
An Efficient Publish/Subscribe Index for E-Commerce
Databases

Dongxiang Zhang Chee-Yong Chan Kian-Lee Tan
Department of Computer Science

School of Computing, National University of Singapore

{zhangdo,chancy,tankl}@comp.nus.edu.sg

ABSTRACT
Many of today’s publish/subscribe (pub/sub) systems have been
designed to cope with a largevolumeof subscriptions and high
event arrival rate (velocity). However, in many novel applications
(such as e-commerce), there is an increasingvarietyof items, each
with different attributes. This leads to a very high-dimensional and
sparse database that existing pub/sub systems can no longersup-
port effectively. In this paper, we propose an efficient in-memory
index that is scalable to the volume and update of subscriptions,
the arrival rate of events and the variety of subscribable attributes.
The index is also extensible to support complex scenarios such as
prefix/suffix filtering and regular expression matching. We conduct
extensive experiments on synthetic datasets and two real datasets
(AOL query log and Ebay products). The results demonstrate the
superiority of our index over state-of-the-art methods: our index in-
curs orders of magnitude less index construction time, consumes a
small amount of memory and performs event matching efficiently.

1. INTRODUCTION
Publish/subscribe, or pub/sub for brevity, has been well-studied

in the last two decades [3, 6, 9, 16, 20, 22, 26], with deployment
in a variety of applications including online advertising [16], stock
market [6] and social media monitoring [9]. A pub/sub systemcon-
tains two types of roles, information provider and information con-
sumer. The information provider publishes information in the form
of events. The information consumer subscribes interesting events
in the form ofboolean expression. These two roles can be intercon-
nected either via a simple client/server model [12,20,22,26] or over
a network of brokers routing events in a distributed paradigm [3,7,
14]. The system has to ensure a timely delivery of matching events
to the subscribers.

Existing pub/sub systems, however, are designed with two fac-
tors in mind: a large volume of subscriptions and a high eventar-
rival rate. However, pub/sub systems are increasingly being adopted
in e-commerce applications with a wide variety of items, each with
different attributes. The database can be modelled as a sparse and
high dimensional table, and an event is a tuple in this high dimen-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment,Vol. 7, No. 8
Copyright 2014 VLDB Endowment 2150-8097/14/04.

sional table. To explain this, we use the Amazon product database
as a working scenario.

EXAMPLE 1. We can model the Amazon product database as
an information provider and customers as information consumers.
Since Amazon has launched a Wish List to collect customer inten-
tion in product purchasing, we can extend this function for acus-
tomer to specify the conditions under which (s)he will purchase the
item. The event would be either the launch of a new product or a
discounted product on sale. An example of a subscription would
be in the form of a boolean expression. e.g., (model=iphone5s ∧
color=silver ∧ price≤580). A product is represented by a list of
attribute-value pairs. e.g., (model=iphone5s∧ color=silver∧ stor-
age capacity=16GB∧ price=550∧ contract=no). The customer
will be notified whenever there is a product in the database satisfy-
ing all the specified constraints. However, there are more than 200
million1 items hosted in the Amazon product database. Moreover,
there is a wide variety of products and they may have very different
attributes. The product database can be modelled as a very wide
and sparse table. The pub/sub system has to be scalable to the
number of columns as new products are continually being inserted.

2

In the following, we summarize several applications with high
dimensions of attributes for which a pub/sub system may add value:

• Electronic Commerce. Online electronic commerce com-
panies like Amazon, Ebay and Taobao2 have large number
of products in many different categories. Information extrac-
tion techniques [13] can be adopted to extract attribute-value
pairs from the unstructured web page to support faceted search
[8] and pub/sub. For example, Taobao, the largest online
shopping website in China with more than 800 million prod-
ucts3, has integrated faceted search in the system to facilitate
customers filtering from a great number of search results.
Similarly, these systems can allow customers to subscribe
to products they are interested in and receive a timely no-
tification when a match occurs. Such a pub/sub model may
emerge as a new business intelligence model to improve on-
line shopping experience.

• Groupon and Deal Websites. Groupon and other deal web-
sites have the pub/sub gene in nature. Instead of going through
every deal sent to the registered email address, it would be
more convenient for users to only subscribe the deals they

1This number is acquired by submitting an arbitrary keyword query
like “-asdsddafd” to the Amazon product search engine.
2http://www.taobao.com
3http://www.alexa.com/siteinfo/taobao.com

613

are interested in using boolean expressions. Similar to the
product database, the deals also show great variety in terms
of the subscribable attributes.

• Google Base4. Google Base, which later becomes Google
Merchant Center, allows users to upload any structured or
unstructured product feeds in various file format. A real-time
pub/sub system on top of Google Base would be of utmost
importance to business dealers, e.g., to monitor the potential
competitors within an area.

• Web Tables and Semantic RDF Database. In recent years,
harvesting knowledge from the web [11, 24, 25, 28] has at-
tracted more and more attention. For example, Google’s
Freebase [1] has collected and published more than 39 mil-
lion real world entities, with more than 140,000 attributes.
These structured or semi-structured harvested results arein-
valuable. Agents can subscribe to such information for deci-
sion making, just analogous to brokers subscribing to stock
price.

To understand how existing systems cope with boolean expres-
sion matching when events come from a sparse and high dimen-
sional table, we conducted an experimental study using two re-
cently proposed pub/sub indexes5: k-index [26] and BE-Tree [20,
22]. k-index partitions subscriptions into inverted lists whileBE-
Tree uses hierarchical clustering to organize the data. Although
in [20,22],k-index was reported to be inferior to BE-Tree in datasets
with hundreds of attributes, we have new findings when we fur-
ther increase the dimension space. Figure 1 shows the index con-
struction time and event matching time for a uniformly distributed
dataset when the number of attributes grows from 20K to 60K. The
results shed interesting insights that were not previouslyreported:
The inverted index solution not only significantly outperforms the
BE-Tree in terms of index construction time, but also demonstrates
better scalability in terms of event matching time! However, due
to its ineffective partitioning mechanism,k-index consumes more
memory than BE-Tree and supports only a subset of the operators
that BE-Tree can handle.

 10

 100

 1000

 10000

 100000

20K 30K 40K 50K 60K

B
ui

ld
 T

im
e

(s
)

Total Number of Attributes

OpIndex
BE-Tree

K-IND

(a) Index Construction Time

 10

 100

 1000

20K 30K 40K 50K 60K

A
vg

 M
at

ch
 T

im
e

(µs
)

Total Number of Attributes

OpIndex
BE-Tree

K-IND

(b) Event Matching Time

Figure 1: Performance w.r.t. increasing number of attributes

Our findings prompted us to design a more efficient, expressive
and compact index, which we name OpIndex, to support pub/sub
for e-commerce data that exhibits a large number of dimensions.
OpIndex adopts a two-level index structure and organize thesub-
scriptions using inverted lists. In the first level, we select a pivot
attribute for each subscription, and subscriptions with the same
pivot attribute are grouped together. In the second level, subscrip-
tions are further partitioned based on their predicate operators. In

4http://base.google.com
5The implementation of the two indexes was kindly provided by
the authors of BE-Tree.

this manner, the predicates with the same operator are clustered so
that we can design specific index to support various operators and
to enhance the subscription expressiveness. The effectiveness is
demonstrated in Figure 1: OpIndex achieves better event matching
performance with much smaller construction cost.

In summary, the contributions of this paper include

1. We show that pub/sub applications in e-commerce are be-
coming increasingly important. Furthermore, we identify a
gap in existing pub/sub systems - they cannot cope effec-
tively for applications with very high dimensional table.

2. We propose a novel index structure, OpIndex, which is scal-
able with respect to the volume, velocity and variety of the
data. In particular, OpIndex is more efficient, has low mem-
ory requirement and maintenance cost, and can be easily
extended to support more expressive subscriptions (i.e., can
support prefix/suffix and regular expression matches).

3. We provide a comprehensive complexity analysis of our OpIn-
dex in terms of the memory overhead, and data insertion and
query processing cost.

4. We conduct extensive experiments on synthetic and real datasets
(AOL query log and Ebay Products). The results show that
OpIndex is superior in terms of index construction time, mem-
ory cost and query processing time.

The remaining of the paper is organized as follows. We present
our boolean expression model and problem definition in Section 2.
In Section 3, we review existing pub/sub works. In Section 4,we
propose OpIndex and analyze the memory consumption and inser-
tion cost. Event matching algorithm as well as query processing
complexity analysis are presented in Section 5. We discuss ex-
tensions of our index to support complex operators in Section 6.
Extensive experiment results are reported in Section 7. Section 8
concludes the paper.

