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ABSTRACT
Analytic functions represent the state-of-the-art way of perform-
ing complex data analysis within a single SQL statement. In par-
ticular, an important class of analytic functions that has been fre-
quently used in commercial systems to support OLAP and decision
support applications is the class of window functions. A window
function returns for each input tuple a value derived from applying
a function over a window of neighboring tuples. However, exist-
ing window function evaluation approaches are based on a naive
sorting scheme. In this paper, we study the problem of optimiz-
ing the evaluation of window functions. We propose several effi-
cient techniques, and identify optimization opportunities that allow
us to optimize the evaluation of a set of window functions. We
have integrated our scheme into PostgreSQL. Our comprehensive
experimental study on the TPC-DS datasets as well as synthetic
datasets and queries demonstrate significant speedup over existing
approaches.

1. INTRODUCTION
Today’s mainstream commercial database systems such as DB2,

Oracle and SQL Server support analytic functions in SQL to express
complex analytical tasks. With these analytic functions, common
analyses such as ranking, percentiles, moving averages and cumu-
lative sums can be expressed concisely in a single SQL statemen-
t. More importantly, these functions lead to more efficient query
processing - analytic queries expressed with analytic functions can
potentially eliminate self-joins, correlated subqueries and/or use
fewer temporary tables compared to the counterparts without such
functions [19, 4]. However, to our knowledge, there were not many
reported works on optimizing the processing of analytic functions.

In this paper, we focus on an important class of analytic func-
tions, calledwindow functions, that was introduced by the SQL:2003
standard and has been widely used to support OLAP and decision
support applications. A window function is one of the ranking,
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reference, distribution and aggregate functions. However, it is e-
valuated over a (base or derived) table, which can be viewed as the
union of logical window partitions. Each window partition has a
single value of WPK, which is a set of attributes {wpk1, wpk2, · · · ,
wpkm}; each pair of window partitions are disjoint on values of
WPK. With an empty WPK, the whole table forms a single window
partition. In addition, tuples of each window partition are ordered
by WOK, which is a sequence of attributes (wok1, wok2, · · · , wokn).
Within a window partition, each tuple has a window of neighboring
tuples meeting certain criteria. The window function essentially
calculates and appends a new window-function attribute to each tu-
ple t, by applying a function over all tuples of the window of t. In
other words, the evaluation of a window function wf over a table T
results in a new table T ′, which contains exactly every tuple of T
but also has a new attribute whose values are derived by wf.

A basic window query block can be viewed as a normal SQL
query Q plus one or more window functions defined in the SELECT
clause. These window functions are independent of each other. To
evaluate the window query, all query clauses in Q except ORDER
BY and DISTINCT are first optimized and executed to derive a
windowed table, on which these window functions are then in-
voked. Finally, the ORDER BY clause is imposed to sort the re-
sultant table containing new window-function attributes to some
specific order.
Example 1 To find the rankings of each employee’s salary within
his department as well as the whole company, the corresponding
window query defines two window functions rank in dept and
globalrank, where the PARTITION BY key represents WPK

and the ORDER BY key represents WOK:
SELECT empnum, dept, salary,

rank() OVER (PARTITION BY dept ORDER BY
salary desc nulls last) as rank in dept,
rank() OVER (ORDER BY salary desc nulls
last) as globalrank

FROM emptab;
In this example, the windowed table is the source table emptab.
The sample output is shown below. �

EMPNUM DEPT SALARY RANK IN DEPT GLOBALRANK

4 1 78000 1 3
5 1 75000 2 4
9 1 53000 3 7
7 2 51000 1 8
3 2 - 2 9
6 3 79000 1 2

10 3 75000 2 4
8 3 55000 3 6
2 - 84000 1 1
1 - - 2 9



In current database systems, in principle the window functions
are evaluated over the windowed table as follows.
Single window function. Computing a single window function
over the windowed table involves two logical steps. In the first step,
the windowed table is reordered by a tuple reordering operation to
physical window partitions according to the specifications of WPK
and WOK. The conventional tuple reordering operation is a sort op-
eration with a sort order given by the concatenation of some WPK’s
permutation and WOK. We shall refer to this reordering operation as
Full Sort (FS). The generated window partitions are pipelined into
the second step, where the window function is sequentially invoked
for each tuple within each window partition. The output table has
a tuple ordering consistent with the sort order of FS.
Multiple window functions. A window function chain is formed
to sequentially evaluate multiple window functions over the win-
dowed table. The windowed table tuples are fed into the leading
window function of the chain. For each of the remaining window
functions, it is evaluated over the reordered output of its preceding
window function. Figure 1 shows the window function chain for
Example 1.

EMPTAB (salary) rank() FS on
(dept, salary) rank()

rank_in_deptglobalrank

FS on

window partition construction window function invocation

Figure 1: A conventional window function chain for Example 1

We note that it is possible for a certain sort order O to satis-
fy the specifications of several consecutive window functions in
the chain on their window partitions. Since a window function
does not change the tuple ordering, to evaluate a sub-chain con-
sisting of these window functions, it is sufficient to reorder on-
ly the input of the leading window function in the sub-chain to
O using FS. For example, consider a window function wf1 =
(WPK1 = {a, b}, WOK1 = (c)) followed by another window func-
tion wf2 = (WPK2 = {b}, WOK2 = (a)). If the input of wf1 is
reordered by FS with sort order (b, a, c), then wf2 can be directly
evaluated over the output of wf1 without further tuple reordering.
This FS sharing optimization has been adopted by some systems,
e.g. Oracle [5].

In this paper, we re-examine the problem of efficient evaluation
of a window function, and optimization of a chain of window func-
tions. For a single window function evaluation, we develop two
new tuple reordering mechanisms. The first method, calledHashed
Sort (HS) is based on the key observation that window partition-
s delivered by a tuple reordering operation can be in an arbitrary
order without affecting the result correctness and the performance
of the subsequent window function invocation. Thus, under a HS
operation, a table is first hashed into buckets made up of complete
window partitions, and then each bucket is separately sorted to de-
rive the physical window partitions. HS is expected to be superi-
or over FS especially when the sorting memory is small, since it
avoids a full sort.

The second method, called Segmented Sort (SS), can be ap-
plied when it is possible to take advantage of the ordering of the
input table. Specifically, the input of a window function should
correspond to a sequence of tuple segments such that sorting each
segment results in the desired window partitions for evaluating the
window function. As an example, consider a window function
wf1 = (WPK1 = {a}, WOK1 = (b)) followed by another window
function wf2 = (WPK2 = {a}, WOK2 = (c)) in the chain. If the
input of wf1 is reordered by FS with sort order (a, b) or by HS with
hash key {a} as well as sort order (a, b), then the output of wf1

consists of tuple segments each having a single a value. As such,
it is sufficient to do the tuple reordering for wf2 by simply sorting
each segment on (c). Compared with FS and HS, SS is expected
to incur a much lower cost since it does not need a full sort or table
partitioning.
FS and HS have the duality analogous to that of other hash-based

and sort-based query processing methods [12]. SS looks similar to
the partial sort operation [7, 8, 13], which produces the required
complete sort order by exploiting the partial sort order satisfied by
the input. However, unlike the partial sort whose input and out-
put both must be totally ordered, SS is more flexible as its input
and output could be a segmented relation, which be viewed as a
sequence of relation segments that is partitioned based on some at-
tributes and sorted on some other attributes. In fact, SS can be
considered as a generic and flexible extension of the partial sort op-
eration to reorder tuples for evaluating window functions. To the
best of our knowledge, we are the first to recognize and study the
benefits of applying the HS and SS techniques in the context of
window function evaluation.

For multiple window functions in a query, finding an optimal se-
quence of evaluating the window functions turns out to be NP-hard.
As such, we also propose a cover set-based optimization scheme to
efficiently generate a window function chain. Our scheme essen-
tially groups the set of window functions into cover sets such that
window functions within a cover set incur at most one FS/HS/SS
reordering operation (for the leading window function in the cover
set). We present our heuristics to partition the window functions in-
to cover sets and to order the cover sets for processing. Our scheme
naturally subsumes the FS sharing optimization.

Our techniques of window function evaluation can be seamless-
ly integrated in a typical query optimizer and work in conjunction
with other complementary optimization methods (e.g., interesting
orders [16] and parallel execution). We have built a prototype of
our techniques within PostgreSQL [1], and conducted an extensive
performance study with the TPC-DS [2] datasets as well as syn-
thetic datasets and queries. The results showed the effectiveness of
HS and SS operations over FS, and the near-optimality of our cover
set-based optimization scheme over existing approaches.

