
DTD-Directed Publishing with Attribute Translation Grammars

Michael Benedikt Chee Yong Chan Wenfei Fan Rajeev Rastogi
Bell Laboratories, Lucent Technologies�

benedikt,cychan,wenfei,rastogi � @research.bell-labs.com
Shihui Zheng Aoying Zhou

Fudan University�
shzheng0,ayzhou � @fudan.edu.cn

Abstract

We present a framework for publishing relational
data in XML with respect to a fixed DTD. In data
exchange on the Web, XML views of relational
data are typically required to conform to a prede-
fined DTD. The presence of recursion in a DTD as
well as non-determinism makes it challenging to
generate DTD-directed, efficient transformations.
Our framework provides a language for defining
views that are guaranteed to be DTD-conformant,
as well as middleware for evaluating these views.
It is based on a novel notion of attribute transla-
tion grammars (ATGs). An ATG extends a DTD
by associating semantic rules via SQL queries.
Directed by the DTD, it extracts data from a re-
lational database, and constructs an XML docu-
ment. We provide algorithms for efficiently eval-
uating ATGs, along with methods for statically an-
alyzing them. This yields a systematic and effec-
tive approach to publishing data with respect to a
predefined DTD.

1 Introduction
XML [6] has become the primary standard for data ex-
change on the Web. To exchange data currently residing
in relational databases, one needs to publish it in XML, i.e.
to transform the data into an XML format. In practice, pub-
lishing of relational data is always done with a predefined
type, typically a DTD. A community or industry agrees on
a certain DTD, and subsequently all members of the com-
munity create XML views of their relational data that con-
form to the DTD [3]. This is common in, e.g., B2B ap-
plications and the health-care industry: a hospital needs to

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

extract patient information from its relational store, convert
it to an XML format , and send it to an insurance company,
with the XML data generated conforming to a DTD defined
by the insurance company.

The problem can be stated as follows: given a DTD �
and a relational schema � , define a view � such that for any
instance � of � , �����
	 is an XML document that conforms
to � . We refer to this as DTD directed publishing. The
goal is to provide a DTD-directed publishing system that
captures transformations commonly found in practice.

DTD-directed publishing is rather challenging. The
presence of disjunction in a DTD leads to difficulties in
defining deterministic mappings based on the DTD, while
recursion makes for a poor match with the querying fa-
cilities of standard relational databases. Recursive DTDs
are commonly found in specifications of biomedical [5],
protein [20] and chemical data [9], e.g., DNA is specified
in terms of clone, clone has subelements gene and DNA,
while gene is in turn specified with DNA. As a simple ex-
ample, let us consider a mild variation of a fragment of
the TPC-H relational schema [24] shown in Fig. 1 (with
keys underlined). The schema, referred to as ��� , speci-
fies parts, suppliers of those parts, and the composition of
a part from other parts. Suppose that one wants to define
an XML view that extracts information about parts with the
brand “Acme” from the relational database. For each part
the view provides the name, suppliers and moreover, the
part-hierarchy composing it: its sub-parts, the sub-parts of
those sub-parts, and so on. In addition, the XML docu-
ment generated is to conform to a DTD �� given in Fig. 2
(here we omit the description of elements whose type is
PCDATA). Observe that �� is recursive : part is defined in
terms of itself. Moreover, the structure of the address is
non-deterministic: if the supplier is “domestic”, i.e., based
in the US, its address is simply the addr attribute of the
Supplier relation; otherwise, i.e., if it is “foreign”, its
address consists of the addr attribute and its nation.
Given an instance of � � , the goal is to generate an XML
document of DTD � � . In the document, parts are nested to
an arbitrary level which is not known at compile time, but
is rather data-driven, i.e. determined by the relational data.
This is an instance of DTD-directed publishing.

Supplier (suppkey, name, addr, nationkey)
PartSupp (partkey, suppkey, availqty)
Part (partkey, name, mfgr, brand, size, retail)
MadeOf(partkey1, partkey2)
Nation (nationkey, name, regionkey)
...

Figure 1: A fragment of TPC-H relational schema, ���
<!ELEMENT db (part �)>
<!ELEMENT part (pname, supplier � , part �)>
<!ELEMENT supplier (sname, address)>
<!ELEMENT address (addr | fornaddr)>
<!ELEMENT fornaddr (addr, nation)>

Figure 2: A predefined DTD � � for publishing data of � �
To publish relational data with a predefined DTD, we

need an XML view definition language that allows the
DTD to guide view creation, as well as an efficient imple-
mentation of the language. Two of the well-known systems
that have been developed for publishing relational data in
XML are SilkRoute [13], which is based on the view def-
inition language RXL (abstracted as TreeQL in [3]); and
XPERANTO [7], which extends SQL by supporting XML
constructors to specify views. However, none of these sys-
tems takes DTDs/types into account. There have also been
several commercial systems [21, 19, 14] that specify XML
views by embedding SQL queries within an XML docu-
ment template. These can only produce mild variations of a
fixed document, and thus cannot support data-driven trans-
formations directed by a predefined DTD, especially when
the DTD is recursive and/or non-deterministic. To the best
of our knowledge, none of the existing systems is able to
support the XML view described above.

Another approach to coping with a predefined DTD is
by means of type checking [3]: simply define an XML
view and then check whether the view conforms to the
DTD. Unfortunately this is impractical since type checking
of data-driven transformations, even for simple DTDs, is
computationally intractable: co-NEXPTIME for extremely
restricted view definitions, and undecidable for realistic
views [3] (languages such as XQuery [8] implement only
approximate type-checking). Worse still, any approach
based on type-checking does not provide any guidance on
how to define an XML view that does typecheck.

There has also been a line of work on automated in-
ference of mappings from schema information (e.g., [2, 4,
17]). This approach works well when the source and target
schemas involved in translations are similar to each other.
If the schemas are dramatically different, or if the view
mapping depends on the application rather than merely
upon the schemas, this process cannot be fully automated.

In this paper, we provide the first systematic method
for DTD-directed publishing of relational data in XML, by
making three contributions. First, we introduce a novel no-
tion of attribute translation grammars (ATGs). An ATG is
an extension of a DTD by associating attributes and seman-
tic rules (SQL queries) with element types. Given a rela-
tional schema � and a DTD � , one can define an ATG that,
given an instance of � , generates XML data by first extract-

ing data from the database using the rules, and then tagging
the data to create XML elements following the element
type definitions of � . ATGs facilitate data-driven trans-
formation by using attributes to pass data (to be used, e.g.,
in grouping) as well as control down a partially-constructed
tree. If the evaluation of the ATG terminates successfully,
it yields an XML document that is guaranteed to conform
to the DTD. As an example, the ATG in Fig. 3 defines the
XML view of the TPC-H data described above (see Sec. 3).
ATGs are inspired by attribute grammars (see, e.g., [10]),
but have significant differences (see Sec. 7 for detailed dis-
cussion). To the best of our knowledge, they provide the
first language that guides the user in the definition of DTD-
conformant views.

Second, we establish results for static (compile-time)
analyses of ATGs. These include termination analysis of
ATG evaluations and the expressive power of ATGs.

Third, we provide efficient algorithms for evaluating
ATGs. We introduce new techniques, based on dynamic
programming, which combine query-partitioning with the
materialization of intermediate results to generate evalua-
tion plans based on estimates of query cost and data size.

Based on these we have implemented a middleware sys-
tem, PRATA (Publishing Relational data using Attribute
Translation grAmmars), for DTD-directed publishing from
relational data to XML. We have been conducting exper-
iments on data sets that include the variant of the TPC-
H database mentioned earlier. Our experimental results
demonstrate that our algorithms generate efficient evalua-
tion plans.
Organization. Section 2 reviews DTDs. Section 3 intro-
duces ATGs and provides static analyses of ATG evalua-
tion. Sections 4 and 5 develop efficient algorithms for eval-
uating ATGs. Section 6 presents experimental results. Sec-
tion 7 addresses issues for further work.

