
Query From Examples: An Iterative, DataDriven Approach
to Query Construction

Hao Li1 CheeYong Chan1

1Department of Computer Science
National University of Singapore

li.hao@nus.edu.sg,
chancy@comp.nus.edu.sg

David Maier2
2Department of Computer Science

Portland State University

maier@cs.pdx.edu

ABSTRACT

In this paper, we propose a new approach, called Query
from Examples (QFE), to help non-expert database users
construct SQL queries. Our approach, which is designed for
users who might be unfamiliar with SQL, only requires that
the user is able to determine whether a given output table
is the result of his or her intended query on a given input
database. To kick-start the construction of a target query
Q, the user first provides a pair of inputs: a sample database
D and an output table R which is the result of Q on D. As
there will be many candidate queries that transform D to
R, QFE winnows this collection by presenting the user with
new database-result pairs that distinguish these candidates.
Unlike previous approaches that use synthetic data for such
pairs, QFE strives to make these distinguishing pairs as close
to the original (D,R) pair as possible. By doing so, it seeks
to minimize the effort needed by a user to determine if a
new database-result pair is consistent with his or her desired
query. We demonstrate the effectiveness and efficiency of
our approach using real datasets from SQLShare, a cloud-
based platform designed to help scientists utilize RDBMS
technology for data analysis.

1. INTRODUCTION
Given today’s ease of collecting large volumes of data and

the need for ad-hoc data querying to find information or
explore the data, there is growing adoption of relational
database systems, beyond the traditional enterprise con-
text, for managing and querying data. For example, in the
scientific community, the Sloan Digital Sky Survey (SDSS)
Project [1] provides online querying of a large repository of
image-based data using SQL queries, and the recent SQL-
Share Project [11] provides a web-based interface to facili-
tate scientists posing SQL queries on their uploaded research
data. However, writing SQL queries for such do-it-yourself
data exploration remains a challenging task for non-expert
database users; and this consideration has motivated several

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 42nd International Conference on
Very Large Data Bases, September 5th September 9th 2016, New Delhi,
India.
Proceedings of the VLDB Endowment, Vol. 8, No. 13
Copyright 2015 VLDB Endowment 21508097/15/09.

recent research efforts to help users with query construction.
One approach is to provide a repository for users to share

their queries and facilitate browsing for similar queries that
can be reused, possibly with minor modifications [10, 13].
For example, SDSS maintains a sample of popular user queries
to facilitate query reuse, and SQLShare facilitates browsing
and searching of SQL queries posted by users.

Another approach is to provide a query recommendation
facility that can recommend entire queries based on a user’s
and other users’ past queries recorded in a query log [6] or
recommend query snippets for specified SQL clauses (e.g.
tables in the from-clause, predicates in the where-clause)
based on the partial query fragment that the user has typed
and any past queries authored by users of the data [12, 17].

Both the query-browsing as well as query-recommender
approaches require the users to be familiar with SQL, as
they need to be able to read and write SQL queries. In
addition, these approaches might not be applicable if the
data being queried belongs to a private database that is
used only by a single user.

In this paper, we propose a new approach, called Query
from Examples (QFE), that is targeted at less sophisticated
users who might be unfamiliar with SQL. Unlike previous
approaches, QFE only requires that the user be able to de-
termine whether a given output table is the result of his or
her target query on a given input database.

To kick-start the construction of a target query Q in QFE,
the user first provides an example database-result pair (D,R),
where R is the desired output table of Q on the database D.
As there will be multiple candidate queries that transform
D to R, QFE winnows this collection by iteratively present-
ing the user with new database-result pairs that distinguish
these candidates. To minimize the user’s effort to deter-
mine if a new database-result pair is consistent with his or
her desired query, QFE strives to make these distinguishing
pairs as close to the original (D,R) pair as possible. In this
way, QFE is able to identify the user’s target query by seek-
ing the user’s feedback on a sequence of slightly modified
database-result pairs. Except for the initial database-result
pair, which is provided by the user, all the subsequent pairs
are automatically generated by the system. Olston et al.
note the advantage of using realistic data in presenting ex-
amples of query execution to users [18]. We adopt a similar
philosophy, trying to minimally modify the original data to
generate new example pairs instead of generating synthetic
data. The user can either provide D or use an existing
dataset (such as the current database state). In the latter
case, he or she might want to work with a subset, to keep

the result size manageable.