The rest of this paper is organized as follows. In Section 2, we
present some notations which will be utilized throughout the paper.
In Section 3, we elaborate the details of the HS and SS operations.
In Section 4, we describe our cover set-based optimization scheme
for the evaluation of multiple window functions over a windowed
table. In Section 5, we discuss how to incorporate our techniques
of window function evaluation in an integrated query optimization
framework. Section 6 validates the effectiveness of our proposed
techniques. We discuss the related work in Section 7 and finally
conclude in Section 8. Proofs of technical results are given else-
where [9].

2. PRELIMINARIES
Let A be a set of attributes; let X and Y be two sequences of at-

tributes. Besides the standard notations for sets, such as Cardinality
(||), Subset (⊆,⊂), Union (∪), Interesection (∩) and Complement
(−), we also utilize the following notations:

•
−→
A : a permutation of A;

• |X|: the number of attributes in X;
• attr(X): the set of attributes in X;
• X ◦ Y: the sequence of attributes obtained by concatenating X

and Y;
• X ∧ Y: the longest common prefix between X and Y;
• X(<) ≤ Y: X is a (proper) prefix of Y;
• ε: an empty attribute sequence.



Given a set of attributes A and a relation R, we define R′ ⊆ R
to a A-group of R if R′ consists of all the tuples in R that share
the same value(s) for attribute(s) in A; i.e., |ΠA(R

′)| = 1 and
ΠA(R

′) ∩ ΠA(R − R′) = ∅. Thus, R is a union of |ΠA(R)|
disjoint A-groups.

Each window function wfi is represented by a pair (WPKi, WOKi),
where WPKi is a set of partitioning key attributes and WOKi is a se-
quence of ordering key attributes. For simplicity and without loss
of generality, we assume that the attributes in WOKi are all ordered
in ascending order.

3. WINDOW FUNCTION EVALUATION
In this section, we consider the evaluation of a single window

function wf = (WPK, WOK) on a relation R. We first introduce a key
concept termed segmented relation to characterize window function
evaluation. Next, we present two new tuple reordering techniques,
namely, Hashed Sort and Segmented Sort, to derive a segmented
relation that matches a window function. We also present the cost
models for these techniques and analyze their tradeoffs. Finally, we
briefly describe how the execution of Hashed Sort and Segmented
Sort can be parallelized for further performance improvement.

3.1 Segmented Relation

Definition 1 (Segmented Relation) Consider a relation R, where
X is a subset of attr(R), the attributes in R, and Y is a se-
quence of some attribute(s) in attr(R). We define R to be a seg-
mented relation w.r.t X and Y , denoted by RX,Y , if R is ordered
such that it is a sequence of k (≥ 1) disjoint, non-empty seg-
ments, R1, R2, · · · , Rk , that satisfy all the following properties:
(1)

⋃k

i=1
Ri = R; (2) the X values in each pair of segments are

disjoint (i.e., ΠX(Ri) ∩ ΠX(Rj) = ∅, ∀i, j ∈ [1, k], i �= j); and
(3) each segment is sorted on Y .

Note that if X = ∅, RX,Y is totally ordered on Y and consists of
exactly one segment R; if X = ∅ and Y = ε, RX,Y is unordered.

In general, each segment of RX,Y consists of one or multiple
X-groups of R. For the special case where each segment Ri of
RX,Y consists of exactly one X-group (i.e., |ΠX(Ri)| = 1), we
say that RX,Y is grouped on X and denote it by Rg

X,Y . In Rg
X,Y ,

each segment is also ordered on every permutation
−−−−−−−−→
X ∪ attr(Y )

that preserves the sequence of attr(Y ).

Definition 2 Given a segmented relationRX,Y and a window func-
tion wf = (WPK, WOK), RX,Y is said to match wf (or wf is matched
by RX,Y ) if X ⊆ WPK and there exists some permutation −→

WPK of
WPK such that −→WPK ◦ WOK ≤ Y . More generally, given a set of win-
dow functionsW ,RX,Y is said to matchW ifRX,Y matches each
wf ∈ W .

Example 2 Each of the segmented relations R∅,(a,b,c), R{a},(b,a,c)

and Rg

{b},(a,c) matches the window function wf = ({a, b}, (c)). �
A segmented relation that matches a window function has the

following useful property.

Theorem 1 If R matches a window function wf, then wf can be
evaluated on R by a sequential scan of R without any reordering
operation.

We explain the intuition of Theorem 1 by considering the evalu-
ation of wf = (WPK, WOK) on RX,Y . Since X ⊆ WPK, each segment
Ri of RX,Y consists of one or multiple WPK-groups. Furthermore,
since each Ri is ordered on Y and there exists some permutation

−→
WPK such that −→WPK ◦ WOK ≤ Y , each Ri is necessarily also sort-
ed on −→

WPK ◦ WOK and can be viewed as a concatenation of one or
more WPK-groups. It follows that each WPK-group in Ri is ordered
on WOK. Thus, wf can be evaluated by a sequential scan of the se-
quence of ordered WPK-groups in RX,Y .

Based on Theorem 1, to evaluate a window function wf = (WPK,
WOK) on R, it suffices to reorder R (if R does not match wf) to
obtain a RX,Y that matches wf and then sequentially scan RX,Y .
The most straightforward approach to achieve this reordering is the
Full Sort (FS) technique which sorts R on −→

WPK ◦ WOK for some per-
mutation −→

WPK of WPK. The sorted result R′, which is essentially
R∅,

−→
WPK◦WOK, trivially matches wf. However, note that the total order-

ing of R′ on −→
WPK ◦ WOK is actually unnecessary for the purpose of

computing wf, which only requires the input tuples to be partially
sorted (i.e., a sequence of tuple partitions grouped on WPK and then
each sorted on WOK).

Before we present more efficient reordering techniques in the
next two sections, we first introduce the notion of reorderability.

Definition 3 (Reorderable) Given a window function wf, a rela-
tion R, and a reordering technique O, we say that (R, wf) is O-
reorderable if R could be reordered by O such that the reordered
relation matches wf. More generally, given a set of window func-
tions W , we say that (R,W ) is O-reorderable if (R, wf) is O-
reorderable for each wf ∈ W .

3.2 Hashed Sort Technique
Hashed Sort (HS) reorders R wrt wf in two steps: the first step

partitions R into a collection of buckets by hashing R on some
hash key, WHK ⊆ WPK, and the second step sorts each bucket Ri on
a sort key −→

WPK ◦ WOK for some permutation −→
WPK of WPK. Thus, HS

essentially reorders R to obtain R
WHK,

−→
WPK◦WOK which matches wf. In

order that HS does not degenerate to FS, we require that WHK �= ∅;
thus, (R, wf) is HS-reorderable if WPK �= ∅.
Example 3 R can be reordered by HS to match wf = ({a, b}, (c))

if WHK is {a}, {b} or {a, b}, and −→
WPK is (a, b) or (b, a). �

The details of HS are as follows. The first step sequentially scans
R to build the buckets by hashing on WHK. HS tries to maintain as
many buckets resident in the allocated main-memory as possible.
Whenever the memory is full, HS picks a bucket Ri to be flushed
to disk, and any subsequent tuple for Ri will be flushed to disk. At
the end of the partitioning step, some of the buckets are resident in
main-memory while the remaining ones are resident on disk. The
second step will first sort the memory-resident buckets before the
disk-resident ones.
HS can be further optimized as follows. If statistics on the WHK

values are available (e.g., histograms on a base relation R), it is
possible to estimate the most frequent WHK values (MFVs), each
of which corresponds to a set of tuples whose total size exceed-
s the size of sorting memory. Tuples with such values belong a
special bucket Rx that will be immediately pipelined for sorting
(i.e., without being cached in main memory or flushed to disk in
contrast to other tuples). Therefore, Rx is sorted before any other
bucket. Such an optimization could save up to one pass of I/O for
Rx. Moreover, it is likely to result in a larger set of in-memory
hashed buckets which can be sorted internally.

3.3 Segmented Sort Technique
Segmented Sort (SS) is designed to reorder a relation RX,Y to

match a window function wf = (WPK, WOK). As shown below, SS
performs the reordering by separately sorting each segment/group



of RX,Y , whose size is generally much smaller than the entire re-
lation. Thus, SS is usually much more efficient than FS and HS.

(RX,Y , wf) is SS-reorderable if one of the following conditions
hold: either (1) X �= ∅ and X ⊆ WPK, or (2) X = ∅ and there
exists some permutation −→

WPK of WPK such that (−→WPK ◦ WOK) ∧ Y is
non-empty. Specifically, SS reorders RX,Y to R

X,
−→
WPK◦WOK for some

permutation −→
WPK of WPK. Note that if X = ∅, we need to choose

a permutation −→
WPK such that (−→WPK ◦ WOK) ∧ Y is non-empty; this

permutation must exist by the applicability requirement of SS. As
we shall explain later, the constraint imposed on −→

WPK when X = ∅
is to ensure that SS does not degenerate to FS, which requires sort-
ing the entire RX,Y . By Definition 2, it follows that the reordered
relation R

X,
−→
WPK◦WOK matches wf since X ⊆ WPK.

