQC

2: computeFsim(u) andFBsim(u) for each query nodeu ∈ QC

3: QC = ChaseMinimizeFBST(op(QC))
4: delete the remaining chase nodes inQC to obtain a minimal

queryQm

(b) there exists a minimal member(τy, τz) ∈ [τ (x)], where
τy ∈ Σ andτz ∈ Σ.

4. Qm satisfies all of the following conditions:

(a) Qm has anpc-edge(p, x), wherex is a non-output leaf
node;

(b) p is an ad-child; and

(c) there exists some element typeτi ∈ [(τ (p), τ (x))].

Under FBST-constraints, an equivalence class may contain both
single types as well as PCC-pairs.

Based on Proposition 5.4, ifQm is a minimal query ofQ under
a set of FBST-constraintsC, then another minimal queryQ′

m of
Q can be derived fromQm as follows. IfQm satisfies condition
1 or 2, thenQ′

m can be derived fromQm by changing nodex to
a τy-node. IfQm satisfies condition 3, thenQ′

m can be derived
from Qm by changing nodex to a pc-edge(τy, τz). Finally, if
Qm satisfies condition 4, thenQ′

m can be derived fromQm by
changing thepc-edge(p, x) to a τi-node. Furthermore, ifQ has
multiple minimal queries, their sizes could differ.

Example 5.3(continued from Example 4.1) TPQQ1 (Figure 3(d))
is a minimal query of TPQQ (Figure 3(b)). From Example 4.1, we
have[d] = {d, e, (b, d), (b, c)}. By the condition set 1 of Proposi-
tion 5.4 (Q1 has a non-outputad-leafd; e ∈ [d] andd← e), Q has
distinct minimal queries. By changingad-leaf d ∈ Q1 to minimal
members of[d], e or (b, c), we have two other minimal queriesQ2

(Figure 3(e)) andQ3 (Figure 3(f)). 2

6. MINIMIZE WITH FBST-CONSTRAINTS
In this section, we present algorithms to minimize TPQs under

the broadest class of FBST-constraints. We first present techniques
for computing a single minimal query (Sections 6.1 to 6.4), and
then extend the approach to enumerate all minimal queries (Sec-
tion 6.5).

Our overall approach to compute a single minimal query for a
TPQQ (w.r.t. a set of constraintsC) is shown in Algorithm 1 and
consists of four main steps. The first step is to compute the chase
queryQC of the input query; the goal is to integrate the relevant
constraints fromC into Q to created an augmented queryQC that
contains additional chase nodes. The details of the chase query
computation are discussed in Sections 6.1 and 6.3. The second step
(Section 6.2) is to compute simulation relations for the nodes in
QC ; the purpose of this step is to enable the detection of redundant
nodes inQ to generate a minimal query ofQ, which is performed in
the third step (Section 6.4). Finally, the fourth step simply removes
any remaining chase nodes fromQC to obtain a minimal query of
Q.

While our overall approach follows the same principle as thepre-
vious work for query minimization with FT-constraints [14], the
TPQ minimization problem with FBST-constraints is a more chal-
lenging task due to the intricacies of dealing with BS-constraints
which requires the development of several new techniques:

1. The computation ofclosure(C) requires new inference rules
to handle BS-constraints (R9-R21 presented in Section 4.1).

2. When buildingQC , the presence of B-constraints requires
a more intricate augmented chase computation (i.e., thead-
edge augmentation in Section 6.3) to address the inadequacy
of the conventional chase computation (Section 6.1). More-
over, the detection of redundant nodes now requires comput-
ing forward & backward simulation which is more involved
rather than computing forward simulation.

3. The presence of S-constraints, which represent conditional
constraints, also demands some subtle extensions to the chase
and minimization process (Sections 6.1 and 6.4).

4. The presence of BS-constraints leads to some fundamental
new properties of minimal queries identified in Section 5;
specifically, the possibility of multiple minimal queries with
different sizes requires new techniques that exploit proper-
ties of minimal queries to efficiently enumerate all minimal
queries (Section 6.5).

6.1 The Chase Procedure
Given a TPQQ, the chase query ofQ, denoted byQC , is com-

puted using a two-step procedure:

S1. InitializeQC to beQ. For every query nodeu in QC , attach
the reachable subgraphGL

τ(u) to u, whereL = {τ (v) | v is
apc-child of u inQ}.

S2. AugmentQC with additionalad-edges.

Step S1 initializesQC to beQ, and then enhances each nodeu
in Q with additional nodes from its reachable subgraph based on
τ (u) and the types ofu’s child nodes inQ. The nodes and edges
in QC can be classified into two types: the nodes (edges) that are
originally in Q are calledoriginal nodes (edges)and the attached
nodes (edges) added toQC are calledchase nodes (edges).

Step S2, which is referred to as theaugment chase step, then in-
serts intoQC a set (possibly empty) of additionalad-edges referred
to asaugmented edges. This important augmentation step is neces-
sary due to the presence of backward constraints. The need for the
augment chase step will be illustrated in Example 6.1; however, we
will defer a detailed discussion of this step to Section 6.3 after we
have explained the identification of redundant nodes inQC using
FBsimulation in Section 6.2.

Graphically, we distinguish between original and chase nodes in
QC by showing the former as boxed nodes and the latter as un-
boxed nodes. For ease of identification of nodes of the same type
in QC , we also add subscripts to the node labels when convenient.
For consistency of edge notations, the non-arrowed original edges
in Q are represented using arrowed edges inQC as follows. Let
e = (x, y) be an original edge inQ with parent nodex and child
nodey. Thene is represented inQC asx ↔ y if e is apc-edge;
otherwise,e is anad-edge and it is represented as x y.Finally,
to distinguish normalad-edges from augmentedad-edges (intro-
duced by step S2), the latter are shown as bold edges.

Note that the conventions and definitions introduced in Section 4
for GC also apply toQC .

The following example illustrates step S1 of the chase computa-
tion and motivates the need for the augment chase step S2.

Example 6.1ConsiderQ in Figure 5 with constraintsC = {c և

e, e և a}. We explain how step S1 of the chase is performed on
Q to deriveQC (shown in Figure 5(b)). The reachable subgraph
G∅

a is attached to nodesa∗, i.e., two chase nodese1 andc1. The

reachable subgraphG∅
e is attached to nodese, i.e., chase nodec2.