2. BOOLEAN EXPRESSION MODEL
In pub/sub systems, a subscription is represented as a boolean

expression which provides flexibility for users to specify their in-
terests. In this section, we present the boolean expressionmodel as
well as the matching semantics.

2.1 Predicate
The most basic unit in a boolean expression model is a predicate.

A predicate is determined by three elements: an attributeA, an
operatorfop and an operand ō. A predicate accepts an input value
x and outputs a boolean value indicating whether or not the operator
constraint is satisfied:

P(A, fop, ō)(x)→{0,1}

In this paper, we adopt a data model that is more general and ex-
pressive than that used in the state-of-the-art index methods [20,22,
26]. Besides supporting numerical, categorical, and string attribute
domains with the standard relational operators (<,≤,=, 6=,>,≥),
set operators (∈s, 6∈s), and interval operators (∈i , 6∈i) 6, our model
can also support complex operators such as the prefix, suffix,and
regular expression matching operators for the string domain; we
discuss how complex operators are supported by our approachin
Section 6.2.

6We make a distinction between the operators∈s (representing
SQL’s IN operator) and∈i (representing SQL’s BETWEEN opera-
tor).

614

2.2 Boolean Expression
A boolean expression is a combination of predicates in either

Conjunctive Normal Form (CNF) or Disjunctive Normal Form (DNF).
To simplify the presentation, we assume that a boolean expression
is represented in DNF with a single clause (i.e., simply a conjunc-
tion of predicates). We will discuss how to handle more general
forms of boolean expressions in Section 6. Thereafter, a subscrip-
tion S is defined overn predicates as follows:

S: P
A, fop, ō
1 (x)∧P

A, fop, ō
2 (x)∧ . . .∧P

A, fop, ō
n (x)

We refer to the size of a subscriptionS, denoted by|S|, as the num-
ber of predicates inS.

Table 1 shows a small collection of six subscriptions that wewill
be using as our running example in the rest of this paper.

Table 1: Example Subscriptions
S1 A= 2∧ B∈s {3,6,9}
S2 A≤ 8∧C≥ 2
S3 C= 6∧ B≤ 4∧ E ∈i [3,12]
S4 A= 2
S5 D≥ 12∧ E ≤ 9
S6 B∈s {3,6} ∧C≤ 4∧ D≥ 10∧ E ≤ 7

2.3 Event
An information publisher publishes an event in the form of a col-

lection of attribute-value pairs. We model an event as a conjunction
of equality predicates.

E : (Ai1 = ō1)∧ (Ai2 = ō2)∧ . . .∧ (Aim = ōm)

We refer to the size of an event, denoted bymor |E|, as the number
predicates in the eventE. For example, an event about iPhone may
look like the following:

(model= iphone5 ∧ color=white∧ price= 800∧ size= 16GB)

2.4 Boolean Expression Match
Given a subscriptionSand an eventE, SmatchesE if it satisfies

two requirements, namely, attribute match and value match.

DEFINITION 1. Attribute Match
There is an attribute match between a subscription S and an event
E if for any attribute occurring in S, it also appears in E.

We useS∼A E to denote an attribute match. For example,(A≤
3 ∧ B= 2) is not an attribute match toA= 2.

DEFINITION 2. Value Match
There is a value match between a subscription S and an event E if
for any attribute A occurring in S and E, we have PA, fop, ō(ōi) = 1,
where PA, fop, ō∈ S and (A= ōi) ∈ E.

We useS∼V E to denote a value match. Now we can define the
boolean expression match.

DEFINITION 3. Boolean Expression Match
A subscription S is said to match an event E, denoted by S∼ E, if
S∼A E and S∼V E.

Given a subscription collectionS and a published eventE, our
goal is to find all the subscriptionsS∈ S such thatS∼ E.

3. RELATED WORK
Pub/sub systems have been extensively studied for over a decade;

and there has been a lot of focus on indexing support to efficiently
identify matching subscriptions (e.g., [12,26,29]). The basic idea is
to partition the subscription database into subsets of predicates us-
ing some hashing scheme and organize each predicate subset using
the inverted list data structure. For each predicatep in an incom-
ing event, appropriate inverted list indexes are searched to identify
subscription predicates that matchp, and a counting algorithm is
used to determine matching subscriptions for an event.

Thek-index [26] is the state-of-the-art approach based on inverted-
list index. The subscription predicates are partitioned into subsets
using a three-level partitioning scheme: the subcriptionsare first
partitioned based on their size, and the predicates in a subscrip-
tion are further partitioned based on the predicate’s attribute and
value. For example, for a predicateA=1 in a subscription of size
3, the predicate will be partitioned into the subset associated with
the partition key(3,A,1). By using the subscription size as the pri-
mary partitioning key, thek-index is able to prune away inverted-
list searches for subscriptions with size larger than that of the event.

A drawback ofk-index is that a range predicate in a subscrip-
tion needs to be rewritten into a disjunction of equality predicates,
which increases the size of thek-index with many inverted-list en-
tries for a single subscription predicate. As an example, Figure 2
illustrates thek-index entries for our running example subscription
database in Table 1. Note that for the predicateA ≤ 8 in subscrip-
tion S2, assuming the domain ofA is {1,2, . . .}, the predicate is
rewritten as(A = 1) ∨ . . . ∨ (A = 8) which requires eight en-
tries(2,A, i), i ∈ [1,8], to be created in thek-index.

n (A,v) List

1 (A,2) S4

2

(A,1) S2
(A,2) S1, S2
(A, . . .) S2
(A,8) S2
(B,3) S1
(B,6) S1
(B,9) S1
(C,2) S2
(C, . . .) S2
(D,12) S5

n (A,v) List

2

(D, . . .) S5
(E,1) S5
(E, . . .) S5
(E,9) S5

3

(B,1) S3
(B, . . .) S3
(B,4) S3
(C,6) S3
(E,3) S3
(E, . . .) S3
(E,12) S3

n (A,v) List

4

(A,1) S2
(B,3) S6
(B,6) S6
(C,1) S6
(C, . . .) S6
(C,4) S6
(D,10) S6
(D, . . .) S6
(E,1) S6
(E, . . .) S6
(E,7) S6

Figure 2: k-Index for subscriptions in Table 1 (n = subscription
size, A = predicate attribute, v = predicate value)

More recently, a new index method, the BE-Tree, was shown to
outperform thek-index [20, 22]. Unlike thek-index, the BE-Tree
uses a two-phase space-cutting technique and organizes thesub-
scriptions in a hierarchical index. The subscriptions are repeatedly
partitioned by attribute followed by a value space partitioning. Fig-
ure 3 shows an example of BE-Tree indexing the subscriptionsin
Table 1. Thep-directorystores the attributes selected for partition-
ing. In this example, thep-directorycontains two attributesA and
B, associated with two differentp-nodes. If an event does not con-
tain attributeA, all the subscriptions in the subtree ofp-node Acan
be pruned. Then, the subscriptions are partitioned by the associ-
ated attribute value. The value space is organized in a hierarchy
of intervals with different length. Each subscription is attached to
the smallest interval that can cover the predicate. For example, S3
contains a predicateB≤4 and is inserted intop-node=Bwith value
interval [1,4]. Given an eventB= 5, all the subscriptions attached
to intervals that are not stabbed byB= 5 can be pruned.S5 is in-
serted into another branch because it does not contain attributeA
or B. In the leaf nodes, inverted lists of bitmaps are maintained

615

for efficient evaluation of a predicate. The key of the list isthe
attribute-value pair, the same as that ink-index. As the number of
attributes increases, BE-Tree generates morep-nodeswhich incurs
higher construction, optimization and access cost. Moreover, both
thek-index and BE-Tree support only the standard basic predicate
operators but not more advanced matching operators such as pre-
fix/suffix and regular expression matching operators. In contrast,
our approach can support such complex matching operators (to be
elaborated in Section 6.2).

c-node

l-node
S5

p-node

p-directory

p-node

[1, 10]

[1, 5]

l-nodeS4

c-directory c-directory

[1, 10]

[1, 5]

l-nodeS2 S3
l-node

c-node

S1 S6l-node

Figure 3: BE-Tree for subscriptions in Table 1

Index methods to support ranked pub/sub matching, where only
the top-k matching subscriptions are returned, have also been pro-
posed including score-optimal R-tree [16],k-index [26], and a mod-
ified variant of BE-Tree [21]. Our index focuses on efficient filter-
ing and we plan to support top-k pub/sub matching in future. Other
directions in pub/sub subscription matching include support for
XPath-based subscriptions (e.g., [10,19,27]), stateful event match-
ing (e.g., [5, 6, 9, 15, 16]) where subscriptions may span multiple
events and efficient routing solutions in a content network [5,6,14,
18, 23]. Since we are interested in the problem of efficient event
matching without considering network communication, the pub/-
sub in a content network is beyond the scope of this paper. For
more information, readers can refer to the survey in [2].