We now explain how R
X,

−→
WPK◦WOK is derived from RX,Y . Let

α = (
−→
WPK ◦ WOK) ∧ Y . Thus, −→WPK ◦ WOK = α ◦ β, where β is

some sequence of attribute(s)1. There are two cases to consider de-
pending on whether α is empty. Consider the general case where α
is non-empty. Since α ≤ Y , therefore each segment Ri of RX,Y ,
which is ordered on Y , is necessarily also ordered on α. Thus,
each segment Ri is actually a sequence of α-groups. By separate-
ly sorting each of these α-groups on β, each segment Ri becomes
sorted on α ◦ β =

−→
WPK ◦ WOK. Thus, we have reordered RX,Y to

R
X,

−→
WPK◦WOK.

Example 4 Consider using SS to reorder R to R′ wrt wf = ({a, b},
(c)). If R = R∅,(a,d), then α = (a) and R′ = R∅,(a,b,c). If
R = R{a},(a,b,d), then α = (a, b) and R′ = R{a},(a,b,c). If R =
Rg

{b},(a,d), then α = (a, b) and R′ = Rg

{b},(a,c). �

Consider the second case where α is empty (i.e., β =
−→
WPK ◦

WOK). By separately sorting each segment Ri of RX,Y on β, we
have reordered RX,Y to R

X,
−→
WPK◦WOK. Note that by the applicability

requirement of SS, α is empty necessarily implies that X �= ∅
as otherwise, we would have selected a permutatation of WPK that
guarantees that α is non-empty. As we alluded earlier, the reason
to avoid having both X and α being empty is to ensure that SS
does not degenerate to FS: if X were empty (i.e., RX,Y consists
of a single segment), then SS would essentially be performing a
complete sort of the entire RX,Y on β.
Example 5 Consider two examples of using SS to reorder R to R′

wrt wf = ({a, b}, (c)). If R = R{a},(d) then R′ = R{a},(a,b,c). If
R = R{b},(c) then R′ = R{b},(a,b,c). �

Observe that there is generally more than one way for SS to re-
order RX,Y to match wf depending on the choice of −→WPK. For the
general case where α is non-empty, it makes sense to choose the
permutation of WPK that maximizes the total number of distinct val-
ues of α2 so that the size of each α-group within each segment is
minimized resulting in more efficient sorting and hence reordering.

We remark that the partial sort operation [7, 13] is essentially
an instance of SS, where the input relation is R∅,Y , the window
function to match is wf = (∅, WOK) and Y < WOK. Clearly, SS has
much broader applicability than the partial sort.

We conclude the discussion on SS by presenting a useful proper-
ty (cf. [9] for the proof due to space limitation) for reasoning about
SS-reorderability.

Theorem 2 Let wf1 and wf2 be two distinct window functions, and
let R be a relation.

1Note that since RX,Y does not match wf, α �=
−→
WPK ◦ WOK. There-

fore, β contains at least one attribute.
2Since Y is fixed for a given RX,Y , this translates to maximizing
the number of attributes in α.

1. If R matches wf1 and R′ is the output produced by evaluat-
ing wf1 on R, then (R, wf2) is SS-reorderable iff (R′, wf2)
is SS-reorderable.

2. If (R, wf1) is SS-reorderable andR′ is produced by reorder-
ingRwith SS to match wf1, then (R, wf2) is SS-reorderable
iff (R′, wf2) is SS-reorderable.

Theorem 2 essentially states that the SS-reorderability property
of a relation R (wrt some window function wf2) is preserved by
two types of transformation of R to R′: (1) evaluating some win-
dow function wf1 on R to obtain R′, and (2) reordering R (wrt
some window function wf1) using SS to obtain R′. By preserva-
tion, we mean that (R,wf2) is SS-reorderable iff (R′, wf2) is SS-
reorderable. This property will be used in our optimization frame-
work in Section 4.

3.4 Cost Models and Analysis
In this section, we present cost models for reordering a relation

R (of the form RX,Y ) to match wf = (WPK, WOK) using the re-
ordering operators FS, HS and SS. Since a reordering operator may
pipeline its output (to another operator) while the reordering is still
in progress, our cost models include the cost of outputting the re-
ordered relation but exclude the cost of reading the input relation.

We use Cost(R,O) to denote the cost of reordering R using
operator O, M to denote the allocated main memory (in number
of blocks) for the operation, and B(Ri) to denote the size of a
relation/segment/group Ri (in number of blocks). Let k denote the
number of segments in RX,Y .
FS is based on the standard, external merge-sort algorithm con-

sisting of two phases: an initial run formation phase that creates
sorted subsets, called runs, and a merge phase that merges runs into
larger runs iteratively, until a single run is created. Assuming that
replacement selection is used to create the initial sorted runs, the
size of each initial run is 2M blocks. The sorted runs are merged
using the well-known F -way merge pattern, where F is the merge
order (i.e., number of runs that can be simultaneously merged using
M ). Therefore,

Cost(R, FS) = 2× B(R) × (�logF (
B(R)

2M
)� + 1) (1)

For HS, we assume that the values of WHK follow a uniform dis-
tribution. If the number of distinct values of WHK in R, denoted
by D(WHK), is large enough, we expect that each generated hashed
bucket will be small enough to fit into main memory and thus, it
can be internally sorted; otherwise, if D(WHK) is very small, the
hashed buckets may require external sortings. As such, we estimate
the total number of generated hashed buckets as N = D(WHK).
Therefore, B(Ri) is estimated as B(R)/N for each hashed bucket
Ri. The number of hashed buckets that are never flushed to disk is
N ′ = �M ×N/B(R)�. Therefore,

Cost(R, HS) = 2× B(R) × (1−
N ′

N
) +

N∑

i=1

Cost(Ri) (2)

where Cost(Ri) denotes the cost of (internally or externally) sort-
ing the ith hashed bucket Ri. Since the sortings in HS incur possi-
bly less I/O cost (due to possibly fewer run merge passes) than FS,∑N

i=1 Cost(Ri) is expected to be lower than Cost(R, FS). As
such, Cost(R,HS) is lower than Cost(R, FS) when the value of
Cost(R, FS) −

∑N

i=1 Cost(Ri) is large enough, i.e., when M is
small. Thus, we expect that HS is generally comparable to FS, but
HS will outperform FS when M is small.

For SS, recall from Section 3.3 that SS reorders by indepen-
dently sorting either segments of RX,Y if α is empty; or α-groups
within each segment of R, otherwise. For convenience, we refer
to each segment/group being sorted as a unit. To model the sorting



cost, we need to estimate the number and size of the units. Let u de-
note the number of units in each segment of R. We assume that the
attributes of R follow the uniform distribution and are uncorrelated
with each other. As such, for each segment Ri, B(Ri) = B(R)/k.

There are two cases to consider depending on whether α is emp-
ty. For the case where α is empty, each unit is a segment and u = 1.

We now consider the case where α is non-empty. Note that each
segment contains a proper subset of the distinct X values in R. If
a segment is large enough, we assume that it contains all of (resp.
1/k of) the distinct α values in R when attr(α)∩X is empty (resp.
non-empty); otherwise, we assume that each tuple in the segment
has a distinct α value. Therefore,

u =

{
min(T (R)/k,D(α)) if attr(α) ∩X = ∅
min(T (R)/k,D(α)/k) otherwise.

where T (R) denotes the number of tuples in R and D(α) denotes
the number of distinct values of α in R. Thus, R contains a total
of k ∗ u units, each of which has a size of B(R)/(k ∗ u) blocks.
Therefore,

Cost(R, SS) =
k∗u∑

i=1

Cost(Ui) (3)

where Cost(Ui) denotes the cost of (internally or externally) sort-
ing a unit Ui.
SS can be very efficient without incurring much or any I/O over-

head, especially when the units to be sorted are small. Comparing
Eqs. 2 and 3, SS is at least no more expensive than HS. More-
over, compared with FS, SS has significantly fewer number of tu-
ple comparisons without incurring extra I/O cost: the complexity
of independently sorting k segments each of n/k tuples is O(k ∗
n/klog(n/k)) = O(nlog(n/k)) compared to a complexity of
O(nlog(n)) for a single sort of all n tuples. Thus, the cost of SS
is expected to be generally lower than FS and HS.

3.5 Parallel Execution
The evaluation of a window function wf = (WPK, WOK) on a

relation R can be easily parallelized by partitioning the tuples of
R by either hash or range partitioning on the WPK attributes. The
window function wf can then be evaluated in parallel on each data
partition. It is easy to see that if (R,wf) is SS-reorderable (resp.
HS-reorderable), then each data partition can also be processed by
reordering its tuples with an appropriate SS (resp. HS) operation.

