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ABSTRACT
k nearest neighbor (kNN) search is an important problem in a vast
number of applications, including clustering, pattern recognition,
image retrieval and recommendation systems. It finds k elements
from a data source D that are closest to a given query point q in a
metric space. In this paper, we extend kNN query to retrieve clos-
est elements from multiple data sources. This new type of query
is named k nearest group (kNG) query, which finds k groups of
elements that are closest to q with each group containing one ob-
ject from each data source. kNG query is useful in many location
based services. To efficiently process kNG queries, we propose a
baseline algorithm using R-tree as well as an improved version us-
ing Hilbert R-tree. We also study a variant of kNG query, named
kNG Join, which is analagous to kNN Join. Given a set of query
points Q, kNG Join returns k nearest groups for each point in Q.
Such a query is useful in publish/subscribe systems to find match-
ing items for a collection of subscribers. A comprehensive perfor-
mance study was conducted on both synthetic and real datasets and
the experimental results show that Hilbert R-tree achieves signifi-
cantly better performance than R-tree in answering both kNG query
and kNG Join.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithm, Performance
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1. INTRODUCTION
k nearest neighbor (kNN) search [33] is an important and funda-
mental problem in many branches of computer science, including
clustering, pattern recognition, image retrieval and recommenda-
tion systems. Given a query point q in a metric space, it finds
k closest elements from a data source D. For example, Figure 1
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shows the spatial distribution of two data sources R and S. R con-
sists of western restaurants and S represents barber shops. If a user
is located at point q and wants to find the nearest western restau-
rant, R7 will be returned as it is nearest to q in data source R. If
the user is interested to find the nearest barber shop, then S2 is the
result.
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Figure 1: Spatial distribution of western restaurants (Ri) and
barber shops (Si)

In this paper, we extend kNN query to another type of useful query
named kNG query. Unlike a kNN query, a kNG query finds k “clos-
est” group of objects from multiple data sources, where each group
consists of exactly one object from each data source.

DEFINITION 1 (kNG QUERY). Consider a spatial database
with m data sources D1,D2, . . . ,Dm, and let S denote a collec-
tion of groups of m objects where each group consists of one ob-
ject from each data source; i.e., S = {{o1,o2, . . . ,om} | oi ∈ Si}.
Given a query object q, a kNG query returns a set of k groups S′ =
{gi1 ,gi2 , . . . ,gik}, S′ ⊆ S, such that for any gi ∈ S′ and g j ∈ S−S′,
∥ q,gi ∥≤∥ q,g j ∥, where ∥ q,g ∥ is some measure of the distance
from query q to a group g.

To calculate ∥ q,g ∥ in a reasonable way, we take into account
of both inner-group distance and inter-group distance. The inner-
group distance (denoted by ∥ q,g ∥inner) captures the distance among
the objects in group g = {o1, . . . ,om}, while the inter-group dis-
tance (denoted by ∥ q,g ∥inter) represents the distance from the
query object q to the objects in g.



Given a monotonic function F1 such that F1(d1,d2)≤ F1(d′1,d
′
2) if

d1 ≤ d′1 and d2 ≤ d′2, we can define

∥ q,g ∥= F1(∥ q,g ∥inner,∥ q,g ∥inter) (1)

Similarly, we can define the inner-group distance and inter-group
distance based on two monotonic functions F2 and F3 as follows:

∥ q,g ∥inner = F2(∥ o1,o2 ∥,∥ o1,o3 ∥, . . . ,∥ om−1,om ∥) (2)
∥ q,g ∥inter = F3(∥ q,o1 ∥,∥ q,o2 ∥, . . . ,∥ q,om ∥) (3)

Here, F2 takes m(m−1)
2 inputs and F3 takes m inputs. For example,

given two groups g = {o1, . . . ,om} and g′ = {o′1, . . . ,o′m}, if ∀1 ≤
i ≤ m, ∥ q,oi ∥≤∥ q,o′i ∥ , we have ∥ q,g ∥inter≤∥ q,g′ ∥inter. The
distance between two objects ∥ ·, · ∥ can be defined in any metric
space which satisfies the triangle inequality.

In this paper, we propose a general framework to process kNG
queries with distance measures defined in terms of monotonic func-
tions as described above. To make the presentation concrete and
without loss of generality, we will assume the following distance
measures in the rest of this paper. Note that other definitions of dis-
tance measures which satisfy the above monotonic constraints are
also applicable.

∥ q,g ∥ = ∥ q,g ∥inner + ∥ q,g ∥inter (4)
∥ q,g ∥inner = max

oi,o j∈g
∥ oi,o j ∥ (5)

∥ q,g ∥inter = min
oi∈g
∥ q,oi ∥ (6)

Both ∥ oi,o j ∥ and ∥ q,oi ∥ are calculated based on the Euclidean
distance measure.

kNG query has a number of applications in location based services.
For example, a local resident may want to find a western restaurant
for dinner and a barber shop for a hair cut after his dinner. He
prefers the two locations to be close to each other and to be near
his house. If we use the spatial database in Figure 1 to answer
this query, a group of two elements (S2,R5) will be returned when
k = 1. kNG is also useful in several other applications:

• Location-Based Service. When a user has a shopping list in
which each item can be purchased from multiple candidate
shops, he can utilize kNG query to select the nearest shops
to cover all the items. Another example query is to find the
nearest “gas station”, “barber shop” and “Burger King” so
that the user can fill the car, get a hair cut and then have a
quick lunch to save time.

• Trip Planning. Travellers are likely to have time budget
when making a schedule. kNG query can be used to facil-
itate trip planning so that a visitor can participate in as many
activities as possible. For example, a visitor may be inter-
ested to find “Sabarsky Cafe”, “Shopping Mall” and “Flea
Market” around his hotel.

• Collective Spatial Keyword Search. This is an interesting
application proposed recently in [6]. Given a set of keywords
and a query location, it finds a group of geo-documents close
to the query location and covering all the query keywords.
We found that textual relevance was not taken into account
in the ranking function defined in [6]. If only spatial distance
is considered, this is essentially a kNG query.

In addition to kNG query, we also study another variant named kNG
Join. This is similar to kNN Join with respect to kNN query. Given
two datasets Q and D, a kNN Join query retrieves for each object
in Q its k nearest neighbors in D. kNN Join is used in numerous
applications including knowledge discovery [19], data mining [36]
and geographical information systems [41]. Similarly, we define
kNG Join as follows:

DEFINITION 2 (kNG JOIN). Given a query set Q and m data
sources {D1,D2, . . . ,Dm}, kNG Join finds k nearest groups for each
query object q ∈ Q.

Example kNG Join queries include

• For each primary school, find the nearest piano tutoring class
and swimming pool so that the children have time to partici-
pate in both after class.

• Groupon subscribers may have common interest in taking
a massage after dining at a Japanese restaurant. The pub-
lish/subscribe system can take advantage of kNG Join to no-
tify each subscriber the closest Japanese restaurant and mas-
sage shop that are on sale based on their locations.