4. INDEX STRUCTURE
In this section, we present our new index method, namedOpIn-

dex, to efficiently retrieve matching subscriptions for a givenin-
put event. OpIndex uses a novel, two-level partitioning scheme
to organize the subscription predicates into disjoint subsets each
of which is independently and efficiently indexed to minimize the
number of candidate subscriptions accessed for event matching. In
this way, our index design provides a highly efficient and exten-
sible approach for subscription matching which can supportcom-
plex predicate matching operators beyond the standard operators
supported in current state-of-the-art methods [20,22,26].

In OpIndex, each subscriptionS in the database is associated
with a judiciously selected attribute termed itspivot attribute, de-
noted byδS, which is one of the attributes contained inS. The
subscriptions are partitioned using a two-level partitioning scheme
as follows: first, the subscriptions in the database are partitioned
based on their pivot attributes into subscription lists, and the pred-
icates in each subscription list are then further partitioned based
on the predicate operator into predicate lists. Each predicate list is
then independently indexed using an efficient method that isappro-
priate for the predicate operator. Given an input event, appropriate
predicate lists are accessed via their corresponding indexes; and a

counting-based approach is used to identify the matching subscrip-
tions.

For convenience, Table 2 summarizes the key notations used in
this paper.

Table 2: Notation Table
PAi , fop, ō A predicate defined over attributeA with operatorfop and

operand ō
S A subscription
E An event
δS The pivot attribute of subscriptionS
d The total number of distinct attributes (or dimensions)
N The number of subscriptions in the subscription database
Γ The number of predicates in a subscription
m The number of attributes in an event
σ The cardinality of an attribute domain
w The number of bits in a segment signature

4.1 Level 1: Subscription Partitioning
In the first level of partitioning, the subscriptions in the database

S are partitioned into disjoint subscription lists based on the pivot
attribute of each subscription as follows:

S = L〈A1〉 ∪ L〈A2〉 ∪ . . .∪ L〈Ad〉

L〈Ai〉 = {S|S∈ S∧δS= Ai}

Here, eachL〈Ai〉 denote the subscription list associated with the
pivot attributeAi .

From the definition of attribute match, we know that if a sub-
scriptionSmatches an eventE, then all the attributes inShave to
appear inE. Clearly, if Scontains an attributeAi that does not oc-
cur inE, thenSwill definitely not matchE. Thus, givenE, we only
need to consider the subscriptions whose pivot attribute occurs in
E as stated in the following result.

LEMMA 1. Given an event E, the candidate matching subscrip-
tions for E are contained in the subscription lists{L〈Ai〉|Ai ∈ E}.

To minimize the number of candidate matching subscriptionsto
be accessed for an input stream of eventsE, the problem of select-
ing the pivot attribute for a subscriptionS is modeled as a visibility
minimization problem [17]. Let∆(A) denote the frequency of an
attributeA in an event streamE. We choose attributeA to be the
pivot attribute for a subscriptionS if A appears the least frequently
in E among all the attributes inS; i.e.,

δS= argA∈Smin∆(A) (1)

We can compute∆(.) based on an event log or using the subscrip-
tion databaseS to approximate the attribute frequency distribution
in E.

The following result establishes a desirable property of our pivot
attribute selection criteria.

LEMMA 2. Given a stream of published eventsE, usingδS =
argA∈Smin∆(A) to select pivot attributes for partitioning subscrip-
tions minimizes the number of candidate matching subscriptions
accessed to match the events inE.

PROOF. By Lemma 1, we know that the candidate matching sub-
scriptions are contained in{L〈Ai〉|Ai ∈ E}. Let f(Ai) represents the
frequency of attribute Ai in E. Given a subscription S, if the pivot
attribute for S is Ai , then the subscription S will be accessed f(Ai)
times in order to match all the events inE. Since we want f(Ai)
to be as small as possible, we define the pivot attribute to be the
attribute with the minimum visibility to eventsE.

616

EXAMPLE 2. Figure 4 depicts the first-level partitioning of the
subscriptionsS in Table 1 into three lists of subscriptions. In this
example,∆(.) is derived based on the attribute frequency inSwhich
results in the three pivot attributes A, C, and D being selected.
Thus, given an event E: (A= 2)∧ (B= 6), the subscriptions in LC
and LD are guaranteed not to match E; therefore, the subscriptions
in these two lists need not be accessed for matching event E.

S2

A

Sub Pivot Attribute

S3

S4

S5

S6

S1

A

C

A

D

LA S1 S2 S4

LC S3

LD S5 S6

D

Figure 4: The first level partitioning of subscriptions in Table 1

4.2 Level 2: Predicate Partitioning
In the second level of partitioning, the predicates in each sub-

scription list L〈δS〉 are further partitioned based on the predicate
operator into predicate lists; i.e.,

L〈δS〉 = L〈δS, fop1 〉
∪ L〈δS, fop2〉

∪ . . .∪ L〈δS, fopk
〉

L〈δS, fopi 〉
= {P| fopi ∈ P ∧ P∈ S ∧ S∈ L〈δS〉}

Each predicate listL〈δS, fopi 〉
is then independently indexed using an

efficient method appropriate for the predicate operator.
Our approach supports both the standard predicate operators (i.e.,

<,≤,=, 6=,>,≥, ∈s, 6∈s, ∈i , 6∈i) as well as more complex match-
ing operators (to be discussed Section 6.2). In the following dis-
cussion, we shall explicitly consider only the three most common
relational operators (=,≤,≥) to simplify the presentation. Other
relational operators (6=,<,>) are treated similarly and are omit-
ted here. Predicates with set or interval comparison operators are
rewritten using the common relational operators. For example,B∈s
{3,6,9} is rewritten as(B= 3 ∨ B= 6 ∨ B= 9), andE ∈i [3,12]
is rewritten as(E ≥ 3 ∧ E≤ 12)7.

In the rest of this section, we discuss how a predicate listL〈δS, fop〉,
where fop ∈ {=,≤,≥}, is organized as an inverted-list structure
to efficiently process an eventE : (A = ō). Given a global order-
ing of attributes, we use the pair(Ai , ō) as the sorting key and the
predicatesPAi , fop, ō in each predicate listL〈δS, fop〉 are sorted in non-
descending order of(Ai , ō). In other words, the predicates are first
sorted by the attribute and ties are broken by the comparisonof
operand. In this way, the matching of an eventE : (A= ō) against
a predicate listL〈δS, fop〉, where fop ∈ {=,≤,≥}, is performed effi-
ciently using a range scan onL〈δS, fop〉. Specifically, if fop is ‘=’, we
perform an equality search with(A, ō); if fop is ‘≤’, we perform
a range scan with[(A, ō),(A,+∞)]; and if fop is ‘≥’, we perform
a range scan with[(A,−∞),(A, ō)]. Here,−∞ and+∞, denote,
respectively, the minimum and maximum values of attributeA.

In our implementation of the inverted list structures, we use two
optimizations to speed up range scans on predicate lists. The first
optimization splits the attribute space intob segments and uses a
directory withb entries to index each predicate listL〈δS, fop〉. Each
entry corresponds to a contiguous segment of predicates in the list.

7In contrast to thek-index approach, our approach does not rewrite
an interval-operator predicate into a disjunction of equality predi-
cates and therefore avoids the problem of generating many index
entries for an interval-operator predicate.

The predicates having the same attribute will belong to the same
segment inL〈δS, fop〉. In this way, given an eventE : (A = ō), we
only need to access the segment containing attributeA. The sec-
ond optimization introduces aw-bit signature for each segment:
for each predicatePAi , fop, ō in a segment, we apply a hash function
h on (Ai , fop, ō) to select a bit position inw; the selected bit in that
segment’s signature is then set to 1. The hash functionh is de-
fined as follows: iffop is ‘=’, then h is a function of bothAi and ō;
otherwise,h is a function of onlyAi . The intuition is that a pred-
icate matching on equality operator requires both the attribute and
operand to be identical. However, operators ‘≤’ and ‘≥’ are less
restrictive and we cannot take advantage of the operand for pruning
in the hash function.