4. OPTIMIZATION OF MULTIPLE WIND-
OW FUNCTION EVALUATIONS

In this section, we consider the general problem of evaluating a
set of window functions in a query. Specifically, the problem is to
optimize the evaluation of a set of window functions W = {wf1,
· · · , wfn} on a relation R, where each wfi = (WPKi, WOKi) and R is
of the form RX,Y for some set of attributes X and some sequence
of attributes Y . Recall that if R is an unordered relation, then X is
an empty set and Y is an empty sequence.

4.1 Evaluation Model
The window functions in W are evaluated sequentially based on

some ordering of the window functions. Let (wf1, · · · , wfn) denote
the chosen evaluation order, and let Ij and Oj denote, respectively,
the input and output relations of the evaluation of each wfj ∈ W .
Each window function wfi is evaluated by the following two steps.
First, if Ij does not match wfj , then reorder Ij to I ′j using an appli-
cable reordering technique (i.e., FS/HS/SS) such that I ′j matches
wfj . For convenience, let I ′j denote Ij if there is no reordering.
Second, sequentially scan I ′j to compute wfj . Note that Ij is the
original relation RX,Y if j = 1; otherwise, Ij is Oj−1.

The above sequential evaluation model is implemented in sever-
al database systems including DB2, Oracle, SQL Server3 and Post-
greSQL.

To optimize the evaluation of W , we need to choose an evalua-
tion order of the window functions and choose a reordering tech-
nique for each window function that is not matched by its input re-
lation. The following result establishes that this optimization prob-
lem is NP-hard.

Theorem 3 The problem of finding the lowest-cost evaluation plan
for an input set of window functions is NP-hard.

The proof is established by reducing the Travelling Salesman
Problem [14] to a special case of the problem, where a compul-
sive FS will be used to reorder the input of every window function
(cf. [9] for the complete proof).

4.2 Overview of Our Approach
Given the NP-hardness of optimizing a set of window function

evaluations, in this paper, we present an efficient heuristic to solve
the problem. Our approach optimizes the evaluation of W by min-
imizing two key aspects: (1) the number of reorder operations, and
(2) the usage of FS and HS (which are generally less efficient than
SS) for reordering.

Note that as each window function evaluation computes an addi-
tional column to store the derived values for some analytic function,
the size of the input relation for each window function evaluation
actually becomes larger as the evaluation progresses. However, for
tractability reasons, our optimization framework makes a simplify-
ing assumption that the size of the input and output relations for
each window function evaluation are the same. We refer to this as
relation size assumption. As the number of window functions is not
too many, the additional columns introduced by the window func-
tion evaluations are relatively small compared to the tuple size. In
Section 4.6, we discuss how our approach can be further optimized
to mitigate this assumption. As we shall see in the experimental
results, our optimization framework is effective even with this sim-
plifying assumption.

The following two examples illustrate the intuitions for our opti-
mization framework.
Example 6 Consider the evaluation of W = {wf1 = ({a}, (b)),
wf2 = ({a}, ε} on an input relation R∅,ε, which matches none of
wf1 and wf2. If we first reorder R into R∅,(a,b) for evaluating wf1,
then the output of wf1 directly matches wf2. In contrast, if we first
reorder R into R∅,(a) for evaluating wf2, then we need an extra SS
operation to reorder the output of wf2 for evaluating wf1. �

Example 7 Consider the evaluation of W = {wf1 = ({a, b}, ε),
wf2 = ({a}, (c))} on an input relation R∅,ε, which matches none
of wf1 and wf2. Suppose we first reorder R with a FS operation
for evaluating wf1. If R is reordered to R∅,(a,b), then we just need
a SS operation to reorder the output of wf1 for evaluating wf2. On
the other hand, if R is reordered to R∅,(b,a), then we need a more
expensive FS/HS operation to reorder the output of wf1 for wf2. �

As illustrated by Example 6, a useful strategy to reduce the num-
ber of reorder operations is to identify a subset Wi of window func-
tions that can be matched by a common segmented relation Ri. The
idea is that instead of incurring possibly one reorder operation to e-
valuate each window function in Wi, we can just perform a single
reordering of the input relation to derive Ri which can then be used
3For the commerical DBMS, our conclusions are drawn from view-
ing the physical plans of our test queries. We note that Oracle also
supports parallel evaluation of a single window function [4, 5].



to evaluate Wi. In the following, we formalize the required proper-
ties for the above evaluation idea.

Theorem 4 LetR be a relation on which a set of window functions
W are evaluated. If R matches W , then for any evaluation order
(wf1, · · · , wfn) of the window functions inW , the output relation
Oi (produced by the evaluation of wfi on Ii) matches W for each
wfi ∈ W .

Corollary 1 If R matches a set of window functions W , then for
any evaluation order ofW ,W can be evaluated on R without any
reordering operation.

Thus, by Corollary 1 (which is a generalization of Theorem 1),
if a set of window functions W is not matched by a relation R and
it is possible to reorder R to R′ so that R′ matches W , then we can
evaluate W on R by a single reordering operation. Specifically, for
any evaluation order (wf1, · · · , wfn) of W , the evaluation of wf1
requires a reordering of R to R′; subsequently, the evaluation of
each wfi, i > 1, does not require any reordering.

We next characterize an important property for a relation to match
a set of window functions.

Definition 4 A set of window functions W is defined to be a cov-
er set if there exists a permutation −−→

WPKi of WPKi for each window
function wfi ∈ W and a window function wfc ∈ W such that
−−→
WPKi ◦ WOKi ≤

−−→
WPKc ◦ WOKc for each wfi ∈ W − {wfc}. The win-

dow function wfc is defined to be a covering window function ofW ,
and −−→WPKc ◦ WOKc is defined to be a covering permutation of wfc.

Example 8 Consider W = {wf1, wf2, wf3}, where wf1 = ({a, b,
c}, (d)), wf2 = ({a, b}, (c, d)), and wf3 = ({a, b}, (c)). W is a
cover set with two covering window functions wf1 and wf2. �

Theorem 5 If a relation R matches a set of window functionsW ,
thenW is a cover set.

Theorem 5 (cf. [9] for the proof) suggests the following idea to
optimize the evaluation of W . Let W be partitioned into a collec-
tion of cover sets, W = C0 ∪ · · · ∪ Ck, such that each Ci is
evaluated before Ci+1.

For each cover set Ci, if the input relation to Ci either matches
the first window function in Ci or can be reordered to some relation
that matches the first window in Ci, then it follows that each Ci can
be evaluated by at most one reordering operation, and therefore,
W can be evaluated using at most (k + 1) reorderings. Thus, by
minimizing the number of cover sets in the partitioning of W , the
number of reorder operations to evaluate W can be minimized.

Our evaluation approach builds on the above idea to evaluate W
as a sequence of cover set evaluations, where each cover set eval-
uation is a sequence of window function evaluations. We elaborate
on this cover set-based evaluation strategy in the next section.

4.3 Cover Set-based Evaluation
Before we present our approach, we shall introduce some nota-

tions. For each cover set Ci, let Ii and Oi denote, respectively,
the input and output relations of the evaluation of Ci; i.e, Ii is the
input relation to the first window function in Ci, and Oi is the out-
put relation produced by the last window function in Ci. Let wf∗i
denote the first window function that is evaluated in cover set Ci.

To minimize both the number of reorder operations as well as
the number of reorderings performed using FS/HS, our approach
partitions W into three disjoint subsets, W = C0 ∪C1 ∪C2, such
that C0 is evaluated first, followed by C1, and finally C2. Note that
each Ci could possibly be empty.

C0 is the set of window functions in W that are matched by
the input relation RX,Y . Thus, C0 is necessarily a cover set (by
Theorem 5), and by Corollary 1, each window function in C0 can
be evaluated without any reordering.

Since RX,Y does not match any wfi ∈ W − C0, the remaining
set of window functions (i.e., C1 ∪ C2) requires at least one re-
ordering to be evaluated. To minimize the usage of FS/HS reorder-
ings, C1 is defined to contain all the window functions in W −C0

such that (RX,Y , C1) is SS-reorderable. By Theorem 2, (O0, C1)
is necessarily also SS-reorderable, where O0 is the output relation
produced by the evaluation of C0. Thus, C1 can be evaluated us-
ing only SS reorderings (i.e., FS/HS reorderings can be avoided).
To minimize the number of SS reorderings to evaluate C1, our ap-
proach further partitions C1 into a minimum number of disjoint
cover sets, C1 = C1,1 ∪ · · · ∪ C1,m1

. The details are explained
in Section 4.4.