To efficiently answer kNG and kNG Join queries, we propose a
best-first search strategy as our baseline algorithm, which is shown
to be I/O optimal in answering NN query. It builds an R-tree [18]
on each data source and traverses the trees in a top-down manner to
enumerate the candidate node sets. These candidates are visited in
increasing order of their distance to the query location. However,
when m is large, a huge number of node sets at the higher levels
of the R-trees will be generated, incurring very high CPU cost. To
reduce the computational cost, we propose a solution using Hilbert
R-tree [24]. The method utilizes the Hilbert value to guide the or-
der of candidate enumeration so that promising node sets can be
examined as early as possible. In summary, we make the following
contributions in this paper:

1. We propose two new types of useful queries, named kNG
query and kNG Join respectively.

2. We formally define the two types of queries and show that
the problem of processing each type of queries is NP-hard.

3. We propose a best-first baseline algorithm using R-tree as
well as an improved solution using Hilbert R-tree.

4. We present a cost model to estimate the CPU and I/O cost of
kNG query.

5. Extensive experiments were conducted on both synthetic and
real datasets to show the effectiveness of our proposed solu-
tions.

The rest of the paper is organized as follows. In Section 2, we re-
view various types of spatial queries that are related to kNG query
and kNG Join. In Section 3, we show that each of the two query
processing problems is NP-hard. The baseline algorithm using R-
tree is proposed in Section 4. In Section 5, we present our improved
method using Hilbert R-tree. The query cost model analysis is pro-
vided in Section 6. Results of an extensive experimental study on
both synthetic and real datasets are reported in Section 7. Section 8
concludes the paper.



2. RELATED WORK
Intuitively, kNG query is proposed by extending kNN query to re-
trieve candidates from multiple data sources. kNG Join further ex-
tends kNG query from searching for one query point to searching
for a bundle of points simultaneously. If we organize the related
works based on these two dimensions (the number of data sources
in a result m and the number of specified query points |Q|), we can
obtain a framework as shown in Figure 2. In the following, we will
introduce these queries as well as their solutions that are widely
adopted.

m = 1
kNN JoinkNN

m > 1

m

|Q||Q| = 1 |Q| > 1|Q| = 0

kNG kNG JoinmCK

Figure 2: Related spatial queries

2.1 k Nearest Neighbor Query
Nearest neighbor search [33] is a well studied problem with numer-
ous applications. It can be efficiently solved in low dimensional
space [33, 16, 20]. The branch-and-bound R-tree traversal algo-
rithm proposed in [33] provides suboptimal performance in an-
swering nearest neighbor queries [31]. Hjaltason et al. proposed a
best-first search strategy by maintaining a priority queue in which
the nodes or objects are sorted based on their distance to the query
object [20]. However, answering the query is challenging in high
dimensional space and various indices have been proposed based
on the ideas of space partitioning [32, 27, 3, 8], data approxima-
tion [35, 2] or distance based indexing [23]. Another branch of
works [17, 34] find approximate nearest neighbors via hashing for
similarity query.

kNG query is a generalization of kNN query for m data sources,
m≥ 1, such that each candidate answer consists of one object from
each data source. Thus, when m = 1, kNG query reduces to kNN
query.

2.2 kNN Join
kNN Join [4, 36, 37, 38, 28] or all-nearest-neighbors queries [41,
7] find nearest neighbors for all the points in a query set. It is an
extension of kNN query in terms of the number of query points
and leads to much more CPU overhead in query processing. In [4],
the multipage index (MuX) together with an optimal page loading
strategy were proposed to reduce both CPU and I/O cost. Xia et
al. [36] optimized join scheduling by hashing the high dimensional
points into blocks and sorting the blocks for a nested loop join. Tao
et al studied all-nearest-neighbors queries in [41] which is a special
case of kNN Join by setting k = 1. They used a depth-first traver-
sal algorithm for datasets that are indexed by R-tree; otherwise, a
hash-based algorithm is used. In [7], Chen et al. proposed the min-
imum bounding rectangle enhanced Quadtree as well as a new dis-
tance measure named NXNDIST for pruning. Recently, solutions
utilizing MapReduce [10], a well-designed programming platform
for large-scale parallel data processing, have been proposed in [38,
28].

kNG Join is similar to kNN Join in that they both need to retrieve
k nearest results for all the points in a query set. Some of the tech-
niques applied in kNN Join can be adopted for the processing of
kNG Join. If we set m = 1, kNG Join becomes kNN Join.

2.3 mCK Query
mCK query was proposed by Zhang et al. in [39, 40]. Given m
data sources, the result contains a group of m tuples from differ-
ent sources with minimum inner-group distance. The query was
initially proposed for location based keyword search and mapped
resource locating. It also attracted some interests from the theoret-
ical area [14, 12, 15]. They modelled the problem as computing
minimum diameter color-spanning sets and proved that problem of
processing mCK queries is NP-hard [14] for Lp metric (1< p<∞),
even in two dimensional space.

Compared to kNG query, mCK query does not have a specified
query object. It can be considered as a special case of kNG query.
If we only consider inner group distance in kNG query, i.e., the
distance from all the points to the query location is the same, then
kNG query reduces to mCK query.

2.4 Team Formation
The team formation problem was proposed in [25]. Given a set of
N individuals, each has a set of skills. The query is a task with a
set of required skills. A team formation problem finds a group of
people covering all the required skills and their group distance is
minimized. This problem is similar to our kNG query except that
their inner-group distance is measured by the social distance, which
is more complex to handle because it is difficult to map the objects
from social network to low-dimensional space and still keep the
distance between pair objects.

2.5 Spatial Join
Given two datasets, spatial join [5, 21, 22] retrieves all pairs of
objects satisfying a given join predicate. Common join predicates
include overlap and containment. In [22], Jacox et al. provided
a comprehensive study of various techniques proposed for spatial
join, considering whether the datasets are indexed or not. Papa-
dias et al. extended spatial join to multiway spatial join [30, 29]
in which the spatial predicate is a function over multiple datasets.
kNN Join and kNG Join can be considered as special types of mul-
tiway spatial join with complex join predicate.

3. COMPLEXITY RESULTS
In this section, we prove that both evaluating kNG query and kNG
Join problems are NP-hard based on the distance definitions in
Equations 4– 6.

LEMMA 3.1. The problem of processing kNG query is NP-hard
for Lp metric (1 < p < ∞), in two or higher dimensions.

PROOF. In [14], Fleischer et al. proved that mCK query is NP-
hard by reducing from 3SAT. The boolean variables in 3SAT clauses
are mapped to points on a circle. We can adopt exactly the same
reduction strategy by setting q as the center of the circle to prove
our claim; details are given elsewhere [14].

LEMMA 3.2. The problem of processing kNG Join is NP-hard
for Lp metric (1 < p < ∞), in two or higher dimensions.



PROOF. This can be easily established by contradiction. If the
problem of processing kNG Join is not NP-hard, then it follows
that processing kNG query is also not a NP-hard problem which
contradicts Lemma 3.1.