EXAMPLE 3. Consider the matching of an event E: (A = ō)
against a predicate list L〈δS,=〉. We apply the first optimization by
using attribute A to search the directory on L〈δS,=〉 to determine
the segment in L〈δS,=〉 that possibly contain predicates for attribute
A. Next, we apply the second optimization by computing the hash
value h(A,=, ō) to determine a bit position and check if the selected
bit is turned on in the selected segment’s signature. If the bit is
off, then we conclude that there are no matching predicates for the
event in L〈δS,=〉; otherwise, we perform a range scan on the selected
segment in L〈δS,=〉 to search for matching predicates. 2

4.3 Index Construction
Our OpIndex for a subscription database consists of two compo-

nents. The first component is a collection of predicate lists{L〈A1,=〉,
L〈A1,≤〉, L〈A1,≥〉, . . ., L〈Ad,=〉, L〈Ad,≤〉, L〈Ad,≥〉} derived from the
two-level partitioning scheme that we have described. The pred-
icate lists are used to search for matching subscription predicates
during event processing. The second component is a collection
of counter arrays{VA1, . . ., VAd}, corresponding to the collection
of subscription lists{L〈A1〉, . . ., L〈Ad〉}. The counter arrays are
used by a counting-based algorithm to detect matching subscrip-
tions for an event. For each subscriptionSj in L〈Ai〉, the counter
valueVAi [j] represents the number of predicates inSj that have not
been matched during the processing of an event. These counter
values are initialized to the number of predicates in the respective
subscriptions before the start of an event matching, and thecounter
value for a subscriptionSj is decremented by one for each pred-
icate inSj that matches the event being processed. Thus, a sub-
scriptionSj in L〈Ai〉 matches an event iffVAi [j] is reduced to zero.
To facilitate the efficient updating of these counter values, for each
predicatep in a predicate list, we also store a pointer to the counter
array entry corresponding to the subscription that contains p.

Algorithm 1 shows the algorithm to insert a new subscriptionS
into an OpIndex. IfScontains any set/interval predicate operator,
we first rewriteSin terms of the standard relational operators as de-
scribed in Section 4.2. Next, we determine the subscription’s pivot
attributeδS and append a new entrye in the counter arrayVδS

for
S. For each predicatePAi , fop, ō∈ S, we insert the predicate along
with a pointer toe into the predicate listL〈δS, fop〉. The directory on
L〈δS, fop〉 and the appropriate segment signature are updated as fol-

lows. If PAi , fop, ōbecomes the first predicate in its inserted segment
in L〈δS, fop〉, we update the directory onL〈δS, fop〉 to reflect this. In
addition, we compute the hash valueh(Ai , fop, ō) to select a bit in
the segment’s signature and set this bit to 1.

EXAMPLE 4. Figure 5 shows the OpIndex for the subscription
database in Table 1. The subscriptions are first partitionedinto
three subscription lists L〈A〉, L〈C〉, and L〈D〉; and each subscription
list is further partitioned into three predicate lists corresponding to

617

Algorithm 1: Insert (SubscriptionS)

1. Determine the pivot attributeδS
2. Append a new entrye in VδS

3. for each predicatePAi , fop, ō∈ Sdo
4. Insert(PAi, fop, ō, ptr) into L〈δS, fop〉, whereptr is a pointer to

e
5. Update the directory forL〈δS, fop〉 & the appropriate

segment’s signature forPAi, fop, ō

S

δs=A

(A,2)=

≤

≥

(A,8)

(C,2)

(A,2) (B,3) (B,6) (B,9)

δs=C

δs=D

(B,4)

(C,6)

(E,12)

(E,3)

(B,3)

(C,4)

(D,10)

(E,7) (E,9)

(D,12)

(B,6)

2 2 1 VA

VD2 4

4 VC

0010 0111

0001 0000

0010 0000

=

≤

≥

0010 0000

1000 1000

0100 0000

=

≤

≥

0000 0110

1110 0000

0000 1010

Segment Directory SegmentsPivot Attribute Counter Array

Figure 5: Index Structure

the predicate operators ‘=’, ‘≤’, and ‘≥’. Each list is split into
two segments stored contiguously: one with attributes{A,C,E}
and the other with{B,D}. Each segment is associated with a4-bit
signature and the predicates in it are sorted by(Ai , ō). There are
three counter arrays VA, VC, and VD, corresponding to the three
pivot attribute partitions, and each entry in the segment stores a
pointer to its subscription’s counter array entry. 2

4.4 Space and Construction Complexity
We now analyze the space and construction complexity of OpIn-

dex. To facilitate the analysis, we make the following assumptions:

• The number of predicatesΓ in a subscription follows a uni-
form distribution in[1,Γmax], whereΓmax is the maximum
subscription size. Thus, the average subscription size isΓavg=
Γmax

2 .

• Each attributeAi occurs at most once in a subscription and
the probability ofAi occurring in a predicate follows a uni-
form distribution.

• All the attributes are associated with domain[1,σ]. The prob-
ability of an operand ō∈ [1,σ] occurring in a predicate fol-
lows a uniform distribution.

• There are three possible predicate operators ‘=’,‘≤’ and ‘≥’,
each of which is equally likely to appear in a predicate.

• The size of a segment signature isw bits and each predicate
list is organized intob segments, whereb is a small number.

LEMMA 3. The number of predicates in a segment isη=
NΓavg
3bd .

PROOF. The average number of predicates in a partition L〈Ai〉 is
N
d ·Γavg. Since there are three operators with the same frequency,
after the partition by operator, the number of predicates inL〈Ai , fop〉

is NΓavg
3d . Since each predicate is equally likely to be inserted into

any of the b segments of L〈Ai, fop〉, the size of each segment isη =
NΓavg
3bd .

The following result establishes the linear space complexity of
OpIndex.

LEMMA 4. The space complexity of OpIndex is O(NΓavg).

PROOF. OpIndex consists of four data structures: predicate lists,
counter arrays, segment directories and segment signatures. Since
there is one counter entry for each subscription, the size ofthe
counter arrays is O(N) given N subscriptions. Since each predi-
cate is inserted into a unique predicate list, the space requirement
of the predicate lists is O(NΓavg). The space requirement for the
segment pointers and signatures is O(bd) and can be ignored com-
pared to that of predicate lists. Therefore, the final space complex-
ity of OpIndex is O(NΓavg).

The insertion procedure consists of three steps: find the pivot
attribute, append an entry in the counter array and insert each sub-
scription predicate into the apprpriate predicate list. Its overall time
complexity to insert a subscription is given by the following result.

LEMMA 5. The time complexity of inserting a subscription is
O(Γavglogη)

PROOF. The cost of the pivot attribute selection is O(Γavg) to
find the attribute with the maximum frequency in the event collec-
tion. The append cost in the second step is O(1) since the counter
array is not required to be sorted and we can simply append theen-
try to the end of the array. Finally, for each predicate, it takes O(1)
to find the corresponding segment to insert the predicate, O(logη)
to insert the predicate in order and O(1) to update the segment sig-
nature. Therefore, to insert a subscription with O(Γavg) predicates,
the time complexity is O(Γavglogη). 2

5. QUERY PROCESSING
Algorithm 2 provides an overview of how OpIndex retrieves match-

ing subscriptions for an input eventE. Before the start of the match-
ing, we initialize the set of matching subscriptionsR to be empty,
and each counter array value to its respective subscriptionsize.

To search for matching subscription predicates, we enumerate
the candidate pivot attributesA j from the set of distinct attributes
appearing in the eventE (step 3). IfA j is indeed a pivot attribute,
we enumerate each attribute-value pair(Ai, ō) in E to search the
predicate listsL〈A j , fop〉, fop ∈ {=,≤,≥}, for predicates that match
Ai = ō. To speed up the range-scan searches onL〈A j , fop〉, the two
optimizations described in Section 4.2 are applied (steps 7and 8).
For each matching predicateP returned by the scan, we decrement
the appropriate counter array valueVA j [ptr] using the subscription
pointerptr associated withP. If the counter value reduces to zero,
we have a matching subscription forE which is added to the result
setR.

EXAMPLE 5. Consider the processing of the event(B = 6 ∧
C = 3 ∧ E = 9) using OpIndex in Figure 5. Among the three at-
tributes in the event, only attribute C is used as a pivot attribute.
Therefore, only the three predicate lists L〈C,=〉, L〈C,≤〉, and L〈C,≥〉
are searched for matching predicates. This example demonstrates

618

Algorithm 2: Match (EventE)

1. Initialize R←{}
2. Initialize the counter array values
3. for each distinct attributeA j appearing inE do
4. if A j is a pivot attributethen
5. for each (Ai = ōi) ∈ E do
6. for each operatorfop∈ {=,≤,≥} do
7. Determine the segmentsegin L〈A j , fop〉 corrp. toAi

8. if theh(Ai , fop, ōi)th bit of seg’s signature is setthen
9. for each matching entry(P, ptr) in the scan ofseg

do
10. DecrementVA j [ptr] by one
11. if VA j [ptr] = 0 then
12. Add the subscription corrp. toVA j [ptr] into

R
13. return R

the effectiveness of partitioning subscriptions using pivot attributes
to minimize the number of accessed subscriptions: althoughsub-
scriptions S2 and S5 partially match the event, they are not ac-
cessed at all because they are stored in subscription lists whose
pivot attributes do not appear in the event. In contrast, thek-index
approach would have accessed all the three partially matching sub-
scriptions. 2

5.1 Query Processing Complexity
In the following, we analyze the query processing complexity

based on the same assumptions in Section 4.4. First, we estimate
the matching probability between a predicatePAi , fop, ōand an event
predicateAi = ōi .

