
FINCH: Evaluating Reverse k-Nearest-Neighbor Queries on
Location Data

Wei Wu1 Fei Yang2

1Computer Science Programme
Singapore-MIT Alliance

National University of Singapore

wuw@nus.edu.sg

Chee-Yong Chan2 Kian-Lee Tan1,2

2Department of Computer Science
School of Computing

National University of Singapore

{yangfei,chancy,tankl}@comp.nus.edu.sg

ABSTRACT
A Reverse k -Nearest-Neighbor (RkNN) query finds the ob-
jects that take the query object as one of their k near-
est neighbors. In this paper we propose new solutions for
evaluating RkNN queries and its variant bichromatic RkNN
queries on 2-dimensional location data. We present an algo-
rithm named INCH that can compute a RkNN query’s search
region (from which the query result candidates are drawn).
In our RkNN evaluation algorithm called FINCH, the search
region restricts the search space, and the search region is
tightened each time a new result candidate is found. We
also propose a method that enables us to apply any RkNN
algorithm on bichromatic RkNN queries. With that, our
FINCH algorithm is also used to evaluate bichromatic RkNN
queries. Experiments show that our solutions are more effi-
cient than existing algorithms.

1. INTRODUCTION
With the wide deployment of location sensing devices (such

as GPS receivers), location based services are getting pop-
ular [9]. Location related queries play an important role in
location based services. One such query type is the Reverse
k -Nearest-Neighbor (RkNN) query that finds the objects (in
the queried dataset) whose k nearest neighbors (NN) include
the query point. As an example, a taxi can issue a RkNN
query to find the passengers for which the taxi is one of
his/her k nearest taxis.

RkNN queries are normally used to help discover the in-
fluence sets in a dataset [8]. In location dataset, the distance
between two locations q and p gives a hint of q ’s influence
on p (and vice versa). The shorter the distance is, the higher
is the influence. In this sense, an object’s k NN are the k
objects that have the highest influence on it, and an object’s
reverse k NN are the objects that are highly influenced by
it.

RkNN queries come in two flavors: monochromatic and
bichromatic. Monochromatic RkNN query involves one type
of data objects. For example, a RkNN query issued by a

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

restaurant on a restaurant dataset (to find the restaurants
that are influenced by the query restaurant) is a monochro-
matic RkNN query because both the query data and the
queried data are of the same type. Bichromatic RkNN query
involves datasets of two types. The previous query involving
taxis and passengers is an example of a bichromatic RkNN
query.

For monochromatic RkNN queries, researchers have pro-
posed several algorithms. For bichromatic RkNN queries,
to the best of our knowledge, there is only one algorithm
for R1NN (i.e. k=1), and there is no reported solution that
supports arbitrary k values. In this paper, we propose ef-
ficient solutions for both monochromatic and bichromatic
RkNN queries on 2-dimensional location data where k ≥ 1.

Our solutions are motivated by the following observation
[15]: when k=1, the perpendicular bisector between the
query point q and an arbitrary object point p can be used
to prune objects in the half-plane that contains p; and when
k > 1, a set of k such bisectors can also be used to prune
certain objects (or R-tree nodes). In [15], Tao et al. ex-
ploited this observation to design the TPL scheme, which is
the current state-of-the-art RkNN processing scheme. How-
ever, it is computationally expensive to find such a set of
bisectors. Moreover, for objects that cannot be pruned, the
TPL scheme spends considerable time to find out that such
a set does not exist.

The key idea we have in our solutions is this: given a
RkNN query and a set of data objects S, we can compute
a region such that only the objects inside that region and
the objects in S can be the query’s result objects. We re-
fer to this region as the query’s search region. We design
an algorithm called INCH (INtersections’ Convex Hull) for
computing the search region.

In our RkNN solution FINCH (Fast rknn processing using
INCH), a query’s search region is used to find the query’s re-
sult candidates; at the same time, these candidates are used
to further tighten the query’s search region. This search for
candidates finishes when the search region is small enough
so that no new candidate can be found in the search region,
which means that we have found all candidates. A refine-
ment process is subsequently used to get the query’s final
result from the set of candidates.

We also propose a method in which any monochromatic
RkNN algorithms can be applied to process bichromatic
RkNN queries. We present the method, and use it to apply
our FINCH algorithm on the evaluation of bichromatic RkNN
queries.

We have conducted an extensive performance evaluation

of the algorithms. Our results show that the proposed meth-
ods are superior to the state-of-the-art technique.

The rest of the paper is structured as follows. In section 2
we give the formal definitions of RkNN queries and survey
the related works. The basic INCH algorithm is presented in
section 3. Then in sections 4 and 5 we describe the proposed
solutions for RkNN and bichromatic RkNN queries. Exper-
imental results are presented in section 6. Finally, section 7
concludes this paper.

2. BACKGROUND AND RELATED WORK
In this section, we introduce definitions and notations,

and survey the algorithms that are closely related to RkNN
queries.

2.1 Definitions and Notation
Given two points p and q, we use dist(p,q) to denote the

Euclidean distance between p and q.
A k-Nearest-Neighbors query [10] kNN(q,k,P) on a

dataset P finds the set of k objects that are nearest to the
query location q. Formally, an object p ∈ P is in the re-
sult of kNN(q, k, P) if and only if it satisfies the following
condition:

|{o ∈ P |dist(o, q) < dist(p, q)}| < k (1)

If multiple objects have the same k -th distance to the
query object q, they will all be included in the kNN query’s
result set.

A (monochromatic) Reverse k-Nearest-Neighbors query
[8] RkNN(q,k,P) on a dataset P finds objects in P whose k
nearest neighbors include q. Formally:

RkNN(q, k, P) = {p ∈ P |q ∈ kNN(p, k, P)} (2)

A bichromatic Reverse k-Nearest-Neighbor query
[8] involves two types of data objects. Let P be the dataset
of one type and R be the dataset of the other type. A
bichromatic Reverse kNN query issued by a query object
q from dataset P finds the objects in R whose kNNs on P
includes q. Formally:

BRkNN(q, k, P, R) = {r ∈ R|q ∈ kNN(r, k, P)} (3)

A Range-k query [18] Range-k(p,k,r) checks whether there
are fewer than k objects within the specified range r around
a point p. That is, the query returns true if |{o|dist(p, o) <
r}| < k ; otherwise, it returns false. Our proposed solutions
for RkNN queries makes use of Range-k queries.

2.2 Algorithms for kNN Queries
Depth-First search based and Best-First search based al-

gorithms have been proposed for answering a kNN query on
a R-tree [5] indexed dataset. In these algorithms, the min-
imum possible distance (min-distance) between the query
location q and a R-tree node (or a data point) is used to
determine whether the node should be visited. A node is
visited if its min-distance to q is smaller than the current
known k -th distance. In Depth-First search [10, 4], a stack
is used to decide the order of visiting the nodes. In Best-
First search [6], a priority queue based on the min-distances
is used to decide the visit order.