Specifically, no chase nodes are attached to the remaining nodes of
Q since their reachable graphs contain only the node itself.

Note that there is an augmented edge betweene1 andb1 in QC ;
this is added by the augment chase step S2. To appreciate why this
addition is necessary, assume for the moment that the augmented
edge is not present inQC . Observe that the output nodea has two
ancestor paths of nodes: one leads toc while the other leads toc1.
The purpose of adding the augmented edge(e1, b1) is to explic-
itly connect these two related paths to enable a correct detection of
redundant nodes using FBsimulation (to be discussed in the next
section). Specifically, the original nodesc, e, andb2 are all actually
redundant and need to be removed to generate a correct minimal
queryQ2. However, without the augmented edge(e1, b1), the FB-
simulation technique would wrongly identify these three nodes as
non-redundant. 2

c

e b

b a∗

c1

c2 c e1

e b1

b2 a∗

b

a∗

(a)Q (b) QC (c) Q2

Figure 5: Example of the Chase Procedure

Complexity of the chase.For a nodeu in Q, the reachable sub-
graphGL

τ(u) is added tou in step S1. SinceGL
τ(u) can be as large

asGC , it consists ofO(|Σ|) nodes andO(|Σ|2) edges; thus the re-
sultant graph of step S1 comprises ofO(n|Σ|) nodes andO(n|Σ|2)

edges. Thead-edge augmentation in step S2 adds inO(n2|Σ|)
edges. Thus the chase ofQ, QC , comprises ofO(n|Σ|) nodes and
O(n2|Σ| + n|Σ|2) edges.

For each nodeu, GL
τ(u) can be computed by at most one traversal

on GC , which takesO(|Σ|2) time. Hence step S1 can be done in
O(n|Σ|2) time. Step S2 takesO(n3|Σ|) time. The overall time
complexity of the chase procedure isO(n3|Σ| + n|Σ|2). 2

6.2 Forward & Backward Simulation
Once the chase queryQC has been computed, any redundant

nodes inQC can be detected and eliminated based on the concept
of forward-backward simulation (FBsimulation) [4].

The FBsimulation on the nodes ofQC is the largest binary re-
lation �F B on the nodes ofQC such thatu �F B v iff all the
following conditions hold:

(1) Preserve node types:τ (u) ≤ τ (v); moreover, ifu = op(Q),
thenv = op(Q);

(2) Preserve parent-relationships: ifu has ap-parentu′, thenv
has ap-parent orc-parent ors-parentv′ s.t.u′ �F B v′;

(3) Preserve child-relationships: ifu has ac-child u′, thenv has
ap-child or c-child ors-child v′ s.t.u′ �F B v′;

(4) Preserve ancestor-relationships: ifu has ana-parentu′, then
v has an ancestorv′ s.t.u′ �F B v′;

(5) Preserve descendant-relationships: ifu has ad-child u′, then
v has a descendantv′ s.t.u′ �F B v′.

The forward simulation�F on the nodes ofQC is computed using
only conditions (1), (3), and (5); while the backward simulation
�B on the nodes ofQC is computed using only conditions (1), (2),
and (4).

If u �F v (u �B v, u �F B v resp.), we say thatv is a forward
(backward, forward-backward resp.) simulator ofu. Given a node
u in QC , we useFsim(u), Bsim(u), andFBsim(u) to refer to the
set of forward, backward, and forward-backward simulatorsof u,
respectively. Note thatFBsim(u) is always a subset ofFsim(u)
andBsim(u).

Algorithms for computing forward simulation Fsim(u) in TPQs
were presented in [14]. These algorithms could be extended to
computeFBsim relation onQC for our context. Such modified
algorithms takeO(n3|Σ| + n2|Σ|2) time to compute Fsim(u) and
FBsim(u) for every original nodeu in QC .

Example 6.2(continued from Example 4.1) ForQC in Figure 3,
we haveFsim(a) = FBsim(a) = {a}, Fsim(b) = FBsim(b) =
{b, b1}, Fsim(c) = FBsim(c) = {c, c1, c2}, andFsim(d) =
FBsim(d) = {d, d1}. 2

We can now identify redundant nodes inQC based on the fol-
lowing result.

LEMMA 6.1. Letu ∈ QC be a non-redundant original node.

(1) An original p-parentp of u is redundant iffu has another
p-parentp′ ∈ FBsim(p);

(2) An original a-parentp of u is redundant iffu has another
ancestorp′ ∈ FBsim(p);

(3) An original c-child c of u is redundant iffu has anotherc-
child or s-child c′ ∈ Fsim(c);

(4) An originald-child c of u is redundant iffu has another de-
scendantc′ ∈ Fsim(c).

Lemma 6.1 is extension of a result in [14], where the focus there
was identifying redundantc-child andd-child nodes using only for-
ward simulation; i.e. conditions (3) and (4). The new two condi-
tions (1) and (2) for identifying redundantp-parent anda-parent
nodes, however, require a stronger test based on FBsimulation. We
illustrate the necessity of FBsimulation using the following exam-
ple.

Example 6.3ConsiderQ in Figure 6(a) withC = {a ← b, b ։

d, b ← c}. GC and QC are shown in Figures 6(b)&(c). Note
that the original nodeb is not redundant. InQC , we haveb1 /∈
FBsim(b), which is consistent with the fact thatb is not redun-
dant. Thus, nodeb remains inQ’s minimal queryQm shown in
Figure 6(d). Observe that nodec has anotherp-parentb1 in QC

such thatb1 ∈ Fsim(b) andb1 ∈ Bsim(b). However, it is incor-
rect to conclude fromb1 ∈ Fsim(b) andb1 ∈ Bsim(b) thatb is
redundant. 2

a

e b

d c∗

a

b

c d

a a2 a1

e b b1

d d2 c∗ d1

a

e b

c∗

(a)Q (b) GC (c) QC (d) Qm

Figure 6: FBsimulation in Checking Redundant Parent

6.3 Augmented Chase
We are now ready to explain the details of the important aug-

ment chase step (step S2 in Section 6.1). Due to the presence of
backward constraints, a node inQC could have multiple path of
ancestor nodes which are necessarily related since each node in a
query tree cannot have multiple unrelated paths of ancestornodes.
Thus, the augment chase step S2 is necessary to check for possible
implied relationships among multiple ancestor paths. Without this
important step, redundant nodes might not be correctly detected
leading to incorrect minimal queries.