LEMMA 6. The probability of a predicate PAi , fop, ō matching
Ai = ōi is κ = 1

3(1+
2
σ).

PROOF. There are three cases to consider depending on the pred-
icate operator. If fop is ’=’, then there is a match if ōi = ō; if fop
is ’≤’, then there is a match if ō∈ [ōi ,σ]; and if fop is ’≥’, then
there is a match if ō∈ [1, ōi]. Since the domain of each Ai is [1,σ],
the predicate operand ō and operator fop are each uniformly dis-
tributed, the probability for a predicate to match an event is given
by κ as

κ =
1
3
(

1
σ
+

σ

∑̄
o= ōi

1
σ
+

ōi

∑̄
o=1

1
σ
) =

1
3
(1+

2
σ
)

2

Next, we estimate the number of predicates matching a query
eventE.

LEMMA 7. Given an event E, the expected number of matching

predicates for E isψ = O(mNκ
d (1+ (m−1)(Γavg−1)

d)).

PROOF. Given a query event E of size m, we need to access
m subscription lists{L〈A1〉, . . . ,L〈Am〉}, where{A1, . . . ,Am} are the
attributes in E that are also pivot attributes. Clearly, each sub-
scription in L〈Ai〉 must contain a predicate with attribute Ai . Since

each subscription list hasNd subscriptions, there areNd predicates
in L〈Ai〉 that contain attribute Ai . Since the average subscription

size isΓavg, there are(Γavg−1)N
d predicates in L〈Ai〉 that do con-

tain attribute Ai , and each of these predicates has a probability of
m−1

d to contain an attribute in E. Therefore, the expected num-
ber of predicates in L〈Ai〉 that contain attributes in E is O(N

d (1+
(m−1)(Γavg−1)

d)).

By Lemma 6, the number of predicates matching an event is

given by O(mNκ
d (1+ (m−1)(Γavg−1)

d)). 2

LEMMA 8. Given an event E of size m, the query processing
cost is O(m2 · logη(1− (1− 1

w)
η)+ψ).

PROOF. Based on Algorithm 2, the number of predicate lists
that needs to be searched for processing E is O(m2). In each pred-
icate list, a segment hasη predicates (by Lemma 3), and the size
of each segment signature is w bits. The probability that a bit in
a segment signature is not set is given by(1− 1

w)
η. Therefore, the

probability that a segment needs to be searched for an event pred-
icate Ai = ō is1− (1− 1

w)
η. If the search cannot be pruned by

the signature, the time complexity to search for the first matching
predicate in a segment is O(logη) using binary search. For each
matching predicate found, we incur a constant cost to updateits
corresponding subscription counter. By Lemma 7, the total cost in-
curred to update the subscription counters of matching predicates
is given byψ. Therefore, the overall time complexity to process an
event E is given by O(m2 · logη(1− (1− 1

b)
η)+ψ).

2

6. DISCUSSIONS
In this section, we discuss how OpIndex can be extended to han-

dle general CNF/DNF subscriptions as well as support more com-
plex predicate operators.

6.1 Handling General CNF/DNF Subscriptions
Our discussion so far has considered only simple boolean-expression

subscriptions consisting of a conjunction of predicates. We now
discuss how our approach can be extended to handle more general
boolean expressions in DNF or CNF:

DNF: (P11∧P12∧ . . .∧P1n1)∨ . . .∨ (Pm1∧Pm2∧ . . .∧Pmnm)

CNF: (P11∨P12∨ . . .∨P1n1)∧ . . .∧ (Pm1∨Pm2∨ . . .∨Pmnm)

For subscriptions in DNF, we can consider each conjunctive clause
in such a subscription as a simple subscription; i.e.,S= S1∨S2∨
. . .∨Sn with eachSi = Pi1∧ . . .∧Pini . ThereforeS is a matching
subscription so long as anySi is a matching subscription. Thus, a
set of DNF subscriptions is simply decomposed into a collection
of simple subscriptions which can be handled by OpIndex. This
straightforward approach to handle DNF subscriptions works for
bothk-index and BE-Tree as well.

Our approach can also be generalized with two extensions to
handle subscriptions in CNF. The first extension deals with pivot
attribute selection and subscription partitioning. To correctly de-
tect matching CNF subscriptions, each subscriptionS is now as-
sociated with a set of pivot attributes (instead of a single pivot at-
tribute) since it is not necessarily the case that there exists a specific
attribute inSthat must occur in every event that matchesS. To min-
imize the number of pivot attributes associated with a subscription
S= S1∧ . . .∧Sm, we choose the disjunctive clauseSi in Swith the
least number of predicates8, and all the attributes inSi form the set
of pivot attributes ofS. Thus, a subscription with a set ofℓ pivot
attributes will appear inℓ subscription lists.

The second extension for subscriptions in CNF generalizes the
counting-based approach to detect matching subscriptions: we main-
tain am-bit bitmap (instead of an integer counter value) for each
subscription, wherem is the maximum number of disjunctive clauses
in a subscription. For a subscriptionS with k disjunctive clauses,

8To break ties, we pick the disjunctive clause that minimizesthe
sum of its attribute frequency.

619

k≤m, its bitmap is initialized and updated as follows. The firstk
bits in the bitmap ofS, which are used to represent whether thek
disjunctive clauses inShave been matched by an event, are initial-
ized to ones and the remaining bits are initialized to zeros.When-
ever any predicate in theith disjunctive clause ofS is matched,
the bitmap is updated by setting itsith bit to zero. Therefore,S
is a matching subscription iff its bitmap value is 0. Note that this
bitmap scheme is also applicable for thek-index approach to han-
dle CNF subscriptions. For the BE-Tree approach, which can han-
dle only DNF subscriptions, a CNF subscription would need tobe
rewritten to DNF which would result in a more complex subscrip-
tion with an increased matching overhead.

6.2 Supporting Complex Predicate Operators
One key advantage of OpIndex’s two-level partitioning approach

is that each predicate listL〈δS, fop〉 can be indexed independently
with an efficient method that is appropriate for the predicate opera-
tor fop. In Section 4.2, we have presented an inverted-list structure
organization to efficiently supportfop∈ {=,≤,≥}. In this section,
we illustrate OpIndex’s extensiblity feature by considering how to
support the prefix-match operator for string values.

The prefix-match operator is a useful string matching operator,
which is also supported in SQL in the formA LIKE ’xyz%’ to re-
trieve records where the value of attributeA begins with ‘xyz’. An
efficient approach to index string values for the prefix-match op-
eration is the well-known trie index. We can apply the trie index
to index subscription predicates involving the prefix-match oper-
ator as follows. Given a prefix-match predicate with attribute A
and prefix string ō, we map this predicate into a string of theform
“A# ō”, where ‘#’ denote a special delimiter that does not appear in
the attribute name and the attribute’s domain values. The collection
of transformed strings are then indexed using a trie index.

Figure 6(a) shows a hypothetical implementation interfaceof
a trie index. Here,Item defines the structure of an index entry,
insert is a function to insert a new entry into the index, andmatch
is a function to retrieve all index entries that satisfies an input prefix-
match query (represented by the structureQuery). Figure 6(b)
shows the modifications to the index’s interface for the index to
be integrated into OpIndex’s framework. To index the transformed
strings for OpIndex, the new structureNewItem not only contains
the transformed predicate string (represented byItem) but also the
identifier of the subscription that contains the indexed predicate
(represented bysid) and a pointer to the subscription’s counter
array (represented byeid). In addition, there is also a new func-
tion matchSub which calls the originalmatch function to retrieve
matching subscription predicates and update their corresponding
counter values; matching subscriptions are added to theresult
variable.

Similarly, we can apply the above ideas to support other com-
plex predicate operators such as the regular expression matching
(RE-match) operator. Specifically, given a predicate list for the
RE-match operator, we can apply index methods such as the RE-
Tree [4] to index the collection of predicates in the list. Inour
experiments, we shall evaluate the performance of OpIndex for
prefix-match predicates using the trie index.