Example 1.1. To illustrate our QFE approach, suppose
that a user needs help to determine her target query Q for
the following database-result pair (D,R), where D consists
of a single table.

Employee
Eid name gender dept salary

1 Alice F Sales 3700
2 Bob M IT 4200
3 Celina F Service 3000
4 Darren M IT 5000

name

Bob
Darren
Result R

Database D

For simplicity, assume that there is a set of three candi-
date queries, QC = {Q1, Q2, Q3}, for Q, where each Qi =
πname(σpi(Employee)), with p1 = ‘gender = “M”’, p2 =
‘salary > 4000’, and p3 = ‘dept = “IT”’. To help identify
the user’s target query among these three candidates, our
approach will first present to the user a modified database1

D1 and two possible query results, R1 and R2, on D1:

Employee
Eid name gender dept salary

1 Alice F Sales 3700

2 Bob M IT 3900
3 Celina F Service 3000
4 Darren M IT 5000

Database D1

name

Bob
Darren

Result R1

name

Darren
Result R2

The modified database D1 serves to partition QC into mul-
tiple subsets. In this example, QC is partitioned into two
subsets with the queries in {Q1, Q3} producing the same re-
sult R1 on D1 and the query in {Q2} producing the result
R2. The user is then prompted to provide feedback on which
of R1 and R2 is the result of her target query Q on D1. If
the user chooses R2, then we conclude that the target query
is Q2. Otherwise, Q ∈ {Q1, Q3} and the feedback process
will iterate another round and present the user with another
modified database D2 and two possible results, R3 and R4

on D2:

Employee
Eid name gender dept salary

1 Alice F Sales 3700

2 Bob M Service 4200
3 Celina F Service 3000
4 Darren M IT 5000

Database D2

name

Bob
Darren

Result R3

name

Darren
Result R4

If the user feed back that R3 is the result of Q on D2, then
we conclude that Q is Q1; otherwise, we conclude that Q is
Q3. For this example, the target query is determined with at
most two rounds of user feedback, each of which involves a
single change in the database. �

There are two main challenges for the QFE approach. The
first is how to generate candidate target queries given an ini-
tial database-result pair; and the second is how to optimize
the user-feedback interactions to minimize the user’s effort
to identify the desired query. In this paper, our focus is
on the second challenge, as existing techniques [21, 23] are
available to address the first.
Our paper makes two key contributions. First, we pro-

pose a novel approach, Query From Examples, to help users

1The modification(s) in the database (i.e., Bob’s salary) are
shown as boxed text.

construct queries. For users who are not familiar with SQL,
our approach offers both an easy-to-use specification of their
target queries (via a database-result pair) as well as a low-
effort mode of user interaction (via feedback on modified
database-result pairs). Second, we demonstrate the effec-
tiveness and efficiency of our approach using real datasets
from SQLShare [11], a cloud-based platform designed to help
scientists utilize RDBMS technology for data analysis.

As a first step towards the QFE approach, our current
implementation is limited to supporting only simple select-
project-join (SPJ) queries, and we have not fully explored
opportunities to improve execution-time performance. We
plan to investigate these issues as part of our future work.

The rest of this paper is organized as follows. We present
an overview of our new QFE approach in Section 2, and
discuss its details in Sections 3 to 5. Section 6 presents
additional extensions. An experimental evaluation of QFE
is presented in Section 7. Section 8 discusses related work.
Finally, we conclude in Section 9.

2. OUR APPROACH
Figure 1 illustrates the overall architecture of our ap-

proach. QFE first obtains an initial database-result pair
(D,R) from the user where R is the result of the user’s tar-
get query on the database D. The Query Generator module
takes (D,R) as input to generate a set of candidate SQL
queries QC = {Q1, · · · , Qn} for (D,R); i.e., Qi(D) = R for
each Qi ∈ QC.