Recall that Example 6.1 illustrated the need to performad-edge
augmentation between an original node and a chase node inQC . In
general,ad-edge augmentation is necessary for any pair of related
ancestor nodes. In the next example, we illustrate another scenario
wheread-edge augmentation is required between a pair of related
chase nodes.

f

e c∗

b d

f

b e

c d

f1

f2 f e1

b1

e c∗

b d

c∗

d

(a)Q (b) GC (c) QC (d) Qm

Figure 7: Example ofad-edge Augmentation

Example 6.4ConsiderQ in Figure 7(a) withC = {b ← c, e և

d, f ← e}. GC andQC are shown in Figures 7(b) and (c), respec-
tively. Note thatQC has an augmentedad-edge between the chase
nodesb1 ande1 due to the tree structure property (b1 is ap-parent
of c, c is a p-parent ofd, ande1 is ana-parent ofd). Similarly
there is an augmentedad-edge betweenb1 andf . FromQC , we
can identify that the original nodesf , e, andb are redundant (due

to their forward-backward simulatorsf1, e1, andb1, respectively),
leading to the minimal queryQm in Figure 7(d). Without the aug-
mentedad-edges,Qm cannot be derived based on FBsimulation.

2

An important point to emphasize is that it is only necessary to
perform edge augmentation forad-edges: addingpc-edges between
related ancestor nodes is not sound. We illustrate the intuition be-
hind this with the following example.

Example 6.5ConsiderQ1 in Figure 8 withC = {b ← c}. If
pc-edge augmentation is done, then the resultant chase queryQ′

C

is shown in Figure 8 with an augmentedpc-edge betweena and
b1. We then haveb1 ∈ FBsim(b), leading to a wrong conclusion
thatb is redundant and an incorrect minimization ofQ1 to Q2 that
results from the removal ofb from Q′. To see thatQ1 andQ2 are
not equivalent, consider data<a><d><c/><d/><a/>.
Q2 matches the data, whileQ1 does not. 2

a

b

c∗

a

b b1

c∗

a

c∗

(a)Q1 (b) Q′
C (c) Q2

Figure 8: Example ofad-edge Augmentation

6.3.1 Augmentation Algorithm
This section presents the algorithm to perform the augment chase

step S2. The key challenge of this step is: given a nodeu in QC

which has two ancestor paths of nodes, how to characterize the
pair(s) of related nodes along these paths that need to be connected
with augmented edges. We shall formalize this using the concepts
of ancestor path,p-path and compatible nodes.

A path of nodes(w1, · · · , wn) in QC , n ≥ 1, is said to be an
ancestor path ofw1 if (1) wi is a p/a-parent ofwi−1 for each
i ∈ (1, n]; and (2)wn has nop/a-parent node inQC . A path of
nodes(v1, · · · , vm) in QC , m ≥ 1, is said to be ap-path ofv1 if
(1) vi is ap-parent ofvi−1 for eachi ∈ (1, m]; and (2)vm has no
p-parent node inQC .

A node vi is said to be compatible with another nodewi iff
τ (vi) ≤ τ (wi) or τ (wi) ≤ τ (vi).

Consider a nodeu in QC that has both ap-pathpv = (u, v1, · · · ,
vj , · · · , vk, · · · , vm) as well as another ancestor pathpw =
(u, w1, · · · , wj , · · · , wn), where1 ≤ j ≤ k ≤ m andj ≤ n.
Figure 9 illustrates the situations where an augmented edgeis re-
quired to connect a pair of related nodes inpv andpw, which are
characterized as follows. Anad-edge needs to be augmented for
the following two cases.
Case 1.An ad-edge is added betweenwk+1 (the ancestor) andvk

(the descendant), if the following two conditions hold:

1. vi is compatible withwi for eachi ∈ [1, k]; and

2. wk+1 is ana-parent ofwk.

Case 2. An ad-edge is added betweenwj (the ancestor) andvk

(the descendant), if all the three conditions hold:

1. vi is compatible withwi for eachi ∈ [1, j − 1]; and

2. wj is ana-parent ofwj−1; and

3. (a) vk is the last node inpv (i.e., k = m), andvs is not
compatible withwj for eachs ∈ [j, k]; or

(b) wj is not compatible withvt for eacht ∈ [j, k], and
vk+1 is compatible withwj wherek ∈ [j, m− 1].

Figure 9(a) shows Case 1, wherepv andpw have pairwise com-
patible nodeswi andvi for i ∈ [1, k], andwk+1 is ana-parent of
wk. The tree-structure property requireswk+1 to be an ancestor of
vk. Figure 9(b) shows Case 2 where condition 3(a) holds. Here,pv

andpw have pairwise compatible nodeswi andvi for i ∈ [1, j).
Nodewj−1 has ana-parentwj , andvs−1 has ap-parentvs which
is not compatible withwj for s ∈ [j, k]. Clearly, nodevk must be
a descendant ofwj based on the tree structure property. Note that
if wj andvk were compatible, then adding thead-edge(wj , vk)
would be incorrect aswj andvk might be the same node instead of
being an ancestor-descendant pair of nodes. The reasoning for Case
2 where condition 3(b) holds (depicted in Figure 9(c)) is similar.

Note that for all such augmentedad-edges, the implied descen-
dant always belongs to thep-path. The nodes in Figure 9 can be
chase or original nodes. The edge(w1, u) can be either apc-edge
or anad-edge.

wn vm

wk+1

wk vk

w1 v1

u

wn

wj

vk

wj−1 vj−1

w1 v1

u

wn vm

wj vk+1

vk

vj

wj−1 vj−1

w1 v1

u

(a) Case 1 (b) Case 2 Condition 3(a) (c) Case 2 Condition 3(b)

Figure 9: Illustration of Augmentation Algrithm

We propose an algorithm,ad-augmentation (Algorithm 2),
to augment all the necessaryad-edges between eachp-path and
ancestor path of an original nodeu, which essentially follows the
above fundamental principle.