4. BASELINE ALGORITHM
In this paper, we study index-based query processing methods for
kNG query and kNG Join because our proposed new queries are
mainly applied in location based services and a spatial index can
be built beforehand to improve efficiency. The methods designed
for datasets without index are beyond the scope of the paper.

Recently in [6], Cao et al. proposed collected spatial keyword
queries. Given a set of keywords and a query location q, it finds
a group of spatial documents which together match all the query
keywords and the distance is minimized. The problem can be mod-
elled as a kNG query. We first split a spatial document into multiple
tuples, each tuple with only one keyword. For each keyword wi, we
group all of its occurrence locations into a dataset Dwi . The prob-
lem becomes finding k nearest groups among Dw1 ,Dw2 , . . . ,Dwm

where {w1,w2, . . . ,wm} represent m query keywords. The authors
in [6] used IR-tree [9] to solve the collected spatial keyword queries.
IR-tree is a single R-tree (compared to building one tree for one
keyword) that stores all the spatial documents. The documents are
inserted into the R-tree using the spatial attribute. Each node in the
tree is augmented with an inverted file, which refers to a pseudo-
document representing all the documents whose associated loca-
tions fall inside the node’s MBR. IR-tree is widely used for top-k
spatial keyword search [13, 9] as it can conduct spatial pruning and
textual pruning at the same time.

Figure 3 illustrates an example spatial database as well as an IR-
tree built on top of it. In this simple database, R1 represents the
entire spatial region which contains a total of 12 objects, each asso-
ciated with one keyword. The keywords are represented by differ-
ent shapes and each keyword happens to occur three times. Hence,
for a keyword wi, we can obtain a data source Dwi containing three
locations. As shown in Figure 3, the spatial objects are inserted
into an IR-tree with node capacity set as 3. Each tree node is aug-
mented with an inverted file indicating the existence of keywords
in that node.
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Figure 3: IR-tree example

Although the collective spatial keyword query can be modelled as
a kNG query, we argue that IR-tree is not an appropriate index for
kNG query for two main reasons:

1. IR-tree is useful when spatial pruning and textual pruning
can be performed at the same time when answering top-k
spatial keyword queries. However, in kNG query, the rank-
ing function does not take into account textual relevance. In-
stead, it only considers spatial distance. Thus, it is not nec-
essary to use such a hybrid index with high maintenance cost
when the augmented inverted files do not play an important
role in the pruning stage.

2. IR-tree is a single R-tree integrating all the data sources Dwi .
In Figure 3, all the objects are inserted into one R-tree. Com-
pared to building one R-tree for one data source, such an
index design incurs much more CPU and I/O cost. For in-
stance, suppose we want to conduct a kNG query on two
data sources Dw1 and Dw2 . Since these two keywords appear
in all the leaf nodes, the whole tree will be accessed and a
large number of tree node sets will be generated. An alterna-
tive solution is to build one R-tree for each data source Dwi .
If we use the same node capacity, which is 3 for this example,
we only need to check two tree nodes.

In the following, we assume that a spatial index has been built for
each data source. More specifically, we use R-tree as our spa-
tial index because it is widely used for spatial queries like kNN
queries [33, 20], kNN Join [41, 7] and spatial join [5, 21, 30, 29].
We propose a baseline algorithm for kNG query and kNG Join re-
spectively.

4.1 Answering kNG Query Using R-tree
In the baseline algorithm to process a kNG query, we adopt the
best-first strategy proposed in [20] which is used to answer nearest
neighbor queries. The algorithm starts from the root node of the
R-tree and maintains a priority queue in which the nodes or ob-
jects are sorted based on their minimum distance (MINDIST ) to
the query location in increasing order. The R-tree is traversed it-
eratively by removing one entry from the priority queue at a time.
If the removed entry is an index node, its child nodes are inserted
into the priority queue based on their distance to the query loca-
tion. If the removed entry is an object, then the retrieved object is
the ith nearest neighbour if it is the ith object being retrieved. The
algorithm is I/O optimal because only the necessary index nodes
are accessed.

Since we are handling multiple data sources in kNG query, we need
to make some modifications to the algorithm. First, each entry in
the priority queue is no longer an index node or a spatial object.
Instead, it becomes a node set N which contains m nodes from dif-
ferent R-trees. The minimum distance from the query object q to
the node set N is defined as follows:

MINDIST (q,N) = max
ni,n j∈N

MINDIST (ni,n j)+min
ni∈N

MINDIST (q,ni)

(7)
where MINDIST (ni,n j) and MINDIST (q,ni) are defined in line
with previous works [33] to determine the minimum distance be-
tween two MBRs or between a point and an MBR. Figure 4 shows
an example of calculating MINDIST between q and a node set
N = {r,s, t}. As shown in the figure, MINDIST (q,N) is the sum
of MINDIST (q, t) and MINDIST (r, t). We can use the distance



measure as a lower bound distance for pruning as shown by the
following result.

LEMMA 4.1. Given a node set N= {n1,n2, . . . ,nm} and a query
point q, for any candidate g = {o1,o2, . . . ,om} where oi ∈ ni, we
have

MINDIST (q,N) ≤ ∥ q,g ∥ (8)

PROOF.

∥ q,g ∥ = max
oi,o j∈g

∥ oi,o j ∥+min
oi∈g
∥ q,oi ∥

≥ max
ni,n j∈N

MINDIST (ni,n j)+min
ni∈N

MINDIST (q,ni)

= MINDIST (q,N)

r

q

s

t

MINDIST (s, r)

MINDIST (s, t)

MINDIST (r, t)

MINDIST (q, s)

MINDIST (q, r)
MINDIST (q, t)

MINDIST (q, {r, s, t}) = MINDIST (q, t) +MINDIST (r, t)

Figure 4: MINDIST between q and a node set {r,s, t}

Second, we modify the way to break a tie when multiple node sets
in the priority queue are associated with the same distance to q. If
two node sets N1 and N2 have the same MINDIST , we prefer the
one with smaller area value, which is calculated by summing all the
areas of node MBRs in N. A more compact node set provides better
performance in the worst case. In other words, its upper bound
distance is smaller.

The detailed baseline algorithm for kNG query is depicted in Algo-
rithm 1. The input includes a query point q and a set of R-trees built
for the m data sources. The algorithm returns top-k nearest groups
G as well as the distance of k-th result, denoted by δ . Initially, in
line 1, we create a priority queue PQ in which the node sets are
sorted in increasing order of their MINDIST to q. A tie is resolved
by comparing the total area of the node MBRs. Smaller nodes are
preferred. We initialize a node set containing all the root nodes
from the R-trees and enqueue it into PQ (lines 2-3). In addition,
we initialize δ to a relatively small value by examining the combi-
nation of leaf nodes around q (lines 4). This step takes m · log(N)
node accesses, where N is the tree size. Thereafter, we dequeue the
best candidate N from the priority queue and check whether all the
nodes in N are leaf nodes. If we have reached the bottom level in
all R-trees, as shown in lines 10-12, we retrieve the objects stored
in each leaf node and exhaustively calculate the distance of all the
possible combinations of objects from different trees using the pro-
cedure ExhaustiveSearch (details are omitted). If a better re-
sult is found, G and δ are updated. If N contains internal nodes, we
call function EnumerateNodeSet to expand N to a collection of

new node sets composed of their child nodes. The new candidates
are inserted into PQ for further checking (lines 14-17). Finally, the
algorithm terminates when the priority queue becomes empty or
the distance of the best candidate in PQ is larger than δ (lines 8-9).
The remaining node sets do not need to be examined because they
are their distance to q must be larger than δ and can be pruned by
Lemma 4.1.