60°

S1

S6

S5

S4

S3

S2

60°q
q

p

(p,q)┴

(a) 60-degree-pruning (b) TPL pruning

Figure 1: Pruning techniques.

2.3 Algorithms for RkNN Queries
Various techniques have been proposed for RkNN queries

in various settings [1, 2, 7, 8, 12, 13, 14, 15, 17, 18, 19, 20,
21].

Korn and Muthukrishnan [8] introduced the RNN query
and its variants and proposed the RNN-Tree to facilitate the
processing of such queries. RdNN-Tree [20] and MRkNNCop-
Tree [1] are two other index structures proposed for RkNN
processing. These methods rely on certain pre-processing
(such as finding and storing each object’s distance to its kth
nearest neighbor) and incur storage overhead. Singh et al.
[12] proposed an algorithm that finds the approximate so-
lution for a RNN query. Yiu et al. studied the problem of
RkNN in large graphs (road networks) [21]. [1, 17] proposed
solutions for RkNN in metric spaces. [2, 7, 18, 19] studied
the processing of continuous RkNN queries on moving ob-
jects. The solutions for continuous RkNN queries make use
of snapshot RkNN algorithms and focus on the problem of
updating a RkNN query’s result when moving objects up-
date their locations.

In this work, we are interested in algorithms that: find
exact result for RkNN queries on location data, can be ap-
plied on general purpose index structures such as the R-tree,
and do not rely on pre-processing. The algorithms proposed
in [2, 13, 14, 15] fall in this category and are closely re-
lated to this work. We briefly introduce these algorithms
in the remainder of this section. They all employ the filter-
refinement framework. In the filter phase, most data objects
are pruned, and the ones that are not pruned become the
query’s result candidates. In the refinement phase, each
candidate is checked to see whether it is a query result.

2.3.1 Filter methods
Two interesting filter methods have been developed for

RkNN processing.
One is the 60-degree-pruning method developed by Stanoi

et al. in [13] for processing RNN queries (i.e. k=1). Its idea
is illustrated in Figure 1(a): the space around a RNN query
q can be divided into six equal-size regions (S1, S2, · · · , S6),
then in each region only the nearest neighbor of q can pos-
sibly be a reverse nearest neighbor of q. By this, q ’s RNN
candidates are restricted to q ’s nearest neighbor in each sub-
space. This 60-degree-pruning method can be extended to
the case where k ≥ 1: in each sub-space, only the RkNN
query point’s k nearest neighbors are result candidates. [2]
used this extension to process RkNN queries on moving ob-
jects indexed with the TPR-tree [11]. This filter method
results in at most 6*k candidates for each RkNN query.

The other is the TPL-pruning method proposed by Tao

et al. in [15]. The basic idea of TPL is illustrated in Fig-
ure 1(b): the perpendicular bisector between the query point
q and an arbitrary object point p divides the space into two
half planes, i.e. the q-half-plane that contains q and the
p-half-plane that contains p, then the points in the p-half-
plane cannot be a RNN of q because p is closer to them
than q is. Similarly, for RkNN, an object can be pruned
if the object is in at least k such p-half-planes. Given a
set S of m data objects, TPL filters as follows: for an R-
tree node (or data object), TPL tries to find a subset of
S with k objects that can prune the node (or data object)
with their bisectors. Because the number of subsets (m

k) can
be very large, exhausting the subsets to prune the node is
prohibitive. TPL sorts the objects in S with their Hilbert
values, then subsets of consecutive objects are used to check
the node. The objects that cannot be pruned are added to
candidate set. Both analytical and experimental results in
[15] show that TPL has a better pruning power than the
60-degree-pruning method.

Our algorithm also utilizes the property of bisectors. But
our algorithm differs from TPL significantly in that we com-
pute the query’s search region with the bisectors, then the
region (rather than the large number of bisectors) is used to
find the query candidates. This saves a lot of computation
because the test of whether an object (or an R-tree node)
can be pruned can be done efficiently with a containment
(or intersection) check[3].

2.3.2 Refinement methods
There are also two ways to check whether a candidate p

is the RkNN query q ’s result.
One approach is the kNN based method used in [13, 2].

It first gets p’s kNNs and then checks whether q is in it.
The other approach is the Range-k verification method

introduced in [18]. The idea is to use a Range-k query (see
section 2.1 for definition) to check whether there are fewer
than k objects which have shorter distances to q than the
candidate object does. Although [18] is a work that focuses
on the continuous refinement problem in continuous RkNN
monitoring, its result that Range-k refinement is more effi-
cient than the kNN based refinement also applies in snapshot
RkNN query processing.

2.4 Algorithm for bichromatic RkNN queries
The authors of [14] studied the problem of bichromatic

R1NN queries, i.e. k=1. For a BRkNN(q,1,P,R), their so-
lution is to compute q ’s Voronoi cell [3] using the R-tree on
dataset P, then a range query with the Voronoi cell is used
to retrieve the query result on the R-tree on dataset R. This
solution employs the special property of BRkNN when k=1:
the Voronoi cell of q on dataset P gives the exact result re-
gion. This solution is not applicable to the general BRkNN
queries where k ≥ 1.

3. INCH: COMPUTING A RKNN QUERY’S
SEARCH REGION

Our proposed approach for evaluating RkNN queries is
based on the filter-refinement paradigm which computes the
query’s result objects by first quickly pruning away a set of
objects that do not satisfy the query to generate a set of can-
didate objects, followed by a more precise refinement of the
candidates to eliminate false positives. In this section, we

(a) space division (b) polygons

(c) candidate region (d) search region

Figure 2: Space division and INCH.

present our algorithm, named INCH (INtersections’ Convex
Hull), for generating a search region, which is a subspace of
the data space. We will explain how this approach is applied
to evaluate monochromatic and bichromatic RkNN queries
in Sections 4 and 5, respectively.

The following notations will be used in the rest of this
paper. We use P to denote the set of data objects. For a
RkNN query, we use q to denote the query point and k to
denote the k value of the RkNN query.

3.1 Plane Division and Candidate Region
The key idea of our filtering step is based on using a sub-

set of data objects S ⊆ P to define the query’s candidate
region, which is a subspace of the data space. For now, we
will assume that S is a given input set of static data objects;
and we will explain in the next section how S is incremen-
tally generated (from an empty set) in the overall RkNN
evaluation algorithm.

Given S, how can S be exploited to define a tight can-
didate region? Clearly, for any data object p ∈ P , if there
exists a set of k objects {s1, · · · , sk} ⊆ S such that p is
closer to each si than it is to q, then p is certainly not in
the RkNN query’s result and can be excluded from the can-
didate region.