The evaluation of C2, however, is more intricate as it requires
at least one FS/HS reordering and zero or more SS reorderings.
To minimize the number of reorderings to evaluate C2, C2 is also
evaluated in terms of a collection of cover sets, C2 = (C2,1 ∪
· · · ∪ C2,m2

) ∪ · · · ∪ (Ck,1 ∪ · · · ∪ Ck,mk
). The details are

explained in Section 4.5.
The overall organization of our cover set-based evaluation is de-

picted in Figure 2. Each circle in Figure 2 represents a single win-
dow function evaluation, where the color indicates the technique
used for reordering (if any): white means that there is no reorder-
ing, and gray (black, resp.) means that the input relation is re-
ordered using SS (FS or HS, resp.). The window functions within
each box represent a cover set, and the chain of window function
evaluations are connected by the directed edges. Except for C0,
which is evaluated without any reordering, each of the cover sets
Ci,j requires exactly one reordering for its evaluation, and the re-
ordering is performed as part of the evaluation of the first window
function.
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· · · · · ·

��
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· · ·
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Figure 2: Cover set-based evaluation approach

In the following, we discuss the optimization of the evaluations
of C1 and C2.

4.4 Evaluation of C1

As explained in the previous section, (O0, C1) is SS-reorderable,
and the number of required SS reorderings to evaluate C1 is min-
imized by partitioning C1 into a minumum number of cover sets.
However, the problem of finding such an optimal partitioning of C1

is NP-hard as the following result shows.

Theorem 6 The problem of partitioning a set of window functions
W into a minimum number of cover sets is NP-hard.

The proof is established by a reduction from the Minimum Vertex
Coloring Problem [14] (cf. [9] for the complete proof).

As such, the partitioning of C1 can be solved using an efficient
heuristic (e.g., Brelaz’s heuristic algorithm [6] for the minimum
vertex coloring problem).



Assume that C1 has been partitioned into m1 cover sets, C1 =
C1,1 ∪ · · · ∪ C1,m1

, and the evaluation order is C1,1, · · · , C1,m1
.

Thus, I1,1 = O0. Since (O0, C1) is SS-reorderable, it follows
from Theorem 2 that for each C1,j , (I1,j , C1,j) is SS-reorderable.

Each C1,j can be evaluated on I1,j using a single SS-reordering
based on the following result (cf. [9] for the proof).

Theorem 7 Consider the evaluation of a set of window functions
W on a relation RX,Y , whereW is a cover set and (R,W ) is SS-
reorderable. Let RX,Y ′ be the output relation produced by a SS
reordering of R wrt a covering function wfc ofW such that Y ′ is
a covering permutation of wfc. Then RX,Y ′ matchesW .

Let I1,j be of the form RX,Y . To apply Theorem 7 to evaluate
C1,j on I1,j , we choose a covering function of C1,j to be wf∗1,j , the
first window function to be evaluated in C1,j . Since I1,j does not
match wf

∗
1,j but (I1,j , wf

∗
1,j) is SS-reorderable, we reorder I1,j to

I′
1,j using SS wrt wf∗1,j such that I′

1,j is of the form RX,Y ′ , where
Y ′ is a covering permutation of wf∗1,j . By Theorem 7, I′

1,j matches
C1,j , and therefore each wfi ∈ C1,j can be evaluated without any
further reordering.

4.5 Evaluation of C2

By definition of C2, for each wfi ∈ C2, wfi is not matched by
RX,Y and (RX,Y , wfi) is not SS-reorderable. Furthermore, it fol-
lows from Theorem 2 that (O1,m1

, wfi) is also not SS-reorderable,
where O1,m1

is the output relation produced by the evaluation of
C1. Therefore, the evaluation of C2 requires at least one reordering
using FS/HS.

To minimize the number of FS/HS reorderings to evaluate C2,
we partition C2 into a minimum number of partitions, C2 = P2 ∪
· · · ∪ Pk

4, such that each Pi can be evaluated with exactly one
FS/HS reordering and zero or more SS reorderings. To minimize
the number of SS reorderings required for evaluating each Pi, we
further partition each Pi into a minimum collection of cover sets,
Pi = Ci,1 ∪ · · · ∪ Ci,mi

.
The collection of cover sets in C2 are evaluated in the follow-

ing order: each Pi is evaluated before Pi+1, and within each Pi,
each Ci,j is evaluated before Ci,j+1. The entire order of cover set
evaluations is shown in Figure 2.

Note that within each Pi, it is necessary for the first cover set
Ci,1 to be reordered using FS/HS. This is a consequence of the fact
that (RX,Y , wf) is not SS-reorderable for each wf ∈ C2. Thus,
within each Pi, Ci,1 is reordered using FS/HS, while each of the
remaining cover sets Ci,j , j > 1, in Pi is reordered using SS.

For the above evaluation strategy for C2 to be feasible, it is nec-
essary that (Ii,j , Ci,j) is SS-reorderable for each Pi in C2 and for
each j ∈ [2, mi], so that each of the cover sets in Pi (except for
the first) can be reordered using SS. The following result states the
required property for this strategy to work.

Definition 5 (Prefixable) A set of window functions W = {wf1,
· · · , wfn} is defined to be prefixable if for each wfi ∈ W , there
exists a permutation −−→WPKi of WPKi such that

∧n

i=1(
−−→
WPKi ◦ WOKi) is

non-empty.

Theorem 8 Let a set of window functions W be evaluated on a
relationR, where for each wfi ∈ W ,R does not match wfi and (R,
wfi) is not SS-reorderable. W can be evaluated with one FS/HS
reordering and zero or more SS reorderings iffW is prefixable.
4For notational convenience, we label the partitions of C2 to start
from P2 instead of P1. As each Pi is further partitioned into cover
sets Ci,j , this ensures that the cover sets of C2 are distinctly labeled
from those of C1.

Based on Theorem 8 (cf. [9] for the proof), our evaluation s-
trategy for C2 requires that each Pi be prefixable. However, the
problem of finding such an optimal partitioning of C2 is NP-hard
as the following result shows.

Theorem 9 The problem of partitioning a set of window functions
W into a minimum number of prefixable, disjoint subsets is NP-
hard.

The proof is established by reducing the Minimum Set Cover prob-
lem [14] to a special case of the problem (cf. [9] for the complete
proof). The partitioning problem can be solved using a greedy
heuristic that tries to minimize the number of prefixable subsets
by maximizing the number of window functions in each prefixable
subset under construction. The details of the heuristic are given
elsewhere [9] and it has O(|W |2) time-complexity. The effective-
ness of the heuristic has been validated by our experimental results
in Section 6.2, where it succeeded in finding the optimal partition-
ing of C2 for all tested window queries.

Assume that C2 has been partitioned into k prefixable subsets,
C2 = P2 ∪ · · · ∪ Pk, and each Pi has been partitioned into mi

cover sets, Pi = Ci,1 ∪ · · · ∪ Ci,mi
as discussed.

Each Pi is processed using two main steps. In the first step, we
reorder Ii,1 (wrt wf∗i,1 in Ci,1) to I′

i,1 such that the following two
properties are satisfied: (1) Ci,1 can be evaluated with exactly one
reordering (using FS/HS); and (2) each of the remaining Ci,j in Pi

can be evaluated with exactly one reordering (using SS).
For this reordering operation, if both FS and HS are applicable,

the choice of which technique to apply is determined in a cost-
based manner. We discuss these two cases of reordering in the
following two subsections.

The second step evaluates each Ci,j as follows. By Property 1,
we use I′

i,1 to evaluate Ci,1 without any further reorderings. By
Property 2, we use I′

i,1 to evaluate Pi −{Ci,1} following the same
procedure as evaluating C1 using O0.

In the ensuing discussion, we will present the details of the first
step of reordering Ii,1 using FS/HS.

4.5.1 Reordering with FS
We first discuss how to reorder Ii,1 (wrt wf∗i,1) to I′

i,1 using
FS. The main task is to determine the sort key for FS such that it
satisfies two properties: (1) I′

i,1 matches Ci,1, and (2) (I′
i,1, wf

∗
i,j)

is SS-reorderable for each j ∈ [2, mi]. Property 1 ensures that
Ci,1 can be evaluated using exactly one reordering with FS, and
Property 2 ensures that each of the remaining Ci,j in Pi can be
evaluated using exactly one reordering with SS.

The sort key for FS is derived as follows. We choose a covering
function of Ci,1 to be wf∗i,1. Let θ(Pi) denote the longest intersec-
tion among

∧
wfj∈Pi

(
−−→
WPKj ◦ WOKj) for every permutation −−→

WPKj of
each WPKj . Since Pi is prefixable, θ(Pi) is a sequence consisting of
at least one attribute. Note that θ(Pi) might not be unique. As an
example, in Example 8, θ(W ) could be abc or bac. By definition
of θ(Pi), for each wfj ∈ Pi, there exists a permutation −−→

WPKj of
WPKj such that θ(Pi) ≤

−−→
WPKj ◦ WOKj .