2 Background: DTDs

A Document Type Definition (DTD [6]) is typically repre-
sented as an extended context free grammar [15].

A DTD is a tuple � � � �������
	��� 	 , where
�����

is a fi-
nite set of element types;

�
is a distinguished element type,

called the root type;
	

is a set of production rules that de-
fine the element types: for each � in

�����
,
	 ��� 	 is a regular

expression ����� � S ����������������� � � �!���#" , where
S denotes the string (PCDATA) type, � is a type in

�����
, �

is the empty word, and “ � ”, “
�
” and “ $ ” denote disjunc-

tion, concatenation and the Kleene star, respectively (here
we use “ � ” instead of “ � ” to avoid confusion). We write�&% 	 ��� 	 and refer to it as the production of � .

An XML document is typically modeled as a node-
labeled tree. An XML tree ' conforms to a DTD � if
its structure is constrained by � as follows: (1) there is a
unique node in ' labeled with

�
, namely, the root; (2) each

node in ' is labeled either with an element type � of
�����

,
called an � element, or with S, called a text node; (3) each� element has a list of children of elements and text nodes
such that they are ordered and their labels are in the regu-

lar language defined by
	 ��� 	 ; (4) each text node carries a

string value (PCDATA) and is a leaf of the tree.
To simplify the discussion when it comes to defining

ATGs, we do not consider attributes in this paper; but we
allow entities (defined in the XML standard [6]) to be used
in DTDs. An entity � is merely a macro (alias) of a regular
expression

	 ��� 	 .
Taking advantage of the notion of entities, we define a

DTD � in normal form to be � �������
����� �	��� 	 , where
�����

is a finite set of entities,
	

defines element types and enti-
ties such that for each � in

�������������
,
	 ��� 	 has the form:

� ��� � S � � � ��� �	�
�	� � ��� � ��� � �
�	� � �� � � "
where � , ��� are in

������� �������������
and ����� .

For example, the DTD � � given earlier can be converted
to a DTD ���� in the normal form by introducing entities� � ���"! �#!
$ �%� �'& � �(! and rewriting the production of � � ��� as:

<!ELEMENT part (suppliers, pname, parts)>
<!ENTITY suppliers ‘‘supplier � ’’>
<!ENTITY parts ‘‘part � ’’>
Abusing the notion of XML trees, we define a virtual

XML tree of a DTD � to be an XML tree conforming to
a DTD � � which is obtained from � by treating entities as
element types. That is, we allow nodes in a virtual XML
tree to be labeled with entities. A virtual XML tree)+* of
� can be converted to an XML tree ' in time linear in the
size of) * , by collapsing entity nodes, i.e., merging each
entity node with its parent node until no node is labeled
with an entity. We refer to ' as a parse tree of � and say
that it conforms to � .

We say that DTDs � and ��� are equivalent if for any
XML tree ' , T conforms to � iff T conforms to �,� . For
example, the DTDs �� and �-�� are equivalent.

Proposition 2.1: For any DTD � there exists a DTD �.� in
the normal form such that � and �,� are equivalent. More-
over, � � can be computed from � in linear time. /

By Proposition 2.1, in the sequel we shall only consider
DTDs in the normal form.

A DTD is said to be recursive if it has some element
type that is defined in terms of itself, directly or indirectly.

3 Attribute translation grammars
This section introduces ATGs and presents static analyses
of ATG evaluation.

3.1 ATGs

Definition 3.1: Let � � � ������� ����� � 	�� � 	 be a DTD and �
be a relational schema. An attribute translation grammar
(ATG) � from � to � , denoted by � � � % � , consists of:0 Grammar: the DTD D.0 Attribute tuples: a tuple of attribute members is asso-

ciated with each �21 �����3� �����4�5�6���
. The tuple is

called the attribute of � and denoted by 7 � . We will
use 7 � � 8�� 7 � � ���	�	� to denote the members of 7 � . For
the root type

�
, 7 � is empty.

0 Rules: a set of semantic rules, 9;:=<?> � � 	 , is associated
with each production � � � % � in

	
. For each�@1 ������� �������A�6���

that occurs in � , there is a
rule that specifies how the values of 7 � are evaluated.
This generally involves an SQL query on relations of
� with 7 � as parameters.

We say that � is recursive if � is recursive. /
In an ATG we combine a DTD � with database opera-

tions by defining semantic rules in terms of SQL queries 1.
Given a relational database, the evaluation of the ATG
yields a parse tree of � , in which nodes carry attributes
whose values are computed by the queries on the database.
The tree is generated incrementally starting from the root
downwards. The generation is data-driven: the children of
a node B are populated based on the value of B ’s attribute.

Recall the XML view (part-hierarchy) for the TPC-H
data described in Sec. 1. The ATG � � � � � % �-�� depicted
in Fig. 3 defines the view. In � � , the DTD ���� is the one in
normal form given in Sec. 2.

We next describe more precisely the definitions of se-
mantic rules in an ATG � � ��% � . For a production� � � % � (with element types or entities � � �
�	�
� � � �
in �) and for each ��� , we have a function returning val-
ues for the attribute 7 ��� defined from the attribute 7 � of� . More specifically, they are computed by a functionC � � � �	�
�	� �D�%E 	 of one of the following forms:C � � � �	�
�	� �D� E 	 ��� � � � � �	�
�	� �"� E 	���F � � � �	�
�	� �D� E 	
where

� � �
�	�	� �"�%E are members of 7 � , which are treated as
constant parameters of atomic values; � � � �	�	�
� �"� E 	 simply
constructs a single tuple using the parameter values; F is an
SQL query on relations of � , by treating

� � as a constant.
For example, referring to � � in Fig. 3, the rule associated
with production � � ���"! % �G� ��� " defines 7 � � ��� with a queryF�H on a TPC-H database, which treats 7 � � ���"!I� �G� ���"J �K� as
a constant.

With these functions we define 9;:=<?>
� � 	 associated with
each production � � �!% � in the DTD � . By Proposi-
tion 2.1, we can assume that all DTDs are in normal form.
Thus, it suffices to consider � of the following cases:
(1) If � is S then 7 � must consist of a single member, and9;:=<?>
� � 	 is defined as

7 � � C �L7 � 	 �
where

C
is a function of the form defined above.

(2) If � is ��� �	�
�	� � �� , then 9;:=<?>
� � 	 consists of

7 � � � C � �M7 � 	 �N�	�
� � 7 � � � C � �M7 � 	 �
where

C � is a function as defined above for each
& 1�O?� � �+P .

(3) If � is ��� � �
�	� � �� then 9;:=<?>
� � 	 is defined as:

�M7 � � �Q�	�
� � 7 � � 	 �
case F4R �L7 � 	 of 1:

C � �L7 � 	 ; . . . ; � :
C � �M7 � 	 �

1The term “attribute translation grammar” was first used to denote a
class of attribute grammars for compiler constructions [16], which are
quite different from ATGs.

Grammar: ����
Attribute tuples:�����

= ()�
	�����
= (partkey, name)�
	�������
= (partkey)������	�	���������
= (partkey)������	�	�������
= (name, addr, nationkey)��������������
= (tag, addr, nation)�������� �!����
= (addr, nation)����� ��"#�
=
�
	�� ��"#�

=
��� ���$�$���

=
��������

= (val)��%
= (val)

Semantic rules:
db & part �'�(

:
�
	�����*)

select p.partkey, p.name
from Part p
where p.brand = ‘‘Acme’’

part & suppliers, pname, parts',+
:
������	�	���������

= (
�
	�����

.partkey),'.-
:
�
	��/��"0�

= (
�
	�����

.name),'.1
:
�
	�������

= (
�
	�����

.partkey)

parts & part �',2
:
�
	�����*)

select m.partkey2, p.name
from Madeof m, Part p
where m.partkey1 =

�
	�������
.partkey and

m.partkey2 = p.partkey

suppliers & supplier �'.3
:
������	�	�������4)

select s.name, s.addr, s.nationkey
from Supplier s, PartSupp ps
where ps.partkey =

������	�	5�6�$����
.partkey

and ps.suppkey = s.suppkey

suppplier & sname, address',7
:
����� ��"#�

=
���8��	�	��6�$��

.name,'.9
:
��������������

= select 1 as tag, null as nation,������	�	�������
.addr as addr

from Nation n
where ‘USA’ = n.name and

n.nationkey =
������	�	����$��

.nationkey
union
select 2 as tag, n.name as nation,������	�	����$��

.addr as addr
from Nation n
where ‘USA’ <> n.name and

n.nationkey =
������	�	����$��

.nationkey

address & addr : fornaddr:'.;
: (

���������<=��������/�������>
=

case
���!����������

.tag of /*
'.?