7. EXPERIMENTS
This section presents results of an extensive performance study

of our proposed OpIndex in comparison withk-index and BE-Tree.
The implementation ofk-index and BE-Tree was kindly provided
by the authors of BE-Tree and in the form of binary executable.
We also compare with the unoptimized version of OpIndex, de-
noted as OpIndex-BS, which does not use bucket and signatureto

struct Item{
...

}

(a)

struct NewItem{

int eid;
int sid;
Item item;

}

(b)

class Index{
void insert(NewItem item);
vector<Item> match(Query query);

}

class Index{
void insert(NewItem item);
vector<Item> match(Query query);
vector<int> matchSub(Query query){

for(NewItem item : match(query))
if(--counter[item.eid]==0)
result.add(item.sid);

return result;
}

}

Figure 6: Example to illustrate the extensibility of OpIndex

improve performance. All the indexes are memory resident and im-
plemented in C++. We conduct the experiments on a server with
128GB memory, 64KB L1 cache and 512KB L2 cache, running
Centos 5.6.

7.1 Data Generator
To generate synthetic datasets, we implemented our own data

generator instead of using BE-Gen [20]. This provides us with bet-
ter flexibility to customize the generator for our specific require-
ments such as generating datasets with prefix operator. For uni-
formly distributed datasets, the generator follows the assumptions
in our complexity model in Section 4. All the attributes and operands
in a subscription are randomly selected. Three operators ‘=’, ‘≤’
and ‘≥’ are supported. An input parameterθ1 controls the per-
centage of ‘=’ operators with the remaining percentages distributed
equally between the ‘≤’ and ‘≥’ operators. The performance with
respect to the set operator ‘∈s’ and interval operator ‘∈i ’ will be
evaluated on the real datasets. The generator also generates datasets
in which both the attribute and operand follow the Zipf distribution.

Table 3 summarizes the parameters and their settings, with the
default values highlighted in bold in our synthetic datasets. We
vary the subscription number from 1 million to 40 million to test
the scalability. The subscription size tends to be smaller than event
size. Moreover, we varyΓmax from 4 to 20 andm from 20 to 120.
The default number of attributes in the synthetic datasets is set to
20,000. In our implementation, we set the number of segments in a
directory to be 32 and the number of bits in a machine word is 64.

Table 3: Parameters and Settings on Synthetic Datasets
Number of subscriptionsN 1M, 10M, 20M, 30M, 40M
Number of dimensionsd 20K, 30K, 40K, 50K, 60K
Maximum subscription sizeΓmax 4, 8, 12, 16, 20
Maximum event sizem 20, 40, 60, 80, 100, 120
Percentage of equal operatorθ1 20%,40%, 60%, 80%, 100%
Value spaceσ 50, 200, 800, 3200, 12800
Zip f 0, 0.2, 0.4, 0.6, 0.8, 1.0

Besides the synthetic datasets, we also design two data gener-
ators from real datasets. The first generator uses the AOL query
log 9 to simulate keyword subscriptions. A keyword query is trans-
formed into a boolean expression. Each keyword is treated asan
attribute. Its operator is ‘=’ and the operand is set to 1. For ex-
ample, the query “vldb hangzhou” will be converted to(vldb=1
9http://www.gregsadetsky.com/aol-data/

620

∧ hangzhou=1). In this way, the model serves as a filtering con-
dition of AND semantics used in keyword search. Moreover, we
can extend the model to consider the term frequency as a filtering
condition. For example,(vldb∈i[5,20] ∧ hangzhou∈i[2,8])
is a more precise filtering condition. At the publisher side,we use
two datasets, Twitter and Wikipedia, as the event sources. We ran-
domly select 10,000 documents from each dataset to publish. The
average event length (in terms of the number of keywords) is 5.4
in Twitter and 123 in Wikipedia. In our implementation, we first
extract the 50,000 most frequent keywords. The reason is that BE-
Tree crashes when the dimension is too high and we use 50,000
as an upper bound. For both datasets, we generated two types of
subscriptions. One uses operator ‘=’ and the other uses interval
operator ‘∈i ’. The combination of subscription operators and event
sources results in four different datasets: Twitter=, Twitter∈, Wiki=
and Wiki∈i .

The second data generator uses Ebay product information to gen-
erate subscriptions and events. In each web page of product de-
scription, there is a section namedItem specifics which con-
tains structured information of the product. It lists the important
attributes and values about the product. We crawled 296,846 prod-
ucts from Ebay and extracted 10,204 unique attributes. To generate
a subscription, we follow the assumption that the more common
an attribute is, the more likely it will be used as a filtering con-
dition. However, the attribute distribution in Ebay is rather skew.
For example, 31 percent of products are associated with attribute
brand and 17 percent with attributecountry of manufacture.
Hence, we count the frequencyf (A) for each attribute, take the
log(f (A)), which is similar to handlingt f -id f and normalize it
to form a probability distribution. The attributes in the generated
subscriptions will follow this distribution. At the publisher side,
we assume that the information provider publishes new products
to subscribers. Therefore, we randomly pick 10,000 products with
different number of attributes to publish.

7.2 Performance Trade-off in BE-Tree
In [20], BE-Tree was reported to be not highly sensitive to the

node capacity parameter (the maximum number of entries stored
in a leaf node). However, we observed that, when the number
of dimensions grows to very large, this parameter plays an impor-
tant role in the trade-off between index construction cost and event
matching performance. In Figure 7, we vary the node capacityfrom
5 to 250 and report the build time and average matching time ina
uniformly-distributed dataset. When the node capacity grows from
5 to 150, the index construction becomes 15 times faster but the per-
formance of query processing degrades 15 times as well. In [20], it
is suggested that the parameter should be set based on the match-
ing rate (the number of matching subscriptions in terms of the total
number of subscriptions). Since in very high dimensional space,
the matching rate is smaller than 1%, we set the node capacityto 5
in the following experiments. We note that this essentiallybiased
the experimental comparison in favor of BE-Tree.

7.3 Experiments on Synthetic Datasets
The first set of experiments was conducted on the synthetic dataset.

We first report the memory usage and index construction time.Then,
we evaluate the matching performance with respect to parameters
S, Γmax, m, θ1 and σ, followed by an experiment using the Zipf
distribution.

7.3.1 Memory Consumption
Recall that all the indexes are memory-resident. Our first task

is to examine the memory consumption. However, since we only

 0

 2000

 4000

 6000

 8000

5 50 100 150 200 250

B
ui

ld
 T

im
e

(s
)

Node Capacity

(a) Index Construction Time

 0

 2

 4

 6

 8

 10

 12

5 50 100 150 200 250

A
vg

 M
at

ch
 T

im
e

(m
s)

Node Capacity

(b) Event Matching Time

Figure 7: Increasing node capacity of BE-Tree

have the binary executable files for our comparison methods,we
cannot report the exact index size. As an approximation, we run
the algorithms and report the memory usage in the event matching
stage for BE-Tree andk-index. For our index, we do not deallocate
the memory occupied by the subscriptions after reading themfrom
input file, although our matching algorithm does not need to access
them any longer. Thus, we report our memory usage in the worst
case which is in favor of the two comparison indexes. For this
experiment, we are interested in examining two parameters:N and
σ. The results are shown in Figure 8(a) and Figure 8(b).

When the number of subscriptionsN increases from 1 million
to 40 million, BE-Tree and our index demonstrate similar patterns
in memory usage. Their memory cost slowly grows and the con-
sumption by BE-Tree is around 2 times more than our index. How-
ever, the performance ofk-index degrades dramatically, taking up
7 times more memory. If the operator in a predicate is not ‘=’, k-
index has to transform it into multiple predicates of the form A= ō.
This replication causes the index to quickly run out of memory.

The value spaceσ also plays an important role. As shown in Fig-
ure 8(b), when we increaseσ from 50 to 12,800,k-index runs out
of memory and the usage whenσ = 3200 andσ = 12,800 cannot
be reported. The performance of BE-Tree also degrades a lot.Its
memory usage grows from 1GB to 10GB. This is because bothk-
index and BE-Tree maintain attribute-value inverted listsand more
inverted lists are built whenσ increases. Our OpIndex partitions
the subscriptions into predicate lists whose key is the pivot attribute
and operator. Its memory consumption is not affected byσ (always
0.2 GB in Figure 8(b)).

