
Multi-Query Optimization in MapReduce Framework

Guoping Wang and Chee-Yong Chan
Department of Computer Science, School of Computing

National University of Singapore

{wangguoping, chancy}@comp.nus.edu.sg

ABSTRACT
MapReduce has recently emerged as a new paradigm for
large-scale data analysis due to its high scalability, fine-
grained fault tolerance and easy programming model. Since
different jobs often share similar work (e.g., several jobs s-
can the same input file or produce the same map output),
there are many opportunities to optimize the performance
for a batch of jobs. In this paper, we propose two new tech-
niques for multi-job optimization in the MapReduce frame-
work. The first is a generalized grouping technique (which
generalizes the recently proposed MRShare technique) that
merges multiple jobs into a single job thereby enabling the
merged jobs to share both the scan of the input file as well
as the communication of the common map output. The sec-
ond is a materialization technique that enables multiple jobs
to share both the scan of the input file as well as the com-
munication of the common map output via partial material-
ization of the map output of some jobs (in the map and/or
reduce phase). Our second contribution is the proposal of
a new optimization algorithm that given an input batch of
jobs, produces an optimal plan by a judicious partitioning of
the jobs into groups and an optimal assignment of the pro-
cessing technique to each group. Our experimental results
on Hadoop demonstrate that our new approach significantly
outperforms the state-of-the-art technique, MRShare, by up
to 107%.

1. INTRODUCTION
MapReduce has recently emerged as a new paradigm for

large-scale data analysis and has been widely embraced by
Amazon, Google, Facebook, Yahoo!, and many other com-
panies. There are two key reasons for its popular adoption.
First, the framework can scale to thousands of commodity
machines in a fault-tolerant manner and thus is able to use
more machines to support parallel computing. Second, the
framework has a simple and yet expressive programming
model through which users can parallelize their program-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 3
Copyright 2013 VLDB Endowment 2150-8097/13/11...$ 10.00.

s without concerning about issues like fault-tolerance and
execution strategy.

To simplify the expression of MapReduce programs, some
high level languages, such as Hive [16, 17], Pig [14, 5] and
MRQL [4], have recently been proposed for the MapReduce
framework. The declarative property of these languages al-
so open up new opportunities for automatic optimization in
the framework [12, 3, 11]. Since different jobs (specified in
or translated from queries) often perform similar work (e.g.,
jobs scanning the same input file or producing some shared
map output), there are many opportunities to exploit the
shared processing among the jobs to optimize performance.
As noted by several researchers [13, 12], it is useful to apply
the ideas from multi-query optimization to optimize the pro-
cessing of multiple jobs by avoiding redundant computation
in the MapReduce framework.

The state-of-the-art work in this direction is MRShare [12]
which has proposed two sharing techniques for a batch of
jobs. The share map input scan technique aims to share the
scan of the input file for jobs, while the share map output
technique aims to reduce the communication cost for map
output tuples by generating only one copy of each shared
map output tuple. The key idea behind MRShare is a group-
ing technique to merge multiple jobs that can benefit from
the sharing opportunities into a single job. Thus, compared
to MRShare, the naive technique of processing each job in-
dependently would need to scan the same input file multiple
times and generate multiple copies of the same map output
tuple. However, MRShare incurs a higher sorting cost com-
pared to the naive technique as sorting a larger map output
produced by the merged job is more costly than multiple
independent sortings of smaller map outputs produced by
the unmerged jobs.

In this paper, we present a more comprehensive study of
multi-job optimization techniques. Our first contribution
is the proposal of two new job sharing techniques that ex-
pands the opportunities for multi-job optimizations. The
first technique is a generalized grouping technique (GGT)
that relaxes MRShare’s requirement for sharing map out-
put. The second technique is a materialization technique
(MT) that partially materializes the map output of jobs (in
the map and/or reduce phase) which provides another al-
ternative means for jobs to share both map input scan and
map output. Comparing with the naive technique, GGT in-
curs a higher sorting cost (similar to MRShare’s grouping
technique) while MT incurs an additional materialization
cost. Thus, neither GGT nor MT is strictly more superior,
as demonstrated also by our experimental results.

145

Given the expanded repertoire of three sharing techniques
(i.e., the naive independent evaluation technique, GGT which
subsumes MRShare’s grouping technique, and MT), finding
an optimal evaluation plan for an input batch of jobs be-
comes an even more challenging problem. Indeed, the opti-
mization problem is already NP-hard when only the naive
and grouping techniques are considered in MRShare [12].
Our second contribution is the proposal of a novel two-phase
approach to solve this non-trivial optimization problem.

Our third contribution is a comprehensive performance
evaluation of the multi-job optimization techniques using
Hadoop. Our experimental results show that our proposed
techniques are scalable for a large number of queries and sig-
nificantly outperform MRShare’s techniques by up to 107%.

The rest of the paper is organized as follows. Section 2
presents background information on MapReduce and intro-
duces the assumptions and notations used in this paper.
Section 3 presents several multi-job optimization techniques
to share map input scan and map output; their cost mod-
els are presented in Section 4. Section 5 presents a novel
two-phase algorithm to optimize the evaluation of a batch
of jobs given the expanded repertoire of optimization tech-
niques. Section 6 presents a performance evaluation of the
presented techniques. Section 7 presents related work, and
we conclude in Section 8.

2. BACKGROUND
In this section, we review the MapReduce framework and

introduce the assumptions and notations used in the paper.

2.1 MapReduce Preliminaries
MapReduce is proposed by Google as a programming mod-

el for large-scale data processing [2]. It adopts a master/slave
architecture where a master node manages and monitors
map/reduce tasks and slave nodes process map/reduce tasks
assigned by the master node, and uses a distributed file sys-
tem (DFS) to manage the input and output files. The input
files are partitioned into fix-sized splits when they are first
loaded into the DFS. Each split is processed by a map task
and thus the number of map tasks for a job is equal to the
number of its input splits. Therefore, the number of map
tasks for a job is determined by the input file size and split
size. However, the number of reduce tasks for a job is a
configurable parameter.

A job is specified by a pair of map and reduce functions,
and its execution consists of a map phase and a reduce phase.
In the map phase, each map task first parses its correspond-
ing input split into a set of input key-value pairs. Then it
applies the map function on each input key-value pair and
produces a set of intermediate key-value pairs which are sort-
ed and partitioned into r partitions, where r is the number of
configured reduce tasks. Note that both the sorting and par-
titioning functions are customizable. An optional combine
function can be applied on the intermediate map output to
reduce its size and hence the communication cost to transfer
the map output to the reducers1. In the reduce phase, each
reduce task first gets its corresponding map output parti-
tions from the map tasks and merges them. Then for each

1For presentation simplicity, we do not consider combine
functions in this paper; however, our proposed techniques
can be easily extended to operate in the presence of combine
functions.

Id Job <Key,Value>
J1 select a, sum(d) from T where a ≥ 10 group by a <a, d>

J2 select a, b, sum(d) from T where b ≤ 20 group by a, b <(a, b), d>
J3 select a, b, c, sum(d) from T where c ≤ 20 group by a, b, c <(a, b, c), d>
J4 select a, sum(d) from T where b ≤ 20 group by a <a, d>

J5 select b, sum(d) from T where a ≥ 20 group by b <b, d>

J6 select ∗ from T, R where T.a = R.e
T :<a, T. ∗>
R:<e,R. ∗>

J7 select ∗ from T, R where T.a = R.e and T.b = R.f
T :<(a, b), T. ∗>
R:<(e, f), R. ∗>

Table 1: Running examples of MapReduce jobs.

key, the reducer applies the reduce function on the values
associated with that key and outputs a set of final key-value
pairs.

2.2 Assumptions & Notations
We assume that the input queries are specified in some

high-level language (e.g., [16, 17, 14, 5, 4]) which are then
translated to MapReduce jobs. By specifying the input jobs
via a high-level query language, it facilitates the identifica-
tion of sharing opportunities among jobs (via their query
schemas); and standard statistics-based techniques [9, 15,
20] could be used to estimate the sizes of their shared map
outputs. This assumption is also adopted in several related
work [12, 3, 11, 20].

In the rest of this paper, we will use the terms queries and
jobs interchangeably. Table 1 shows seven jobs (J1 to J7)
that we will be using as running examples throughout this
paper.

For a job Ji, we use Ki to represent its map output key, Ai

to represent the set of attributes in Ki, |Ai| to represent the
number of attributes in Ai, Mi to represent its map output,
and Ri to represent its reduce output. For example, for J2

in Table 1, K2 = (a, b), A2 = {a, b} and |A2| = 2.
We use Ki � Kj to denote that Ki is a prefix of Kj , and

Ki ≺ Kj to denote that Ki is a proper prefix of Kj (i.e.,
Ki 6= Kj). For example, K4 ≺ K2 and K5 6≺ K2.