*/
1: ((

���!����������
.addr), null)

2: (null, (
��������������

.addr,
��������������

.nation))

fornaddr & addr, nation:'�(� : ��������
=
�������� �!����

.addr'�(@(
:

���/���$�$���
=
��������/������

.nation

A & S /* A is one of
��� ��"#�

,
�B�/��"0�

,
�!����

,
� ���$�$���

*/��%
=
� A .val

Figure 3: Example of an ATG, � �
where F R is a query that returns a value in O � � �+P , and

CDC
’s

are functions as above. That is, 7 � � is assigned with the
value of

C � �L7 � 	 if F�R �L7 � 	 � &
, and with � $ ��� otherwise.

These are to capture the semantics of the non-deterministic
production. We refer to F4R as the condition query of the
rule.
(4) If � is � " , then 9;:=< > � � 	 is defined as follows:

7 �FE F �L7 � 	 �
where F is a query as defined above. As will be seen

shortly, the rule for � in fact introduces an iteration (loop),
which implements the Kleene closure without using an
unbounded number of attributes.

Observe that 9;:=< > � � 	 in cases (1) to (3) is built up from
assignments of the form: 7 ��� � C �M7 � 	 . Here we requireC �M7 � 	 to return a single tuple. In case (4), 9;:=< > � � 	 is de-
fined with 7 �GE F �L7 � 	 , where F �M7 � 	 returns a set of tu-
ples. It assigns each tuple in F �M7 � 	 to 7 � , i.e., 7 � ranges
over each value in F �M7 � 	 . As will be explained shortly,
for each 7 � tuple, the semantic rule for 7 � is triggered.
For example, referring to Fig. 3, 7 !
$ �%� � & � � and 7 � � ��� are
defined with the second form (with F � � F�H � FIH) while the
rest are defined with the first form.

Next we give the semantics of the ATG � by presenting
a naive evaluation strategy. This strategy is only intended
to give a conceptual view of the meaning of the ATG: prac-
tical techniques for evaluation will be discussed at length
in Sections 4 and 5.

Given an instance � of the relational schema � , � is
evaluated following an iterative semantics. The iteration
proceeds top-down: starting at the root type, evaluate se-
mantic rules associated with each element type/entity en-
countered, and create nodes following the DTD to construct
an XML tree. The iteration at each stage produces a (par-
tial) XML tree ' � . At each iteration, we consider a par-
ticular leaf node

� B tagged with � associated with value J�
from 7 � . We find the corresponding production � % � ,
and trigger the rule associated with the production, substi-
tuting the value J� for the parameters 7 � in their functions.
The resulting functions compute 7 ��� for each ��� in � . For
each �� , its function generates a single tuple as the value
of 7 ��� (or � $ ��� for some 7 ��� in the case of disjunction)
except when the production is of the form ��% � "� . For
each value in 7 � � , we create a � � node and expand the tree' � by appending these nodes to ' � as the children of

� B .
More specifically, we do the following:
(1) For a production � % �

, recall that 7 � � C �M7 � 	 is its
semantic rule. If

C
returns the empty set or multiple values,

then the evaluation aborts; otherwise a text node is created
as the only child of

� B with 7 � as its PCDATA.

(2) The semantic rules for a production � % � � �
�	�
� � �LK
are defined as: 7 � � � C � �M7 � 	 ���
�	� � 7 �0K � C K �M7 � 	 . If
one of the functions

C � returns the empty set or multiple
values, then the evaluation aborts, while if each

C � returns
a single value, then a single � � node is created for each&
, carrying the 7 � � value. These nodes are treated as the

children of
� B , in the order specified by the production.

(3) For a production � % ��� � �
�	� �&� K , recall that its
semantic rule is defined with a case clause. The condition
query in the clause is evaluated first, and based on its value,
a particular � � is selected and the corresponding function
for computing 7 � � is evaluated. A single � � node is created
as the only child of the node

� B , carrying the 7 ��� value.

(4) For a production � % � " , recall that its semantic rule
is defined as: 7 �GE F �L7 � 	 . If the query F returns empty,
then no children are appended to

� B ; otherwise M nodes
tagged with � are created, where M is the cardinality of

the output of F , such that each � node carries a distinct
value from the set 7 � . These nodes are the children of

� B .

(5) Nothing needs to be done for a production �&% � .
As a final step, we eliminate nodes tagged with an entity

to construct an XML tree conforming to � , as described in
Sec. 2. We use �����
	 to denote the XML tree.

Observe that each step of the iteration expands the tree
strictly following the DTD � . In particular, when � is
recursively defined, the data-driven evaluation expands the
tree to a level which is determined by the relational data and
the semantic rules. It is easy to verify that if the evaluation
of the ATG terminates successfully (without aborting), it
generates an XML tree that conforms to � . This yields a
systematic method of DTD-directed publishing.

Example 3.1: Given a database instance of the schema
� � , the evaluation of the ATG � � in Fig. 3 generates an
XML tree that conforms to DTD �,�� as follows. It first
creates the root of the tree, tagged with db. It then com-
putes a set of tuples of the form (partkey, name) us-
ing the query F � . For each tuple, a distinct node labeled
part is created, carrying the tuple as its attribute 7 � � ��� .
These nodes are the children of the root. For each part
node, its suppliers, pname and parts children are
created by using the queries F�� � F�� and F�� , respectively,
and by treating members of the tuple in 7 � � ��� as param-
eters. Similarly, for each suppliers node, its subtree
is constructed with the queries F*H to F4�#� ; each pname
node in turn has a text node as its child, which carries7 �G� �K� .name as its PCDATA; and at each parts node,
the query F�H is executed with attribute 7 � � ���"! .partkey
as parameter, and its part children are generated, as
long as the part identified by 7 � � ���"! .partkey has sub-parts,
i.e., F H (7 �G� �K�"! .partkey) does not return an empty set.
Thus the XML tree generated has an unbounded height
determined by the relational data. Observe that the non-
deterministic choice at address is handled by F�� , which
is specified with a condition query F R : “ 7 ����� � �6!�! .addr”
that returns either � or 	 . Also note that the evaluation
aborts if the query F�
 does not return a single tuple; but
this will not happen as F�
 is executed with a particu-
lar parameter: 7 !
$ �I� � & � � .addr (treated as a constant)
and 7 !
$ �%� � & � � .nationkey (a key of the Nation rela-
tion). As the last step, nodes tagged with suppliers and
parts (entities) are eliminated by merging these nodes
with their parents. /

Example 3.1 demonstrates the following: (1) ATGs are
capable of expressing recursive XML views. (2) They can
also handle non-deterministic DTDs, namely, DTDs de-
fined with disjunction. (3) ATGs capture group-by by pass-
ing attributes as parameters, e.g., in F4H for part and F H
for supplier, without introducing explicit constructs.

3.2 Static analyses

Correctness and termination of ATGs. The definition of
ATGs easily ensures the basic correctness result:

Proposition 3.1: For any ATG � � � % � and for any
database instance � of � , if � terminates without aborting
on � , then ��� � 	 is an XML tree that conforms to � . /

Of course, an ATG may not terminate, or may abort. The
question thus arises whether or not termination of an ATG
evaluation is decidable. The termination problem for ATGs
is to determine, given any ATG � � � % � , whether � ter-
minates without aborting on all input database instances of
� . Closely related is the termination problem for ATGs on
an individual instance: given an instance � of � , whether
� terminates without aborting on input � .