 0

 10

 20

 30

 40

 50

 60

 70

1M 10M 20M 30M 40M

M
em

or
y

U
sa

ge
 (

G
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(a) IncreasingN

 0
 5

 10
 15
 20
 25
 30
 35
 40

50 200 800 320012800

M
em

or
y

U
sa

ge
 (

G
)

Max Attribute Value

OpIndex
BE-Tree

K-IND

(b) Increasingσ

Figure 8: Memory Consumption

7.3.2 Index Insertion Time
In this experiment, we use the index insertion time to approx-

imately represent the update cost. The reason is that the binary
executable files do not provide the command to support updateop-
erations. If we consider an update as a deletion followed by an
insertion, the update cost will be around two times of the insertion

621

cost. We report the performance with respect toN, andΓmax in
Figure 9(a) and Figure 9(b).

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

1M 10M 20M 30M 40M

B
ui

ld
 T

im
e

(s
)

Number of Subscriptions

OpIndex
OpIndex-BS

BE-Tree
K-IND

(a) IncreasingN

 10

 100

 1000

 10000

 100000

4 8 12 16 20

B
ui

ld
 T

im
e

(s
)

Max Subscription Size

OpIndex
BE-Tree

K-IND

(b) IncreasingΓmax

Figure 9: Index Insertion Time

The index insertion time of OpIndex is three orders of magni-
tude better than BE-Tree and one order of magnitude better thank-
index. This is because in our index, the three operators are treated
in a uniform manner. The partition scheme is effective and the data
structure is scalable. The optimized version takes slightly longer
construction time than OpIndex-BS as it needs to build buckets and
maintains additional fields.k-index generates multiple predicates
when the operator is ‘≤’ or ‘≥’, which incurs much higher insertion
overhead. When the number of dimensions is very high, BE-Tree
incurs long processing time in attribute selection and other opti-
mization techniques to guarantee a good matching performance.

7.3.3 Matching time with increasingN

 100

 1000

 10000

1M 10M 20M 30M 40M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
OpIndex-BS

BE-Tree
K-IND

(a) IncreasingN

 10

 100

 1000

4 8 12 16 20

A
vg

 M
at

ch
 T

im
e

(µs
)

Max Subscription Size

OpIndex
OpIndex-BS

BE-Tree
K-IND

(b) IncreasingΓmax

 10

 100

 1000

 10000

20 40 60 80 100 120

A
vg

 M
at

ch
 T

im
e

(µs
)

Event Size

OpIndex
OpIndex-BS

BE-Tree
K-IND

(c) Increasingm

 10

 100

 1000

20 40 60 80 100

A
vg

 M
at

ch
 T

im
e

(µs
)

Percentage of Equal Operator (%)

OpIndex
BE-Tree

K-IND

(d) Increasingθ1

 10

 100

 1000

125 500 2000 8000 32000

A
vg

 M
at

ch
 T

im
e

(µs
)

Max Attribute Value

OpIndex
BE-Tree

K-IND

(e) Increasingσ

 10

 100

 1000

 10000

0.2 0.4 0.6 0.8 1.0

A
vg

 M
at

ch
 T

im
e

(µs
)

Zipf

OpIndex
BE-Tree

K-IND

(f) IncreasingZip f

Figure 10: Matching time on synthetic datasets

The performance of pub/sub matching with increasing subscrip-
tion number is reported in Figure 10(a). Our index achieves the

best event matching time, which is more than 10X better thank-
index. The optimized version scales better than OpIndex-BSbe-
cause when data size increases, the inverted list becomes longer and
the cost of binary search is more expensive. It becomes more effec-
tive to reduce the number of binary searches.k-index loses badly
for three reasons. First, partitioning by subscription size is not as
effective as partitioning by pivot attribute. Second, its number of
inverted lists is much larger than OpIndex, leading to higher lookup
cost. Third, its update of counter array is more expensive asit re-
quires random access on the whole array, whose size is the num-
ber of subscriptions. In comparison, our counter arrays aremuch
smaller and can be fit in the cache. BE-Tree scales well because of
the hierarchical clustering and the optimization mechanisms.

7.3.4 Matching time with increasingΓmax

The running time of increasingΓmax on the three indexes are
shown in Figure 10(b). Our OpIndex demonstrates the best scala-
bility due to its data structures and optimized matching algorithm.
The running time ofk-index increases linearly withΓmax. For BE-
Tree, its performance slightly improves at the beginning but later
degrades dramatically whenΓmax increases to 20.

7.3.5 Matching time with increasingm
As shown in Figure 10(c), all the indexes are sensitive tom.

Whenm increases, the running time of OpIndex scales similarly
to BE-Tree. The OpIndex-BS does not scale as well and its per-
formance degrades to become close to BE-Tree whenm is large.
k-index performs the worst and does not scale well withm.

7.3.6 Matching time with increasingθ1

Figure 10(d) shows the matching time when the percentage of
‘=’ operator increases. The performance of all the indexes be-
comes better because ‘=’ has high pruning power whenσ is large,
resulting in a small matching result set. Furthermore,k-index and
BE-Tree are more sensitive to this parameter than OpIndex, demon-
strating a dramatic performance improvement whenθ1 becomes
large. The reason is that they both need to maintain invertedlists
whose key is a pair of attribute name and value which naturally sup-
ports operator “=” and requires operator transformation for other
operators as discussed in Section 3.

7.3.7 Matching time with increasingσ
As shown in Figure 10(e), the event matching time stays stable

in all the three indexes for increasing value space. BE-Treeand
k-index guarantee the filtering performance at the expense ofmore
memory resource and index construction cost. For our index,the
number of matching predicates barely changes whenσ increases
from 50 to 12,800. This can be verified by our complexity analysis
in which the matching probability is estimated asκ = 1

3 + 2
3σ and

decreases from 0.3466 to 0.3334.

7.3.8 Matching time with increasingZip f

We also test the performance when the attribute and value of sub-
scriptions and events follow the Zipf distribution. The result in Fig-
ure 10(f) shows that when we gradually increase the skewnessof
datasets, OpIndex always achieves the best performance andscales
better thank-index.

7.4 Experiments on AOL Search Log
The subscriptions derived from AOL query log support two types

of operators: equal operator ‘=’ and interval operator ‘∈i ’. We vary
the number of subscriptions from 1 million to 5 million and report
the index construction time in Figure 11(a) and Figure 11(b). When

622

only operator ‘=’ appears in the subscriptions, the build time ofk-
index and our index is close. However, when interval operator ∈i
is involved, index construction is longer fork-index. BE-Tree does
not scale well in the very high dimensional space. It requires two
orders of magnitude more insertion time than our index in thereal
datasets.

The running time of matching tweets and Wikipedia articles us-
ing different operators is shown in Figures 11(c)-11(f). InTwit-
ter dataset, the event is small in length. Our index achievesvery
good matching performance: the running time of OpIndex is 4-9
times faster than BE-Tree and two orders of magnitude betterthan
k-index. When the event length grows to more than 100, as shown
in the results of Wikipedia datasets, our index still shows the best
performance. The results show that our index works well when
the attribute distribution is skew. The pivot attribute is effective in
pruning.

 1

 10

 100

 1000

 10000

 100000

1M 2M 3M 4M 5M

B
ui

ld
 T

im
e

(s
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(a) Operator ‘=’

 1

 10

 100

 1000

 10000

 100000

1M 2M 3M 4M 5M

B
ui

ld
 T

im
e

(s
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(b) Operator ‘∈i ’

 1

 10

 100

 1000

 10000

1M 2M 3M 4M 5M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(c) Twitter=

 10

 100

 1000

1M 2M 3M 4M 5M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(d) Twitter∈i

 100

 1000

 10000

 100000

 1e+006

 1e+007

1M 2M 3M 4M 5M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(e) Wiki=

 1000

 10000

 100000

 1e+006

1M 2M 3M 4M 5M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(f) Wiki ∈i

Figure 11: Matching time with increasingN in AOL

7.5 Experiments on Ebay Dataset
The experiment results, including index construction costand

event matching time, on Ebay dataset are reported in Figure 12.
Again, k-index spends similar construction time to our index and
orders of magnitude better than BE-Tree. WhenN and Γmax in-
crease, OpIndex always demonstrates the best event matching per-
formance. We also note that asΓ increases, the performance advan-
tage over BE-Tree is more significant. This is because our index
first partition the subscriptions based on the pivot attribute. When
Γmax increases, it is more likely to find a pivot attribute with small
frequency in the event sources to improve the pruning power.In
Figure 12(f), the performance of BE-Tree shows a clearly degrad-

ing pattern. The set operator∈s is less powerful than operator= in
pruning. It takes more time to prune a longer subscription.