Consider a map output Mi with schema (Ai, Vi) where Ai

and Vi refers to the map output key and value attributes,
respectively. Given a set of attributes A ⊆ Ai, we use MA

i

to denote the map output derived from Mi where its map
output key attributes are projected onto A; i.e., MA

i =

πA,Vi
(Mi). For example, M

{a}
2 = M4.

Consider two jobs Ji and Jj where Aj ⊆ Ai. We use

Mi,j ⊆ Mi to denote the subset of Mi such that M
Aj

i,j =

M
Aj

i

⋂
Mj represents the subset of Mj that can be derived

from Mi. Furthermore, we use Mi

p
Mj to represent the

(key, value-list) representation of the map output Mi

⋂
Mj .

For example, if Mi

⋂
Mj = {(k1, v1), (k1, v2), (k2, v3)}, then

Mi

p
Mj = {(k1, <v1, v2>), (k2, <v3>)}.

3. MULTI-JOB OPTIMIZATION
In this section, we discuss several multi-job optimization

techniques. We first review the grouping technique in MR-
Share [12], which is the most relevant work to ours, and then
present our proposed generalized grouping technique (GGT)
and materialization technique (MT). For simplicity, we fo-
cus our presentation on two single-input jobs Ji and Jj on
an input file F ; the handling of multi-input jobs is discussed
in Section 3.4. Figure 1 gives a pictorial comparison of the
techniques to process two jobs Ji and Jj , where Kj � Ki.

3.1 Grouping Technique

146

ReducerF Mi RiMapper

ReducerF Mj RjMapper

ReducerF

Ri

Mapper

Ji

Jj

Rj

Naive technique

Mi (Mj\ Mi
Kj

)

Generalized grouping technique

ReducerF Mapper RiMi

Mj\ Mi
Kj

ReducerMapper RjMj\ Mi
Kj

Mj Mi
Kj

Ji

Jj

materialization materialization

Materialization technique

F

Figure 1: Multi-job optimization techniques

In this section, we review MRShare’s grouping technique.

Sharing map input scan. For two jobs Ji and Jj to share
their map input scan, the input files of Ji and Jj , the input
key and value types of Ji and Jj , and the map output key
and value types of Ji and Jj must be all the same. We can
then combine Ji and Jj into a new job to share the scan of
the map input for the two jobs. We now describe the map
and reduce phases of the new job.

In the map phase, the common input file is scanned to
generate the map outputs Mi for Ji and Mj for Jj . To
distinguish the map outputs of the two jobs in the reduce
phase, we use tag(i) to tag the map output Mi and tag(j)
to tag the map output Mj . The tags are stored as part of
the map output values; thus, each map output tuple is of
the form (key,(tag,value)).

In the reduce phase, for each key and for each value as-
sociated with the key, if the tag of the value is tag(i), we
distribute the value to the reduce function of Ji; otherwise,
we distribute the value to the reduce function of Jj . When
all the values associated with a key have been examined, we
generate the results for that key for the two jobs.

Sharing map output. For Ji and Jj to also share map
output besides sharing map input scan, the two jobs must
additionally satisfy the requirement that Ki = Kj . We can
then combine Ji and Jj into a new job to share both their
map input scan as well as any common map output (i.e.,
Mi

⋂
Mj). Sharing map output reduces the map output

size and hence the sorting and communication cost. We
now describe the map and reduce phases of the new job.

In the map phase, the values of the map output are tagged
tag(i), tag(j), and tag(ij), respectively, for tuples that be-
long to Mi \Mj , Mj \Mi, and Mi

⋂
Mj . In this way, tuples

that belong to Mi

⋂
Mj are produced only once with the tag

tag(ij).
In the reduce phase, for each key and for each value as-

sociated with the key, if the tag of the value is tag(i), we
distribute the value to the reduce function of Ji; if the tag
of the value is tag(j), we distribute the value to the re-
duce function of Jj ; otherwise, we distribute the value to
the reduce functions of both Ji and Jj . When all the val-
ues associated with a key have been examined, the reducer
generates the results for that key for both jobs.

Example 1. Consider the two jobs J1 and J4. We can
combine them into a new job to both share the scan of T as
well as share the common map output for a ≥ 10∧b ≤ 20. In
the map phase, for each tuple t from T , if t.a ≥ 10∧t.b > 20,
we produce the key-value pair (t.a, (tag(1), t.d)) indicating
that it is produced by only J1; if t.a < 10 ∧ t.b ≤ 20, we
produce the key-value pair (t.a, (tag(4), t.d)) indicating that
it is produced by only J4; if t.a ≥ 10 ∧ t.b ≤ 20, we pro-
duce the key-value pair (t.a, (tag(14),t.d)) indicating that it
is produced by both J1 and J4; otherwise, we do not produce
any map output for the tuple. In the reduce phase, for each
key and for each value associated with the key, if the tag of
the value is tag(1), we aggregate the value for J1; if the tag
of the value is tag(4), we aggregate the value for J4; oth-
erwise, we aggregate the value for both J1 and J4. When
all the values associated with a key have been aggregated, we
output the results for that key for J1 and J4. 2

3.2 Generalized Grouping Technique
In this section, we present a generalized grouping tech-

nique (GGT) that relaxes the requirement of MRShare’s
grouping technique (i.e., Ki = Kj) to enable the sharing
of map output. To motivate our technique, consider the two
jobs J1 and J2 in Table 1. AlthoughK1 6= K2, it is clear that
the map output of J2 for a ≥ 10 could be used to derive the
partial map output of J1. We first present the basic ideas
for processing two jobs and then discuss the generalization
to handle more than two jobs.

Basic Ideas. To share the map output of two jobs Ji and
Jj , GGT requires that Kj � Ki which is a weaker condition
than MRShare’s grouping technique (i.e., Ki = Kj). The
jobs Ji and Jj are combined into a new job to enable the
map output of Ji to be reused for Jj .

In the map phase of the new job, we generate the map

output Mi for Ji and the partial map output Mj \ M
Aj

i

for Jj . The remaining map output of Jj (i.e., M
Aj

i,j) is not
generated explicitly since they can be derived from Mi (i.e.,
Mi,j). By sharing the map output of Ji and Jj via Mi,j ,
we reduce the overall size of the map output. The values
of the map output are tagged tag(i), tag(j), and tag(ij),

respectively, for tuples that belong to Mi \Mi,j , Mj \M
Aj

i ,
and Mi,j .

Note that in the MapReduce framework, the map out-
put tuples for a job must all share the same output schema
(i.e., same key and value types). While this requirement is
satisfied by MRShare’s grouping technique (i.e., Ki = Kj),
the relaxed requirement (i.e., Kj � Ki) of GGT may re-
quire us to additionally convert the map output of Ji and
Jj (produced by our new job) to be of the same type. To
achieve this, we use the simple approach of converting both
the key and value components of the map output to string
values if their types are different. Let us take the conversion
of the key component for example. For the key componen-
t of a map output tuple, we represent it as a string value
that is formed by concatenating the string representation
of each of its key attributes separated by some special de-
limiter (e.g., “:”). For example, the string representations
of the key components of J2 and J3 are of the form “a:b”
and “a:b:c”, respectively. This representation enables each
key attribute value to be easily extracted from the string
representation of the key component.

147

Since Kj � Ki, the map output of the new job is par-
titioned on Kj and sorted on Ki. By partitioning on Kj ,
the map output tuples that have the same Kj values are
distributed to and processed by the same reducer thereby
enabling the reuse of the map output of Ji for Jj . The sort-
ing on Ki is to facilitate the processing at the reducers (to
be explained later); note that this sorting is well defined:
for the map output tuples of Jj (whose key values do not
contain all the values of Ki), the missing attribute values
are treated as being converted to empty string values.

In the reduce phase of the new job, to compute the results
of Ji, for each key of Ji, we apply the reduce function on the
values associated with that key from tuples tagged tag(i)
or tag(ij). To compute the results of Jj , for each key of
Jj , besides the values associated with that key (from tuples
tagged tag(j)), we also need to find the values of Ji that
can be reused for Jj ; i.e., tuples tagged tag(ij) where the
projection of its key on Aj is equal to the key of Jj . The
reduce function of Jj is applied on all these values to produce
the result for that key. Note that all the relevant tuples
needed for the reduce function can be found very efficiently
with a partial sequential scan of the map output (which is
sorted on Ki).

Generalization. We now discuss how GGT can be gener-
alized to handle more than two jobs.