Theorem 3.2:0 The termination problem is decidable for ATGs de-
fined with unions of conjunctive queries and arbitrary
DTDs in time exponential in the size of ATG.0 On an individual database instance � , the termination
problem is decidable for arbitrary ATGs in time poly-
nomial in the size of � .0 The termination problem becomes undecidable for
ATGs defined with arbitrary SQL queries. /

The first decidability result shows that it is possible to
determine termination for an important class of ATGs. This
can be proved by reduction to the satisfiability problem for
Datalog programs (with equality and inequality). This re-
sult still holds in the presence of key constraints in the un-
derlying relational schema with the same complexity. The
second decidability tells us that when the input database
instance is fixed, one can effectively determine the termi-
nation of the evaluation of an arbitrary ATG. This follows
from the iterative semantics given in the last subsection.
The final undecidability result says that the termination
problem is beyond reach for ATGs defined with general
SQL queries. This can be established by reduction from
equivalence of SQL queries.

Expressiveness. ATGs are at least as powerful as the view
definition languages of the existing publishing systems,
namely RXL [13] (TreeQL [3]) in SilkRoute and the lan-
guage of XPERANTO [7]. That is, for any XML view de-
finable in RXL (TreeQL) or XPERANTO, it can also be ex-
pressed as an ATG (with some simple nonrecursive DTD).
Moreover, there are ATGs that are not definable in RXL
(TreeQL) and XPERANTO, e.g., recursive ATGs.

4 Overview of ATG evaluation
In this section, we provide an overview of an efficient al-
gorithm for evaluating ATGs. As observed by [12], it
is advantageous to extract all the relevant relational data
first and then construct the final XML document at a later
stage. Thus XML view evaluation consists of (1) a tuple-
generation phase in which relational queries are generated
and executed to produce an output relation – a relational
representation of the view; and (2) a tagging phase, where
the output relation is post-processed to produce the result
XML tree. In systems such as [12, 22] a set of SQL queries

Q1

Q2
Q3

Q4 Q5

Q6

Q7 Q8

Q10

Q9 Q9

Qc

Q
11

pname partssuppliers

supplier

sname

fornaddr

addr nation

db

part

*

*

*

addr

address

(a) �

Q1

Q2
Q3

Q4

Q6

Q7 Q8

Q2
Q3

Q4

Q5

Q2
Q3

Q4

Q5

P1

db

*

pname partssuppliers

supplier

sname

part

*

pname parts

part

*

pname parts

part

*

P2

5P

3P P4

(b) � and its partition

Q1

Q2
Q3

Q4

Q6

Q7 Q8

Q2
Q3

Q4

Q5

Q2
Q3

Q4

Q5

db

*

pname partssuppliers

supplier

sname

part

*

pname parts

part

*
3

pname parts

part

*
2

6

P’

P’

1

P’

P’

P’4 5
P’

(c) another partition of �

suppliers pname

part

parts

P4

supplier

sname

S1

parts

db

suppliers pname

part

suppliers pname

part

parts

P3

suppliers pname

part

parts

P2

P1

suppliers pname

part

parts

P5
supplier

sname

S1

supplier

sname

S2

(d) XML Document

Figure 4: Example of ATG graph � , its partially unfolded ATG tree ' , and the result XML document.

can be produced at compile-time that suffice to compute
the output relation. In contrast, it may not be feasible
to statically generate queries for recursive ATGs (DTDs).
For ATGs we thus require an iterative tuple-generation ap-
proach: at run-time SQL queries are generated on-the-fly to
construct the output relation incrementally; as the iteration
proceeds, intermediate results required for later computa-
tion need to be maintained. To optimize the evaluation pro-
cess we devise techniques for selecting certain intermediate
results to materialize in temporary tables, while simultane-
ously unfolding the recursive rules in the ATG.

4.1 Generation of SQL queries

We illustrate the key ideas underlying our evaluation algo-
rithm using the ATG � � given in Fig. 3, which is an XML
view of the TPC-H data (schema � �). To do so we repre-
sent � � as a multi-graph � depicted in Fig. 4(a), referred to
as the ATG graph of � � , which can be easily derived from
the DTD �-�� of � � . The ATG graph essentially contains a
node for each element type/entity � . For each production
rule � % � , there are labeled edges from � to every in-
stance of element type/entity � in � . If � � � " , then the
edge has a “ $ ” as a label indicating that zero or more �
elements can be immediately nested within an � element.
Each edge is also labeled with the SQL query for comput-
ing the values of the attribute 7 � of � (defined using $ �).
Finally, if � is a disjunction, then the � node is labeled with
the condition query in the case clause (its outgoing edges
are indicated by dashed lines to distinguish from the case
of a concatenation). Note that, as shown in Fig. 4(a), the
ATG graph for recursive DTDs contains cycles.

The ATG graph is useful for generating the ATG tree,
which is essentially the template for the result XML tree.
In the absence of recursion, the ATG tree is constructed
by starting with the root node and moving downwards; at
each node encountered it creates distinct children of the
corresponding node in the ATG graph. For ATG graphs
with cycles, this process would not terminate; as a result,
when building an ATG tree in the presence of recursion,
we only expand nodes to a bounded depth. For instance,

Fig. 4(b) illustrates a partial ATG tree ' (for the ATG graph
in Fig. 4(a)) when part is expanded twice. (For simplicity
we omit the address subtree under supplier).

Evaluating the ATG tree formed at a stage of the iter-
ation, i.e., executing the SQL queries and computing at-
tributes associated with the tree, will give a portion of the
output relation. Our evaluation strategy, then, is to itera-
tively unfold the graph into an ATG tree and create SQL
queries that append tuples to the output relation. This itera-
tion continues until no leaves of the tree can contribute new
tuples to the output relation, i.e., the entire relation has been
generated. For example, we unfold and evaluate the ATG
graph � of � � until no part encountered has sub-parts.

We next consider how to generate, given a (partial) ATG
tree ' , SQL queries that return output relation tuples. A
tuple contains information that can uniquely identify the
position and content of a node in the output XML tree,
namely, a coding of a root-to-leaf path, and string values
for text contents of nodes on the path. This can be done in
several ways by varying the sets of SQL queries to be gen-
erated. Similar to the approach adopted by SilkRoute [12],
we generate queries by first partitioning ' into a set of dis-
joint subtrees referred to as P-members, and then produc-
ing for each P-member

	
a single SQL query F�� such that

the composition of F�� ’s along a path computes the portion
of the output relation corresponding to that path. For ex-
ample, the ATG tree ' in Fig. 4(b) is partitioned into five
P-members

	 � to
	 H (the last three P-members rooted at

address and suppliers are not shown). The query � �
generated for

	 � is given in Fig. 5, which computes one
portion of the output relation2. In general, the query F �
for a P-member

	
can be expressed as an outer union of

subqueries corresponding to certain paths in the subtree;
such a query is called a sorted outer union query in [22]. In
particular, � � in Fig. 5 is an outer union of two subqueries
for the paths from the root to supplier and the second
part in

	 � . The subqueries can be easily derived by com-

2To avoid cluttering the queries, we have omitted certain auxiliary at-
tributes (that are used for sorting the output) from the select clauses.

� (
:
select p.partkey as partkey, X.suppkey as suppkey,

X.sname as sname, p.pname as pname,
null as partkey2, null as pname2

from Part p left outer join
((select ps.partkey as partkey,
s.suppkey as suppkey, s.sname as sname
from PartSupplier ps, Supplier s
where ps.suppkey = s.suppkey) as X)
on p.partkey = X.partkey

where p.brand = ‘‘Acme’’
union
select p.partkey as partkey, null as suppkey,

null as sname, null as pname
X.partkey2 as partkey2, X.pname2 as pname2

from Part p left outer join
((select m.partkey1 as partkey1,
m.partkey2 as partkey2, p2.pname as pname2
from MadeOf m, Part p2
where m.partkey2 = p2.partkey) as X)
on p.partkey = X.partkey1

where p.brand = ‘‘Acme’’
order by partkey, suppkey, partkey2

Figure 5: SQL query � � for P-member
	 � of ' in Fig. 4(b).