Algorithm 1 Baseline Algorithm for kNG Query
Input: A query point q and m R-trees
Output: k nearest groups G and the k-th distance δ

1. create a new priority queue PQ
2. initialize a node set N containing root nodes from m R-trees
3. initialize G←{}
4. δ ← InitDist()
5. PQ.Enqueue(N)
6. while PQ is not empty do
7. N← PQ.pop()
8. if MINDIST (q,N)≥ δ then
9. break

10. if all the nodes in N are leaf nodes then
11. ExhaustiveSearch(N)
12. update G and δ
13. else
14. create an empty node set N′

15. S← EnumerateNodeSet(δ ,N, m, N′)
16. for s ∈ S do
17. PQ.Enqueue(s)
18. return G and δ

Algorithm 2 shows how to enumerate new node sets from the child
nodes. The algorithm is implemented in a recursive manner. The
pos starts from m and decreases by 1 in each recursion. If pos
becomes 0, it means we have found a new candidate N′. It contains
m nodes and is inserted into the result set S (lines 1-2). Otherwise,
we check whether the pos-th node in N is a leaf node. If it is a leaf
node, we insert it into N′ and calculate MINDIST (q,N′) to see if
N′ is a valid node set. Note that although N′ contains fewer than m
nodes, we can still apply Equation 7 to calculate the distance. If the
result is smaller than δ , we consider it valid and continue to expand
the remaining nodes in N (lines 8-10). Otherwise, N′ can be pruned
because for any candidate containing nodes in N′, its distance must
be larger than δ . If the pos-th node in N is not a leaf node, we iterate
its child nodes in the corresponding tree and examine the validity
in the same way (lines 9-12). Finally, when all the child nodes in
all the trees have been checked, the algorithm terminates and S is
returned.

4.2 Answering kNG Join Using R-tree
To process kNG Join for a set of query points Q, a naive solution is
to apply kNG query for each point in Q resulting in |Q| independent
kNG query evaluations. Although the method is simple, it incurs
considerably high computational cost when |Q| is large. A better
solution is to take advantage of the spatial proximity of query points
so that points that are close to one another are grouped together to
reduce the distance calculation cost. Hence, we partition Q into a
set of disjoint groups such that Q = {G1,G2, . . . ,Gg} where Gi ∩
G j = /0 and∪Gi =Q. We also define the minimum distance between
Gi and a node set N as follows:

MINDIST (Gi,N)= max
ni,n j∈N

MINDIST (ni,n j)+min
ni∈N

MINDIST (Gi,ni)

(9)



Algorithm 2 EnumerateNodeSet(δ , N, pos, N′)
Input: The k-th distance δ , a node set N to expand, a position vari-

able pos and an empty node set N′

Output: A collection of new node sets S
1. if pos = 0 then
2. S.insert(N′)
3. else
4. if N[pos] is a leaf node then
5. N′[pos]← N[pos]
6. if MINDIST (q,N′)< δ then
7. EnumerateNodeSet(δ , N,pos−1, N′)
8. else
9. for child nodes ci ∈ N[pos] do

10. N′[pos]← ci
11. if MINDIST (q,N′)< δ then
12. EnumerateNodeSet(δ , N, pos−1, N′)
13. return S

where MINDIST (Gi,n) is calculated by approximating Gi as an
MBR. Similar to Lemma 4.1, we can use the following result for
pruning.

LEMMA 4.2. Given a node set N= {n1,n2, . . . ,nm} and a group
of query points Gi, for any point q ∈ Gi and any candidate g =
{o1,o2, . . . ,om} where oi ∈ ni, we have

MINDIST (G,N) ≤ ∥ q,g ∥ (10)

PROOF.

MINDIST (Gi,N) = max
ni,n j∈N

MINDIST (ni,n j)+min
ni∈N

MINDIST (Gi,ni)

≤ max
oi,o j∈g

∥ oi,o j ∥+min
oi∈g

MINDIST (Gi,oi)

≤ max
oi,o j∈g

∥ oi,o j ∥+min
oi∈g
∥ q,oi ∥

= ∥ q,g ∥

In the query processing stage, we traverse the groups in Q and each
group is visited once. Suppose Gi is the active group we are ex-
amining, we trigger a kNG query to find nearest groups for all the
points in Gi at one time. The search scheme is similar to Algo-
rithm 1 except that q is replaced by a group of query points. Thus,
we need to maintain a separate buffer for each query point to store
its top-k results and k-th distance. The ExhaustiveSearch
function checks all the possible combinations for all the points in
Gi. For the pruning part in the algorithm, the MINDIST calculation
is replaced by Equation 9. In addition, we need to define a different
upper bound distance δGi to replace δ in Algorithm 1 as follows:

δGi = max
q∈Gi

δq (11)

Any node set whose distance to Gi is larger than δGi can be pruned.
Figure 5 illustrates an example to show why the number of dis-
tance calculations can be reduced when query points that are close
together are considered as a group. In this example, q1, q2 and q3
form a group G with its δG value also depicted in the figure; S1,
S2, R1, and R2 represent the MBRs of four index nodes. Here, R2
and S2 can be pruned because their MINDIST to G is larger than
δG. In this way, there is no need to check the distance between

{q1,q2,q3} and {R2,S2} individually. More generally, for a group
G = {q1,q2, . . . ,qg}, the distance from qi to the nodes far away
from G is calculated only once, compared to g times in the naive
solution. Thus, a considerable amount of computational cost can
be saved.

q1

q2

q3

δG

δG

R1S1

S2 R2

GδG δG

Figure 5: An example of group pruning

The remaining issue is how to partition Q into groups. In [41],
Zhang et al. proposed a selection criteria with two threshold values
for a group G. One is max_area to limit the MBR area of G and the
other is max_num to limit the number of points in G. In this paper,
we propose a simpler version with only one parameter. We build
an R-tree on Q and treat each leaf node as a group. In this way,
we can use the node capacity as a parameter to control both the
group size and area because the points are usually well clustered in
the leaf nodes. In our experiments, we will study the effect of this
parameter on kNG Join processing.