We now explain how the above observation of using S to
prune data objects from the candidate region can be gener-
alized to prune regions of the data space to define a tight
candidate region. Observe that for any data object p ∈ S,
the perpendicular bisector (or bisector for short) of p and
q, denoted by ⊥(p, q), divides the data space into two half
planes such that (1) objects in the half plane of q are nearer
to q than they are to p, and (2) objects in the half plane of p
are nearer to p than they are to q. We use ⊥p(p, q) to denote
the half plane containing p and call it the p-half-plane, and
⊥q(p, q) to denote the half plane containing q and call it the
q-half-plane. More generally, we use the term q-half-plane to

refer to a p-half-plane that is induced by some data object
p ∈ S and the query point q.

Thus, each data object p ∈ S introduces a bisector ⊥(p, q),
and the entire set of |S| bisectors actually divides the whole
data space into a collection of polygons around the query
point q. An example of this data space division is depicted
in Figure 2(a), where the data space is partitioned into 14
polygons using S = {p0, p1, · · · , p4}.

Note that the polygons constructed by the bisectors sat-
isfy the following property: for each bisector ⊥(p, q), p ∈ S,
each polygon is either completely inside ⊥p(p, q) or com-
pletely inside ⊥q(p, q). This important property provides a
very simple way to characterize whether a polygon can be
safely excluded from the query’s candidate region: if a poly-
gon R is inside at least k q-half-planes, then for every data
object p ∈ P − S that is within R or on the boundary of
R, p is not in the RkNN query’s result. The fact that R is
inside at least k q-half-planes means that there are at least
k objects in S that are closer to p compared to q.

Given a RkNN query (specified by the parameters q and
k), we define the query’s candidate region (with respect to
S ⊆ P) as the set of polygons constructed by the bisectors
induced by S that are inside at most k − 1 q-half-planes.

Referring once more to the example in Figure 2(a), if we
label each polygon in the data space division with the num-
ber of q-half-planes that the polygon is in, we obtain Fig-
ure 2(b). Consider the top polygon that is defined by the
points e, j, and k. This polygon is labeled 3 because the
polygon is within three q-half-planes induced by S: p0-half-
plane, p1-half-plane, and p2-half-plane. Notice that there is
exactly one polygon that is labeled 0, which is the polygon
containing q. Suppose q is the query point for a RkNN query
with k = 2. Then any data object p ∈ P − S that is within
or on a polygon with a label greater than 1 is certainly not
in the query’s result; and the query’s candidate region is
the collection of 6 polygons with label values of 0 or 1 as
highlighted in Figure 2(c).

An important point to emphasize is that our definition of
candidate region only allows for the pruning of data objects
in P − S, but not for the objects in S. As an example,
consider again the candidate region shown in Figure 2(c),
where k = 2. Note that although the data object p0 ∈
S is outside of the candidate region, p0 could potentially
be in the query’s result (e.g., if P = S, then p0 is in the
query’s result); therefore, p0 should not be pruned based on
the candidate region. Data objects in S need to be treated
differently from those in P − S because each s ∈ S is used
to generate a bisector for the division of the data space;
and consequently, s is obviously within its own s-half-plane.
Thus, a stronger condition is actually necessary to prune
objects in S; specifically, for each s ∈ S, if s is inside at
least k+1 q-half-planes, then s is certainly not in the query’s
result and can be pruned.

For a RkNN query, we define the query result candi-
dates (with respect to S) as consisting of both the data
objects in S as well as the data objects in P − S that are
within the query’s candidate region.

3.2 Search Region: Approximation of Candi-
date Region

To find the query result candidates in P −S requires iden-
tifying all the polygons that define the query’s candidate
region and checking the objects in P − S against this col-

lection of polygons. Since the number of such polygons can
be large, using the candidate region to generate query result
candidates from P − S can be inefficient.

In this section, we present a simple but efficient way to
approximate the query’s candidate region using the small-
est convex hull that contains the candidate region. We refer
to this approximation as the search region of the RkNN
query. As illustrated by Figure 2(c) for k = 2, the polygons
that made up the candidate region for the query are all con-
nected and are clustered around the query point q. Thus,
the search region formed using the smallest convex hull that
contains the candidate region (shown in Figure 2(d)) gener-
ally provides a rather tight approximation of the candidate
region.

The key advantage of filtering the data objects in P − S
using the search region (instead of the candidate region) is
the efficiency of filtering using only a single polygon (instead
of many smaller polygons). We next present the algorithm
for computing the search region.

Algorithm 1: INCH(q,k,S)

input : q: query location
k: value of k of the RkNN query
S ⊆ P : a subset of data objects

output: the query’s search region in the form of a
convex hull

compute bisector for each data point p in S1

compute the intersections2

compute the level of each intersection3

I:= the set of intersections with level smaller than k4

compute and return the convex hull with intersections5

in I

3.3 The INCH Algorithm
Our algorithm, called INCH, to compute the search region

for a RkNN query is shown as Algorithm 1. The algorithm
takes as inputs the query location point q, the k value of the
RkNN query, and a subset of data objects S ⊆ P . It returns
a convex hull as the query’s search region.

Step 1 computes all the bisectors induced by S. Step
2 then computes all the intersection points formed by the
bisectors and the data space boundaries. More specifically,
an intersection point is formed by the intersection of two
bisectors, or the intersection of a bisector and a data space
boundary, or the intersection of two data space boundaries.
As an example, each intersection point in Figure 2(b) is
labeled with a letter from {a, · · · , o, r, · · · , x}.

Step 3 then computes the level of each intersection point.
The level of a point x (with respect to S), denoted by
level(x), is defined to be the number of q-half-planes that x
is in, excluding the q-half-planes that are due to the bisec-
tors that x intersects (if any). For example, in Figure 2(b),
the level of point h is 0; the level of point f is 1 because it
is only in ⊥p1(p1, q); and the level of point d is 2 because it
is only in ⊥p1(p1, q) and ⊥p4(p4, q).

Step 4 then identifies the set of intersections I that have
levels smaller than k; and the search region is the convex
hull formed using the points in I. Note that if the number
of objects in S is smaller than k, then the search region
returned is the entire data space.

The complexity of the INCH algorithm is O(m3), where

q

p2

p1
┴(p2,q)

Segment(p1,q)

Figure 3: Segment(p1,q) intersects with ⊥(p2, q).

m is the number of objects in S. The cost of computing
the bisectors (step 1) is O(m). The cost of computing the
intersections (step 2) is O(m2). The cost of computing all
intersections’ levels is O(m3) because there are O(m2) in-
tersections and computing an intersection’s level take O(m)
time; note that testing whether an intersection point is in
a q-half-plane can be performed in constant time [3]. The
size of set I (step 4) is at most O(m2). The complexity of
computing the convex hull is O(n log(n)) for an input size
of n; therefore, the cost of step 5 is at most O(m2 log(m)).

3.3.1 Proof of Correctness
In this section, we establish the correctness of the INCH al-

gorithm. Given two points p1 and p2, we use Segment(p1,
p2) to denote the line segment between p1 and p2 that ex-
cludes the end points p1 and p2.