� � (: Equivalent to the first subquery of
� (

(Fig.5)
without null attributes partkey2 and pname

� +
: select p.partkey, p2.partkey2, p2.pname

from Part p, MadeOf m, Part p2
where p.brand = ‘‘Acme’’

and m.partkey1 = p.partkey
and m.partkey2 = p2.partkey

order by p.partkey, p2.partkey
� �- : select p.partkey, m.partkey2, m2.partkey2,

p2.pname
from Part p, Part p2, MadeOf m, MadeOf m2
where p.brand = ‘‘Acme’’

and p.partkey = m.partkey1
and m.partkey2 = m2.partkey1
and m2.partkey2 = p2.partkey

order by p.partkey, m.partkey2, m2.partkey2

Figure 6: SQL queries for
	 �� , 	 �� , 	 �� of Fig. 4(c).

posing the SQL queries in the ATG tree3: the first subquery
is generated by “composing” the queries

� F � , F � , F � , FIH ,F�� � , and the second one by composing
� F � , F � , F�H , F � � .

The left-outer-join in � � ensures that tuples are generated
for parts with no suppliers and zero sub-parts. The sorting
in � � is to facilitate an efficient generation of the output
XML data (to be explained shortly).

Note that the tuples computed by � � are relatively large
(in terms of arity, i.e., the number of attributes) and thus
may include many null values. Alternatively, one could re-
duce the arity of the output tuples by choosing a different
partition that produces more subtrees of smaller sizes. To
illustrate this, consider another partition shown in Fig. 4(c)
which includes six P-members (subtrees, of which only the
first three are shown). Here we further partition

	 � of
Fig. 4(b) into

	 �� and
	 �� . The queries generated for

	 �� ,	 �� and
	 �� are given in Fig. 6. The results generated by

3By the syntax of ATGs one can show that any function in a semantic
rule can be written as an SQL query.

Part
partkey name brand

p1 P1 Acme
p2 P2 Bar
p3 P3 Foo
p4 P4 Bar
p5 P5 Foo

MadeOf
partkey1 partkey2

p1 p2
p1 p3
p2 p4
p2 p5

PartSupp
partkey suppkey

p1 s1
p4 s1
p4 s2

Supplier
suppkey name

s1 S1
s2 S2

Figure 7: A database instance of the schema � �
Output for

� �(
partkey suppkey sname pname

p1 s1 S1 P1
p1 s2 S2 P1

Output for
� �+

partkey1 partkey2 pname
p1 p2 P2
p1 p3 P3

Output for
� �-

partkey1 partkey2 partkey3 pname3
p1 p2 p4 P4
p1 p2 p5 P5

Figure 8: Output relations of queries � �� , � �� , � �� .
these queries on an instance (Fig. 7) of the schema ��� is
depicted in Fig. 8 (we show only the relevant relations and
attributes of � �). Observe that the tuples computed by ����
and � �� have smaller arities than those produced by � � , and
thus contain fewer null values. It should be mentioned that
large partitions do not always outperform small ones. We
will revisit this issue in Sec. 5, where we present heuristics
for finding a good partition.

To correctly combine the results of various queries for
the generation of the output XML document, the query for
each P-member also needs to include the necessary key
attributes along the path from the root of the ATG graph
to the root of the P-member. For example, query � �� in
Fig. 6 includes two additional key attributes (partkey1
and partkey2) corresponding to the top two part nodes
along the path from db to the bottom part node in ' .

Once all the generated queries have been executed, the
output XML document (shown partially in Fig. 4(d)) is
generated by joining the output relations for partitions and
tagging the resulting tuples based on their key values. This
can be done via a simple sequential scan of each output re-
lation outside of the relational database engine, following a
top-down approach similar to the conceptual evaluation in
Section 3.1.

4.2 Unfolding and materialization

In this subsection, we present two optimization techniques
for evaluating ATGs that distinguish our framework from
the existing systems. The importance of the proposed opti-
mization is highlighted when ATGs are recursively defined.
We should point out that although linear recursive query
evaluation is supported by some commercial DBMSs, the

� � � - : select t.partkey, t.partkey2, m.partkey2,
p.pname

from Part p, MadeOf m, Temp t
where t.partkey2 = m.partkey1
and m.partkey2 = p.partkey
order by t.partkey, t.partkey2, m.partkey2

Figure 9: Rewriting of � �� using materialized result.

availability of this capability is not adequate to handle the
forms of recursion that can arise in recursive DTDs.

The first technique, unfolding, is to address a natural
question: How deep should we expand each leaf node in
a partial ATG tree? Clearly, it is not practical to fully un-
fold a (cyclic) ATG graph since we do not know the final
structure of the fully unfolded ATG tree in advance. To
overcome this, we propose a simple solution of unfolding
and partitioning in iterations as follows. Suppose that ' is
the partially expanded ATG tree at the start of an iteration.
For each node in ' , the SQL queries executed during the
previous iterations generate a set of values in the output re-
lation. We shall refer to those nodes of ' with which some
non- � $ ��� tuples are associated as non-empty nodes. Our
unfolding scheme expands each non-empty leaf B in ' up
to a maximum depth of � ; thus, the depth of the subtree '��
rooted at B does not exceed � , where � is a parameter. Each
such subtree '�� (that results from expanding a non-empty
leaf B) is then partitioned, and SQL queries for the partition
are executed to generate values for nodes in '�� .

Note that there is a tradeoff involved in the number of
levels � to unfold a non-empty node. The advantages of
unfolding node B by a large number of levels are that the
partitioning of ' � can be optimized better due to ' � ’s larger
size. However, a danger with excessive unfolding is that
many nodes in ' � may end up being empty, thus causing
unnecessary computation. Thus, parameter � must be cho-
sen with care to generate a good plan. Further experimen-
tation is needed to obtain guidelines for the choice of � .

The second technique, query materialization, is to over-
come two performance deficiencies. First, as illustrated by
queries � �� and � �� in Fig. 6, there are often common subex-
pressions shared by the generated queries due to the need
to include additional key attributes for sorting the query re-
sults. One obvious optimization is to materialize the results
of � �� so that � �� can be rewritten to reference the material-
ized results. However, the materialized results for �Q�� con-
tain many attributes irrelevant to �Q�� . It is more efficient to
materialize only a subset of the results of �Q�� . For our exam-
ple, if we materialize the projection on the first two output
attributes of � �� in a temporary relation Temp(partkey,
partkey2), then � �� can be rewritten as the query �Q� ��
shown in Fig. 9 to save one join computation.

Second, as indicated earlier, the number of additional
key attributes to be included in the output result for a sub-
tree increases with the “depth” of that subtree. Clearly,
this can result in very large composite keys, particularly
for recursive DTDs. Thus, in addition to using query ma-
terialization to avoid redundant computations of common
subexpressions, we can also materialize additional map-
ping tables to map large keys to more concise auxiliary

(a) Mapping table for
� �+

partkey1 partkey2 CKey
p1 p2 1
p1 p3 2

(b) Compressed output for
� �-

CKey partkey3 pname3
1 p4 P4
1 p5 P5

Figure 10: Use of mapping tables to compress large keys.

 ATG Graph
Unfolding

Evaluation
Optimization

 Query
Execution

Queries
SQL

Tagging
Tuple

ATG Tree

Document
XML

Database

Graph
ATG

Tuple Generation

Composition
 Query

Materialization
ATG Tree &
Partitioned

Plan

Figure 11: System architecture.

keys so as to improve both storage and processing effi-
ciency. For example, Fig. 10(a) shows a mapping table that
maps the composite key of �Q�� to a single auxiliary key at-
tribute

��� �K�
; this is used to compress the output of ���� , as

illustrated in Fig. 10(b), by replacing the prefix of its com-
posite key with the compressed key. The effect of key com-
pression becomes more evident for long paths, e.g., a sin-
gle key for �G� ���"J �K� � �
�	�
� � �G� �K�"J
�
� � when � is large. Note
that the mapping table can be computed as part of the ma-
terialized query for avoiding redundant join computations.
The compressed keys are chosen to have the same order as
the composite keys (e.g., by using a simple counter). This
ensures that the inverse mapping from compressed keys to
composite keys can be carried out in a single scan of the
mapping tables when relations for partitions are joined.