5. A HILBERT R-TREE-BASED SCHEME
The baseline algorithm adopts best-first search paradigm which is
shown to be I/O optimal by accessing the minimum number of
nodes when answering kNN queries [20]. However, kNG query is
much more complex than kNN query as it needs to examine all the
possible combinations of points in different data sources. As the
number of data sources increases, the I/O cost increases linearly
but the number of distance calculations grows exponentially, which
causes CPU cost to become the bottleneck. The baseline algorithm
starts from the root and traverses the trees in a top-down manner.
Suppose δ is the k-th distance of the final top-k results. All the node
sets whose minimum distance to the query point is smaller than δ
have to be checked. For R-trees, since the MBRs of internal nodes
at higher levels are larger and closer to each other, this results in an
incredibly large number of node sets containing internal nodes.

To improve the query processing efficiency, we propose a new search
algorithm using Hilbert R-tree [24]. Hilbert R-tree is a variant of
R-tree that utilizes Hilbert curve, a space curving shown to pre-
serve spatial locality most effectively, to guide data insertion. The
tree nodes are sorted by the Hilbert value of the center point. In
this way, each node has a well-defined set of sibling nodes so that
we can use deferred splitting to improve node utilization. Figure 6
shows two Hilbert R-trees built on data sets R and S. The space is
partitioned into 16 cells by a Hilbert curve with second order.

The structure is the same as R-tree and all the points are ordered
based on the Hilbert value. In the following, we will present how
to utilize the Hilbert R-tree to answer kNG query and kNG Join.

5.1 Answering kNG Query Using Hilbert R-
tree
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Figure 6: Hilbert R-tree example

To overcome the drawback of generating too many node sets in the
baseline algorithm, we propose to examine only the combinations
of leaf nodes. The node set containing internal nodes will not be
enumerated to save computational cost. In the optimal case, the
leaf node set should be visited in increasing order of their distance
to the query point. However, without global knowledge, it is un-
realistic to enumerate all the combinations of leaf nodes and sort
them by the distance. Our new search algorithm uses Hilbert value
to guide the order of candidate enumeration so that promising node
sets can be examined as early as possible. The algorithm is based
on expand-and-prune. First, we obtain the Hilbert value of query
point q, denoted by H(q). We assume that the orders of our Hilbert
curve for space partitioning are high enough so that each point is
associated with a unique Hilbert value. For each Hilbert R-tree, we
locate the leaf node whose Hilbert value is closest to H(q). These
leaf nodes are called pivot nodes. Given m trees, we can get m
pivot nodes. Then, the search algorithm starts from these pivots
and gradually expands to check the nodes in both the left and right
directions so that the node sets close to q can be visited earlier.
The algorithm terminates when it has expanded to the end on both
directions in all the R-trees.

The details of the query processing are shown in Algorithm 3.
Lines 1-7 depict the initialization work. In the first step, we locate
the pivot leaf node for each Hilbert R-tree. These pivot nodes form
a node set N serving as our initial search space. N is expected to be
the most promising candidate because the nodes in N have Hilbert
value closest to H(q). This means that the pivot nodes are close
to both q as well as one another. Hence, ExhaustiveSearch
is called to get a reasonably good top-k results used for pruning.
Given such an initial δ , we conduct a range query for each Hilbert
R-tree to find the leaf nodes whose distance to q is smaller than δ .
These leaf nodes are considered as active. We create two data struc-
tures, Li and Ri, to store active leaf nodes in tree Ti from the left
side and right side respectively. The nodes in Li and Ri are sorted
in non-descending order of their Hilbert value distance to H(q).

To effectively enumerate the node sets containing leaf nodes in Li
and Ri, we associate with each leaf node n a variable I(n), indi-
cating its interval distance to the pivot node. In other words, I(n)

corresponds to the number of nodes between n and its pivot node.
For instance, I(n) for a pivot node is 0. For an immediate neighbor-
ing node n of a pivot node, I(n) is set 1, although its Hilbert value
distance to H(q) could be much larger. We initialize a global vari-
able I = 1 in line 8 as the expansion interval and gradually increase
I to check nodes far from the pivots. In each expansion iteration,
the node sets enumerated should satisfy the following condition to
avoid duplicate enumeration:

∑
n∈N

I(n) = I (12)

The candidates generated in each iteration are inserted into a prior-
ity queue as in the baseline algorithm. ExhaustiveSearch is
called to calculate the real distance for these candidates. G and δ
are updated whenever a better result is found (lines 11-19). After
each expansion, a pruning method is invoked to reduce the number
of active nodes. The leaf nodes that have not been visited and with
a distance to q larger than the new δ will be discarded (lines 20-26).
The algorithm terminates when all the possible node sets in Li and
Ri have been enumerated (lines 27-29).

Algorithm 3 kNG Search Using Hilbert R-tree
Input: A query point q and m Hilbert R-trees
Output: k nearest groups G and the k-th distance δ

1. for each Hilbert R-tree Ti do
2. find the pivot node Pi closest to H(q) in Ti
3. Initialize a node set N containing all the m pivot nodes
4. ExhaustiveSearch(N)
5. update G and δ
6. for each Hilbert R-tree Ti do
7. initialize Li and Ri
8. I← 1
9. while TRUE do

10. S← EnumerateNodeSet( δ , I, m, N′)
11. create a new priority queue PQ
12. for s ∈ S do
13. PQ.Enqueue(s)
14. while PQ is not empty do
15. N← PQ.pop()
16. if MINDIST (q,N)≥ δ then
17. break
18. ExhaustiveSearch(N)
19. update G and δ
20. for (i← 1; i≤ m; i← i+1) do
21. for ( j← I; j ≤ |Li|; j← j+1) do
22. if MINDIST (q,Li[ j])≥ δ then
23. remove Li[ j]
24. for ( j← I; j ≤ |Ri|; j← j+1) do
25. if MINDIST (q,Ri[ j])≥ δ then
26. remove Ri[ j]
27. maxI← ∑1≤i≤m max(|Li|, |Ri|)
28. if maxI < I then
29. break
30. I← I +1
31. return G and δ

Given an expansion interval I, Algorithm 4 is a recursive procedure
to enumerate all the candidate node sets satisfying the constraint
in Equation 12. In Table 1, we present a running example of our
search algorithm based on interval expansion. It finds the nearest
groups from R and S for the query point in Figure 6. Since H(q) =
7, the pivot nodes in R and S are R2 and S2 respectively. After
calling ExhaustiveSearch on {R2,S2}, we get a small δ and



invoke a range query to initialize the active leaf nodes in R and
S. LR and RS are empty because the leaf nodes on the side of
the pivot are far away and get pruned. RR and LS both contain
one element. Then, we expand the search space to enumerate new
node sets for I = 1 and I = 2. The algorithm terminates when I
increases to 3 as we cannot find a node set satisfying Equation 12.
The algorithm only checks four node sets, which is more efficient
than the baseline method.