Consider a bisector ⊥(p2, q), where p2 ∈ S. A point p1 is
inside ⊥p2(p2, q) if and only if p1 and q are on two different
sides of the bisector ⊥(p2, q). Since q and p2 are on differ-
ent sides of ⊥(p2, q), the Segment(p1,q) must intersect with
⊥(p2, q), as illustrated in Figure 3. Therefore, the level of a
point p can also be defined as the number of bisectors that
intersects Segment(p,q). That is,

level(p) = |{ bisectors that intersect with Segment(p, q)}|.
The following result states the relationship between the

levels of points within a polygon and the levels of the poly-
gon’s vertices.

Lemma 1. For any point p within a polygon and for any
vertex v of that polygon, the level of p is at least as large as
the level of v.

Proof. The proof is established by contradiction. Con-
sider a polygon R and a query point q. There are two cases
to consider depending on whether q is within or outside of
R, as illustrated in Figure 4.

Case 1: q is within R. In this case, it is necessary that the
the level of any vertex of R must be 0. To see this, suppose
that R has a vertex v1 whose level is not zero. This implies
that there must exist at least one bisector BS that intersects
with Segment(v1,q). It follows that BS must also intersect
with some edge of R thereby contradicting the fact that R
is a polygon formed by the intersection of bisectors.

Case 2: q is outside of R. Let o be a point inside the poly-
gon, and let v1 be a vertex of R. Suppose that the level of
v1 is larger than the level of o. This implies that there must
exist a bisector BSi that intersects with Segment(vi,q) but
does not intersect with Segment(o,q). Moreover, since the
set of three points {v1, o, q} forms a triangle, it is necessary

v1

v2

v3
v4

v5

q Segment(v1,q)

BSi
v1

v2

v3v4

v5

q

o

BSi
(a) q is within polygon (b) q is outside of polygon

Figure 4: Illustration for Lemma 1.

that BSi intersects with Segment(v1,o), which means that
BSi intersects with some edge of R. This again contradicts
the fact that R is a polygon formed by the intersection of
bisectors.

To establish the correctness of INCH, we need to show that
the search region constructed by INCH does not result in any
false negatives in P − S as stated by the following result.

Theorem 2. Given a data set P, a RkNN query RkNN(q,k),
and a set of data objects S ⊆ P , let C be the search region
(convex hull) constructed by INCH(q,k,S). For each point p
in (P − S), level(p) < k iff p is inside or on C.

Proof. Suppose that there exists a point o that is out-
side of the convex hull C, where the level of o is smaller than
k. There are two cases to consider depending on whether
o is within a polygon. Consider the case where o is within
a polygon R. By Lemma 1, the level of each vertex of R
must also be smaller than k which means that all the ver-
tices of R would have been included in I (step 4 of INCH

algorithm) which contradicts the assumption that o is out-
side of C. Consider the case where o is not within a poly-
gon; i.e., o is on some polygon’s edge. Let p be a point on
Segment(q,o) where p is outside of C and within some poly-
gon. Since Segment(q,p) is part of Segment(q,o), therefore
any bisector that intersects Segment(q,p) must also inter-
sect Segment(q,o). Thus, level(p) ≤ level(o) which implies
level(p) < k. This leads to a contradiction as in the first
case.

4. FINCH: EVALUATING RKNN QUERIES
In the previous section, we presented the INCH algorithm

that for a given RkNN query and an input set of data objects
S ⊆ P , computes a search region SR for the query. Based
on S and SR, the query result candidates generated is given
by S ∪S′, where S′ is the set of data objects in P −S that
are within the search region SR. Clearly, the choice of S
affects the number of query result candidates and the cost of
the subsequent candidate refinement step to eliminate false
positives from S ∪ S′. Consider the following two extreme
options for S: S = ∅ and S = P . If S = ∅, then SR becomes
the entire data space and S′ = P which will incur a costly
refinement step to verify each object in P . On the other
hand, if S = P , then S′ is empty and it will incur a costly
computation of the minimized SR using the entire set of
data objects. Neither of these two options is desirable.

Thus, there are two important issues to be addressed.
First, how is S selected to optimize both the cost of comput-
ing the query result candidates as well as its size. Second,

(a) S1 = {p1, p2, p3, p4} (b) S2 = S1 ∪ {p5}

Figure 5: Incremental refinement of search region.

how can the query result candidates be efficiently refined to
compute the query result objects.

In this section, we present our overall approach, called
FINCH, for evaluating RkNN queries. This approach, which
is based on the filter-refinement paradigm, consists of two
main algorithms. The FINCH-Filter algorithm (which builds
on the INCH algorithm) computes a set of query result can-
didates from P , which are then refined by the FINCH-Refine
algorithm to compute the query result objects.

4.1 Basic FINCH-Filter Algorithm
Our basic FINCH-Filter algorithm, which is shown as Al-

gorithm 2, is an iterative approach that starts with S as
an empty set and incrementally adds data objects to S and
refines the search region. This algorithm is based on the fol-
lowing property of the search region computed by the INCH

algorithm: if S1 ⊆ S2 ⊆ P , SR1 = INCH(q,k,S1), and SR2

= INCH(q,k,S2), then SR2 is contained in (or equal to) SR1.
This search region refinement property is illustrated by the
example in Figure 5: the search region that is induced by a
set S1 of four data objects (Figure 5(a)) is further refined
into a smaller search region (Figure 5(b)) when an additional
data object p5 is added to S1 to form S2.

Algorithm 2: FINCH-Filter(q,k)

input : q: query location
k: value of k of the RkNN query

output: a set of objects containing the query’s result
objects

S := empty set1

SR := entire data space2

while an object p ∈ P − S can be found in SR do3

S := S ∪ {p}4

SR:=INCH(q,k,S)5

return S6

The FINCH-Filter algorithm begins by initializing S to
an empty set (step 1) and the search region SR to be the
entire data space (step 2). If a data object p ∈ P−S is found
to be contained in SR (step 3), then p is added to S (step 4).
Step 5 then uses the expanded S to refine the search region
by invoking the INCH algorithm. The algorithm iteratively
expands S and refines SR until SR does not contain any
object in P − S. The set S is then returned as the set of
query result candidates.

Note that in the FINCH-Filter algorithm as presented,
the algorithm terminates only when S′, which is the set of

objects in P − S that are contained in the search region
SR, becomes empty. In this way, the set of query result
candidates computed is simply S. Clearly, it is possible
to terminate the FINCH-Filter algorithm earlier before S′

becomes empty (without affecting correctness) and return
S ∪ S′ as the set of query result candidates. We have
adopted the variant presented as this produces a smaller set
of candidates.

An important optimization issue for the FINCH-Filter

algorithm is the selection of the next object to add to S
at each iteration. This choice affects both the shape and
size of the search region (which is formed by the intersection
points caused by the bisectors introduced by S) as well as the
number of iterations of the while-loop in the FINCH-Filter

algorithm which determines the the total number of query
result candidates computed and hence the computation cost
of the candidate refinement step.