 1

 10

 100

 1000

 10000

 100000

 1e+006

10M 15M 20M 25M 30M

B
ui

ld
 T

im
e

(s
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(a) Build Time in Ebay=

 1

 10

 100

 1000

 10000

 100000

 1e+006

10M 15M 20M 25M 30M

B
ui

ld
 T

im
e

(s
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(b) Build Time in Ebay∈s

 10

 100

 1000

 10000

10M 15M 20M 25M 30M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(c) IncreasingN in Ebay=

 100

 1000

 10000

 100000

10M 15M 20M 25M 30M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

OpIndex
BE-Tree

K-IND

(d) IncreasingN in Ebay∈s

 10

 100

 1000

 10000

2 4 6 8 10

A
vg

 M
at

ch
 T

im
e

(µs
)

Max Subscription Size

OpIndex
BE-Tree

K-IND

(e) IncreasingΓmax in Ebay∈s

 10

 100

 1000

2 4 6 8 10

A
vg

 M
at

ch
 T

im
e

(µs
)

Max Subscription Size

OpIndex
BE-Tree

K-IND

(f) IncreasingΓmax in Ebay=

Figure 12: Experiment Results on Ebay

7.6 Experiments on CNF and DNF Matches
As discussed in Section 6, OpIndex can be extended to support

CNF and DNF matching. Since the implementation of BE-Tree
andk-index does not support general CNF and DNF matches, we
only report the matching performance of OpIndex in Figure 13.
The default maximum number of clauses is set to 5. When we
vary the number of subscriptions from 1 million to 20 million, the
matching time of DNF scales better than CNF because a CNF may
be inserted into multiple pivot attribute partitions, incurring more
scanning cost. When the number of clauses increases, the matching
time of CNF scales better because it has a higher probabilityto find
a clause with only one predicate. In that case, there is no replicate
insertion.

 0

 200

 400

 600

 800

 1000

1M 5M 10M 15M 20M

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Subscriptions

CNF
DNF

(a) Increasing N

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

A
vg

 M
at

ch
 T

im
e

(µs
)

Number of Clauses

CNF
DNF

(b) Increasing number of clauses

Figure 13: Performance of CNF and DNF matches

623

7.7 Experiments on Prefix Operator
In the last experiment, we examine the performance of our in-

dex on the prefix operator. We use the words in Wikipedia for
dataset generation. The dataset contains 1 million subscriptions
with 10,100 attributes, among which 10,000 attributes are numeric
and the remaining 100 are string. The operators include only‘=’
and ‘prefix’. Since BE-Tree andk-index cannot support the prefix
operator, we only report the running time of our index with respect
to increasing percentage of prefix operator and increasing prefix
length in Figure 14. We can see that the running time increases as
more prefix operators appear in the subscription. This is because
‘prefix’ is a more expensive operator than ‘=’. However, it still
takes less than 0.4ms, which is considered acceptable, to match an
event when all the subscriptions are based on prefix operator. When
the prefix length increases, the performance is stable, evenslightly
improved due to fewer matching subscriptions.

 0

 200

 400

 600

 800

 1000

20 40 60 80 100

A
vg

 M
at

ch
 T

im
e

(µs
)

Percentage of Prefix Operator (%)

(a) Increasing ratio

 0

 200

 400

 600

 800

 1000

1 2 3 4 5

A
vg

 M
at

ch
 T

im
e

(µs
)

Prefix Length

(b) Increasing prefix length

Figure 14: Performance of prefix operator

8. CONCLUSION
In this paper, we tackled the problem of efficient pub/sub match

in E-commerce databases where the volume, velocity and espe-
cially variety are tamed together. Existing solutions cannot cope ef-
fectively for applications with very high dimensional tables. Thus,
we proposed an efficient, scalable and extensible index, which adopts
a two-level partitioning scheme and can be extended to support
complex scenarios such as prefix/suffix and regular expression matches.
Extensive experiments were conducted in synthetic and realdatasets.
The results showed that our index achieved the best performance in
terms of memory consumption, index construction and query pro-
cessing cost.

9. ACKNOWLEDGEMENT
This work is funded by the NExT Search Centre (grant R-252-

300-001-490), supported by the Singapore National Research Foun-
dation under its International Research Centre @ SingaporeFund-
ing Initiative and administered by the IDM Programme Office.

10. REFERENCES
[1] Freebase Data Dumps. https://developers.google.com/freebase/data.
[2] R. Baldoni and A. Virgillito. Distributed event routingin

publish/subscribe communication systems: a survey. Technical
Report 15-05, Dipartimento di Informatica e Sistemistica,Università
di Roma “La Sapienzia”, Rome, Italy, 2005.

[3] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. InSIGCOMM, pages 163–174, 2003.

[4] C. Y. Chan, M. N. Garofalakis, and R. Rastogi. Re-tree: Anefficient
index structure for regular expressions. InVLDB, pages 263–274,
2002.

[5] B. Chandramouli, J. Phillips, and J. Yang. Value-based notification
conditions in large-scale publish/subscribe systems. InVLDB, pages
878–889, 2007.

[6] B. Chandramouli and J. Yang. End-to-end support for joins in
large-scale publish/subscribe systems.PVLDB, 1(1):434–450, 2008.

[7] A. K. Y. Cheung and H.-A. Jacobsen. Load balancing content-based
publish/subscribe systems.ACM Trans. Comput. Syst., 28(4):9, 2010.

[8] W. Dakka and P. G. Ipeirotis. Automatic extraction of useful facet
hierarchies from text databases. InICDE, pages 466–475, 2008.

[9] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White.
Towards expressive publish/subscribe systems. InEDBT, pages
627–644, 2006.

[10] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M. Fischer. Path
sharing and predicate evaluation for high-performance xmlfiltering.
ACM Trans. Database Syst., 28(4):467–516, 2003.

[11] H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvestingrelational
tables from lists on the web.PVLDB, 2(1):1078–1089, 2009.

[12] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A.Ross, and
D. Shasha. Filtering algorithms and implementation for very fast
publish/subscribe. InSIGMOD Conference, pages 115–126, 2001.

[13] R. Ghani, K. Probst, Y. Liu, M. Krema, and A. E. Fano. Textmining
for product attribute extraction.SIGKDD Explorations, 8(1):41–48,
2006.

[14] A. Gupta, O. D. Sahin, D. Agrawal, and A. El Abbadi. Meghdoot:
Content-based publish/subscribe over p2p networks. InMiddleware,
pages 254–273, 2004.

[15] M. Hong, A. J. Demers, J. Gehrke, C. Koch, M. Riedewald, and
W. M. White. Massively multi-query join processing in
publish/subscribe systems. InSIGMOD Conference, pages 761–772,
2007.

[16] A. Machanavajjhala, E. Vee, M. N. Garofalakis, and
J. Shanmugasundaram. Scalable ranked publish/subscribe.PVLDB,
1(1):451–462, 2008.

[17] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a
crowd: Selecting attributes for maximum visibility. InICDE, pages
356–365, 2008.

[18] T. Milo, T. Zur, and E. Verbin. Boosting topic-based
publish-subscribe systems with dynamic clustering. InSIGMOD
Conference, pages 749–760, 2007.

[19] B. Mozafari, K. Zeng, and C. Zaniolo. High-performancecomplex
event processing over xml streams. InSIGMOD Conference, pages
253–264, 2012.

[20] M. Sadoghi and H.-A. Jacobsen. Be-tree: an index structure to
efficiently match boolean expressions over high-dimensional discrete
space. InSIGMOD Conference, pages 637–648, 2011.

[21] M. Sadoghi and H.-A. Jacobsen. Relevance matters: Capitalizing on
less (top-k matching in publish/subscribe). InICDE, pages 786–797,
2012.

[22] M. Sadoghi and H.-A. Jacobsen. Analysis and optimization for
boolean expression indexing.ACM Trans. Database Syst., 38(2):8,
2013.

[23] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.Buchmann.
A peer-to-peer approach to content-based publish/subscribe. In
DEBS, 2003.

[24] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,F. Wu,
G. Miao, and C. Wu. Recovering semantics of tables on the web.
PVLDB, 4(9):528–538, 2011.

[25] G. Weikum and M. Theobald. From information to knowledge:
harvesting entities and relationships from web sources. InPODS,
pages 65–76, 2010.

[26] S. Whang, C. Brower, J. Shanmugasundaram, S. Vassilvitskii, E. Vee,
R. Yerneni, and H. Garcia-Molina. Indexing boolean expressions.
PVLDB, 2(1):37–48, 2009.

[27] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. InSIGMOD Conference, pages 407–418,
2006.

[28] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a probabilistic
taxonomy for text understanding. InSIGMOD Conference, pages
481–492, 2012.

[29] T. W. Yan and H. Garcia-Molina. Index structures for selective
dissemination of information under the boolean model.ACM Trans.
Database Syst., 19(2):332–364, 1994.

624