Algorithm 4 EnumerateNodeSet(δ , interval, pos, N′)
Input: the k-th distance δ , current expand interval interval, a po-

sition variable pos and an empty node set N′

Output: A collection of new node sets S
1. if pos = 0 then
2. S.insert(N′)
3. else
4. if ∑1≤i<pos max(|Li|, |Ri|)≥ interval then
5. N′[pos]← Pi
6. EnumerateNodeSet(δ , interval, pos−1, N′)
7. for i← 1; i≤ interval; i← i+1 do
8. if pos = 1 && i ̸= interval then
9. continue

10. if i≤ |Li| then
11. N′[pos]←Li[i]
12. EnumerateNodeSet(δ , interval− i, pos−1, N′)
13. if i≤ |Ri| then
14. N′[pos]←Ri[i]
15. EnumerateNodeSet(δ , interval− i, pos−1, N′)
16. return S

Table 1: Running example of interval expansion
I Priority Queue LR RR LS RS

I = 0 {R2,S2} { /0} {R3} {S1} { /0}
I = 1 {R3,S2},{R2,S1} { /0} {R3} {S1} { /0}
I = 2 {R3,S1} { /0} {R3} {S1} { /0}

5.2 Answering kNG Join Using Hilbert R-tree
For kNG Join, we adopt the same grouping strategy as in the base-
line algorithm. We build an R-tree for the query point set Q and
traverse its leaf nodes to search the nearest groups. Since a query
leaf node contains more than one point, there exists multiple pivot
nodes in each Hilbert R-tree. Algorithm 3 is extended to provide a
new node set enumeration order to save computational cost. Fig-
ure 7 shows an example with two query points {q1,q2} in a group,
leading to two pivot node sets {R2,S2} and {R4,S3}. It is obvious
that these two pivot node sets should be examined first so that we
can get a small δG for pruning. In the interval expansion stage,
we iteratively enumerate the node sets near each pivot set. In this
way, δG can be reduced as much as possible. To avoid duplicate
invocation of ExhaustiveSearch, we maintain an additional
hash map to check whether a node set has been previously exam-
ined. Since there are only a relatively small number of active leaf
nodes in each R-tree, the hash map will not cause a burden to the
memory resource. The remaining part of the algorithm is similar to
Algorithm 3 and its details are omitted due to space constraint.

6. QUERY COST MODEL
In this section, we analyze the cost model of an optimal approach,
denoted by kNG-opt, to evaluate kNG query based on the distance
definitions given by Equations 4– 6. To simplify the model, we
make the following assumptions:
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Figure 7: Incremental expansion for kNG Join

1. There are m data sources D1,D2, . . . ,Dm. Each Di has ex-
actly N spatial objects.

2. The spatial objects are two-dimensional points.

3. The spatial points in each Di are uniformly distributed in
space [0,1)2.

4. The query points are distributed uniformly as well.

5. We set k = 1 to find the closest group with respect to q.

6. R-tree index is used and the MBRs of the data pages are
squares with length σ . Each node contains an average num-
ber of Cavg objects.

Since kNG query is expensive in terms of both CPU and I/O cost,
we provide estimation for both aspects in our model. Similar to
the cost model for NN query in [31], we estimate the I/O cost by
the number of leaf nodes accessed. For the CPU cost, we estimate
it by the number of candidates generated in the optimal solution
because the distance calculation between q and these candidates is
the main CPU bottleneck. Suppose δ is the best distance, we first
prove that only the data points with distance no greater than δ will
be accessed by the optimal solution.

LEMMA 6.1. If δ is the distance of the best result, the candidate
search space includes the points p satisfying ∥ q, p ∥≤ δ

PROOF. If p is a point and ∥ q, p ∥> δ , we can prove that for
any candidate g containing p,

∥ q,g ∥≥∥ q, p ∥> δ

, based on our distance constraints given by Equations 4, 5 and
6. Then, the group can be pruned. On the other hand, for a point p
with ∥ q, p ∥≤ δ , it can not be pruned. The point will be accessed in
the search stage because it is possible that the inner-group distance
is zero, resulting in a better result.

Based on the work in [11], given a query window with size q′×q′

and center at q , the number of leaf nodes accessed, denoted by
L(q), can be estimated as follows:

L(q) =
N

Cavg
· (σ +q′)2 (13)



Similarly, since our data model contains m R-trees, we can esti-
mate the I/O cost as the total number of leaf nodes accessed by the
optimal solution:

I/Ocost ≈
m ·N
Cavg

· (σ +δ )2 (14)

To estimate the CPU cost, since all the points in the circle cannot
be pruned, all of their combinations have to be enumerated in the
optimal solution. By applying the formula in [1], the CPU cost can
be estimated by

CPU ≈ (nb(δ ,circle))m (15)

= πm · (N−1)m ·δ 2m (16)

Finally, we need to estimate the value of δ , which is an unknown
variable in both CPU and IO cost model. We know that the distance
of the nearest neighbor in a data source Di can be calculated with
the following formula [31]:

nn(q,Di) =
1

√
π ·
√

N−1
(17)

In this case, if we draw a circle with radius nn(q,Di) and center
at q, there exists m nearest points from different sources on the
circle. Based on our distance definition, the inner-group distance
falls within [ 0, 2 ·nn(q,Di)]. Hence, we have

1
√

π ·
√

N−1
≤ δ ≤ 2

√
π ·
√

N−1
(18)

From the above cost functions, we can observe that the I/O cost
grows linearly with m while the CPU cost grows exponentially with
m. Thus, when the number of data sources is large, kNG query and
kNG Join are CPU bound.

7. EXPERIMENT STUDY
In this section, we study the performance of the baseline algorithm
and the Hilbert R-tree solution in answering kNG query and kNG
Join. We also compare our methods with the IR-tree approach pro-
posed for the collective spatial keyword search scenario in [6]. All
the experiments were conducted on a server with Quad-Core AMD
Opteron(tm) Processor 8356, 64GB memory, running Centos 5.6.

7.1 Experiment Setup
We implemented three types of disk-based indexes in C++, includ-
ing R-tree, Hilbert R-tree and IR-tree. The page size was set to
4KB. In the construction of the R-tree and IR-tree, we chose rela-
tively small node size based on findings from the parameter tuning
experiments. To build the Hilbert curve, we split the cell small
enough such that each point has a unique cell id. It incurs higher
index construction cost but facilitates the query processing. In the
implementation of IR-tree, we set the node capacity to 100 as re-
ported in [6]. In addition, we used a more efficient way to improve
the performance of IR-tree. We created a fixed-size bitmap, with
each bit representing one keyword to indicate whether a keyword
appears in a node. If a query keyword occurs in that node, its corre-
sponding bit is set to 1. Since the total number of unique keywords
in our datasets is not large, the bitmap checking is more efficient
than using an inverted index.

In the query processing stage, we report both running time and I/O
cost for kNG query to show the kNG query processing is CPU-
bound. The I/O cost grows linearly with the number of query key-
words m while the running time increases exponentially. Hence,
for kNG Join, we only report the running time as the I/O cost is
minor and can be ignored.

7.2 Datasets
To ensure a comprehensive performance study, we conducted our
experiments on both synthetic and real databases:

1. Uniform. The data sets are two dimensional points and gen-
erated in uniform distribution in the space [0,1)2.

2. Twitter For the Twitter dataset, we extracted 1 million tweets
with geographical information represented in the form of lat-
itude and longitude. The infrequent keywords were removed
from the sample database. Finally, the dataset contains 959
unique and frequent keywords and each tweet has an average
of 4 keywords.