Consider a batch of jobs J = {J1, J2, · · · , Jn} that are
sorted in non-ascending order of |Ai|. For each job Ji ∈ J ,
let PJi

denote all the jobs preceding Ji in J whose map
output can be reused for Ji; i.e., PJi

= {Jj ∈ J | j <

i,Ki � Kj}. Furthermore, let NMi = Mi \ (
⋃

Jj∈PJi
M

Ai
j)

denote the map output of Ji that cannot be derived from the
map output of any job in PJi

. We refer to NMi as the non-
derivable map output of Ji in J . We use NM =

⋃n

i=1
NMi

to denote the non-derivable map output for all the jobs in
J .

GGT combines the batch of jobs J into a single new job to
share map input scan and map output. In the map phase of
the new job, for each Ji ∈ J , we produce and tag the map
output NMi; each tag here is of the form tag(S), where
S ⊆ {i, i+1, · · · , n}. In the reduce phase of the new job, we
apply the reduce functions on the appropriate values based
on their tags to produce the results for the batch of jobs.

Unlike the grouping technique where each reduce function
is applied on the values associated with one key, GGT may
need to apply each reduce function on the values associated
with multiple consecutive keys due to the different number of
map output key attributes for the jobs. Therefore, in GGT,
we have to determine when to apply the reduce functions
and output the results for the jobs; the details of this are
discussed elsewhere [18].

Example 2. Consider the two jobs J1 and J2. As K1 ≺
K2, GGT is applicable to enable both jobs to share map input
scan and map output. In the map phase, for each tuple t
from T , if t.a ≥ 10 ∧ t.b > 20, we produce the key-value
pair (t.a, (tag(1), t.d)) indicating that it is produced and
consumed by only J1; if t.a < 10 ∧ t.b ≤ 20, we produce
the key-value pair (t.a:t.b, (tag(2), t.d)) indicating that it is
produced and consumed by only J2; if t.a ≥ 10∧ t.b ≤ 20, we
produce the key-value pair (t.a:t.b, (tag(12), t.d)) indicating
that it is produced by J2 and consumed by both J1 and J2;
otherwise, we do not produce any map output for that tuple.
We then partition the map output on a and sort the map

output on a:b. In the reduce phase, we apply the reduce
functions of J1 and J2 on the appropriate values to produce
the results for J1 and J2. 2

3.3 Materialization Techniques
In this section, we present an alternative approach, termed

materialization techniques (MT), for enabling multiple jobs
to share map input scan and map output. Given a batch of
jobs, the main idea of MT is to process the jobs in a specific
sequence such that the map outputs of some of the preced-
ing jobs can be materialized and used by the succeeding
jobs in the sequence. There are two basic materialization
techniques, namely, map output materialization and reduce
input materialization, to enable sharing of map input and
map output, respectively. We first present the techniques
for processing two jobs and then discuss the generalization
to handle more than two jobs.

Map Output Materialization (MOM). Our first mate-
rialization technique, which enables jobs Ji and Jj to share
the scan of the map input file, requires that the input files
and input key and value types of Ji and Jj to be the same.
Assume that Ji is to be processed before Jj .

In the map phase of Ji, we read the map input file F to
compute both the map output Mi for Ji as well as the map
output Mj for Jj . Mj is materialized to the distributed file
system (DFS) to be used later for processing Jj . The reduce
phase of Ji is processed as usual.

In the map phase of Jj , instead of reading the map input
file F a second time, we read the materialized map output
Mj from the DFS. The reduce phase of Jj is processed as
usual.

This simple materialization technique is beneficial if the
total cost of materializing and reading Mj is lower than the
cost of reading the input file F .

Reduce Input Materialization (RIM). Our second ma-
terialization technique aims to enable jobs Ji and Jj to share
map output. This technique requires that Kj � Ki, Ji to
be processed before Jj , and the map output of Ji and Jj to
be partitioned on Kj . The key idea of this technique is to

materialize the map output M
Aj

i

p
Mj in the reduce phase

of Ji, to be used later by the reduce phase of Jj . In this
way, the sorting and communication cost of the map output

M
Aj

i

⋂
Mj is eliminated when processing Jj .

The map phase of Ji is processed as usual: we scan the
input file F to produce the map output Mi for Ji. To en-

able the reduce phase of Ji to materialize M
Aj

i

p
Mj later,

the map output Mi is tagged as follows: tuples in Mi,j are
tagged using tag(ij) while the remaining tuples (i.e., tuples
in Mi \Mi,j) are tagged using tag(i).

In the reduce phase of Ji, for each key, we apply the re-
duce function of Ji on the values associated with the key
to produce the results of Ji. At the same time, for values
that are tagged tag(ij), we derive and materialize the sorted

map output M
Aj

i

p
Mj into the DFS so that the material-

ized output will be later used by the reduce phase of Jj .
Note that an optional combine function can be applied to

reduce the size of the materialized map output M
Aj

i

p
Mj

and hence the materializing and reading costs.
In the map phase of Jj , we scan the input file F to gener-

ate the partial map output Mj \M
Aj

i for Jj . The remaining

map output of Jj (i.e., M
Aj

i,j) is not generated explicitly s-

148

ince they have already been sorted and materialized by Ji’s
reduce phase.

In the reduce phase of Jj , we first read the materialized

map output Mj

p
M

Aj

i from DFS and merge them with the
map output that are shuffled from the map phase. Then for
each key, we apply the reduce function of Jj on the values
associated with that key to produce the results of Jj .

Thus, RIM reduces the sorting and communication costs
for Jj by reducing the size of Jj ’s map output, but incurs

an additional cost to materialize and read M
Aj

i

p
Mj .

Combining MOM & RIM. Both MOM and RIM can be
applied together as follows. In the map phase of Ji, besides
producing the map output Mi for Ji, we also generate the

map output Mj \M
Aj

i for Jj . Mj \M
Aj

i is materialized into
the DFS to be reused later for Jj . Then we process Ji as
before.

In the map phase of Jj , instead of reading from the in-

put file F , we read the materialized map output Mj \M
Aj

i

from DFS and simply redirect the read tuples as the map
output. Then we process Jj as before. The question of
whether MOM and RIM should used together is decided in
a cost-based manner depending on whether the total cost of

materializing and reading Mj \M
Aj

i is lower than the cost
of reading the input file F .

Generalization. Given a batch of jobs J = {J1, J2, · · · , Jn}
sorted in non-ascending order of |Ai|, MT processes the jobs
sequentially based on this ordering since the map output of
a preceding job can possibly be reused for a succeeding job.

When processing J1, in the map phase, we first produce
NM1 for J1 (which is simply M1), and tag each tuple t
accordingly depending on the subset of remaining jobs in J
that t can be used to derive their map outputs. Then for
each Ji (1 < i ≤ n), if the cost of materializing and reading
NMi is lower than the cost of reading the input file F , we
produce, tag, and materialize NMi for Ji. In the reduce
phase, when applying the reduce function for J1, for each Ji

(1 < i ≤ n), based on the tags in the values, we materialize

the map output NM
Ai
1

p
Mi to be reused later for Ji.

When processing Ji (1 < i ≤ n), in the map phase, if NMi

has been materialized, we read NMi and simply redirect the
read tuples as the map output; otherwise, we read the input
file F to produce and tag the map output NMi for Ji. In
the reduce phase, we first merge NMi with the map output
that are materialized by the previous jobs (i.e., NM

Ai
j

p
Mi

for each j ∈ [1, i− 1]) and then process the reduce function
of Ji. When processing the reduce function of Ji, for each Jj

(i < j ≤ n), based on the tags in the values, we materialize

the map output NM
Aj

i

p
Mj to be reused later for Jj .

Example 3. Consider the two jobs J1 and J2 again. As
K1 ≺ K2, MT is applicable to enable both jobs to share map
input scan and map output. As the map output of J2 can be
reused for J1, we process J2 before J1. In the map phase of
J2, for each tuple t from T , if t.b ≤ 20∧t.a < 10, we produce
the key-value pair (t.a:t.b,(tag(2),t.d)); if t.b ≤ 20∧t.a ≥ 10,
we produce the key-value pair (t.a:t.b,(tag(12),t.d)); if t.b >
20 ∧ t.a ≥ 10, we produce the key-value pair (t.a, t.d) and
materialize it into DFS to be reused later for J1 to share map
input scan; otherwise, we do not produce any map output for
that tuple. In the reduce phase of J2, for each key, we sum
the values associated with the key to produce the results of
J2. At the same time, for each specific key t.ai:t.bi, for all

the values <v1, · · · , vn> associated with the key and tagged
by tag(12), we materialize (t.ai,

∑n

i=1
vi) into DFS to be

reused later for J1 to share map output. When processing
J1, in the map phase, we read the materialized map output
and sort and partition them. In the reduce phase, we first
read the materialized map output and merge them with the
map output shuffled from the map phase. Then for each
key, we sum the values associated with the key to produce
the results of J1. 2

3.4 Discussions
In this section, we compare the proposed techniques, dis-

cuss the choices for map output keys and show how our
proposed techniques apply to multi-input jobs.