Referring to the example data space partitioning in Fig-
ure 2(b), observe that the polygons with smaller label values
are closer to q and they are less likely to be pruned as the
search region is refined. A good heuristic to optimize the
selection of objects to be inserted into S is to give higher
priority to objects that are closer to q. Adding to S an object
that is closer to q tends to produce a tighter refinement of
the search region than adding another object that is further
away from q. Figure 6 compares the effect on the search re-
gion tightening (with the convex hulls shown by bold lines)
when adding five objects to S that are closer to or further
from q. By obtaining a tighter search region earlier, the
number of candidates produced can also be reduced as il-
lustrated in Figure 6(a): observe that had an object that
is closer to q been added earlier to S (before the further
objects p7, p8, and p9), the resultant tighter search region
would have excluded these three further objects from being
added into S. In section 4.2, we explain how this heuristic
can be efficiently realized with the use of an R-tree index.

Since the search region is iteratively refined (by calling
the INCH algorithm) as objects are progressively added to
S, another optimization opportunity is to improve the effi-
ciency of the INCH algorithm by incrementally maintaining
the search region and associated information (e.g., bisectors,
intersections and their level values) and reducing its compu-
tation cost. In section 4.4, we present two optimizations to
improve the performance of the INCH algorithm.

4.2 FINCH-Filter with R-tree Index
In this section, we present an efficient realization of our

general FINCH-Filter algorithm to optimize the iterative
selection of data objects to add to S (step 3 of Algorithm 2).
As explained in the previous section, a good heuristic for
expanding S is to give higher priority to data objects that
are closer to q. By indexing the data objects in P using an R-
tree index [5] and following a best-first traversal of the index
[6], the sequence of data objects added to S will be ordered
in non-descending distance from q. We refer to this variant
of the FINCH-Filter algorithm as the FINCH-Filter-Rtree

algorithm, which is shown as Algorithm 3.
To support best-first traversal of the R-tree index, a min-

heap H is maintained that contains of entires of the form
(p, key). Here, p is either an R-tree index node (internal or
leaf node) or a data object that is contained in some leaf
node; and key is the minimum Euclidean distance between
q and p. H is initialized with a single entry corresponding

(a) add five far objects (b) add five near objects

Figure 6: Comparison of search region refinement.

Algorithm 3: FINCH-Filter-Rtree(q,k)

input : q: query location
k: value of k of the RkNN query

output: a set of objects containing the query’s result
objects

S := empty set1

SR := entire data space2

Let H be a min-heap containing entries of form (e, key)3

insert a single entry (R-tree root node, 0) into H4

while H is not empty do5

remove entry (p,key) from H6

if p.MBR intersects with SR then7

if p is an index node then8

for each child node c in p do9

if c.MBR intersects SR then10

insert entry (c, min-dist(c,q)) into H11

else if p is a leaf node then12

foreach data point o in p do13

if o is inside SR then14

insert entry (o, dist(o,q)) into H15

else /* p is a data object */16

S := S ∪ {p}17

SR := INCH(q,k,S)18

return S19

to the R-tree index’s root node (step 4), and the traversal
of the R-tree index always selects the entry from H whose
node/object is closest to q (step 6). Whenever a data object
p is selected from H, p is inserted into S (step 17) and the
search region is refined by calling the INCH algorithm (step
18).

4.3 FINCH-Refine Algorithm
In this section, we present our candidate refinement ap-

proach, the FINCH-Refine algorithm (shown as Algorithm 4),
that eliminates false positives from an input set S of query
candidate results.

The candidate refinement is carried out in two stages. The
purpose of the first stage (steps 1 to 4) is to apply an efficient
(but approximate) procedure to further eliminate some false
positives from S. Any remaining false positives in S are then
eliminated using a more costly (but precise) procedure in the
second stage (steps 5 to 7).

In the first stage, we apply one more round of the INCH

algorithm (with parameter values q, k+1, and S) to compute
a new search region to eliminate certain false positives from

S. Note that we are now using a value of k + 1 and not
k to compute the new search region. To understand why
this makes sense, recall that at the time when an object
p is selected for insertion into S (let us refer to this old
version of S as Sold), p is within the search region that is
computed wrt Sold. This implies that p is inside at most
k−1 q-half-planes (wrt Sold). Subsequently, Sold is expanded
with more objects inserted into it to eventually become the
current version S. Clearly, it is possible for p to be now
inside more than k−1 q-half-planes (wrt S) and is therefore
a false positive. However, since p is certainly inside its own
p-half-plane, we now require p to be inside at least k + 1
q-half-planes (wrt S) in order to conclude that p is a false
positive; the condition on k+1 is necessary to basically take
into account of the q-half-plane contributed by p.

Algorithm 4: FINCH-Refine(q,k,S)

input : q: query location
k: value of k of the RkNN query
S: result candidates

output: RkNN query’s result

SR := INCH(q,k+1,S)1

foreach data object p in S do2

if p is not inside SR then3

S := S − {p}4

foreach data object p in S do5

if Range-k(p,k,dist(p,q)) returns false then6

S := S − {p}7

return S8

Since the remaining objects in S after the first stage may
still contain false positives, in the second stage, a more pre-
cise refinement is performed using the Range-k verification
method [18]. An object that is not eliminated by this Range-
k check is in the result of the RkNN query.

Note that when the the size of the input set of query result
candidates S is small, all the objects in S are main-memory
resident and the first stage does not incur any disk I/O.
In contrast, the Range-k verification procedure used in the
second stage requires access to the R-tree index.

4.4 Optimizations for INCH
Recall that in the FINCH-Filter algorithm, a new search

region needs to be computed (by calling the INCH algorithm)
each time a new object is added into S. In this section, we
present two optimizations for the INCH algorithm.

4.4.1 Incremental Maintenance of Search Region
Instead of re-computing the search region from scratch

each time a new data object is added to S, a simple optimiza-
tion is to incrementally maintain and update the informa-
tion about the bisectors, intersection points and their level
values. This optimization procedure, called Optimized-Add,
is performed when adding a new data object p to S. The
details of this optimization are shown as Algorithm 5. Thus,
instead of performing “S := S ∪ {p}” (step 4 in Algorithm 2
and step 17 in Algorithm 3), a call is made to “Optimized-
Add(q, p, S)”.