3. USGS [26]. The dataset contains 105,725 points of inter-
est under 63 categories in California. Each category repre-
sents one data source. The dataset is highly skew in terms
of data size and spatial distribution for each category. For in-
stance, “school” has 11,186 occurrences while there are only
40 points associated with “forest”.

4. FourSquare 1. This dataset contains 206,416 venues under
355 categories in New York City.

7.3 Parameter Tuning
The node capacity is an important parameter of R-tree in answer-
ing kNG queries. When this parameter gets smaller, the tree height
increases and more nodes will be accessed, incurring high I/O cost.
On the other hand, as the node capacity increases, the nodes be-
come larger and closer to each other. The node sets at higher levels
of the tree are not easy to be pruned, leading to more node set gen-
eration. Figure 8 shows the running time of the baseline algorithm
in answering kNG query with respect to different internal node ca-
pacity and leaf node capacity. We increase the node capacity from
5 to 65 and report the performance for each pair choice. We can
see that when the node capacity is set to 15, the index achieves the
best performance. Thus, in the following experiments, we use 15
as the default node capacity for the baseline algorithm. The Hilbert
R-tree also exhibits a similar performance pattern and it performs
best when the node capacity is set to 10; the detailed results are
omitted due to space constraint.
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Figure 8: Parameter tuning for tree node capacity

1http://www-users.cs.umn.edu/~baojie/
Research.htm



7.4 Experiments on kNG Query
In this subsection, we compare the performance of kNG query pro-
cessing with respect to different parameter settings. More specif-
ically, we study the effect of the number of data sources m, the
dataset cardinality |Di| and the number of results k.

7.4.1 Effect of m on kNG Query
In this experiment, we run kNG queries on an increasing number
of data sources in both synthetic and real datasets. In the synthetic
dataset, we generated data sources with the same cardinality, i.e.,
|Di| is set to 100K for each data source. We compared the Hilbert
R-tree solution with the baseline algorithm. In each experiment,
100 randomly generated queries were executed and the average
running time and I/O accesses to retrieve top-10 results are reported
in Figures 9(a) and 9(b). We can see that as m increases, the run-
ning time of both solutions grows exponentially. Both algorithms
enumerate exponential number of node sets, incurring very high
CPU cost when m is large. However, the I/O cost grows linearly
with m. It shows that the kNG query is CPU-bound for large m.
The results are consistent with our cost model in Section 6.

For the three real datasets, we compared our methods with IR-tree.
The CPU and I/O performance comparison for the Twitter dataset
are shown in Figures 9(c) and 9(d), respectively. Note that we have
removed the infrequent keywords and this dataset can be used to
test the performance in the worst case where the search space is
extremely large. The results show that the performance of IR-tree is
orders of magnitude worse than our solutions in terms of both CPU
and I/O cost. Even for a kNG query on two data sources, its running
time is 1 second while our methods take only 1 millisecond. Hence,
a single-index-based solution is not efficient for kNG query. If a
keyword is frequent, it appears in a large number of tree nodes,
leading to expensive access cost. On the other hand, the effective
area of a keyword in a tree node could be much smaller than the
node MBR. This makes the query keywords closer to each other
and it becomes more difficult for the node set pruning.

The running time performance for the UCSC and FourSquare datasets
are shown in Figures 9(e) and 9(f), respectively. ..... Observe that
the baseline algorithm performs slightly better than the Hilbert R-
tree solution in the FourSquare dataset. The reason is this dataset is
not as skew as the USGS in terms of the distribution of data source
cardinality. Most of the data sources contain hundreds of points.
Hence, it incurs a small cost for the baseline algorithm to enumer-
ate the candidate node sets in a top-down and best-first manner. In
the following experiments, we will use m = 2 as a default setting
for the number of data sources to query.

7.4.2 Effect of |Di| on kNG Query
In this experiment, we fix m = 2 and increase the dataset size |Di|
from 200K to 1M to examine the performance of Hilbert R-tree
solution and the baseline algorithm. Again, 100 sample queries are
executed and Figure 10 shows how the average running time and
I/O access increase with |Di|. As the dataset size grows, the height
of the R-tree in the baseline algorithm becomes larger, leading to
the enumeration of more node sets containing internal nodes. The
Hilbert R-tree only checks the combination of leaf nodes. Hence, it
demonstrates better performance than the baseline algorithm with
an increasing dataset cardinality.

7.4.3 Effect of k on kNG Query
To compare the effect of k on the query processing performance, we
increase it from 1 to 100. Figure 11 shows the performance results
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Figure 9: Effect of m for kNG query
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for two data sources with |Di|= 50K. As k increases, it takes longer
to answer a query as the distance used for pruning becomes larger.
Thus, more nodes will become candidates, thereby incurring higher
CPU and I/O cost. We can see that Hilbert R-tree scales better than
the baseline algorithm. When k increases to 50, the performance of
the baseline algorithm declines rapidly.
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Figure 11: Effect of query set size



7.5 Experiments on kNQ Join
In this section, we compare the performance of the various meth-
ods for kNG Join. Note that all the indices are memory-based for
these experiments and only the running time is reported. We report
results for synthetic datasets in Sections 7.5.1 to 7.5.3, and results
for real datasets in Section 7.5.4.

7.5.1 Effect of query grouping on kNG Join
In this experiment, we evaluate the effectivness of query grouping
on R-tree index for kNG Join. Given a query set Q, we build an
R-tree and treat each leaf node as a group. The points in the leaf
node are considered to be well clustered. We can adjust the node
capacity for appropriate group size selection. In this experiment,
the query set size is set to 50K and we vary the dataset cardinality
|Di| to evaluate the effect of grouping. We run experiments with
|Di|= 10K and |Di|= 50K and the results are shown in Figure 12.

For the case in Figure 12(a), the query points are more dense than
the data sources Di. For example, this happens when there are a
larger number of customers subscribing for “iPhone 5” and “ac-
cessory”. We can see that the grouping does not take much effect
for the baseline algorithm in Figure 12(a). Its performance slightly
improves when the node capacity increases from 4 to 12. Then,
it starts to decline when the node capacity continues to increase.
However, in Figure 12(b), the grouping takes effect on the baseline
solution. The performance improves dramatically when the node
capacity increases to 8. We found that this was mainly caused by a
reduction of node sets enumerated in the search stage. Compared
to Di with 10K points, the distance result in 50K is smaller and
good for pruning. The Hilbert solution gains advantage from the
grouping in both figures as it only explores the combination of leaf
nodes. As long as query points close to each other are grouped, the
performance can be improved.
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Figure 12: Effect of grouping in answering kNG Join

7.5.2 Effect of |Q| for kNG Join
In this experiment, we fix |D1| and |D2| to be 50K and vary |Q| from
50K to 250K to examine the effect of query set size for processing
kNG Join. We can see from Figure 13 that the running time of both
methods grows linearly with |Q|. In addition, the Hilbert R-tree
solution scales much better than the baseline algorithm. Since the
query points and the data points are ordered by the Hilbert value,
the method takes good advantage of L2 cache in accessing the data
and demonstrates better pruning effect [24].