Comparison of techniques. Our GGT generalizes and
subsumes MRShare’s grouping technique. However, there
is no clear-cut winner between GGT and MT. Since GGT
merges a group of jobs into a single new job, it requires the
map output key and value types of the group of jobs to be
the same, which may require a type conversion overhead.
Moreover, GGT also incurs a higher sorting cost due to the
larger map output of the merged job. On the other hand,
MT has the limitation that the jobs within a group must be
executed sequentially, and MT also incurs the overhead of
result materialization and subsequent reading of the mate-
rialized results.

Choices for map output keys. For both GGT and MT,
the choice of the map output key (i.e., ordering of Ai that
specifies the map output key Ki for a job Ji) is important
as it affects the sharing opportunities among jobs. For ex-
ample, consider the jobs J1, J2 and J5 in Table 1. Observe
that there are two alternative map output keys for J2: if we
choose K2 to be (a,b), we can share map output for J1 and
J2; otherwise, with K2 = (b, a), we can share map output
for J5 and J2. Thus, to optimize the sharing benefits for a
given batch of jobs, we need to determine the map output
key for each job; we defer a discussion of this optimization
to Section 5.

Handing multi-input jobs. Our proposed techniques can
be easily extended to handle multi-input jobs as well. Con-
sider the two jobs J6 and J7 in Table 1 which have the
common input files T and R. For both T and R, the map
output key of J6 is a proper prefix of the map output key
of J7. Therefore, we can apply MT to share both the map
input scan as well as map output for the two jobs. Further-
more, by converting the map output keys of the two jobs into
the same type, MRShare’s grouping technique can share the
map input scan for the two jobs while our GGT can share
both the map input scan and map output for the two jobs.

4. COST MODEL
In this section, we present a cost model to estimate the e-

valuation cost of a batch of jobs J = {J1, J2, · · · , Jn} in the
MapReduce framework using the proposed techniques. Sim-
ilar to MRShare, we model only the disk and network I/O
costs as these are the dominant cost components. However,
our cost model can be extended to include the CPU cost
as well. Table 2 shows the system parameters used in our
model, where the disk and network I/O costs are in units of
seconds to process a page.

We assume the jobs in J are sorted in non-ascending order
of |Ai| and each Ji ∈ J is processed as m map tasks and

149

Table 2: System parameters
Parameter Meaning

Clr cost of reading a page from local disk
Clw cost of writing a page to local disk
Cl sum of Clr and Clw

Cdr cost of reading a page from DFS
Cdw cost of writing a page to DFS
Cd sum of Cdr and Cdw

Ct network I/O cost of a page transfer

D merge order for external sorting
Bm buffer size for external sorting at mapper nodes
Br buffer size for external sorting at reducer nodes

r reduce tasks on the input file F . We use |R| to denote
the size of R in terms of number of pages, where R can
be an input file or map/reduce output of some job. For a

map output Mi, we use pmMi
= ⌈logD⌈ |Mi|

mBm
⌉⌉ to denote the

number of sorting passes of its map tasks where |Mi|
m

denote

the average size of a map task, prMi
= ⌈logD⌈ |Mi|

rBr
⌉⌉ − 1 to

denote the number of sorting passes of its reduce tasks where
|Mi|
r

denote the average size of a reduce task 2, and pMi
to

denote the sum of pmMi
and prMi

.

4.1 A Cost Model for MapReduce
Given a job Ji, its total cost (denoted as Cji) consists of

its map and reduce costs (denoted as CMi
and CRi

respec-
tively). The map cost is given by:

CMi
= Cdr|F |+ Clw|Mi|+ Clp

m
Mi

|Mi| (1)

where Cdr|F | denote the cost to read the input file, Clw|Mi|
denote the cost to write the initial runs of the map output,
and Cl|Mi|p

m
Mi

denote the cost to sort the initial runs.
The reduce cost is given by:

CRi
= Ct|Mi|+Clp

r
Mi

|Mi|+Clr|Mi| (2)

where Ct|Mi| denote the transfer cost of the map output,
Cl|Mi|p

r
Mi

denote the sorting cost of the map output, and
Clr|Mi| denote the reading cost for the final merge pass. We
do not include the cost to write the job results since this cost
is common for all the proposed techniques.

Therefore, the total cost can be expressed as follows:

CRi
= Cdr|F |+ (Ct + Cl +ClpMi

)|Mi| (3)

Our cost model for Hadoop has one major difference from
MRShare’s cost model. In MRShare’s model, the number of
initial runs for sorting in the reduce phase is assumed to be
equal to the number of map tasks (i.e., m). Based on this
assumption, using the grouping technique does not increase
the sorting cost in the reduce phase. However, in practice,
Hadoop’s reduce phase actually merges the transferred map
output in main memory based on Br to build initial runs
which implies that using the grouping technique could in-
crease the sorting cost in the reduce phase. Our cost model
does not have this simplifying assumption and it is therefore
more accurate than MRShare’s model. In our performance
evaluation, we apply our more accurate cost model to MR-
Share’s GT technique as well so that all the techniques are
compared based on the same cost model.

2The final merge pass optimization is enabled for sorting in
Hadoop’s reduce phase.

4.2 Costs for the Proposed Techniques
In this section, we use the above cost model to estimate

the costs for the naive technique and our proposed GGT
(which subsumes MRShare’s GT technique) as well as MT
techniques.

Naive technique: The naive technique processes each job
independently. Thus, the cost of the naive technique is sim-
ply the sum of the cost of each job which is given by:

CA = nCdr|F |+ (Ct + Cl)
n∑

i=1

|Mi|+ Cl

n∑

i=1

pMi
|Mi| (4)

Generalized grouping technique: GGT combines the
batch of jobs J into a single new job whose map output is
denoted as NM =

⋃n

i=1
NMi. Thus, the cost of GGT is

given by:

CG = Cdr|F |+ (Ct + Cl + ClpNM)|NM | (5)

Materialization technique: MT processes the jobs in J
sequentially in non-ascending order of |Ai| and materialize
and reuse the map output as we have described in Section
3.3. Thus the cost of MT is given by:

CM = Cdr |F |+
n∑

i=2

min{Cdr |F |,Cd|NMj |}+ (Ct + Cl)

|NM |+ Cl

n∑

i=1

pNMi
|NMi|+ Cd

n−1∑

i=1

n∑

j=i+1

|NM
Aj

i

x
Mj |

(6)

Note that
∑n

i=2
min{Cdr|F |, Cd|NMj |} denote the materi-

alization and reading cost in the map phase, and

Cd

∑n−1

i=1

∑n

j=i+1
|NM

Aj

i

p
Mj | denote the materialization

and reading cost in the reduce phase.

5. OPTIMIZATION ALGORITHMS
In this section, we discuss how to find an optimal evalua-

tion plan for a batch of jobs J = (J1, J2, · · · , Jn).
An evaluation plan for J specifies the following: (1) the

map output key Ki for each job Ji ∈ J ; (2) a partition-
ing of the jobs in J into some number of disjoint group-
s, G1, · · · , Gk, where k ≥ 1 and J = G1 ∪ · · · ∪ Gk; and
(3) a processing technique Ti for evaluating the jobs in each
group Gi. Since MRShare’s grouping technique is subsumed
by GGT, and the naive evaluation technique is equivalent
to partitioning J into n groups each of which consists of a
single job that is processed by GGT, we can simply consider
only GGT or MT for each Ti.

Let Cost(Gi, Ti) denote the the cost of evaluating the
group of jobs Gi ⊆ J with technique Ti ∈ {GGT,MT}.
The estimation of Cost(Gi, Ti) has already been discussed
in Section 4.

The optimization problem is to find an evaluation plan
for J such that the total evaluation cost

∑k

i=1
Cost(Gi, Ti)

is minimized. A simpler version of this optimization prob-
lem was studied in MRShare and shown to be NP-hard.
The problem is simpler in MRShare for two reasons: first,
MRShare considers only the naive and grouping techniques;
and second, MRShare does not have to consider the selection
of the map output keys as this does not affect the sharing
opportunities for the grouping technique. As a result, the
heuristic approach in MRShare can not be extended for our
more complex optimization problem.

150

To cope with the complexity of the problem, we present
a two-phase approach to optimize the evaluation plan. In
the first phase, we choose the map output key for each job
to maximize the sharing opportunities among the batch of
jobs. In the second phase, we partition the batch of jobs into
groups and choose the processing technique for each group
to minimize the total evaluation cost.