Let γ denote a covering permutation of wf∗i,1 such that θ(Pi) ≤
γ. Since Pi is prefixable and wf

∗
i,1 is a covering function of Ci,1,

γ must exist. It follows that if we use γ as the sort key for FS to
reorder Ii,1, Property 1 is guaranteed by the fact that γ is a covering
permutation of wf∗i,1, and Property 2 is guaranteed by the fact that
θ(Pi) ≤ γ5.
5Note that requiring θ(Pi) ≤ γ is actually sufficient but not nec-
essary for Property 2. Specifically, so long as θ′ ≤ γ, where θ′ is



4.5.2 Reordering with HS
We next discuss how to reorder Ii,1 (wrt wf∗i,1) to I′

i,1 using
HS. Recall that HS is applicable if WPKi,1 �= ∅. Similar to FS, for
HS, we need to choose the hash key, WHK, and sort key such that
Properties 1 and 2 are satisfied.

Let θ′ be the maximum prefix of θ(Pi) such that attr(θ′) ⊆
WPKj for each wfj ∈ Ci,1. To satisfy Properties 1 and 2, it suffices
to choose any subset of θ′ for WHK. The selection of the sort key
follows the same approach discussed in Section 4.5.1 for FS.

4.6 Further Optimization
In this section, we discuss some evaluation order issues relat-

ed to our framework and discuss how our approach can be further
optimized to mitigate the relation size assumption (Section 4.2).

Based on the preceding discussion, the evaluation plans pro-
duced by our evaluation framework (see Figure 2) are actually only
partially ordered in that the evaluation order of some of the cov-
er sets as well as window functions within a cover set could be
reshuffled (without affecting correctness) for further optimization.
Specifically, the following cover sets (csets) or window functions
(wfs) can be reshuffled for further optimization: (1) the wfs within
C0, (2) the csets of C1, (3) the Pi’s of C2, (4) the csets of each Pi

in C2, (5) the choice of covering functions for the first wf within
each cset (except C0), and (6) the non-first wfs within each Ci,j ,
i ∈ [1, k], j ∈ [1, mi].

To address the relation size assumption, one reasonable heuristic
to reshuffle the above wfs/csets/Pi’s (refer to as units) is to order
the units in increasing size of the extra column(s) produced by their
evaluations so that the negative effect of a unit that is producing
larger additional columns is deferred to a later stage of the execu-
tion chain. We intend to explore these further optimizations as part
of our future work.

5. INTEGRATEDWINDOWQUERY OPTI-
MIZATION

In this section, we present two approaches to integrate the opti-
mization framework presented in the previous section into the over-
all query optimization process.

A window queryWQ is essentially a conventional SQL statemen-
t Q augmented with a set of window functions W defined in the
SELECT clause ofQ. A loose integration approach to optimizeWQ
is to decompose the optimization task into a sequence of three op-
timization sub-tasks. First, optimize Q (except for the DISTINCT
and ORDER BY clauses) to produce a windowed table WT. Sec-
ond, optimize the evaluation of W on WT using the optimization
framework in the previous section to produce an output table WT’.
Finally, optimize the evaluation of the remaining DISTINCT and
ORDER BY clauses on WT’.

While the loose integration approach offers a straightforward
way to incorporate the window function optimization framework
into a query optimizer, optimizing WQ as three separate sub-tasks
can produce final query plans that are sub-optimal. For example,
it is possible for a sub-optimal plan for the second sub-task to pro-
duce WT’ ordered in an “interesting” order, which could lead to a
less costly plan for the final sub-task and thus lead to an overall
cheaper query plan.

This drawback can be alleviated by adopting a more tightly inte-
grated approach to optimize WQ. Based on W and Q, we identify

a non-empty prefix of θ(Pi), Property 2 is guaranteed. However,
the stronger requirement that we presented is beneficial for per-
formance reason as the subsequent SS reorderings could be more
efficient from sorting smaller segments.

a set IP of interesting order [16] and/or interesting grouping [15,
18] properties. Intuitively, IP consists of potential properties ofWT
that could benefit the derivation of WT’ from WT. For example,
suppose Q contains a GROUP BY clause with a set of grouping
attributes gpk. Then an interesting (order or grouping) property
for WT would be for WT to be a segmented relation WT

g
gpk,ε or

WT∅,
−→
gpk

that would lead to a non-empty C0 ∪ C1 forW. For each
interesting property ip in IP, the query optimizer will generate an
optimal subplan to generate the windowed table WT ip that is as-
sociated with ip. In addition, the optimizer will also generate the
optimal plan to produce an arbitrary windowed table WT o without
taking into account of any interesting property in IP. Corresponding
to each WT ip (or WT o), we derive the optimal window function
chain C for evaluating W on WT ip (or WT o). Furthermore, by
reshuffling the Pi’s of C2 in C (or the cover sets of C1 if C2 is
empty), we also try to derive from C the cheapest chain C′ that
will result in a WT

′
ip (or WT

′
o) (partially) satisfying the ordering

requirement of the ORDER BY clause, so that an explicit sorting
of WT

′
ip (or WT

′
o) could be avoided or a cheaper partial sorting

could be applicable. In this way, by taking into account of the in-
teresting properties to enlarge the plan search space for WQ, the
optimal query plan will not be missed.

6. PERFORMANCE STUDY
We validated our ideas using a prototype built in PostgreSQL

9.1.0 [1]. In our implementation, both the Hashed Sort (HS) and
Segmented Sort (SS) are integrated into PostgreSQL as standard
execution operators. Moreover, we modified the optimizer of Post-
greSQL to support a total of four distinct optimization schemes, all
of which generate window function chains as query plans:
CSO: Our proposed cover set-based optimization scheme.
BFO: The brute-force scheme, which enumerates and compares

for a window query all the feasible execution plans that are
based on FS, HS and SS.

ORCL: The scheme adopted by Oracle 8i [5]. It tries to cluster the
window functions of a query into a minimum set of Order-
ing Groups (OG) which are equivalent to our notion of cover
sets. However, the leading window function of each OG is
only FS-reorderable.

PSQL: The naive scheme adopted by PostgreSQL 9.10, where the
window functions of a query are evaluated strictly following
their input sequence in the SELECT clause and each window
function is only FS-reorderable. For a window function wf,
the −→

WPK in the sort key (−→WPK ◦ WOK) of FS is exactly the in-
put sequence of WPK attributes in the SELECT clause. The
only optimization applied by PSQL is that, when a window
function is matched by its input, the FS for it is omitted.

All experiments were performed on a Dell workstation with a 64-
bit Intel Xeon X5355 2.66GHz processor, 4GB memory, one 500G-
B SATA disk and another 1TB SATA disk, running Linux 2.6.22.
Both the operating system and PostgreSQL system are built on the
500GB disk, while the databases are stored on the 1TB disk.

6.1 Micro-benchmark Test on FS, HS, and SS
In this experiment, we used a micro-benchmark test to compare

the performance of FS, HS and SS, under various situations. To
this end, we defined a window query template Q:

SELECT *, rank() OVER
(PARTITION BY AttrSet ORDER BY AttrSeq)

FROM T
Q essentially evaluates a window rank() function with WPK =
AttrSet and WOK = AttrSeq over a windowed table T , where
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Figure 3: Micro-benchmark test, part 1: FS vs. HS

AttrSet, AttrSeq and T are all configurable. Another experi-
mental parameter that we varied is the available operating memory
dedicated to each tuple reordering operation, referred to as the u-
nit reorder memory and denoted by M , whose values ranged from
10MB to 1000MB.

The execution of Q invokes a single tuple reordering operation
for rank(). For comparison, we directly measure the plan execu-
tion cost of Q, which consists of the cost of tuple reordering as well
as the cost of the subsequent window function calls which usually
remains constant.

Part Query T AttrSet AttrSeq

1

Q1

ws sales

{ws item sk}

(ws sold time sk)Q2
{ws item sk,

ws bill customer sk}
Q3 {ws warehouse sk}

2 Q4 ws sales s
{ws quantity} (ws item sk)

Q5 ws sales g

Table 1: Queries used in the micro-benchmark test

We split the test into two parts. In the first part, T was the
web sales relation from the TPC-DS [2] benchmark. We generat-
ed web sales by using the official generator provided by TPC-DS
and a scale factor of 100. The generated table had a total size of
14.3GB and contained 72 million tuples, each of which had the av-
erage tuple size of 214 bytes. All attributes in web sales followed
a uniform distribution. Since web sales was totally unordered, the
SS operation was inapplicable to reorder it. Thus, in this part we
only compared the performance of FS and HS. We instantiated Q
with three concrete queries, Q1, Q2 and Q3 (shown in Table 1),
which represent three kinds of situations where the number of win-
dow partitions are medium (204000), extremely large (71976736)
and extremely small (16) respectively.