7.5.3 Effect of m and k on kNG Join
Similar to kNG query, we also report the effect of m and k on kNG
Join. The experiments were conducted with |Q|= 50K and |Di|=
10K. The results shown in Figure 14 exhibit similar performance
trends as those for kNG query.
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Figure 13: Effect of query set size
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Figure 14: Effect of k and m in kNG Join

Table 2: kNG Join Test Queries on Twitter Dataset

sn Query |Q| Group Keywords |Di|
Q1 lake 37419 hotel,restaurant 77406,54360
Q2 hotel 77406 beer,rock 64813,60003
Q3 highschool 4595 tutor,swimming 17999,2554
Q4 hostel 3468 club,bar 89325,89768

7.5.4 kNG Join on real datasets
In this section, we evaluate the performance for kNG Join on the
Twitter dataset using four test queries shown in Table 2. For exam-
ple, Q1 finds the k nearest pairs of hotel and restaurant for all the
lakes to benefit the visitors with a travel plan to that location. The
running time of kNG Join for each query is shown in Figure 15.
We can see that Hilbert R-tree solution outperforms the baseline
algorithm by orders of magnitude. It validates the effectiveness of
utilizing the Hilbert value to guide the order of node set enumera-
tion.
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Figure 15: kNG Join performance on Twitter dataset

8. CONCLUSION
In this paper, we proposed two types of new queries named kNG
query and kNG Join to find nearest groups. Such queries have wide



applications in local service recommendation, spatial social net-
work and publish/subscribe systems. We proved that the problem
of processing each of these two query types is NP-hard and pro-
posed two index-based solutions using R-tree and Hilbert R-tree
respectively. We also presented a cost model to estimate the CPU
and IO cost for for kNG query. Finally, our extensive experimental
study on both synthetic and real datasets showed that the scheme
based on Hilbert R-tree can process these new queries efficiently.

9. ACKNOWLEDGEMENT
This work is funded by the NExT Search Centre (grant R-252-300-
001-490), which is supported by the Singapore National Research
Foundation under its International Research Centre @ Singapore
Funding Initiative and administered by the IDM Programme Office.

10. REFERENCES
[1] A. Belussi and C. Faloutsos. Estimating the selectivity of spatial

queries using the ‘correlation’ fractal dimension. In U. Dayal,
P. M. D. Gray, and S. Nishio, editors, VLDB’95, Proceedings of 21th
International Conference on Very Large Data Bases, September
11-15, 1995, Zurich, Switzerland, pages 299–310. Morgan
Kaufmann, 1995.

[2] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.
Independent quantization: An index compression technique for
high-dimensional data spaces. In ICDE, pages 577–588, 2000.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree : An index
structure for high-dimensional data. In T. M. Vijayaraman, A. P.
Buchmann, C. Mohan, and N. L. Sarda, editors, VLDB’96,
Proceedings of 22th International Conference on Very Large Data
Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 28–39.
Morgan Kaufmann, 1996.

[4] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo charging
the kdd process. Knowl. Inf. Syst., 6(6):728–749, 2004.

[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of
spatial joins using r-trees. In SIGMOD Conference, pages 237–246,
1993.

[6] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD Conference, pages 373–384, 2011.

[7] Y. Chen and J. M. Patel. Efficient evaluation of all-nearest-neighbor
queries. In ICDE, pages 1056–1065, 2007.

[8] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, pages
426–435, 1997.

[9] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, pages 137–150, 2004.

[11] C. Faloutsos and I. Kamel. Beyond uniformity and independence:
Analysis of r-trees using the concept of fractal dimension. In PODS,
pages 4–13, 1994.

[12] C. Fan, W. Ju, J. Luo, and B. Zhu. On some geometric problems of
color-spanning sets. In FAW-AAIM, pages 113–124, 2011.

[13] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pages 656–665, 2008.

[14] R. Fleischer and X. Xu. Computing minimum diameter
color-spanning sets. In FAW, pages 285–292, 2010.

[15] R. Fleischer and X. Xu. Computing minimum diameter
color-spanning sets is hard. Inf. Process. Lett.,
111(21-22):1054–1056, 2011.

[16] V. Gaede and O. Günther. Multidimensional access methods. ACM
Comput. Surv., 30(2):170–231, 1998.

[17] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, pages 518–529, 1999.

[18] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD Conference, pages 47–57, 1984.

[19] J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2000.

[20] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24(2):265–318, 1999.

[21] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins using
r-trees: Breadth-first traversal with global optimizations. In M. Jarke,
M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and
M. A. Jeusfeld, editors, VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, pages 396–405. Morgan Kaufmann, 1997.

[22] E. H. Jacox and H. Samet. Spatial join techniques. ACM Trans.
Database Syst., 32(1):7, 2007.

[23] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance:
An adaptive b+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst., 30(2):364–397, 2005.

[24] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using
fractals. In VLDB, pages 500–509, 1994.

[25] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social
networks. In KDD, pages 467–476, 2009.

[26] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng. On
trip planning queries in spatial databases. In SSTD, pages 273–290,
2005.

[27] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An index
structure for high-dimensional data. VLDB J., 3(4):517–542, 1994.

[28] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k
nearest neighbor joins using mapreduce. PVLDB, 5(10):1016–1027,
2012.

[29] N. Mamoulis and D. Papadias. Multiway spatial joins. ACM Trans.
Database Syst., 26(4):424–475, 2001.

[30] D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing and
optimization of multiway spatial joins using r-trees. In PODS, pages
44–55, 1999.

[31] A. Papadopoulos and Y. Manolopoulos. Performance of nearest
neighbor queries in r-trees. In ICDT, pages 394–408, 1997.

[32] J. T. Robinson. The k-d-b-tree: A search structure for large
multidimensional dynamic indexes. In SIGMOD Conference, pages
10–18, 1981.

[33] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In M. J. Carey and D. A. Schneider, editors, Proceedings of
the 1995 ACM SIGMOD International Conference on Management
of Data, San Jose, California, May 22-25, 1995, pages 71–79. ACM
Press, 1995.

[34] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD Conference, pages
563–576, 2009.

[35] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB’98,
Proceedings of 24rd International Conference on Very Large Data
Bases, August 24-27, 1998, New York City, New York, USA, pages
194–205. Morgan Kaufmann, 1998.

[36] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method for
knn join processing. In VLDB, pages 756–767, 2004.

[37] B. Yao, F. Li, and P. Kumar. K nearest neighbor queries and
knn-joins in large relational databases (almost) for free. In ICDE,
pages 4–15, 2010.

[38] C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for large
data in mapreduce. In EDBT, pages 38–49, 2012.

[39] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, pages 688–699, 2009.

[40] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources
in web 2.0. In ICDE, pages 521–532, 2010.

[41] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao.
All-nearest-neighbors queries in spatial databases. In SSDBM, pages
297–306, 2004.