4.3 System architecture

We are now ready to give an overview of the architecture of
our DTD-directed publishing system PRATA. As depicted
in Fig. 11, it takes an ATG graph � (for ��� � % �)
and a database instance � of � as inputs and generates an
XML document that conforms to � . It consists of a tuple
generation phase (indicated by the large outer box) produc-
ing output relations, followed by the tuple tagging phase to
generate the XML document from the output relations.

The tuple generation phase consists of an iterative se-
quence of four steps. The first step partially unfolds the
ATG graph to an ATG tree ' , as described earlier. To opti-
mize the evaluation of ' the second step then determines a
partitioning of ' as well as a set of intermediate queries
to be materialized (see Sec. 5). The third step takes as
input the partition of ' and the materialization plan, and
generates a set of SQL queries to evaluate ' . The fourth
step executes the generated queries to produce the materi-
alized results and output relations. The system iteratively
repeats the execution of these steps until the termination
condition is met, as described earlier. Finally, the tuple tag-
ging phase uses the output relations, the mapping tables
for compressed keys and the DTD associated with the ATG

graph to generate the XML document; during this phase
additional checks are performed to see if the transforma-
tion needs to be aborted (we omit the discussion of these
latter checks and the SQL query generation algorithm due
to space constraints).

5 Plan generation
As described in the previous section, the evaluation of an
ATG graph is carried out in iterations: in each iteration,
non-empty leaf nodes of a partially expanded ATG tree '
are expanded further to a certain depth. Further, for each
newly-expanded subtree, an evaluation plan is generated
and executed to produce the output tuples for the subtree.
In this section we answer a central question for ATG graph
evaluation in each iteration: How should we generate an
optimal plan to evaluate each expanded subtree?

The goal of plan generation is, given a subtree, to com-
pute a partition for the subtree and a set of nodes to materi-
alize in the subtree such that the cost of executing the SQL
queries corresponding to the partition (using the material-
ized tables) is minimum. Further, as in [12], we would
like our plan generation algorithm to be loosely coupled
with the underlying relational DBMS, only relying on it
for coarse statistics like the cost of executing a query, the
query execution plan and the size of the query result.

Clearly, a smaller partition (i.e., fewer P-members) en-
ables the DBMS optimizer to generate better plans for the
queries corresponding to the partition. However, as we saw
before, with fewer P-members, the size of each query re-
sult increases due to the large number of null values for at-
tributes (due to the outer union operation). Thus, our parti-
tioning algorithm must balance the benefit of sharing query
computation due to a smaller partition with the larger result
sizes of a smaller partition. Similarly trade-offs need to be
kept in mind when deciding which subtree nodes to mate-
rialize. While materializing intermediate results at a node
can reduce the cost of executing queries for descendant P-
members4, there is an overhead with temporary tables (e.g.,
writing the materialized result to disk) that prevents us from
materializing too many nodes. In this section, we present a
greedy heuristic that balances the above trade-offs to com-
pute a good partition along with the optimal nodes to mate-
rialize for evaluating P-members in this partition. Note that
our plan generation algorithm differs from that of the exist-
ing systems, where materialization of intermediate results
is not considered.

Before we present the algorithm, we formulate the pre-
cise optimization problem and develop the necessary nota-
tion. Let ' denote the partial ATG tree,

8
be the node just

expanded and '�� denote the subtree rooted at
8

that we
want to partition. Consider a partition

�
of ' � . Let

	��
de-

note a P-member in
�

that is rooted at the node � . We de-
note by F ��� the SQL query for

	��
, and denote by F � the

SQL query for materializing node � . For example, refer-
ring to Figs. 4(c) and 6, the SQL query for P-member

	 �� is
4A P-member rooted at a node � is a descendant P-member of 	 iff �

is a descendant node of 	 .

� �� , while the SQL query for the materialized node labeled
part in

	 �� is � � . Further, let
�� ������ � F 	 and
�� �����
 �MF 	
denote, respectively, the cost for evaluating a query F and
the cardinality of the query result for F returned by the
DBMS optimizer. (Most commercial DBMSs provide sup-
port for such statistics). Also, let ����� ������� �MF 	 denote the
number of attributes in the result for F . Thus, the total size
of the result of a query F is ����� ������� �MF 	 ��
�� ����!
 � F 	 .
Since the estimated total cost of executing query F � � in-
volves running it at the DBMS and then retrieving the result
tuples (possibly over a network), we model the overall cost
without materialization as (similar to [12]):

"$#%" &�#�'$"�('*) � >,+ � (.-�/�0 &�#�'$"�('*) � > :� +1-32�4�5 6 "�"879('*) � > -�/�0 & 6 7 / ('*) � >
Above, � � and � � are weight parameters used to vary the
trade-off between the cost of query evaluation and the cost
of transferring the query result from the database server to
the client.

We next compute, for a materialized node B and a de-
scendant P-member

	:�
of B , the cost of executing F ���

when F ��� is rewritten in terms of the materialized table forB . We denote this cost by ���;� ����<� �MF ���1= B 	 . Note that the
benefit of materializing B for P-member

	:�
is then given by

���;� ������ �MF ��� 	:>?����� ����<� � F ����= B 	 . As before, we model

"$#%" &<#�'$"�('*) �A@ 	 >B+ � (.-�/C0 &�#�'$"<('*) �A@ 	 > :� +1-32�4�5 6 "�"879('D) �1@ 	 > -�/�0 & 6 7 / ('*) �A@ 	 >
The functions in the second term can be estimated fairly ac-
curately. Specifically,
,� ����!
 � F � ��= B 	 �
,� �����
 �MF � � 	
and ����� ������� � F ���1= B 	 is essentially ����� ������� � F ��� 	 � �
minus the number of ancestor nodes of node B in the ATG
tree ' . We subtract the number of intermediate nodes be-
tween the root and B (and add 1) since in the materialized
table for B , all keys for nodes that are ancestors of B in '
are replaced with a single auxiliary attribute CKey (due to
key compression). Thus, to estimate ����� ����<� � F ����= B 	 , we
only need to get good estimates for
,� ������ �MF ���1= B 	 . How-
ever, estimating
,� ����<� �MF � �1= B 	 accurately is somewhat
difficult since our plan generation algorithm is responsible
for determining the nodes in '�� to materialize, and thus
none of the nodes in '�� are materialized when our algo-
rithm is invoked. A crude approximation that we found
to work quite well in our experiments is to simply model
,� ������ �MF ���1= B 	 as
�� ������ � F ��� 	�>E
�� ������ � F � 	 . This is
because in some respect, F � is actually a subquery of F ���
(since

	��
is a descendant of B , F ��� is obtained as a re-

sult of query composition with F �). A problem with this
approximation, however, is that the query plan for F � may
not match the one for the subquery F � in F ��� . To fix this
problem, we add hints to F ��� so that the execution plan
(specially, join order) for query F � is forced on the DBMS
query optimizer when it generates a plan for F�� � (current
DBMSs provide hooks for specifying hints for preferring
certain join orders, e.g., the ORDER keyword in Oracle).
This yields a fairly good estimate of
,� ����<� �MF�� �1= B 	 .