Let Qu
C be the subgraph ofQC consisting ofu, and the ancestor

nodes ofu that are also chase nodes ofu. LetQu+
C be the subgraph

of QC consisting ofu and all ancestor nodes ofu, which can be
original or chase nodes. Thus,Qu

C is a subgraph ofQu+
C . Each

original query node has exactly onep-path lc in Qu
C , and one or

morep-pathsli in Qu
C . We have noted that all the ancestor paths

of u are contained inQu+
C , and that everyp-pathli of u (li 6= lc)

is necessarily ap-path ofu’s original p-parent. Instead of directly
applying the above principle to every combination of ap-path and

Algorithm 2 ad-augmentation (QC)
1: for each original nodeu in bottom-up orderdo
2: lc := thep-path inQu

C

3: ad-PathToGraph(lc, Qu+
C)

4: for eachp-pathli 6= lc in Qu+
C do

5: ad-PathToGraph(li , Qu
C)

an ancestor path ofu, we apply the principle to (1)lc with Qu+
C

(line 3 of Algorithm 2), and (2)li with Qu
C for eachli 6= lc (lines

4-5 of Algorithm 2).
The functionad-PathToGraphused in Algorithm 2 augments

the necessaryad-edges from the nodes in ap-path of u, lp, to
the nodes in the subgraphQs (either Qu

C or Qu+
C) rooted atu,

which closely follows the above fundamental principle. Function
ad-PathToGraphtakesO(n|Vs|) time and adds at mostO(|Vs|)
ad-edges, whereVs is the set of nodes inQs.

Example 6.6ConsiderQ in Figure 3 with the same constraints as
in Example 4.1.QC is shown in Figure 3(c). The chase nodes in
QC is added during step S1 of the chase by attaching the reachable
subgraphs. Note that the chase edge betweena and b1 is added
during step S2 of the chase. 2

Complexity of ad-augmentationQu+
C (may be as big asQC) has

O(n|Σ|) nodes, andQu
C (may be as big asGC) hasO(|Σ|) nodes.

The number ofp-paths ofu in QC is bounded byO(n). Algorithm
ad-augmentation takes =O(n3|Σ|) time, and addsO(n2|Σ|)
ad-edges. 2

6.4 Generating a Minimal Query
In this section, we present the algorithmChaseMinimizeFBST

(shown in Algorithm 3) to compute a single minimal query of an
input queryQ w.r.t. a set of FBST-constraints.

The input toChaseMinimizeFBST is a non-redundant orig-
inal nodeu in QC , and all redundant original nodes inQC are
detected (by applying Lemma 6.1) and removed via recursive calls
to ChaseMinimizeFBST. Each queryQ has at least one non-
redundant node given by its output nodeop(Q), u = op(Q) in the
first call toChaseMinimizeFBST. Steps 2 to 6 check whether
the p-parent anda-parentv of u in QC is redundant. Ifv is re-
dundant,v as well as its chase nodes (if any) are removed. Ifv is
not redundant, a recursive call toChaseMinimizeFBST is made
with v as the input parameter. Similarly, steps 7 to 13 check and
remove any redundantc-child andd-child nodes ofu. Nodes that
have been checked are marked to avoid repeated redundant check-
ings.

It is important to point out that due to possible sibling constraints
in C, the removal of redundantc-child nodes inQC entails some
additional checking (in steps 10 and 11) for correctness. Specifi-
cally, if an originalc-child v of u is detected to be redundant, it is
necessary to also check whetheru has anotherc-child of typeτ (v).
If there is no suchc-child, thens-child nodes ofu with edge label
τ (v) must also be deleted. This is due to the fact that the condition
(u has ac-child of typeτ (v)) no longer exists. We illustrate this
subtle point using the following example.

Example 6.7ConsiderQ in Figure 10(a) withGC shown in Fig-
ure 10(b).QC is shown in Figure 10(c).ChaseMinimizeFBST
identifies the originalc-child b of nodea to be redundant (because
a has anotherc-child b1 ∈ FBsim(b)) and b is deleted. In ad-
dition, due to steps 10 and 11,ChaseMinimizeFBST also finds
that a has no otherc-child of type b. Consequently, thec-child
c1 with edge labelb is deleted together withb, leading to a mini-

Algorithm 3 ChaseMinimizeFBST (u)
1: marku as visited
2: while (u has an original parentv that is unvisited)do
3: if (v is a p-parent ofu and u has anotherp-parentq ∈

FBsim(p)) or (v is ana-parent ofu andu has another an-
cestorq ∈ FBsim(p)) then

4: deletev and its chase nodes (ad-edges are added between
v’s original parent and children if any)

5: else
6: ChaseMinimizeFBST(v)
7: while (u has an original childv that is unvisited)do
8: if (v is a c-child of u andu has anotherc-child or s-child

w ∈ Fsim(v)) or (v is a d-child of u andu has another
descendantw ∈ Fsim(v)) then

9: deletev and its chase nodes (ad-edges are added between
u andv’s original children if any)

10: if u has no morec-child of τ (v) then
11: deleteu’s s-edge(u, w) with edge labelτ (v)
12: else
13: ChaseMinimizeFBST(v)

mal queryQ2 (Figure 10(e)). Note that had the chase nodec1 not
been deleted together withb, a’s originalc-child c would have been
wrongly detected to be redundant (due to the fact thata has another
c-child c1 ∈ FBsim(c)), leading to an incorrect result. 2

a∗

b c

a

b c

c b

a∗

b1 b c1 c

b
c

a∗

b

a∗

c

(a) Q (b)GC (c) QC (d) Q1 (e)Q2

Figure 10: Lines 10 and 11 ofChaseMinimizeFBST

Example 6.8(continued from example 6.2) ForQC in Figure 3(c),
starting from output nodea, SingleMinimizeFBST finds the
d-child b of a is redundant asa∗ has another descendant node
b1 ∈ FBsim(b). Then b and b’s chase nodes (c2, d1 and e1)
are deleted. Child nodesc and d of b are connected toa using
ad-edges. Nowc is ad-child of a, and Lemma 6.1 finds it redun-
dant asa has another descendantb1 ∈ FBsim(b). Nodec is then
deleted. SingleMinimizeFBST outputs a minimal queryQ1

(Figure 3(d)) after deleting the remaining chase nodes. 2

Complexity of ChaseMinimizeFBSTThe worst case of algorithm
ChaseMinimizeFBST occurs when each redundancy check of
Lemma 6.1 enables only one node removal (i.e., one node is deleted
at a time). For a non-redundant nodep, for each child (parent resp.)
u of p, it takes time proportional to the number of descendant (an-
cestor resp.) nodes ofp to check whetheru is redundant. Hence
the time of checking whetheru is redundant using Lemma 6.1 is
O(|VC |) = O(n|Σ|) whereVC is the set of nodes inQC . Deleting
u and its chase nodes takesO(n|Σ|) time. Thus the worst case of al-
gorithmChaseMinimizeFBST takesO(n∗(n|Σ|)) = O(n2|Σ|)
time. 2

For algorithmSingleMinimizeFBST, we have Lemma 6.2 .