5.1 Map Output Key Ordering Algorithm
In this section, we discuss how to choose the map output

key for each job (i.e., determine the ordering of the key at-
tributes) to maximize the sharing opportunities for a batch
of jobs. To quantify the sharing opportunities for a batch
of jobs J , we use the notion of the non-derivable map out-
put for J , denoted by NM , that was defined in Section 3.2.
Since a smaller size of NM represents a larger amount of
sharing among the jobs in J , to maximize the sharing a-
mong the jobs in J , the map output key for each job is
chosen to minimize the size of NM .

A naive solution to optimize this problem is to enumer-
ate all the combinations of map output keys for the jobs
and choose the combination that minimizes the size of NM .
However, the time complexity of this brute-force solution is
O(|A1|!|A2|! · · · |An|!) which is infeasible for large number
of jobs3. In this paper, we propose a greedy heuristic to
optimize the map output key for each job.

Our greedy algorithm determines the ordering of the map
output key attributes for each job Ji progressively by main-
taining a list of sets of attributes, referred to as the ordering
list (denoted by OLi), to represent the ordering relationship
for the map output key attributes of Ji. The attributes with-
in a set are unordered, and the attributes in a set S are or-
dered before the attributes in another set S′ if S appears be-
fore S′ in the list. We use |OLi| to denote the number of sets
in OLi. For example, in the ordering list <{a, b, c}, {d}>,
the attributes in {a, b, c} are unordered and they precede
the attribute d. Furthermore, given two jobs Ji and Jj , we
use OLi � OLj to represent that OLi is a prefix of OLj ,
i.e., for each i ∈ [1, |OLi|], the ith sets in OLi and OLj are
the same. For example, <{a, b}, {c}> � <{a, b}, {c}, {d}>.

Besides maintaining OLi for each job Ji, our approach
also maintains a reuse set, denoted by RSi, for each job Ji.
The purpose of RSi is to keep track of the all jobs that can
be reused for computing the map output of Ji.

Initially, as we have not chosen any jobs to share map
output, the size of NM is simply the sum of each job’s map
output size. Furthermore, for each Ji ∈ J , we initialize OLi

to be a list with a single set containing all the attributes
in Ai and initialize RSi to be empty. We then construct
a weighted, undirected graph G = (V,E) to represent all
the potential sharing opportunities in J as follows. Each
Ji ∈ J is represented by a vertex in V . An edge e = (Ji, Jj)
is in E if there exists two map output keys Ki and Kj ,
respectively, for Ji and Jj such that the map output of one
job can be reused for the other job (i.e., Ki � Kj or Kj �
Ki). The weight of (Ji, Jj) is initialized to be the reused map

output size for the two jobs (i.e., |M
Aj

i

⋂
Mj | if Kj � Ki or

|MAi
j

⋂
Mi| if Ki � Kj). All the edges in E are initialized

to be unmarked.

3For example, we experimented with a batch of 25 randomly
generated jobs each with a maximum of four attributes in
its map output key, and the brute-force approach did not
complete running in 12 hours.

Figure 2 shows an example of the initial graph constructed
for a batch of five jobs {J8, · · · , J12}. For ease of presenta-
tion, we use an interval of integers to represent the map
output of a job where the size of an integer is 1. For ex-
ample, the map output size of J8 is 20 since it contains 20
integers in its map output [1, 20]. The initial graph contains
the edge e1 = (J8, J10) since there exists K10 = (a, b, c) and
K8 = (a, b, c, d) such that K10 � K8; moreover, the weight
of e1 is 16 since there are 16 values (i.e., [5,20]) in the map
output of J8 that can be reused for J10.

For convenience, we use EJi
to denote the set of all the

unmarked edges incident on a node Ji ∈ V , and use NJi
to

denote the set of all the vertices that have a marked edge
with a node Ji ∈ V .

Overall algorithm. Given an initial graph G = (V,E),
to reduce the size of NM , our greedy approach iteratively
selects and marks one edge from the graph G until all the
edges in G have been marked. At each iteration, it first
chooses an unmarked edge with the maximum weight (i.e.,
the chosen edge represents the largest sharing opportunity
and maximizes the reduction of the size of NM) to share and
marks the edge. Then based on the chosen edge, it updates
the ordering lists and reusing sets for some jobs. We refer
to V1 and V2 as the set of jobs whose ordering lists and
reuse sets, respectively, have been changed in the updating.
Finally, for each Ji ∈ V1, we check the edge validity for
all the edges in EJi

and remove the invalid edges (to be
explained). For each Ji ∈ V2, we update the weights for
all the edges in EJi

(to be explained). After the iterative
process terminates, we derive the map output key for each
job based on its ordering list.

In the following, we explain how the graph is updated in
each iteration and how the map output key is derived at the
end of the iterative process.

Updating ordering lists. Suppose that the edge e =
(Ji, Jj) is selected in an iteration. We first update the or-
dering lists for Ji and Jj . Then for each job Jk ∈ {Ji, Jj},
if the ordering list of Jk has changed, we also update the
ordering lists for the jobs in NJk

and recursively propagate
the updating for the jobs in NJk

whose ordering lists have
changed until all the jobs have been examined or there is no
more job whose ordering list has changed.

Given an edge e = (Ji, Jj), the main idea to update OLi

and OLj is to ensure that after the updating, one ordering
list is a prefix of the other ordering list (i.e., OLi � OLj or
OLj � OLi). For example, the first iteration chooses e1 =
(J8, J10) to share since the weight of e1 is the highest, and
since OL8 = <{a, b, c, d}> and OL10 = <{a, b, c}>, OL8

is updated to <{a, b, c}, {d}> to ensure that OL10 � OL8.
Therefore, to update OLi and OLj , we iterate through the
sets in OLi and OLj and accordingly decompose the cor-
responding sets to maintain the prefix relationship between
the two lists. The time complexity for this updating is O(m),
where m is the maximum number of map output key at-
tributes in a job. Since m is usually very small, we assume
this checking can be done in O(1) time.

For example, in Figure 2, the first iteration chooses the
edge e1 = (J8, J10). Then OL10 and OL8 are updated as fol-
lows: OL10 does not change andOL8 becomes<{a, b, c}, {d}>.
The second iteration chooses the edge e6 = (J10, J12), and
OL12 and OL10 are updated as follows: OL12 does not
change and OL10 becomes <{a, b}, {c}> which triggers the

151

Figure 2: Example to illustrate key ordering algorithm.

updating for OL8 since J8 has a marked edge with J10. Then
we update OL8 to be <{a, b}, {c}, {d}>.

Updating reuse sets. The updating of reuse sets is also
done recursively similar to the updating of ordering lists.
Therefore, we focus on explaining the updating of reuse sets
for two jobs.

Given an edge e = (Ji, Jj), the main idea to update RSi

and RSj is as follows: if Ai ⊂ Aj , we update RSi by adding
the jobs in RSj ∪ {Jj} into the set RSi since all the jobs in
RSj ∪ {Jj} can be reused for Ji. Similarly, if Aj ⊂ Ai, we
update RSj by adding the jobs in RSi ∪ {Ji} into the set
RSj since all the jobs in RSi ∪ {Ji} can be reused for Jj .
Otherwise, we have Ai = Aj , and we update both RSi and
RSj by assuming that the map output of Jj will be reused
for Ji as follows. Let S denote a copy of RSi. We update
RSi by adding the jobs in RSj ∪ {Jj} into RSi, and update
RSj by adding the jobs in S into RSj . The time complexity
of the updating is O(1).

After updating the ordering lists and reuse sets as de-
scribed above, we then use the updated information to up-
date the graph G; this includes identifying invalid edges (to
be defined) in G, and updating some edge weights.

Identifying invalid edges. For a job Ji ∈ V1, since OLi

has changed, for each e ∈ EJi
, we need to check whether e

is still a valid edge. An unmarked edge e = (Ji, Jj) in G is
defined to be a valid edge if we can derive two map output
keys Ki and Kj , respectively, for Ji and Jj from OLi and
OLj such that Ki � Kj or Kj � Ki (i.e., we can share
map output for the two jobs); otherwise, e is considered an
invalid edge and is removed from G.

We can check whether an unmarked edge e = (Ji, Jj) is
a valid edge or not as follows. If we can derive two order-
ing lists OL′

i and OL′
j respectively from OLi and OLj such

that they satisfy the prefix relationship (i.e., OL′
i � OL′

j or
OL′

j � OL′
i), then the edge is a valid edge; otherwise, the

edge is an invalid edge and can be removed from G. This
process is similar to the process of updating the ordering
lists for two jobs, and the time complexity is also O(1). For
example, in Figure 2, after choosing e1 to share in the first
iteration, OL8 becomes <{a, b, c}{d}> which makes e3 an
invalid edge since OL11 is <{a, d}>.