Algorithm Optimized-Add performs four main tasks: (1)
computes the new bisector between p and q (step 3); (2)
increments the level of each existing intersection point if the

Algorithm 5: Optimized-Add(q,p,S)

input : q: query point
p ∈ P − S: a new data object
S ⊆ P : result candidates

Let SG be the set of data space boundaries & existing1

bisectors
Let I be the set of existing intersections2

bsnew := perpendicular bisector of p and q3

foreach intersection iti in I do4

if iti is in the p-half-plane of bsnew then5

increment iti’s level value by one6

Inew := empty set7

foreach segment sg in SG do8

if bsnew intersects with sg in the data space then9

add their new intersection point to Inew10

compute the level of each intersection in Inew11

SG := SG ∪ {bsnew}12

I := I ∪ Inew13

S := S ∪ {p}14

point is inside the new p-half-plane (steps 4-6); (3) computes
new intersection points (steps 8-10); and (4) computes the
levels of any new intersection points (step 11).

The complexity of the Optimized-Add algorithm is O(m2),
where m is the number of data space boundaries and existing
bisectors. The first for-loop has a cost of O(m2); and the
second for-loop has a cost of O(m). The cost of computing
the new intersections’ levels (step 11) is O(m2). Thus, this
optimization reduces the cost of computing intersections and
their levels from O(m3) (Section 3.3) to O(m2).

4.4.2 Optimized Search Region Computation
Our second optimization is to improve the efficiency of the

search region (i.e., convex hull) computation.
First, since the levels of intersection points do not decrease

as more points are added into S, a simple optimization is
to maintain only the intersection points with level values of
at most k − 1. Second, although there could be many in-
tersection points on a segment (i.e., data space boundary or
bisector), only the two “extreme” intersection points (with
level values smaller than k) on a segment can potentially
become vertices of the convex hull. This observation can
reduce the number of intersection points involved for the
search region computation from O(m2) to O(m), where m
is the number of bisectors.

As an example, consider the search region (for k = 2)
shown in Figure 7, where the convex hull is shown with
bold lines. Each intersection point is labeled with its level
value in Figure 7(a), and is identified with a unique letter
identifier in Figure 7(b). Observe that although there are
four intersection points (g, j, m, and s) with level values
smaller than k on the bisector ⊥(p5, q), only the two extreme
intersection points, g and s, are vertices of the convex hull.

Thus, by maintaining a sorted list of intersection points
(with level values smaller than k and sorted on their location
coordinates) for each segment (i.e., data space boundary or
bisector), locating the two extreme intersection points on
a segment can be perfomed in constant time. Algorithm 6
outlines this optimized INCH computation, which we refer to
as the Optimized-INCH algorithm.

(a) k=2 (b) k=2

Figure 7: Optimized Search Region Computation.

Algorithm 6: Optimized-INCH (q,k,S)

input : q: query point
k: value of k in RkNN query
S ⊆ P : a subset of data objects

output: the query’s search region

Ich:= empty set /* set of intersections for1

convex hull computation */

foreach data space boundary or bisector sg do2

Let Ileft be the leftmost intersection point on sg3

with level < k
Let Iright be the rightmost intersection point on sg4

with level < k
Ich := Ich ∪ {Ileft, Iright}5

compute and return the convex hull using Ich6

4.5 Discussions
Note that the two optimizations presented are indepen-

dent, and one can be applied without applying the other.
However, applying only the second optimization (i.e., search
region computation) alone without the first optimization
(i.e, incremental maintenance) is not very beneficial. This is
because the second optimization requires maintaining sorted
lists of intersection points and if this is not done incremen-
tally (together with the first optimization), the cost of sort-
ing will be O(m2 log(m)), where m is the number of seg-
ments. This is because there are m sorted lists, each of which
has O(m) points; and sorting a list of m elements takes
O(m log(m)). Thus, although the second optimization re-
duces the cost of convex hull computation from O(m2 log(m))
to O(m log(m)), the gain is offset by the sorting cost.

Overall, the first optimization has a significant benefit,
and the second optimization should be applied together with
the first optimization (to maintain the sorted lists incremen-
tally). The two optimizations together can reduce the cost
of search region computation by a factor of k.

5. FINCH-B: EVALUATING BICHROMATIC
RKNN QUERIES

In this section, we first describe how our FINCH algorithm,
which is designed for evaluating RkNN queries, can be ex-
tended to a new algorithm, termed FINCH-B, for evaluating
bichromatic RkNN (or BRkNN) queries (Section 5.1). We
then generalize the underlying principle behind this exten-
sion to present a general framework for evaluating BRkNN
queries using any RkNN approach that is based on the filter-
refinement paradigm (Section 5.2).

5.1 Applying FINCH for BRkNN Queries
In contrast to RkNN queries, BRkNN queries involves two

sets of data objects, P and R, where the query point q is
from P and the result objects are from R. Specifically, r ∈ R
is a result object of the BRkNN query (wrt q ∈ P) if q is
one of k objects from P that are the k nearest neighbors of
r.

Algorithm 7: FINCH-B (q,k,P,R)

input : q ∈ P : query object
k: value of k of the BRkNN query
P: dataset that contains q
R: dataset containing result objects

output: result objects of the BRkNN query

S := FINCH-Filter (q,k) on dataset P1

SR := INCH(q,k,S)2

R’ := subset of objects from R that are contained in3

region SR
T: = empty set4

foreach object r in R’ do5

if Range-k(r,k,dist(q,r)) on P returns true then6

T := T ∪ {r}7

return T8

Our FINCH-B approach of evaluating BRkNN queries is
shown as Algorithm 7. Step 1 applies the FINCH-Filter

algorithm to compute a set of candidate objects S (from P)
for the RkNN query (wrt q and P). Step 2 then computes
the search region SR (wrt S) using the INCH algorithm.

Note that while the candidate objects in S are specific to
the objects from P (i.e., S can only be used to answer a
specific type of RkNN query (wrt q and P) which can be
viewed as a special BRkNN query with R = P), the search
region SR derived from S is more “general” in the following
sense. Consider an object x ∈ X, where X is some dataset.
If x is not contained in SR, then it can be concluded that
the k nearest neighbors (from P) of x certainly does not
include q; in particular, if X = R, then x is not in the result
of the BRkNN query (wrt q, P , and R).

The above property of SR is exploited in step 3 of FINCH-B
to compute a set of candidate objects R′ ⊆ R for the input
BRkNN query. Finally, steps 5 to 7 apply the Range-k ver-
ification procedure to eliminate false positives from R′.

5.2 A General Framework for Evaluating BRkNN
Queries

Based on the ideas behind our extension of FINCH to FINCH-B

for evaluating BRkNN queries, we now present a general
framework for evaluating BRkNN queries using any RkNN
approach that is based on the filter-refinement paradigm.

Consider a RkNN approach called A that is based on the
filter-refinement paradigm. Let A-Filter and A-Refine de-
note, respectively, the filter and refinement algorithms of A.
A general approach to apply A to process BRkNN queries
is as follows:

1. Apply A-Filter to compute a set of candidate objects
P ′ ⊆ P for the RkNN query (wrt q and P).

2. Based on A-Filter and P ′, derive a set of candidate
objects R′ ⊆ R for the input BRkNN query.

3. Apply A-Refine to eliminate false positives from R′

using P for the input BRkNN query.