The experimental results are depicted in Fig. 3, from which we
have several observations. First, while the performance of FS was
sensitive to M smaller than 150MB, relatively the performance of
HS was very stable regardless of M . This is because the number of
run merge passes in FS decreased from 6 to 1 as M increased from
10MB to 150MB, while the sortings of hashed buckets in HS were
either internal or external with a single run merge pass. Second, HS
had huge (resp. decent) performance gains over FS when M was s-
maller than 50MB (resp. between 50MB and 100MB), and lost out
to FS when M was larger than 100MB. The reason for the per-
formance loss of HS is that when M ≤ 150MB, FS incurred just
one pass of table I/O, but HS always incurred more than one pass
of table I/O due to the table partitioning phase. However, we notice
that in many situations, the performance loss of HS was negligible
or insignificant. Third, we took a closer look into Q3, where each
of the 16 window partitions had a large size of 900MB. Since we
did not implement the optimization for HS, for each hashed bucket
of HS in Q3, it always contained more than one window partition

and thus had to be spilled to disk even when M reached 1000M-
B. Thus, when M increased, the I/O performance of HS did not
improve, while the total CPU cost for tuple comparisons became
higher and higher. This explains the performance reduction of HS
along with the increased M as shown in Fig. 3(c).

As a summary, HS is expected to outperform FS when M is not
very large. Moreover, another advantage of HS over FS is its per-
formance stability under a very wide range of Ms. On the other
hand, a potential drawback of HS is that, unlike FS, its output does
not have a total ordering, which may benefit the next stage’s oper-
ations, e.g. an order by.

In the second part of this test, we compared the performance
of SS with FS and HS. We generated two different instances of
T : web sales s and web sales g, both of which were manually
reordered from the web sales table used in the first part of this
test. web sales s (resp. web sales g) are sorted (resp. grouped)
on attribute ws quantity. As such, we instantiated Q with two
concrete queries, Q4 and Q5 (shown in Table 1), for which the
SS operation is applicable. Note that in both Q4 and Q5, SS will
separately sort each ws quantity-group on ws item sk.
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Figure 4: Micro-benchmark test, part 2: SS vs. FS and HS
As shown in Fig. 4, SS outperformed both FS and HS by a large

margin in all situations. These experimental results are consistent
with the prediction of the cost models.

6.2 Evaluation of Window Queries
In this experiment, we measured the effectiveness of our cover

set-based window function optimization scheme presented in Sec-
tion 4. To this end, we generated a list of window queries, each of
which has the form of
SELECT *, W FROM web sales

where W represented a set of window rank() functions and web-
sales (or ws for short) was the TPC-DS table utilized in the first

part of the above micro-benchmark test. The set of attributes of
ws sales mentioned by the tested window queries are listed in Ta-
ble 2. For convenience, in the rest of this section we will refer to
these attributes using their corresponding abbreviations.

The tested window queries were Q6, Q7, Q8 and Q9, whose em-
bedded window functions are presented in Tables 3, 5, 7 and 9, re-
spectively. Note that within each query, for two window functions



Attribute (abbr.) Attribute (abbr.)
ws sold date sk (date) ws item sk (item)
ws sold time sk (time) ws bill customer sk ( bill )
ws ship date sk (ship)

Table 2: Attributes of ws sales involved in the tested window
queries, as well as their abbreviations

wfi and wfj , if i < j, then wfi preceded wfj in the SELECT clause.
The optimized execution plans, i.e., window function chains, for
the four tested window queries are shown in Tables 4, 6, 8 and 10,
respectively. In a chain, wfi/ws → wfj (resp. wfi/ws

X
−→ wfj )

means that the table web sales or the output of wfi matches (resp.
needs to be reordered by X = FS/HS/SS for) wfj .

We chose three values, 50MB, 75MB and 150MB, for the unit
reorder memory M allocated for each tuple reordering operation in
a query plan. There are two reasons for 150MB being the maximum
testing memory size. First, according to Fig. 3, in this experiment
neither HS nor FSwill strictly outperform the other. In so doing, we
intended to examine the accuracy of our cost models for HS and FS
proposed in Section 3.4. Second, it is observable from Fig. 3 and
Fig.4 that, compared with 150MB unit reorder memory, a larger
memory size will make little difference on the performance of HS,
FS and SS and thus will not invalidate the conclusions reached
below.

We then compare the performance of CSO, WF, ORCL and
PSQL according to each tested window query.

WPK WOK WPK WOK

wf1 {item} (date) wf2 {item} (bill)

Table 3: Window functions contained by Q6

Scheme M (in MB) Plan

BFO/CSO
50/75 ws

HS
−−→ wf1

SS
−→ wf2

150
ws

FS
−−→ wf1

SS
−→ wf2CSO(v1) 50/75/150

CSO(v2)
50/75 ws

HS
−−→ wf1

HS
−−→ wf2

150
ws

FS
−−→ wf1

FS
−−→ wf2ORCL/PSQL 50/75/150

Table 4: Execution plans for Q6
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Figure 5: Evaluating different optimization schemes with Q6

For Q6, the execution plans generated by CSO (resp. PSQL)
are exactly the same as those by BFO (resp. ORCL), as shown
in Table 4. As such, we additionally tested two variants of CSO,
i.e., CSO(v1) where HS is disabled, and CSO(v2) where SS is dis-
abled. The experimental results are depicted in Fig. 5. It is obvious
that, by assigning SS to wf2, BFO/CSO significantly improved the
query performance of Q6. Moreover, when M was 50MB/75MB,

the introduction of CSO(v1) and CSO(v2) illustrated the cost dif-
ference between FS and HS for both wf1 and wf2. Thus, we can see
that BFO/CSO made correct decisions on the choice between FS
and HS for a window function, by using our proposed cost models.

WPK WOK WPK WOK

wf1 {date, time, ship} ε wf4 ∅ (item, bill)
wf2 {time, date} ε

wf5
{date, time,

(ship)
wf3 {item} ε item, bill}

Table 5: Window functions contained by Q7

Scheme M (in MB) Plan

BFO
50/75 ws

HS
−−→ wf1 → wf2

FS
−−→ wf5 → wf4 → wf3

150 ws
FS
−−→ wf1 → wf2

FS
−−→ wf5 → wf4 → wf3

CSO
50/75 ws

FS
−−→ wf5 → wf4 → wf3

HS
−−→ wf1 → wf2

150
ws

FS
−−→ wf5 → wf4 → wf3

FS
−−→ wf1 → wf2ORCL 50/75/150

PSQL 50/75/150 ws
FS
−−→ wf1

FS
−−→ wf2

FS
−−→ wf3

FS
−−→ wf4

FS
−−→ wf5

Table 6: Execution plans for Q7
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Figure 6: Evaluating different optimization schemes with Q7

Q7 is actually the running example utilized by [5] in order to
illustrate the optimization mechanism of ORCL. As shown in Ta-
ble 6, for this query BFO, CSO and ORCL all managed to find the
execution plans with the same minimum set of cover sets. The d-
ifferences between their plans lie in the choices between HS and
FS for a single window function, as well as the sequence of win-
dow functions (or cover sets) in the chain. In contrast, Q7 actually
highlighted the naiveness of PSQL, which failed to recognize the
rather obvious optimization opportunity where adjusting the sort
key of FS for wf1 is able to make the output of wf1 matches wf2.
As a result, the performance of PSQL was much worse than that
of BFO/CSO/ORCL, as depicted in Fig. 6. On the other hand, the
small performance differences among BFO, CSO and ORCL gave
rise to some observations. First, for Q7, once again both BFO and
CSO made correct decisions on the choice between FS and HS for
a window function, by using our proposed cost models. Second,
when SS was not used, the sequence of cover sets in the chain
has minor impact on the plan performance, and this is consistent
with the intuition behind our relation size assumption made in Sec-
tion 4.2.