Updating edge weights. For a job Ji ∈ V2, since RSi has
changed, for each e ∈ EJi

, we need to update the weight
for e. If the updated weight is 0, we can simply remove the
edge since sharing the edge will not reduce the size of NM .

Given an edge e = (Ji, Jj), its weight is updated as fol-
lows. If Ai ⊂ Aj (i.e., the map output of the jobs in RSj

can be reused for Ji), then the weight of e is updated to
|Si1| − |Si2|, where |Si1| and |Si2| denote, respectively, the

size of the map output that Ji needs to produce (i.e., the
size of the map output of Ji that can not be reused from
RSi) before and after we share e. Note that both |Si1| and
|Si2| are computed based on RSi which has to be updated
if we share e. Similarly, if Aj ⊂ Ai (i.e., the map output of
the jobs in RSi can be reused for Jj), then the weight of the
edge is updated to |Sj1| − |Sj2|, where |Sj1| and |Sj2| de-
note, respectively, the size of the map output that Jj needs
to produce before and after we share e. Otherwise, we have
Ai = Aj (i.e., the map output of the jobs in RSi and RSj

can be respectively reused for Ji and Jj), and the weight of
the edge is updated to be |Si1| − |Si2| + |Sj1| − |Sj2|. The
time complexity of this updating is O(1).

For example, in Figure 2, after choosing e1 to share in
the first iteration, RS10 becomes {J8} which triggers the
weight updating for the edges in EJ10

= {e4, e6}. Let us
first consider e4. After choosing e1 to share, J10 only needs
to produce the map output [21,25] (i.e., the remaining map
output [5,20] can be reused from J8) and the map output
of J9 can not be reused to reduce the map output [21,25]
further. Therefore, the weight of e4 decreases to 0 and e4 is
removed from the graph. Next, consider e6. After choosing
e1 to share, both the map output of J8 and J10 can be reused
for J12. However, the weight of e6 remains the same since
J8 does not enable additional reusing for J12.

Deriving map output key. Note that at the end of the
iterative process, it is possible for some set in an ordering
list OLi to contain more than one attribute (i.e., the order-
ing of the key attributes for Ji is not yet a total ordering).
To derive the map output key for Ji, we have to determine
an ordering for the remaining partially ordered attributes.
To correctly derive the ordering of key attributes for such
scenarios, we make use of a default ordering for all the at-
tributes. For example, in Figure 2, at the end of the iterative
process (i.e., after we have chosen the edge e6 to share), the
ordering lists for the five jobs J8, · · · , J12 all contain at least
one set that have more than one attribute. Assuming that
the default ordering for all the attributes is (a, b, c, d), then
the map output keys for J12, J10 and J8 are, respectively,
(a, b), (a, b, c), and (a, b, c, d), which captures all the shar-
ing that our algorithm has chosen. Note that without using
a default ordering, we could wrongly choose the map out-
put key (b, a) for J12 and the map output key (a, b, c) for
J10 which does not allow these two jobs to share their map
output.

Time Complexity. The time complexity of the algorithm
depends on the number of iterations. The time complexity
for the ith iteration is O(|Ei|), where |Ei| is the number
of edges in the graph in this iteration. Therefore, the time
complexity of the algorithm is O(In2) where I is the number

152

of iterations and O(n2) is the maximum number of edges in
the graph.

5.2 Partitioning Algorithm
In this section, we discuss the second phase of our ap-

proach; i.e., how to partition a batch of jobs into multiple
groups and choose the processing technique for each group
to minimize the overall evaluation cost. We use the notation
(Gi, Ti) to denote that a group of jobs Gi is being processed
by a technique Ti. Recall that since GGT subsumes MR-
Share’s grouping technique, and the naive evaluation tech-
nique is equivalent to partitioning the batch of jobs into
single-job groups each of which is processed by GGT, it is
sufficient to consider only the GGT and MT processing tech-
niques.

Our partitioning algorithm is based on the concept of
merging benefit which is defined as follows. Consider two
groups of jobs, (G1, T1) and (G2, T2), where G1 ∩ G2 = ∅.
We define the merging benefit from (G1, T1) and (G2, T2) to
(G1 ∪ G2, T3), where T3 ∈ {GGT,MT}, as Cost(G1, T1) +
Cost(G2, T2) - Cost(G1 ∪G2, T3).

Our partitioning algorithm is a greedy approach that it-
eratively selects a pair of groups of jobs to be merged based
on their merging benefit. Initially, each job is treated as a
single-job group processed by GGT (which is equivalent to
the naive technique since the group has only one job). At
each iteration, it merges the two groups that have the maxi-
mum positive merging benefit into a new group. The itera-
tive process terminates when the maximum merging benefit
is non-positive.

Note that the time complexity of the grouping algorithm
is O(n2), where n is the number of jobs in the batch. In
the first iteration, we compute the merging benefit for each
pair of groups, and in each subsequent iteration, since there
is only one new group produced in the previous iteration,
we only need to compute the merging benefit for each group
with the new group.

6. EXPERIMENTAL RESULTS
In this section, we present an experimental study to e-

valuate our proposed approach. Section 6.1 examines the
performance of our approach, and Section 6.2 evaluates the
effectiveness of our map output key ordering algorithm.

Algorithms. We compared six algorithms (denoted by
NA, MRGT , GGT , MT , GGTMT , and GT) in our ex-
periments. The two competing algorithms were NA, which
denote the naive approach of evaluating each job indepen-
dently, andMRGT , which denote MRShare’s grouping tech-
nique. For MRGT , we experimented with two different im-
plementation variants: the original variant [12], which uses
only a single global tuning parameter γ ∈ [0, 1] to quantify
the sharing among all the jobs in a batch, and an enhanced
variant which provides a more fine-grained and accurate ap-
proach to estimate job sharing using a tuning parameter γi,j
for each pair of jobs Ji and Jj . As our experimental result-
s show that the enhanced variant strictly outperforms the
original variant4, we do not report results for the original

4For example, in the default setting, the running time for
the enhanced variant was 3555s while that for the original
variant was, 3820s, 3942s, 3931s, 3802s, 3885s, 3860s, 4385s,
4872s, and 4881s, respectively, for a γ value of 1, 0.9, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3 and {0.2, 0.1, 0}.

variant and use MRGT to denote the enhanced variant.
Our three main proposed algorithms include: GGT , which

denote the generalized grouping technique; MT , which de-
note the materialization technique; and GGTMT , which
denote the approach combining both GGT and MT . In
addition, to demonstrate the effectiveness of our partition-
ing heuristic (Section 5.2), we also introduce a variant of
MRGT , denoted by GT , which combines MRShare’s group-
ing technique with our partitioning heuristic.

Datasets and Queries. We used synthetic datasets and
queries for our experiments. The schema of the datasets
was Data (key char(8), dim1 char(20), dim2 char(20), dim3
char(20), dim4 char(20), range int, value int) which consist-
ed of one unique key attribute, four dimensional attributes
used as group-by attributes, one range attribute used as the
selection attribute, and one value attribute used as the ag-
gregation attribute. Each of the four dimensional attributes
had 500 distinct values and all the attribute values were uni-
formly distributed. The datasets were stored as text format
and the size of each tuple was about 100 bytes. The default
dataset had 1.7 billion tuples with a size of 160GB.

The synthetic queries were generated from the following
query template: select T, sum(value) from Data where a
≤ range ≤ b group by T, where T is a randomly selected list
of dimensional attributes, and a and b are randomly selected
values such that a ≤ b. The default number of queries in
a query batch was 20. Each batch of queries was run three
times and we report their average running times.

Experimental environment. Our experiments were per-
formed using Hadoop 1.0.1 on a cluster of nodes that were
interconnected with a 1Gbps switch. Each node was e-
quipped with an Intel X3430 2.4GHz processor, 8GB memo-
ry, 2x500G SATA disks and running CentOS Linux 5.5. The
default cluster size was 41 (with 1 master node and 40 slave
nodes).

Hadoop configuration. The following Hadoop configura-
tion was used for our experiments: (1) the heap size of JVM
running was 1024MB; (2) the default split size of HDFS was
512MB; (3) the data replication factor of HDFS was 3; (4)
the I/O buffer size was 128KB; (5) the memory for the map-
side sort was 200MB; (6) the space ratio for the intermediate
metadata was 0.4; (7) the maximum number of concurrent
mappers and the maximum number of concurrent reducers
for each node was both 2; (8) the number of reduce tasks
was 240; (9) speculative execution was disabled5; (10) JVM
reuse was enabled; and (11) the default FIFO scheduler was
used which supports concurrent execution of jobs; note that
for MT , while the jobs within a group were executed sequen-
tially, jobs from different groups were executed concurrently.