We next turn our attention to the cost of materializing
the query for a node B . The attributes for the materialized

table of B essentially consist of: (1) a single auxiliary key
attribute CKey that is a proxy for all the distinct combina-
tions of key values for nodes in the path from the root to B in' , and (2) the attributes in the select clause for F � that
are referenced in the queries relating B to its descendants.
Let M � denote the closest ancestor node of B that has been
materialized. Then, we can model the cost of materializing
the intermediate table for B using M � as:

5 6 " &<#�'$"<(@ " � >B+ "$#%" &�#�' "�(' � @ " � > :� -�-%2�4�5 6 "�"879(' � > -�/�0 & 6 7 / (' � >

where the first term is the cost of evaluating F � using the
materialized result M � , and the second term (weighted with
another parameter � �) models the cost of writing to disk (at
the DBMS) the materialized table after key compression.

We are now in a position to define the cost of evaluating
SQL queries for a partition of '�� when certain nodes in '��
are materialized. For a partition

�
of '�� and a set of ma-

terialized nodes
�

in '.� , we define the cost of evaluating'.� as:

&�#�' "�(��� <�� <�� >,+
) ����
"$#%" &<#�'$"�('*) � @ "�� > : 	� ���

5*6 " &<#�'$"�(�� @ " � >

Our objective is to compute a partition
�

of ' � and a set of
nodes

�
to materialize in ' � such that ����<� ��' � �<� � � 	 is

minimum. Unfortunately, this problem can be shown to be
NP-hard (reduction from Set Partition).

In the following, we present a greedy heuristic, Proce-
dure PARTITION, that, given ' � , attempts to find a parti-
tion

�
of ' � and a set of nodes

�
to materialize such that������ � '.� ��� � � 	 is small. The heuristic (Fig. 12) starts with

each node of '�� as a separate P-member, and in each itera-
tion of the while loop in Step 3, merges a pair of neigh-
boring P-members in

�
such that the cost of evaluating

the resulting P-members (after merging) is minimum. Of
course, for a partition, the cost of evaluation depends on
the set of nodes materialized in ' � . Thus, in each iteration,
we would like to merge the pair of P-members such that
for the resulting partition

�
, if the optimal set of nodes in' � are materialized, then the cost of evaluating

�
is min-

imum. In order to determine this optimal set
�

of nodes
to materialize for a partition

�
so that ����<� ��' � �<� � � 	 is

minimized, Procedure PARTITION invokes Procedure MA-
TERIALIZE (explained below). Note that Procedure PAR-
TITION terminates once the cost for

�
cannot be further

reduced by merging the P-members in it.
We now describe the key ideas underlying Proce-

dure MATERIALIZE (given in Fig. 13). Suppose for a par-
tition

�
and a node B in ' � , mCost[B � �].mSet denotes

the optimal set of nodes to materialize in the subtree ' �
rooted at node B , where M � � � . Also, with the nodes in
mCost[B � �].mSet materialized, let mCost[B � �].cost be
the cost of evaluating the P-members in

�
that are (com-

pletely) contained within ' � . Let child(B) denote the chil-
dren of node B . Then, it is possible to compute mCost[.]
for B in terms of mCost[.] for its children.

procedure PARTITION(� � , 	 , �)
begin
1.
��� +�������������� � � �

2. benefit
� + �

3. while benefit !#"
4. benefit

� + "
5. [cost, mSet] := MATERIALIZE

(<�� < � � <$� >
6. for each pair of P-members

' < ' � ��� connected by an edge in � �
7.

� � � + (��%#� ' < ' � ��>�&'� ' & ' � �
8. [cost’, mSet’] := MATERIALIZE

(< � < � � <(� � >
9. if (benefit) cost - cost’)
10. benefit := cost - cost’
11. pp

� + (' < ' � >
12. if benefit !*"
13.

' � +,+-+/. �102&�+-+/. 340
14.

�5� +6��%7��+-+/. �10$<8+9+:. 340��
15.

�5� +6�6&;� ' �
16.
. < <��=0

:= MATERIALIZE
(<�� < � � <�� >

17. return
. � <>�?0

end

Figure 12: Partitioning algorithm

5A@ #�' " . 	 < � 0>B &�#�' " +

CDDDDDDDDDDE DDDDDDDDDDF

GIHKJ �ML � ��N>O$P Q RTS �MU 5A@ #�'$" . � < � 0>B &�#�'$" <5*6 " &�#�' "�(@ � > : L � �2N>O$P Q R�S �MU 5A@ #�' " . � < 	 0>B &�#�'$" �
if 	 is not the root of a P-member VXW ���GIHKJ � "$#%" &�#�'$"<('*)/Y @ � > :L � �2N>O$P Q RZS �MU 5A@ #�' " . � < � 0>B &�#�' " <"$#%" &�#�' "�('D) Y @ 	 > : 5*6 " &�#�' "<(@ � > :L � �2N>O$P Q RZS �MU 5A@ #�' " . � < 	 0>B &�#�'$" �

otherwise

In the two equations above, the two terms in each[]_^ �I�?� expression correspond to the two cases in whichB is not materialized (in which case � stays the closest ma-
terialized ancestor for each child

�
of B) or B is materialized

(in which case B becomes the new closest materialized an-
cestor for each child

�
). Note that for the case when B is

materialized using � , an additional cost of � ��� ������ � B = � 	
is added to the sum of the costs for all children

�
. Fur-

ther, if B is the root node for a P-member
	a` 1 � (second

equation), then we also need to include the cost of evaluat-
ing P-member

	b`
, ����� ������ � F � Y = � 	 and ����� ����<� � F � Y = B 	

for the two cases when B is not materialized and material-
ized, respectively (since this cost is not included in the costs
for B ’s children). Comparing the costs in the two cases,
it is possible to determine whether or not to materialize B .
Procedure MATERIALIZE uses the above equation to recur-
sively compute mCost[�].mCost and mCost[�].mSet, and
returns these to Procedure PARTITION.

Our evaluation procedure will thus proceed by itera-
tively unfolding the ATG graph and calling Procedure PAR-
TITION for each non-empty leaf B (using ' � and the near-
est previously materialized ancestor

$
as arguments). The

worst-case time complexities of Procedures MATERIALIZE

and PARTITION are c� � � 	 and c�'� � 	 , respectively, where� is the number of nodes in ' � .
6 Experiments
In this section, we present experimental results on the per-
formance of our ATG evaluation algorithms. One of the
novel aspects that distinguishes our ATG-based XML pub-
lishing approach from previous work (e.g., [12]) is the ma-

procedure MATERIALIZE(
�/< � < � <$�)

begin
1. if mCost[

�/< �
].computed = true

2. return [mcost[
�/< �

].cost, mcost[
�/< �

].mSet]
3. cost1 := 0
4. mSet1 := �
5. cost2 := mat cost(

� @ �)
6. mSet2 :=

�����
7. for each child � of node

�
in tree �

8. [cost, mSet] := MATERIALIZE(� < � < � <$�)
9. cost1 := cost1 : cost
10. mSet1 := mSet1

&
mSet

11. [cost, mSet] := MATERIALIZE(� < �/< � <��)
12. cost2 := cost2 : cost
13. mSet2 := mSet2

&
mSet

14. if
�

is the root of a P-member, say V�� � �
15. cost1 := cost1 : tot cost(

')/Y @ �)
16. cost2 := cost2 : tot cost(

')/Y @ �)
17. if (cost1) cost2)
18. mCost[

�/< �
].cost := cost1

19. mCost[
�/< �

].mSet := mSet1
20. else
21. mCost[

�/< �
].cost := cost2

22. mCost[
�/< �

].mSet := mSet2
23. mCost[

�/< �
].computed := true

24. return [mcost[
�/< �

].cost, mcost[
�/< �

].mSet]
end

Figure 13: Procedure MATERIALIZE

terialization of queries for intermediate nodes of an ATG
tree. As described in Sec. 4.2, such materialization has
the potential to improve overall system performance, since
queries for descendant partitions of a node can be rewritten
in terms of the materialized table for the node. Thus, the
computation (e.g., joins) performed in materializing the ta-
ble for a node is shared among the node’s descendants.