LEMMA 6.2. Algorithm SingleMinimizeFBST correctly computes
a minimal query of a given TPQQ in the presence of a set of
FBST-constraints. The time-complexity of SingleMinimizeFBST is
O(n3|Σ| + n2|Σ|2).

6.5 Enumerating All Minimal Queries
In this section, we present an algorithm (referred to as

MultipleMinimizeFBST) to enumerate all the minimal queries
of an input queryQ w.r.t. a set of FBST-constraints. The algorithm
consists of two key steps. First,SingleMinimizeFBST is used
to generate a single minimal queryQm of Q. Next, by applying
Proposition 5.4, the remaining minimal queries ofQ (if any) can
be generated by modifyingQm. Specifically, additional minimal
queries ofQ are enumerated fromQm by replacing eachX, where
X is anad-leaf node or a parent-child edge inQm that satisfies
the conditions of Proposition 5.4, with the minimal membersin the
equivalence class[X].

The time complexity ofMultipleMinimizeFBST is
O(max{n3|Σ| + n2|Σ|2, |QM |}), whereO(n3|Σ| + n2|Σ|2) is
the time complexity of algorithmSingleMinimizeFBST; and
QM is the set of distinct minimal queries ofQ, which could be
exponential in the input query size.

Example 6.9(continued from Example 6.8) From Example 6.8, we
know thatQ1 (Figure 3(d)) is a minimal query ofQ (Figure 3(b)).
Q1 has onead-leaf node,d and no parent-child edges(u, v) where
v is a leaf. Following Proposition 5.4,Q1 has two other minimal
queries, as shown in Figures 3(e) and (f). 2

7. MINIMIZE WITH FST-CONSTRAINTS
In this section, we consider the TPQ minimization problem un-

der FST-constraints. Our key result here is that in the absence of
backward constraints, a query can be minimized without explic-
itly computing the chase of the query, resulting in a more effi-
cient approach. Section 7.1 first presents a new algorithm for FT-
constraints. Our algorithm has a time complexity ofO(n|Σ|+n2),
which improves over theO(n4) time-complexity of the state-of-
the-art algorithm [14]. In Section 7.2, we extend our approach to
handle FST-constraints.

For convenience, we usesimulateto mean forward simulate and
sim(u) to meanFsim(u) in this section.

Let V denote the set of nodes in a queryQ, and letS ⊆ V be
a subset of query nodes, and letT ⊆ Σ be a subset of element
types. We definetype(S) = {τ (v) | v ∈ S}, node(T) = {v ∈
V | τ (v) ∈ T}, par(S) = {v ∈ V | v has apc-child in S}, and
anc(S) = {v ∈ V | v has a descendant inS}.

7.1 Minimize with FT-constraints
Our new improved algorithm is based on the idea oftype sim-

ulators. The complexity reduction of our algorithm is essentially
achieved by avoiding the construction of the chase queryQC and
the subsequent computation of simulation relation onQC , both of
which are costly.
Type simulators. Consider a query nodeu and a typet ∈ Σ.
Formally, we say thatt simulatesu (denoted byu � t) if all the
following conditions hold:

1. u is neither the query output node nor its ancestor;

2. t ≤ τ (u) ∈ closure(C);

3. for eachpc-child v of u, there exists a typet′ ∈ Σ such that
t→ t′ ∈ closure(C) andv � t′;

4. for eachad-child v of u, there exists a typet′ ∈ Σ such that
t ։ t′ ∈ closure(C) andv � t′.

The above conditions (2) to (4) are straightforward as they follow
the definition of simulation. Condition (1) follows from a property
of FT-constraints: if a query nodev is redundant, then any descen-
dant query node ofv is necessarily also redundant [14]. Since the
query output node is non-redundant, all its ancestor nodes must also
be non-redundant.

We usesimtype(u) to denote the set of types inΣ that sim-
ulate u; i.e, simtype(u) = {t ∈ Σ | u � t}. The function
simtype() can be computed efficiently using two auxiliary func-
tionspartype() andanctype() which are defined as follows.

Given a setT ⊆ Σ, partype(T) is defined to be the set of types
in Σ having a required-child type inT ; andanctype(T) is defined
to be the set of types inΣ having a required-descendant type inT
as follows:

partype(T) = {t ∈ Σ | t→ t′ ∈ closure(C), t′ ∈ T};

anctype(T) = {t ∈ Σ | t ։ t′ ∈ closure(C), t′ ∈ T}.

Based onpartype() and anctype(), simtype(u) can be de-
fined as follows: ifu is the output query node or its ancestor, then
simtype(u) = ∅; otherwise,

simtype(u) = {t ∈ Σ | t ≤ τ (u) ∈ closure(C),
t ∈ partype(simtype(v)) for eachpc-child v of u,
t ∈ anctype(simtype(v)) for eachad-child v of u}.

Node simulators. Recall thatsim(u) denotes the set of forward
simulators ofu. The functionsim() can be defined in terms of two
additional auxiliary functions, namely,augpar(), andauganc(),
which are defined as follows:

• augpar(sim(u)) = par(sim(u)) ∪ {v ∈ V | τ (v) ∈
partype(simtype(u))}; and

• auganc(sim(u)) = anc(sim(u))∪ SRA ∪ anc(SRA), where
SRA = {v ∈ V | τ (v) ∈ anctype(simtype(u))}.