Cost model parameters. We ran some I/O benchmarks
in the cluster to calibrate our cost model parameters [18]
as follows: the cost ratio of local read/write is 1, the cost
ratio for DFS read and write are, respectively, 1 and 2 (due

5Speculative execution is typically disabled in a busy clus-
ter due to its negative impact on performance [19]. Indeed,
in our preliminary experiments with speculative execution
enabled, we observed that the performance of all the algo-
rithms degraded. For example, in the default setting, the
running times for both NA and MRGT increased by 10%
while that for GGT and MT increased by 6%. Thus, the
winning margin of our algorithms increased slightly over NA
and MRGT with speculative execution enabled.

153

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 15 20 25 30

E
xe

cu
tio

n
 t
im

e
 (

se
c)

60%51%

4%
72% 62%

9%
1%

102%
81%

26%

8%

123%
106%

50%

14%

167%
141%

64%

29%

GGT
MT
GT

MRGT
NA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

80GB 160GB 240GB 320GB

E
xe

cu
tio

n
tim

e
(s

ec
)

66%57%
22%

4% 102%
81%

26%
8%

114%
97%

34%

14%

128%
107%

40%

18%

GGT
MT
GT

MRGT
NA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

10 20 30 40

E
xe

cu
tio

n
tim

e
(s

ec
)

136%
120%

45%

24%

125%
106%

38%
17%

108%93%
31%

12%

102%81%
26%

8%

GGT
MT
GT

MRGT
NA

(a) Effect of number of queries (b) Effect of data size (c) Effect of cluster size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

(10,40GB) (20,80GB) (30,120GB) (40,160GB)

E
xe

cu
tio

n
tim

e
(s

ec
)

99%
82%

27%

10%

102%
81%

25%

11%

103%
84%

28%

10%

102%
81%

26%

8%

GGT MT GT MRGT NA

 0

 1000

 2000

 3000

 4000

 5000

128MB 256MB 512MB 1GB 2GB

E
xe

cu
tio

n
 t
im

e
 (

se
c)

162%

109%

52%
41%

93%
100%

55%

26%

102%
81%

26%

8%

116%
89%

27%

9%

74%95%

17%
10%

GGT MT GT MRGT NA

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 15 20 25 30

Ex
ec

ut
ion

 tim
e

(s
ec

)

Number of queries

NA
RIM

RIM+MOM

(d) Effect of data size and cluster size (e) Effect of split size (f) Analysis of MT

Figure 3: Effectiveness of optimization algorithms

to replication factor), and the cost ratio of network I/O is
1.4. Note that the setting of the same cost ratio for both
local and DFS reads is reasonable due to the data locality
property of the MapReduce framework.

Summary of results. First, our algorithms (GT , GGT ,
MT , GGTMT) significantly outperform NA by up to 167%
and MRGT by up to 107%. In particular, GT outperform-
s MRGT by up to 31% demonstrating the effectiveness of
our partitioning algorithm against MRShare’s partitioning
algorithm. Second, among our algorithms, GT performs the
worst, and there is no clear winner between GGT and MT
(as explained in Section 3): GGT outperforms MT by up to
24% for some cases and MT outperforms GGT by up to 12%
for other cases. The overall winning approach is GGTMT
which outperforms the best of GGT and MT very slight-
ly. Given this, to avoid cluttering the graphs, we do not
explicitly show GGMT in the graphs as its performance
is approximated by the best of GGT and MT . Finally,
our results show that the optimization overhead incurred
by our approach is only a negligible fraction of the total
processing time. For example, in the default setting (with
20 queries), the evaluation time for our best algorithm (i.e.,
GGT) took 1895 seconds compared to only 50ms for opti-
mization; the optimization time increases to 1 second for 100
queries. Thus, the optimization overhead of our approach
is negligible even if the queries do not have any sharing op-
portunities; more details are given elsewhere [18].

6.1 Performance Comparison
In this section, we evaluate the effectiveness of our opti-

mization algorithms by varying four parameters, i.e., data
size, split size, number of queries and cluster size. Figure 3
shows the experimental results with the the improvement
factors (in %) of GGT , MT , GT and MRGT over NA in-
dicated. Due to space constraint, the number and size of
partitioned groups for our algorithms are given in [18].

Effect of number of queries. Figure 3(a) compares the
performance as the size of a query batch is increased. Ob-
serve that our algorithms significantly outperform NA and
MRGT . For example, GGT outperforms NA by 105% on

average and up to 167% when the number of queries is 30,
and GGT outperforms MRGT by 85% on average and up
to 107% when the number of queries is 30. Furthermore, as
the number of queries increases, the winning margin of our
algorithms over NA also increases. This is expected as the
sharing opportunities among queries also increase with the
query batch size.

Effect of data size. Figure 3(b) examines the performance
as a function of data size. Note that as we increase the da-
ta size, we also increase the number of reduce tasks. This
is reasonable as the number of reduce tasks is usually pro-
portional to the data size, as noted also in [1]. Therefore,
we set the number of reduce tasks to be 120, 240, 360, and
480, respectively, for data size of 80GB, 160GB, 240GB, and
320GB.

Here again, our algorithms significantly outperform NA
and MRGT . For example, GGT outperforms NA by 103%
on average and up to 128% when the data size is 320GB,
and GGT outperforms MRGT by 82% on average and up
to 93% when the data size is 320GB. Furthermore, as the
data size increases, the running time for the algorithms also
increases. In particular, the running time for NA increases
much faster than for the other algorithms which therefore
increases the winning margin of the other algorithms over
NA. The reason behind this is that by partitioning the
queries into groups, the non-NA algorithms are more scal-
able. For example, in the default setting (with a batch of 20
queries), NA needs to scan the input table 20 times while
GGT , which has partitioned the batch of queries into two
groups, only needs to scan the input table twice.

Effect of cluster size. Figure 3(c) compares the effect
of number of slave nodes in the cluster. Here again, our
algorithms significantly outperform NA and MRGT . For
example, GGT outperforms NA by 118% on average and
up to 136% when the number of nodes is 10, and GGT out-
performs MRGT by 89% on average and up to 92% when
the number of nodes is 10 (the improvement factor of GGT
over MRGT does not show significant differences for all the
node sizes). Furthermore, as the cluster size increases, the
running time for all the algorithms decreases. In particular,

154

Table 3: Comparison of key ordering algorithms

Number of
|NMRka|−|NMPka|

|NMPka|
× 100% |NMPka|−|NMOka |

|NMOka|
× 100%

Queries Min Max Avg Min Max Avg
10 10% 26% 16% 0 8% 3%
15 11% 20% 18% 0 7% 2%
20 16% 25% 19% 1% 2% 1%
25 16% 20% 19% − − −
30 14% 22% 19% − − −

the running time for NA decreases much faster than for the
other algorithms which therefore reduces the winning mar-
gin of the other algorithms over NA as cluster size increas-
es. Thus, the performance improvement from the increased
parallelism using a larger cluster benefits the non-optimized
NA more than the already optimized non-NA algorithms.

Effect of both data size and cluster size. Besides s-
tudying the effect of the data size and cluster size parameters
separately, we also conducted an additional experiment to
examine the joint effect of both these parameters. In Fig-
ure 3(d), a cluster size of 10, 20, 30, and 40 slave nodes was
used, respectively, for a data size of 40GB, 80GB, 120GB,
and 160GB. As the results show, the performance of each al-
gorithm does not vary very much as both the cluster size and
data size jointly increase; this demonstrates the scalability
of our algorithms wrt these two parameters.

Effect of split size. Figure 3(e) compares the effect of
the split size. Here again, our algorithms significantly out-
perform NA and MRGT . For example, our best algorithm
(i.e., GGT or MT) outperforms NA by 115% on average
and up to 162% when the split size is 128MB, and our best
algorithm (i.e., GGT or MT) outperforms MRGT by 81%
on average and up to 94% when the split size is 1GB. Ob-
serve that there is no clear winner between GGT and MT
as explained in Section 3. For NA, we observe that its
running time decreases with increasing split size until a cer-
tain threshold (e.g., 512MB for NA) after which its running
times increases. This is because when the split size is too
small, more map tasks will be launched for processing the
job which incurs a higher startup cost; on the other hand,
when the split size is too large, each map task will process
more data which increases its sorting cost.

Analysis of MT. In this experiment, we analysis the rel-
ative effectiveness of the two techniques, MOM and RIM,
that form MT . Figure 3(e) compares NA against two vari-
ants of MT : MT itself (denoted explicitly as RIM+MOM)
and MT with only RIM technique (denoted as RIM). As
the results show, RIM is more effective than MOM in reduc-
ing the running time. However, by further combining with
MOM, we can improve the performance of RIM by 17% on
average and up to 23% when the number of queries is 30.