Clearly, the FINCH-B algorithm described in the previous
section is an instantiation of this framework.

5.2.1 Extending TPL to TPL-B
Let us now apply the above framework to the TPL ap-

proach [15], which is designed specifically for RkNN queries,
to create an extended approach, which we refer to as TPL-B,
for evaluating BRkNN queries. The details of TPL-B are
shown as Algorithm 8.

Algorithm 8: TPL-B (q,k,P,R)

input : q ∈ P : query object
k: value of k of the BRkNN query
P: dataset that contains q
R: dataset containing result objects

output: result objects of the BRkNN query

P’:= empty set1

foreach object p in P do2

if k-trim(q,k,P’,p) returns ∞ then3

P ′ := P ′ ∪ {p}4

R’ := empty set5

foreach object r in R do6

if k-trim(q,k,P’,r) returns ∞ then7

R′ := R′ ∪ {r}8

Eliminate false positives from R′ using P9

return R′10

The filtering function in TPL is called k-trim(q,k,S,p), which
is used to determine whether a data object p can be pruned
with respect to a set of objects S for a RkNN query; specif-
ically, k-trim(q,k,S,p) returns ∞ iff p cannot be pruned.

In TPL-B, the function k-trim is first used in step 3 to
compute a set of candidate objects P ′ ⊆ P for the RkNN
query (wrt q and P). Next, step 7 then applies k-trim (wrt
P ′) to generate a set of candidate objects R′ ⊆ R for the
input BRkNN query. Finally, step 9 eliminates the false
positives from R′ using P .

The next section will experimentally compare FINCH-B

against TPL-B for evaluating BRkNN queries.

5.2.2 Other Extensions
As a final example of applying our proposed framework,

we briefly explain how the 60-degree-pruning method (de-
scribed in section 2.3.1) can also be extended to evaluate
BRkNN queries. In the first step, the set of candidate ob-
jects P ′ ⊆ P for the RkNN query (wrt q and P) is simply
q ’s six sets of k nearest neighbors in the six sub-spaces. In
the second step, the set of candidate objects R′ ⊆ R for the
input BRkNN query is determined by considering each of
the six sub-spaces on R, and using the corresponding k -th
distance in P ’ to find all the candidate objects in each sub-
space. The final third step applies a refinement algorithm
to eliminate false positives from R′ using P .

6. PERFORMANCE EVALUATION
In this section we study the performance of our proposed

algorithms, namely the FINCH algorithm for RkNN queries
and the FINCH-B algorithm for bichromatic RkNN queries.

We compare their performance with the TPL1 algorithm
proposed in [15], which is the state-of-the-art RkNN algo-
rithm available for location dataset. [15] shows that it out-
performs all other RkNN algorithms that are designed for
location dataset. The algorithms are implemented in Java.
Experiments are run on a Linux desktop machine with a
2.4GHz CPU and 512M memory.

Two datasets are used in the experiments. We download
the TIGER/Line files of Los Angeles (LA) and California
state (CA) from the website of U.S. Census Bureau2, and
convert them (line datasets) into point datasets by gener-
ating a set of points on each line in the original data files.
The datasets are indexed with the R*-Tree with page size
set to 4096 bytes. The details of the datasets are provided
in Table 1. A 10-page random eviction buffer is used in
our program. The buffer size is far smaller than the dataset
sizes.

Table 1: Datasets detail
Dataset Num of objects R*-Tree size

LA about 550,000 about 40M
CA about 25,000,000 about 1.4G

Real running time is used as performance metric. The
running time includes CPU time and I/O time. The times
shown in the figures are the total running time for 100
queries (with query locations randomly picked in the queried
data space). During the experiments, the following informa-
tion is noted: disk I/O time in filter phase, disk I/O time
in refinement phase, total time of filter, total time of refine-
ment.

6.1 Effect of Optimizations on INCH
We here study the effects of our two optimizations for

the INCH algorithm. Figure 8 shows their effects on FINCH.
In the figure, line “None” is FINCH (using INCH) without
optimizations, line “Opt1” is FINCH with Optimized-Add

(incremental computing of intersections, section 4.4.1), line
“Opt2” is FINCH with Optimized-INCH (reducing the num-
ber of intersections involved in convex hull computation, sec-
tion 4.4.2), and line “FINCH” is FINCH with both optimiza-
tions. We see that Optimized-Add has a big effect when k
is not very small, because it reduces the cost of computing
the intersections and their levels from O(m3) to O(m2). Us-
ing Optimized-INCH alone introduces some additional cost
because we need to sort the intersections (see section 4.5
for detail explanation). When both optimizations are used,
Optimized-INCH has some benefit because then the sorted
lists of intersections can also be maintained incrementally,
and it reduces the cost of convex hull computation from
O(m2 log(m)) to O(m log(m)).

6.2 Results of RkNN queries
Figure 9 shows the algorithms’ performance on the LA

dataset, with the value of k varies from 1 to 10. We see that
FINCH is more efficient than TPL with all values of k. We
also find that FINCH scales quite well with k.

1We used a Java port of TPL’s original C++ implementa-
tion. The Java port strictly follows the C++ implementa-
tion.
2http://www.census.gov/geo/www/tiger/

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Value of K

None
Opt1
Opt2

FINCH

Figure 8: Effects of optimizations on INCH.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Value of K

TPL
FINCH

Figure 9: Effect of k using LA dataset.

Figure 10 is a breakdown of the algorithms’ running times
when k=4. In the figure, each algorithm has two bars. The
left one is the time spent in the filter phase, and the right
one is the time spent in the refinement phase. And each
bar has two components that are the CPU time (white) and
disk I/O time (black). From this figure, we observe that
FINCH is much more efficient than TPL in the filter phase.
This is because in FINCH each R-tree node (or data point) is
checked against a single search region to find whether it can
be pruned, while in TPL each R-tree node (or data point)
is checked with their k -trim method which basically tries
to find a set of k objects that can prune the node. Their
pruning method is slow especially when a node cannot be
pruned, because the node will be tested against lots of sets of
k objects. Our pruning method is fast because we only need
to test whether the given node’s MBR (minimum bounding
rectangle, stored in R-tree) intersects with the search region.
Note that the test for pruning is the most basic and impor-
tant operation in filter, and if a node cannot be pruned then
its many children nodes (or data points) need to be tested
for pruning.

We also observe from the breakdown figure that in the
filter phase CPU time dominates the running time, while in
the refinement phase I/O time dominates the running time.
As a whole, CPU time dominates3.