Based onaugpar() andauganc(), sim(u) can now be defined
in terms of three cases as follows:

• if u is the output node, thensim(u) = {u};

• if u is a non-output leaf node, thensim(u) = {v ∈ V | τ (v) ≤
τ (u) ∈ closure(C)};

• if u is neither the output node nor a leaf node, then

sim(u) = {v ∈ V | τ (v) ≤ τ (u) ∈ closure(C), v ∈
augpar(sim(u′)) for eachpc-child u′ of u, andv ∈
auganc(sim(u′′)) for eachad-child u′′ of u}.

Example 7.1Consider queryQ shown in Figure 11(a) with con-
straintsC = {b ≤ B, b → d, f ≤ F, a → f, f → c}. We have
sim(d) = {d}, sim(e1) = {e1, e2}, augpar(sim(d)) = {B, b},
par(sim(d)) = {B}, andaugpar(sim(e1)) = {B, b}. Since
b ∈ augpar(sim(d)) andb ∈ augpar(sim(e1)), andb ≤ B, we
haveb ∈ sim(B). We also havesim(c) = {c}, augpar(sim(c))
= {F}, simtype(F) = {f} andpartype(simtype(F)) = {a}. 2

Algorithm MinimizeQuery-FTminimizes a given TPQQ in
the presence of a setC of FT-constraints. It first computes a re-
duced queryR(Q), which is the resultant query ofQ after repeat-
edly removing a leaf node that is redundant due toclosure(C) until

a∗

B b F

d e1 e2 c

a∗

b

e

a∗

B b

E e f

c d

a∗

b

f

(a)Q (b) Qm (c) Q′ (d) Q′
m

Figure 11: Minimization with FST-constraints

Algorithm 4 MinimizeQuery-FT (TPQQ)

1: Compute the reduced query ofQ, R(Q)
2: Compute the simulation onR(Q) as follows:

for each nodeu in R(Q) in bottom-up order do
computesimtype(u), partype(simtype(u)),
anctype(simtype(u)), sim(u), augpar(sim(u)),
andauganc(sim(u)).

3: Minimize-FT(vroot), wherevroot is the root node ofR(Q)

no leaf is redundant [14]. As defined in [14], apc-leaf nodev (with
parentu) of Q is redundant ifτ (u) → τ (v) ∈ closure(C); anad-
leaf nodev (with parentu) of Q is redundant ifτ (u) ։ τ (v) ∈
closure(C). R(Q) can be computed inO(n2) time and has at most
n nodes.

Algorithm MinimizeQuery-FT then computes the type sim-
ulators and node simulators. Then it calls the recursive algorithm
Minimize-FT to remove the redundant nodes as follows.

For a non-redundant nodeu starting from the root ofR(Q),

• a pc-child v of u is redundant ifu has anotherpc-child w ∈
sim(v) or τ (u) ∈ partype(simtype(v));

• anad-child v of u is redundant ifu has another childw ∈
sim(v)∪auganc(sim(v)) or τ (u) ∈ anctype(simtype(v)).

If v is redundant, the subtree rooted atv is deleted. Otherwise,
Minimize-FT continues minimization onv.

Example 7.2(continued from Example 7.1) Thepc-child of a, B,
is redundant asa has anotherpc-child b ∈ sim(B). Thus the
subtree rooted atB is deleted. At the same time, we haveF is
redundant asa ∈ partype(simtype(F)). Thus the subtree rooted
atF is also deleted, leading to the minimal queryQm as shown in
Figure 11(b). 2

Complexity of MinimizeQuery-FT Computing the reduced query
R(Q) takesO(n2) time. The simulation relations are computed in
O(n|Σ|) time. Minimize-FT(vroot) takesO(n2) time. Hence the
time-complexity of MinimizeQuery-FT isO(n|Σ|+n2). 2

ForMinimizeQuery-FT, we have the following result.

LEMMA 7.1. Algorithm MinimizeQuery-FT correctly generates
the minimal query for a given TPQQ in the presence of FT-constraints
in O(n|Σ|+n2) time.

7.2 Extensions for FST-constraints
The minimization algorithms for FST-constraints are equivalent

to those for FT-constraints except that we need to use extended def-
initions of bothaugpar() andauganc() to take into account of
sibling constraints.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

M
in

im
iz

a
tio

n
 T

im
e
 (

m
s)

Number of ICs

Q1
 Q2
 Q3

(a) Varying Number of ICs

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

M
in

im
iz

a
tio

n
 T

im
e
 (

m
s)

Original Query Size

 40 ICs
 80 ICs

 120 ICs
 160 ICs

(b) Varying Query Size

Figure 12: Experimental Results: Minimization Time

Algorithm 5 Minimize-FT (nodeu)
1: for eachpc-child v of u do
2: if u has anotherpc-child w ∈ sim(v) that has not been

deletedthen
3: delete the subtree rooted atv
4: else ifτ (u) ∈ partype(simtype(v)) then
5: delete the subtree rooted atv
6: else
7: Minimize-FT(v)
8: for eachad-child v of u do
9: if u has another childw ∈ sim(v) ∪ auganc(sim(v)) that

has not been deletedthen
10: delete the subtree rooted atv
11: else ifτ (u) ∈ anctype(simtype(v)) then
12: delete the subtree rooted atv
13: else
14: Minimize-FT(v)

If v has apc-child w andτ (v)
τ(w)
99K t ∈ closure(C), thenv

must necessarily have anotherpc-child of type t. When sibling
constraints are included inC, the following extensions are needed:

• augpar(sim(u)) = par(sim(u)) ∪ {v ∈ V | τ (v) ∈
partype(simtype(u))∪ P};

• auganc(sim(u)) = anc(sim(u)) ∪ SRA ∪ anc(SRA) ∪ P
∪ anc(P)}

whereSRA = {v ∈ V | τ (v) ∈ anctype(simtype(u))}; andP

= {v ∈ V | v has apc-child w, τ (v)
τ(w)
99K t ∈ closure(C), t ∈

simtype(u)}.
Similarly, we have the following result.

LEMMA 7.2. In the presence of FST-constraints, a TPQQ can
be minimized inO(n|Σ|+n2) time.