The results of our experiments presented in this section
support the above thesis, and demonstrate that judiciously
materializing a few selected internal nodes of the ATG tree
can indeed significantly reduce evaluation time. This is
most noticeable for ATG trees that are deep, which is fre-
quently the case with recursive ATGs. Thus, we expect that
existing XML publishing systems like SilkRoute [12] (that
partition the view tree5, but do not materialize intermediate
results) can benefit from incorporating materialization.

In our experiments, we used a variant of the TPC-H rela-
tional schema presented earlier in Fig. 1. Except for the ta-
ble MadeOf, the rest of the tables are generated with TPC’s
dbgen utility using a scale factor of �

� � , where the cardi-
nalities of the Part, Supplier, and PartSupp tables
are 	��

�
, � � , and ���

�
, respectively. The MadeOf table,

which has a cardinality of about ���
�

, is generated ran-
domly such that each part has at most four sub-parts and
the maximum height of each part hierarchy is at most 10.
We measured the query execution time to generate the out-
put relations for the portion of the ATG shown in Fig. 3
that involves only elements part, supplier, pname
and sname. Thus, the ATG graph is essentially identical
to the one shown in Fig. 4(a) without address and its
subelements.

Our experiments were conducted with a database client

5The view tree is similar to our ATG tree, except that it is not dynami-
cally expanded in [12].

0

5

10

15

20

25

30

35

40

4 6 8 10 12 14 16 18

E
xe

cu
tio

n
T

im
e

(s
ec

)

Tree Depth, d

Without Materialization
With Materialization

(a) � (+ � "�" , � + + � , � - + � "

0

5

10

15

20

25

30

35

4 6 8 10 12 14 16 18

E
xe

cu
tio

n
T

im
e

(s
ec

)

Tree Depth, d

Without Materialization
With Materialization

(b) � (+ � "�" , � + + � "�" , � - + � "�"
Figure 14: Benefits of Materialization.

consisting of a simple embedded SQL program, submitting
queries to a database server (via a JDBC interface) on a� � � �	��
 Pentium IV machine with 	���� � of main mem-
ory running Windows 	����� 6.

Fig. 14 depicts the impact of materialization as a func-
tion of the tree depth � for two different weight configura-
tions. For each depth value � , we first created a ATG tree
with � levels by unfolding the ATG graph � � > � 	 = 	 times
and then evaluated the ATG tree both with and without ma-
terialization to compare the benefits of materialization. The
evaluation time measures both the time to materialize inter-
mediate results (for the case with materialization) as well as
the time to execute the queries. The results in the figure in-
dicate that materialization can speed up the evaluation by
a factor of up to almost � � � . Furthermore, as we expected,
the benefit of materialization generally increases as the tree
depth increases: the materialized nodes in a larger ATG
tree can benefit more P-members (i.e., the precomputed re-
sults are reused more often) thus resulting in more signifi-
cant improvements. We have also explored the sensitivity

6Due to licensing restrictions, we are not permitted to identify the com-
mercial product used.

of our plan generation algorithms to the various parame-
ters (e.g., weights � � � � � � � �). As indicated by Fig. 14,
the benefits of our evaluation algorithms are rather robust
to the changes of these parameters.

7 Conclusion
In this paper we have proposed a formalism, ATGs, for
publishing relational data in XML with respect to a prede-
fined DTD, and we have given efficient algorithms for eval-
uating ATGs. The middleware we have developed, PRATA,
is to our knowledge the first system guaranteeing DTD-
conformance. Our experimental results indicate that the
optimization techniques introduced for PRATA are not only
effective in speeding ATG evaluation, but are also useful in
the context of existing publishing systems.

There are key differences between ATGs and traditional
attribute grammars (AGs, see, e.g., [10]). A traditional AG
is defined with a context free grammar (without Kleene
star) and more complicated attributes (synthesized and in-
herited). It takes a string as an input, parses the string with
the grammar, and computes attributes. In contrast, it is
not possible to “parse” a relational database with a DTD;
thus an ATG extracts relevant data from the database via
queries, and then constructs a parse tree of the DTD us-
ing the data. There have also been applications of AGs to
databases, e.g., for constructing query automata [18] and
for querying text files [1]. These are mild variations of tra-
ditional AGs and are quite different from ATGs.

It is straightforward to extend our framework to han-
dle DTD-directed transformations from Object-Oriented
databases to XML, and XML-to-XML transformations.
There are extensions that are more involved, and which
are the subject of ongoing work. One involves support-
ing the synthesized attributes found in traditional attribute
grammars. The extra expressive power of this extension
needs to be examined, as well as its impact on ATG eval-
uation. We are also studying the extension of this tech-
nique from DTDs to XML Schema [23]. A specification
(schema) in XML Schema typically consists of a type and a
set of integrity constraints. In this context, schema-directed
mapping is to define an XML view of relational data such
that the XML documents generated both conform to the
type and satisfy the constraints. Unfortunately, it is im-
possible even to decide whether or not a schema is consis-
tent [11], i.e., there is any document satisfying it, due to
the interaction between integrity constraints and types in
XML Schema. We are working on identifying practical re-
strictions on XML Schema for effective schema-directed
publishing. Another topic is to explore the evaluation
of XML queries (e.g. XQuery [8]) against ATG-defined
views. Finally, we are also studying methods for capturing
information-preserving transformations via ATGs.

ACKNOWLEDGMENT: We thank Mary Fernández for
answering several inquiries regarding SilkRoute. Wenfei
Fan is on leave from Temple University and is supported in
part by NSF Career Award IIS-0093168.

References
[1] S. Abiteboul, S. Cluet, and T. Milo. Querying and updating

the file. In VLDB, 1993.

[2] S. Abiteboul, S. Cluet, and T. Milo. Correspondence and
translation for heterogeneous data. In ICDT, 1997.

[3] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Type-
checking XML views of relational databases. In Proc. of
Logic in Computer Science (LICS), 2001.

[4] C. Beeri and T. Milo. Schemas for integration and transla-
tion of structured and semi-structured data. In ICDT, 1999.

[5] BIOML. http://www.bioml.com/BIOML.

[6] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible
Markup Language (XML) 1.0. W3C, 1998.

[7] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasun-
daram, E. J. Shekita, and S. N. Subramanian. XPERANTO:
Publishing object-relational data as XML. In WebDB, 2000.

[8] D. Chamberlin et al. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, June 2001.
http://www.w3.org/TR/xquery.

[9] CML. http://www.xml-cml.org.

[10] P. Deransart and M. Jourdan (eds). Attribute Grammars and
their Applications. LNCS 461, 1990.

[11] W. Fan and L. Libkin. On XML integrity constraints in the
presence of DTDs. In PODS, 2001.

[12] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient
evaluation of XML middleware queries. In SIGMOD, 2001.

[13] M. F. Fernandez, W. Tan, and D. Suciu. SilkRoute: Trading
between relations and XML. In WWW, 2000.

[14] Intelligent Systems Research. XML from databases:
ODBC2XML.
http://www.intsysr.com/odbc2xml.htm.

[15] P. Kilpelainen and D. Wood. SGML and exceptions. In
PODB, 1996.

[16] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed
translations. JCSS, 9(3):279–307, 1974.

[17] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan,
C. T. H. Ho, R. Fagin, and L. Popa. The Clio project: Man-
aging heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

[18] F. Neven and J. V. den Bussche. Extensions of at-
tribute grammars for structured document queries. JACM,
49(1):56–100, 2002.

[19] Oracle. Using XML in Oracle internet applications.
http://technet.oracle.com/tech/xml/
info/htdocs/otnwp/about xml.htm.

[20] ProML. http://cartan.gmd.de/promlweb.

[21] M. Rys. Bringing the internet to your database: Using
SQLServer 2000 and XML to build loosely-coupled sys-
tems. In ICDE, 2001.

[22] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey,
B. G. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documents. VLDB Jour-
nal, 10(2-3):133–154, 2001.

[23] H. Thompson et al. XML Schema. W3C Recommendation,
May 2001. http://www.w3.org/XML/Schema.

[24] Transaction Processing Performance Council. TPC-H
Benchmark. http://www.tpc.org.