3This observation is contrary to that in [15]. In [15] I/O time
is approximated by counting the number of nodes accessed

 0

 1

 2

 3

 4

 5

 6

Flt
TPL

Rfn Flt
FINCH

Rfn

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

IOTime
CPUTime

Figure 10: Breakdown of running times on dataset
LA and k=4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 C

an
di

da
te

s
pe

r
Q

ue
ry

Value of K

TPL
FINCH

Figure 11: Num of candidates vs. k

Figure 11 plots the number of candidates we get after
the algorithm’s filter phase. It shows that FINCH produces
smaller number of candidates. It indicates that FINCH has
a stronger filter power. It is because our computed search
region is tight while TPL trades some pruning power for
filtering speed (see section 2.3.1). This also explains why
TPL’s refinement time in Figure 10 is more than FINCH’s.

Figure 12 shows the result of experiments on the CA
dataset. The CA dataset is much larger than the LA dataset.
Comparing this figure with Figure 9, we find that the per-
formance differences between the FINCH and TPL on the
two datasets are similar. This means that dataset size does
not have a significant effect on the two algorithms. This
also shows that both the algorithms are quite scalable with
respect to dataset size.

6.3 Results of bichromatic RkNN queries
Here we present our experiments on bichromatic RkNN

queries. Note that there is no existing bichromatic RkNN
algorithm that supports an arbitrary value of k (see sec-
tion 2.4). TPL is designed for monochromatic RkNN and
cannot handle bichromatic RkNN queries directly. We com-
pare our FINCH-B algorithm with TPL-B (see section 5.2.1

and multiplying by a constant (10ms), and a node that is
accessed multiple times is counted as separate I/Os [16] (i.e.
effectively no buffering at all).

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Value of K

TPL
FINCH

Figure 12: Effect of k using CA dataset

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Value of K

TPL-B
FINCH-B

Figure 13: BRkNN, Effect of k using LA dataset

for detail), which is the adapted version of TPL with our
general BRkNN evaluation framework.

The LA dataset is used as dataset P. For dataset R, it
is a modified version of the LA dataset. The two datasets
have the same data space and similar (but not same) points
distributions.

Figure 13 illustrates the algorithms’ running times with
different k values. It is clear that FINCH-B performs much
better than TPL-B. Comparing Figure 13 with Figure 9, we
find that the gap between FINCH-B and TPL-B is bigger than
the gap between FINCH and TPL. This is explained below
along the discussion with Figure 14.

Figure 14 shows the breakdown of the running times when
k=4. In the figure, each algorithm has three bars: FltA
shows the processing time of the first filter phase, FltB shows
the processing time spent in the second filter phase, and
Rfn shows the refinement time. We observe that in the
second filter phase the two algorithms exhibit very different
performance. This explains why the gap between FINCH-B

and TPL-B is wider than the one between FINCH and TPL.
TPL-B’s second filter phase takes similar time as the first
filter phase because in TPL-B the pruning is done in the
same way as in the first phase. FINCH-B’s second filter phase
is much faster than its first filter phase. This is because of
two reasons: 1) the search region is static during the second
filter phase, and this means in the second filter phase we
do not need to spend CPU time on computing the search

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

FltA FltB
TPL-B

Rfn FltA FltB
FINCH-B

Rfn

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

IOTime
CPUTime

Figure 14: BRkNN, Breakdown of running times on
dataset LA and k=4

region; 2) after the first filter phase, the query’s search region
is small, therefore the search region in the second filter phase
has a very strong pruning power. Basically, in FINCH-B the
second filter phase is like evaluating a range query with a
very small range. This indeed is the most obvious advantage
of having a search region calculated.

7. CONCLUSION
A Reverse k -Nearest-Neighbor query finds the objects that

are influenced by the querying object. It can be applied in
Location-Based Services to answer interesting location re-
lated questions. We have presented our solutions for eval-
uating RkNN queries on location data. We define a RkNN
query’s search region and propose an algorithm called INCH

to compute it based on the query and a set of data objects.
INCH is then used in our RkNN solutions to filter and restrict
the search space for result candidates. We also presented a
method of applying (monochromatic) RkNN algorithms to
evaluate bichromatic RkNN queries. Experimental results
show that the search region computed by INCH has a strong
pruning power, and it speeds up the filter process. These
factors make our RkNN solutions much more efficient than
the existing state-of-the-art RkNN algorithm.

8. ACKNOWLEDGEMENT
We thank the authors of [15] for providing us the source

code of their TPL algorithm. We also thank the anonymous
reviewers for their constructive suggestions on improving the
clarity of the paper.

9. REFERENCES
[1] E. Achtert, C. Bohm, P. Kroger, P. Kunath,

A. Pryakhin, and M. Renz. Efficient reverse k-nearest
neighbor search in arbitrary metric spaces. In
SIGMOD, 2006.

[2] R. Benetis, C. S. Jensen, G. Karciauskas, and
S. Saltenis. Nearest and reverse nearest neighbor
queries for moving objects. The VLDB Journal,
15(3):229–249, 2006.

[3] M. d. Berg, M. v. Krefeld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer, 2nd edition, 2000.

[4] K. L. Cheung and A. W.-C. Fu. Enhanced nearest
neighbour search on the r-tree. SIGMOD Rec.,
27(3):16–21, 1998.

[5] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, 1984.

[6] G. R. Hjaltason and H. Samet. Distance browsing in
spatial databases. ACM Trans. Database Syst.,
24(2):265–318, 1999.

[7] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and
D. Zhang. Continuous evaluation of monochromatic
and bichromatic reverse nearest neighbors. In ICDE,
2007.

[8] F. Korn and S. Muthukrishnan. Influence sets based
on reverse nearest neighbor queries. In SIGMOD,
2000.

[9] B. Rao and L. Minakakis. Evolution of mobile
location-based services. Commun. ACM, 46(12):61–65,
2003.

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, 1995.

[11] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A. Lopez. Indexing the positions of continuously
moving objects. In SIGMOD, 2000.

[12] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
dimensional reverse nearest neighbor queries. In
CIKM, 2003.

[13] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
nearest neighbor queries for dynamic databases. In
ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 2000.

[14] I. Stanoi, M. Riedewald, D. Agrawal, and A. E.
Abbadi. Discovery of influence sets in frequently
updated databases. In VLDB, 2001.

[15] Y. Tao, D. Papadias, and X. Lian. Reverse knn search
in arbitrary dimensionality. In VLDB, 2004.

[16] Y. Tao and X. Xiao. Private communication, 2008.

[17] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest
neighbor search in metric spaces. IEEE Transactions
on Knowledge and Data Engineering, 18(9):1239–1252,
2006.

[18] W. Wu, F. Yang, C. Y. Chan, and K.-L. Tan.
Continuous reverse k-nearest-neighbor monitoring. In
MDM, Beijing, 2008.

[19] T. Xia and D. Zhang. Continuous reverse nearest
neighbor monitoring. In ICDE, 2006.

[20] C. Yang and K.-I. Lin. An index structure for efficient
reverse nearest neighbor queries. In ICDE, 2001.

[21] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao.
Reverse nearest neighbors in large graphs. IEEE
Transactions on Knowledge and Data Engineering,
18(4):540–553, 2006.