Example 7.3 Consider minimization ofQ′ in Figure 11(c) with

constraintsC = {b ≤ B, e ≤ E, e → c, e → d, b
f

99K e}. Q
itself is a reduced query. We havesim(c) = {c}, sim(d) = {d},
andsimtype(c) = {c}, simtype(d) = {d}; andaugpar(sim(c))
= {E, e}, augpar(sim(d))= {E, e}; we havesim(E) = {E, e},
sim(e) = {e}, andsimtype(E) = simtype(e) = {e}. We have
auganc(sim(E)) = {B, a, b} andauganc (sim(e)) = {B, a,
b} due to the extensions of definitions ofaugpar() andauganc():

b has apc-child f such thatb
f

99K e holds wheree ∈ simtype(E)
(e ∈ simtype(e) too). Then we haveb ∈ sim(B). The subtree
rooted atB is then deleted, which leads to minimal queryQ′

m as
shown in Figure 11(d). 2

8. OTHER MINIMIZATION ALGORITHMS
In this section, we summarize the time complexity results for

computing a single minimal query for the remaining classes of con-
straints shown in Figure 2(b). For FBT-constraints, the time com-
plexity is the same as that for FBST-constraints.

However, for FB/FBS-constraints, the time computing reduces
to O(n4). The improvement in complexity is due to an optimized
chase procedure: during step S1 of the chase procedure, onlythe
types that exist in the query prior to chase are attached. This leads
to a smaller chase queryQC with O(n2) nodes andO(n3) edges.
Consequently, the simulation relations can be computed inO(n4)
time.

9. EXPERIMENTAL RESULTS
In this section, we present an experimental study on the effi-

ciency and effectiveness of our minimization algorithms. The al-
gorithms being compared include both of our proposed algorithms
SingleMinimizeFBST (FBST for short) andMultipleMi-
nimizeFBST (MFBST for short), as well asCTPQMinimize
(CTPQ for short) proposed in [14] for forward constraints. We used
both real (DBLP records [11]) as well as synthetic (XMark [15])
datasets in our experiments. Our experimental results on both the
XMark and DBLP datasets show the efficiency and scalability of
FBST. All the algorithms were implemented in Java, and the ex-
periments were run on a Pentium 4 PC with a 3.0Ghz processor, 1
GB of main memory, and a 30 GB hard disk.

9.1 Efficiency and Scalability of Minimization
In our first set of experiments, we study the effect of the num-

ber of constraints and the effect of query size on thequery mini-
mization timeof FBST. This metric measures the time to generate
a minimal query for an input query. Our experimental resultson
both the XMark and DBLP datasets show the efficiency and scala-
bility of FBST; however, due to space limitation, we only present
the experimental results on the DBLP dataset.

For the DBLP dataset of 127MB, we extracted 160 non-trivial
constraints (29 forward, 10 backward and 121 sibling constraints).
The purpose of using such a large number of constraints is to evalu-
ate the scalability of our algorithms; the minimal queries,however,
can actually be obtained using a set of no more than 20 constraints.

Input query Minimal query produced by FBST

X1: //site/people/person[name]//profile//education //education
X2: //site/open_auctions/open_auction/bidder/increase //increase
X3: //site/open_auctions/open_auction/reserve //reserve

Table 2: Queries in comparison with CTPQMinimize

 0

 5

 10

X1 X2 X3

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

(s
)

Original

CTPQ

FBST

(a) XMark Dataset (111MB)

 0

 5

 10

 15

 20

 25

X1 X2 X3

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

(s
) Original

CTPQ
FBST

(b) XMark Dataset (384MB)

 0

 10

 20

 30

Q1 Q2 Q3

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

(s
)

Original

CTPQ

FBST

(c) DBLP Dataset(127MB)

 0

 10

 20

 30

 40

 50

 60

Q1 Q2 Q3

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

(s
)

Original

CTPQ

FBST

(d) DBLP Dataset(411MB)

Figure 13: Experimental Results: Total Processing Time (Minimization + Evaluation)

Effect of #ICs on minimization time. This experiment studies the
effect of the number of ICs on the minimization time ofFBST for
the following three queries by varying the input set of non-trivial
constraints used:

Q1: //dblp/inproceedings[booktitle][year][author][url][crossref][number][pages]/title

Q2: //dblp/article[volume][author][url][title][year][journal]/cite

Q3: //dblp/book[cite][author][year][isbn][publisher][title]

The sizes ofQ1, Q2, andQ3 are 10, 9, and 8 nodes, respectively,
and their minimal queries (w.r.t. 160 ICs) have 3, 2, and 2 nodes re-
spectively (Qmin1 = //inproceedings//[number]/title, Qmin2 = //article/cite,
Qmin3 = //book[cite]).

The results shown in Figure 12(a) indicate that the minimization
time increases with the number of ICs (as expected). Note that
the minimization times reported are rather small: the minimization
time for Q1, Q2, andQ3 (w.r.t. 160 ICs) is only 12ms, 9ms, and
9ms respectively; which is a negligible overhead in a typical XPath
query evaluation process.
Effect of query size on minimization time.This experiment stud-
ies the effect of the query size on the minimization time ofFBST.

We generated a set of 10 test queries of increasing sizes from10
to 100 nodes. The 10 test queries are composed using a collection
of five query fragments (Qa throughQe) together with a query root
fragmentQo = //dblp. Note thatQa has 9 nodes, and each ofQb

throughQe has 10 nodes.

Qa : phdthesis[ee][series][title][year][school][publisher][author][number]

Qb: proceedings[cite][journal][volume][number][publisher][editor][isbn][series]/title

Qc: inproceedings[title][booktitle][year][number][cdrom][author][pages][url]/crossref

Qd: incollection[chapter][isbn][publisher][ee][url][pages][author][cite]/booktitle

Qe : book[url][isbn][title][month][year][cdrom][cite][publisher]/author

The first test queryQ10, which consists of 10 nodes, is composed
usingQo andQa; and the remaining 9 test queries are composed
by appending query fragments from{Qb, · · ·Qe} to Q10 under
Qo as branches repeatedly. For each test query, we measure its
minimization time w.r.t. 4 different collections of ICs consisting of
40, 80, 120, and 160 constraints, respectively.

Figure 12(b) shows the minimization time for the 10 test queries
w.r.t. the 4 sets of ICs. As expected, the minimization time (w.r.t. a
given set of ICs) increases with a larger query size. The results also
demonstrate the scalability ofFBST algorithm: the minimization
time for the largest test query (with 100 nodes) w.r.t. the largest set
of 160 ICs is only 99ms. We note that for each of the test queries,
the size of its minimal query (w.r.t. to the complete set of ICs) is
no more than30% of the size of the original query.