6.2 Effectiveness of key ordering algorithm
In this section, we evaluate the effectiveness of our key

ordering algorithm (denoted by Pka) by comparing against
two extreme solutions: a brute-force algorithm that gener-
ates the optimal key ordering (denoted by Oka) and a naive
heuristic that uses a random key ordering (denoted by Rka).

Recall from Section 5.1 that our map output key order-
ing algorithm is designed to maximize job sharing by min-
imizing the size of the non-derivable map output (denot-
ed by NM) for the input batch of jobs. To assess its ef-

fectiveness, we compare two ratios, |NMRka|−|NMPka|
|NMPka|

and

|NMPka|−|NMOka |
|NMOka|

, where |NMx| denote the size of the non-

derivable map output for an input batch of queries using
algorithm x, x ∈ {Pka,Oka, Rka}. The first ratio measures
the improvement factor of Pka over Rka, while the second
ratio measures the improvement factor of Oka over Pka.

Table 3 compares these two ratios for various query sizes.
For each query size, we randomly generate five batches of
queries and report the average, minimum, and maximum

values of the ratios. From Table 3, the |NMRka|−|NMPka|
|NMPka|

values show that our key ordering heuristic is indeed effective
in minimizing |NM | compared to the naive random ordering

heuristic, while the |NMPka|−|NMOka |
|NMOka|

values show that our

heuristic is almost as effective as the brute-force approach.
Note that for query sizes 25 and 30, we were not able to

compute values for |NMPka|−|NMOka |
|NMOka|

as Oka did not finish

running in 12 hours. Indeed, as expected, Oka is not a
scalable solution: for a query size of 20, Oka took about 3
hours to run compared to only 50ms taken by our heuristic
Pka.

 0

 500

 1000

 1500

 2000

 2500

 3000

10 15 20 25 30

Ex
ec

uti
on

 tim
e (

se
c)

Number of queries

13% 15%

21% 22% 19%
19%

24%
13%

10%

20%Pka-GGT
Rka-GGT

Pka-MT
Rka-MT

Figure 4: Comparison of Key Ordering Algorithms

To evaluate the effectiveness of the key ordering heuristics
in terms of their impact on query evaluation time (excluding
optimization time), we also compared their running times to
evaluate query batches of difference size. In the following, we
use the notation X-Y to denote the evaluation algorithm Y
when used in combination with the key ordering heuristic X,
where Y ∈ {GGT,MT} and X ∈ {Pka,Rka,Oka}. Note
that the evaluation algorithms NA, MRGT , and GT were
excluded from the comparison as these algorithms do not
require the key ordering step.

Figure 4(a) shows the running times for a representative

query batch where its |NMRka|−|NMPka|
|NMPka|

ratio is ranked in

the middle among the five batches. As the performance
of Oka-Y is very close to that of Pka-Y (e.g., the former
outperforms the latter by only 0.7% in the best case), we
omit the results for Oka-Y in the graph. For each query
size, Figure 4(a) also indicates two improvement factors (in
%) which represent the performance improvement of Pka-
Y over Rka-Y , Y ∈ {GGT,MT}. The results show that
for both GGT and MT , Pka outperforms Rka by 17% on
average.

7. RELATED WORK
We can broadly classify the optimization-related work in

the MapReduce framework into three categories. A recent
survey on data management in MapReduce can be found
in [10].

Job optimization. There are several work [8, 6, 7] on op-
timizing general MapReduce jobs. The work in [8] proposes

155

a system to automatically optimize MapReduce programs.
The work in [6, 7] discusses the optimization opportunities
presented by the large space of MapReduce configuration pa-
rameters and proposes a cost-based optimizer to choose the
best configuration parameters for a job. Different from these
work, our work focuses on optimizing multiple jobs specified
in or translated from some high-level query language.

Query optimization. The proposal of high-level declara-
tive query languages for MapReduce such as Hive [16, 17],
Pig [14, 5] and MRQL [4], opens up new opportunities for
query optimization in the framework. These work include
optimization strategies for Pig [13], multi-way join optimiza-
tion [1], optimization techniques for Hive [20], algebraic op-
timization for MRQL [4], and query optimization using ma-
terialized results [3]. All these work focus on query opti-
mization techniques for a single query; in contrast, our work
focuses on optimizing multiple jobs specified in or translated
from some high-level query language.

The work in [3] presents a system ReStore to optimize
query evaluation using materialized results. Given a space
budget for storing materialized results, ReStore uses heuris-
tics to both decide whether to materialize the complete map
and/or reduce output of each job being processed as well as
choose which previously materialized results to be evicted if
the space budget is exceeded. Our work differs from ReStore
in both the problem focus and the developed techniques.
The results materialized by our MT technique for a given
job could be the partial map output of another job; in con-
trast, ReStore materializes the complete output of the job
being processed. Moreover, whereas the materialized output
produced by ReStore might not be reused at all, this is not
the case for our context as the query workload is known and
our techniques only materialize output that will be reused.

Multi-query optimization. There are several work on
multi-query optimization [12, 11]. The work that is the
most closely related to ours is MRShare [12]. Compared
with MRShare, our work is more comprehensive with addi-
tional optimization techniques (i.e., GGT and MT) which
leads to a more complex optimization problem (e.g., the
ordering of the map output key of each job becomes impor-
tant) and a novel cost-based, two-phase approach to find
optimal evaluation plans. In MRShare, an input batch of
jobs is partitioned based on the following heuristic: the jobs
are first sorted in non-descending order of their map out-
put size, and a dynamic-programming based algorithm is
used to find an optimal partitioning of the ordered jobs into
disjoint consecutive groups. Thus, an optimal job partition-
ing where the jobs in a group are not consecutively ordered
would not be produced by MRShare’s heuristic. Note that
our partitioning heuristic (with a time-complexity of O(n2))
does not have this drawback and is more efficient than MR-
Share’s partitioning heuristic (O(n3) time-complexity).

The work in [11] proposes a transformation-based opti-
mizer for MapReduce workflows (translated from queries).
The work considers two key optimization techniques: verti-
cal (horizontal, resp.) packing techniques aim to optimize
jobs with (without resp.) producer-consumer relationships;
the horizontal packing techniques are based on MRShare’s
grouping technique. In contrast, our work does not specifi-
cally consider MapReduce workflow jobs that have explicit
producer-consumer relationships; therefore, their proposed
vertical packing techniques are not applicable for our work.

8. CONCLUSIONS
In this paper, we have presented a comprehensive study of

multi-job optimization techniques for the MapReduce frame-
work. We have proposed two new job sharing techniques and
a novel two-phase optimization algorithm to optimize the e-
valuation of a batch of jobs given the expanded repertoire
of optimization techniques. Our experimental results show
that our proposed techniques outperform the state-of-the-
art approach significantly by up to 107%.
Acknowledgements We would like to thank the reviewers
for their constructive comments. This research is supported
in part by NUS Grant R-252-000-512-112.

9. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a

mapreduce environment. In EDBT, 2010.
[2] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. In OSDI, 2004.
[3] I. Elghandour and A. Aboulnaga. Restore: Reusing results

of mapreduce jobs. In VLDB, 2012.
[4] L. Fegaras, C. Li, and U. Gupta. An optimization

framework for map-reduce queries. In EDBT, 2012.
[5] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.

Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a high-level dataflow system on top
of map-reduce: the pig experience. In VLDB, 2009.

[6] H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of mapreduce programs. In VLDB,
2011.

[7] H. Herodotou, F. Dong, and S. Babu. Mapreduce
programming and cost-based optimization? crossing this
chasm with starfish. In VLDB, 2011.

[8] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
optimization for mapreduce programs. In VLDB, 2011.

[9] J. Jestes, K. Yi, and F. Li. Building wavelet histograms on
large data in mapreduce. In VLDB, 2011.

[10] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu. Distributed data
management using mapreduce. ACM Computing Surveys.
To appear in 2014.

[11] H. Lim, H. Herodotou, and S. Babu. Stubby: A
transformation-based optimizer for mapreduce workflows.
In VLDB, 2012.

[12] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: sharing across multiple queries in
mapreduce. In VLDB, 2010.

[13] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs. In
ATC, 2008.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for data
processing. In SIGMOD, 2008.

[15] Y. Shi, X. Meng, F. Wang, and Y. Gan. Hedc: a histogram
estimator for data in the cloud. In CloudDb, 2012.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive-a
warehousing solution over a map-reduce framework. In
VLDB, 2009.

[17] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, and H. Liu. Hive-a petabyte scale
data warehouse using hadoop. In ICDE, 2010.

[18] G. Wang and C.-Y. Chan. Multi-query optimization in
mapreduce framework. Technical Report http://www.comp.
nus.edu.sg/∼g0800170/techreport-MJQ.pdf, National
University of Singapore, February 2013.

[19] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
2009.

[20] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query
optimization for massively parallel data processing. In
SOCC, 2011.

156