Q8 was derived from Q7 by moving the item attribute from
WOK4 of wf4 into WPK4 and also moving the bill attribute from WPK5

of wf5 into WOK5, according to Table 6 and Table 8. The resultant
execution plans are listed in Table 8. We can see that each of BFO,
CSO and ORCL generated a minimum but distinct set of cover set-
s. However, unlike BFO and CSO, ORCL cannot recognize the
additional optimization opportunity that one of the three leading
window functions of cover sets, i.e., wf5 here for ORCL, is actual-
ly SS-reorderable. Therefore, as shown in Fig. 7, the performance



WPK WOK WPK WOK

wf1 {date, time, ship} ε wf4 {item} (bill)
wf2 {time, date} ε

wf5
{date, time,

(bill, ship)
wf3 {item} ε item}

Table 7: Window functions contained by Q8

Scheme M (in MB) Plan

BFO
50/75 ws

HS
−−→ wf1 → wf2

SS
−→ wf5

HS
−−→ wf4 → wf3

150 ws
FS
−−→ wf1 → wf2

SS
−→ wf5

FS
−−→ wf4 → wf3

CSO
50/75 ws

HS
−−→ wf5

SS
−→ wf1 → wf2

HS
−−→ wf4 → wf3

150 ws
FS
−−→ wf5

SS
−→ wf1 → wf2

FS
−−→ wf4 → wf3

ORCL 50/75/150 ws
FS
−−→ wf4 → wf3

FS
−−→ wf5 → wf2

FS
−−→ wf1

PSQL 50/75/150 ws
FS
−−→ wf1

FS
−−→ wf2

FS
−−→ wf3

FS
−−→ wf4

FS
−−→ wf5

Table 8: Execution plans for Q8
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Figure 7: Evaluating different optimization schemes with Q8

of ORCL was a bit worse than BFO and CSO, although PSQL still
performed the worst. On the other hand, the performance differ-
ence between BFO and CSO was negligible, which showed that it
is the numbers of cover sets and the SS, rather than their sequence
in the chain, that affect the plan performance most significantly.
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Figure 8: Evaluating different optimization schemes with Q9

The final tested query Q9 contained the most window functions
and thus led to the most complicated execution plans, which are
presented in Table 10. This time PSQL eventually succeeded in
avoiding the FS for wf3 and thus generated an execution plan that
was comparable with that of ORCL. The reasons that ORCL lost
out to BFO and CSO to a very large extent are two-fold. On the
one hand, ORCL generated one more cover set than BFO and CSO;
on the other hand, in essence it was not able to recognize those op-
timization opportunities w.r.t SS. As for BFO and CSO, Table 10
and Fig. 8 together show that their optimization effects were equal-
ly well. The fact that CSO outperformed BFO with 50MB memory

WPK WOK WPK WOK

wf1 {item} (bill, date) wf5 {bill, date} (time)
wf2 {item, time} (date) wf6 {bill} (time)
wf3 {item} (time) wf7 {date, time} ε
wf4 ∅ (item, date) wf8 ∅ (time)

Table 9: Window functions contained by Q9

Scheme M (in MB) Plan

BFO

50/75 ws
FS
−−→ wf1

SS
−→ wf2 → wf3

SS
−→ wf4

HS
−−→ wf5

SS
−→ wf6

FS
−−→ wf7 → wf8

150 ws
FS
−−→ wf1

SS
−→ wf2 → wf3

SS
−→ wf4

FS
−−→ wf5

SS
−→ wf6

FS
−−→ wf7 → wf8

CSO

50/75 ws
FS
−−→ wf7 → wf8

HS
−−→ wf6

SS
−→ wf5

FS
−−→ wf2 → wf3

SS
−→ wf1

SS
−→ wf4

150 ws
FS
−−→ wf7 → wf8

FS
−−→ wf6

SS
−→ wf5

FS
−−→ wf2 → wf3

SS
−→ wf1

SS
−→ wf4

ORCL 50/75/150 ws
FS
−−→ wf2 → wf8

FS
−−→ wf4

FS
−−→ wf7

FS
−−→ wf1

FS
−−→ wf3

FS
−−→ wf6

FS
−−→ wf5

PSQL 50/75/150 ws
FS
−−→ wf1

FS
−−→ wf2 → wf3

FS
−−→ wf4

FS
−−→ wf5

FS
−−→ wf6

FS
−−→ wf7

FS
−−→ wf8

Table 10: Execution plans for Q9

was due to the accidental inconsistency between the actual plan ex-
ecution costs and our cost model’s estimations.

In a summary, BFO and CSO always delivered the best execution
plans for all the four tested queries, Q6, Q7, Q8 and Q9. ORCL

performed much worse than BFO and CSO but significantly better
than PSQL at the same time.

6.3 Optimization Overheads
In this experiment, we subsequently compared the optimization

overheads of those four optimization schemes. We generated a list
of window queries with different number of window functions to
be evaluated on the web sales table. In each window function wf

of each query, we randomly determined the number of attributes as
well as the attributes themselves for both WPK and WOK. The over-
heads of different optimization schemes incurred by optimizing six
queries, where the number of window functions ranged from 6 to
10, are listed in Table 11.
�
�
�

�
�
�
�
��

Scheme
# of wfs 6 7 8 9 10

BFO 1.56 18.47 9336 489286 9.8× 106

CSO 1.44 3.56 4.07 7.49 12.31
ORCL 0.99 1.04 1.27 1.36 1.49
PSQL 0.85 0.91 1.03 1.11 1.18

Table 11: Optimization overheads (in millisecond) of optimiza-
tion schemes for queries with varying numbers of window func-
tions

From Table 11 we can see that, the optimization overheads of
both ORCL and PSQL increased slowly along with the number
of window functions. As for CSO, its optimization overheads in-
creased a bit faster but still remained very small. However, for
BFO, as expected, its optimization overheads were acceptable for
upto 7 window functions but became totally unacceptable when the
number of window functions exceed 8. In particular, BFO took
about 2.7 hours to derive the optimal plan for a query with 10 win-
dow functions!



According to the experimental results of the last experiment, the
effectiveness of CSO is very similar to that of BFO which is sup-
posed to always generate optimal plans. Moreover, as illustrated
above, CSO is much lighter-weight than BFO. As such, we can
conclude that CSO achieves the best tradeoff between optimization
effectiveness and optimization efficiency.

7. RELATED WORK
To the best of our knowledge, [5] is the only research report in the

public domain that focuses on optimizing the evaluation of window
functions. That work only used FS for tuple reordering. In contrast,
we propose two new tuple reordering operations HS and SS, both of
which are competitive alternatives to FS. The optimization scheme
proposed in [5] also exploited the properties of WPKs and WOKs, and
clusters window functions into Ordering Groups which are equiva-
lent to our notion of cover sets, so as to minimize the total number
of FS operations needed. However, our cover set-based optimiza-
tion scheme naturally subsumes the optimization scheme of [5] and
incorporates additional optimizations w.r.t HS and SS. In addition,
the other two window function optimizations mentioned in [5], i.e.
predicate pushdown for ranking functions and parallel execution of
a single window function, are both complementary and can co-exist
with our approaches.

The window functions in a window query compute a set of addi-
tional window-function columns for a single windowed table, ac-
cording to different specifications of window partitioning and or-
dering. Similarly, GROUPING SETS, ROLLUP and CUBE oper-
ations, the three extensions to the GROUP BY clause, group the
tuples of a table in multiple disparate ways, compute aggregations
for different tuple groups, and finally concatenate all of the tuple
groups together into a single result6. However, the optimization
techniques available for these GROUP BY extensions (e.g. [3], [10]
and [11]) cannot be directly applied for window function evalua-
tion. First, the window function evaluation retains the original ta-
ble tuples, while in the evaluation of these GROUP BY extensions,
each tuple group collapses into a single tuple. Second, the win-
dow functions contain in a window query can be of different types,
while in these GROUP BY extensions, a set of global aggregation
functions are evaluated for different tuple groups.

Research works like [15, 17, 18] have proposed optimization
frameworks to infer the ordering and grouping properties held for
intermediate results of query execution by using functional depen-
dencies. They aimed at avoiding redundant sort and group op-
erations in the query plan. In this paper, we also need to infer
the properties of the intermediate results flowing between window
functions, in order to determine the proper tuple reordering opera-
tions. However, the only interesting property that we formulate is
the relation segmentation as described in Section 3, of which both
ordering and grouping are special cases. Moreover, in our frame-
work, the operations that can alter the tuple ordering include the
newly proposed HS and SS, whose behaviors are significantly dif-
ferent from those operations considered in [15, 18], such as group
by and join. As a result, their techniques are not directly applicable
or extendible in our problem context.

8. CONCLUSION
In this paper, we have presented a comprehensive framework for

optimizing the evaluation of window functions. We have proposed
two new tuple reordering methods, namely Hashed Sort (HS) and

6Note that both ROLLUP and CUBE are special cases of
GROUPING SETS.

Segmented Sort (SS), that can efficiently reorder tuples for win-
dow function evaluation. To handle complex queries involving
multiple window functions, we also designed a light-weight cov-
er set-based optimization scheme that generates a (near-)optimal
window function chain for evaluating these window functions. We
have integrated our techniques into PostgreSQL. Our extensive per-
formance study showed that our techniques can bring substantial
performance gains over existing window function implementations
and optimizations.

There are several directions for future work. First, the function-
al dependencies existing between attributes of the windowed table
have non-trivial impact on the optimizations for window function-
s, and thus should be exploited further. Second, it is possible to
develop some tailored optimizations for certain types of window
functions, like the predicate pushdown optimization for window
ranking functions as proposed in [5]. We plan to investigate oth-
er kinds of window functions to identify additional optimizations
for them. Finally, in this paper we assume a sequential evaluation
model for window functions. However, an alternative evaluation
model is a graph-based evaluation model, where a window func-
tion may receive input from multiple sources and may deliver its
output to multiple destinations. Studying the effectiveness of such
a graph-based model is certainly in our agenda for future work.
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