We also conducted experiments comparing the performance of
FBST and MFBST on both DBLP and XMark datasets. Our results
indicate that the minimization time ofMFBST (to enumerate all
minimal queries) is no more than 10% longer than the minimization
time of FBST (to compute a single minimal query).

9.2 Comparison of Total Processing Time
In our second set of experiments, we compare thetotal query

processing timeof algorithm FBST and CTPQ. This metric mea-
sures both the time taken to generate a minimal query for an input
query as well as the time taken to evaluate the minimized query
against a dataset. We also compare the total processing timeof
FBST and CTPQ with the evaluation time of the original query
without minimization.

We first ran bothFBST and CTPQ to minimize the input queries
on both XMark and DBLP datasets, and then evaluated the respec-
tive minimized queries on the XML datasets using the efficient
query evaluation engine, GCX [16].

The test queries on XMark are shown in the first column of Ta-
ble 2. QueriesX2 corresponds to XMark’s benchmark queries Q2;
whileX1 andX3 are slightly modified versions of XMark’s bench-
mark queriesQ1 andQ4. As there are no benchmark queries for
DBLP, we used the same synthetic queriesQ1, Q2 andQ3 as in
Section 9.1.

The constraints used for query minimization are derived from the
XMark DTD and DBLP datasets. The minimized queries produced
by FBST for X1, X2 andX3 are shown in the second column of
Table 2. The minimal queries ofX1, X2 andX3 produced by
CTPQ are the same as their input queries except for queryX1, of
which the minimized query is//site/people/person//profile//education. Com-
paring the minimized queries produced byFBST and CTPQ, it is
clear that using additional backward and sibling constraints are ef-
fective for query minimization.

In terms of query minimization time, the minimization time re-
quired by both CTPQ and FBST is less than 10 ms for each of
the test queries. Thus, the overhead incurred byFBST using more
constraints is negligible.

The minimized queries ofX1 throughX3, andQ1 throughQ3
were then evaluated to measure their evaluation times on theXML
datasets. We used two datasets of different sizes for both XMark
and DBLP. For XMark, datasets of 111MB (the standard XMark
dataset [15]) and 384MB (generated using XMark data generator
[15]) were used; for DBLP, the 127MB dataset [11] and the 411MB
dataset [2] were used.

Figure 13 compares compare the total processing time for thein-
put queries:Original refers to the non-minimized original query,
CTPQrefers to the query minimized usingCTPQ, andFBSTrefers
to the query minimized usingFBST. Essentially, the minimization
overhead is negligible compared to the gain in total query pro-
cessing time.FBST gives the best performance compared to both
CTPQ andOriginal. Our experimental results demonstrate the ef-
fectiveness and efficiency of TPQ minimization using a richer class
of constraints.

10. CONCLUSION
In this paper, we examined the problem of tree pattern query

minimization using a richer class of integrity constraints(FBST
constraints) that includes not only forward and subtype constraints
but also backward and sibling constraints. Our study revealed sev-
eral interesting properties about minimal queries under FBST con-
straints that makes the query minimization problem more challeng-
ing. First, there can be multiple minimal queries of different sizes
for an input query; and second, a minimal query can include ele-
ment types that are not present in the input query. We have charac-
terized the properties of minimal queries for various subclasses of
FBST constraints, and have developed efficient algorithms,based
on these properties, to both compute a single minimal query as well
as enumerate all minimal queries. In addition, we have also de-

veloped more efficient minimization algorithms for the previously
studied class of FT constraints. Our experimental study demon-
strated the effectiveness and efficiency of query minimization using
FBST constraints.

11. REPEATABILITY ASSESSMENT RESULT
All the results in the submitted paper were verified by the SIG-

MOD repeatability committee. However, Figures 12(a)&(b) in the
proceedings version of this paper include additional results that
have not been verified.

AcknowledgementsThis research is supported in part by NUS
Grant R-252-000-271-112.

12. REFERENCES
[1] The protein sequence database mark-up language.

http://pir.georgetown.edu/pirwww/xml/psdml.dtd.
[2] The DBLP XML records. http://dblp.uni-trier.de/xml/.
[3] The Mondial database.

http://www.dbis.informatik.uni-goettingen.de/Mondial/.
[4] S. Abiteboul, P. Buneman, and D. Suciu. Data on the web:

from relations to semistructured data and XML.Morgan
Kaufman, 2000.

[5] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and
D. Srivastava. Minimization of tree pattern queries. In
SIGMOD, 2001.

[6] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference
of concise DTDs from XML data. InVLDB, 2006.

[7] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and
M. Marshall. GraphML progress report: Structural layer
proposal.LNCS, 2002.

[8] S. Flesca, F. Furfaro, and E. Masciari. On the minimization
of XPath queries. InVLDB, 2003.

[9] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithmsfor
processing XPath queries.TODS, 30(2), 2005.

[10] S. Hinkelman. Business integration - information
conformance statements (bi-ics).IBM, 2005.

[11] G. Miklau. The XML data repository. 2002.
http://www.cs.washington.edu/research/xmldatasets/.

[12] G. Miklau and D. Suciu. Containment and equivalence fora
fragment of XPath.JACM, 51(1), 2004.

[13] F. Neven and T. Schwentick. On the complexity of XPath
containment in the presence of disjunction, DTD, and
variables.LMCS, 2(3), 2006.

[14] P. Ramanan. Efficient algorithms for minimizing tree pattern
queries. InSIGMOD, 2002.

[15] A. Schmidt, F. Waas, M. Kersten, D. Florescu, and
I. Manolescu. The XML benchmark project. Technical
Report INS-R0103, CWI, Netherlands, 2001.

[16] M. Schmidt, S. Scherzinger, and C. Koch. Combined static
and dynamic analysis for effective buffer minimization in
streaming XQuery evaluation. InICDE, 2007.

[17] W3C. XML path language (XPath). 1999.
http://www.w3.org/TR/xpath.

[18] W3C. XQuery 1.0: An XML query language. 2001.
http://www.w3.org/TR/xquery.

[19] P. T. Wood. Minimising simple XPath expressions. In
WebDB, 2001.

[20] P. T. Wood. Containment for XPath fragments under DTD
constraints. InICDT, 2003.