To efficiently identify the user’s target query from QC,
which is generally a very large collection, QFE winnows
this collection iteratively using a divide-and-conquer strat-
egy. At each iteration, theDatabase Generator module takes
as inputs (D,R) and QC′ ⊆ QC, which is the set of re-
maining candidate queries at the start of the iteration, to
generate a new database D′. The purpose of D′ is to dis-
tinguish the queries in QC′ based on their query results on
D′. Specifically, D′ partitions QC′ into a number of sub-
sets, QC′

1, · · · , QC′
k, k ≥ 1, where two queries belong to the

same subset QC′
j if and only if they produce the same result

(denoted by Rj) on D′.
Next, the Result Feedback module presents the user with

the new database D′ and the collection of query results
R1, · · · , Rk. If the user identifies Rx as the correct query
result on D′, it means that the user’s target query is guaran-
teed to be not in QC′

j , j 6= x; therefore, these query subsets
can be pruned from further consideration. QFE will start
another iteration using the subset of candidate queries QC′

x

corresponding to Rx if QC′
x contains more than one query;

otherwise, QFE terminates with the only query in QC′
x as

the user’s target query.
To help reduce the user’s effort to identify Rx relative

to D′, instead of presenting the user with the entire new
database D′ and query results R1, · · · , Rk, the Result Feed-
back module actually presents D′ and Ri in terms of their
differences from the original database-result pair (D,R),
which is denoted by ∆(D,Ri) in Figure 1.

The overall procedure for QFE is shown in Algorithm 1.
In the event that none of the query results presented at an
iteration is the intended output of the user’s target query
(not shown in Algorithm 1), it means that the target query
is not in the initial set of candidate queries QC. In this
case, QFE will initiate another round of candidate-query

User

Database-Result

Pair(D, R)

Query

Generator

Database

Generator Modified Database & Query Results

 (D’, R1) (D’, Rk)

Result

Feedback
1 2 3

4

Δ(D, R1) Δ(D, Rk)

5
Selected Result Number i

Candidate SQL Queries

QC = {Q1, , Qn}

6
Selected Result Number i

2, 6

Figure 1: Overall Architecture of QFE

Algorithm 1: QFE

Input: A database-result pair (D,R)
Output: Target query

1 QC = Query-Generator(D, R)
2 repeat

3 D′ = Database-Generator(D, QC)
4 QC = QC1 ∪ · · · ∪QCk // Partition QC using D′

5 for i = 1 to k do

6 let Ri be the output of query in QCi on D′

7 x = Result-Feedback(D′, R1, · · · , Rk)
8 QC = QCx

9 until |QC| = 1
10 return Q where QC = {Q}

generation by taking into account the information gathered
to output additional candidate queries for iterative pruning.
For the QFE approach to be effective, it is important to

minimize the user’s total effort to obtain his or her target
query. A reasonable measure of a user’s effort at each iter-
ation is the amount of work required to identify the correct
query result from the collection of query results R1, · · · , Rk

relative to the new database D′. Since the user is already fa-
miliar with the initial database-result pair (D,R), the user’s
effort at each iteration can be reduced by minimizing the fol-
lowing three aspects: (1) the number of query results shown
(i.e., k), (2) the differences between the initial database D
and the new database D′, and (3) the differences between
the initial query result R and each new query result Ri.
As minimizing k could increase the number of iterations,

optimizing the choice ofD′ to reduce the user’s effort at each
iteration is a non-trivial problem. In the following sections,
we first present a cost model to quantify the user’s effort to
determine the target query relative to D′, and then present
the details of the key components of QFE.

3. COST MODEL
In this section, we present a cost model to quantify the

user’s effort in identifying the target query from an initial
set of candidate queries QC. This cost model is used by
the Database Generator module to select a “good” modi-
fied database D′ to partition QC into multiple query sub-
sets {QC1, · · · , QCk}, whose query results {R1, · · · , Rk} are
then shown to the user for feedback.
To minimize the number of required iterations, the size of

the query subsets (i.e., |QCi|) induced by the new database
D′ at each iteration should ideally be balanced. Given a col-
lection of partitioned query subsets C = {QC1, · · · , QCk}

induced by D′, we define the balance score of D′, denoted
by balance(D′), to be σ

|C|
, where σ is the standard deviation

of the set {|QC1|, · · · , |QCk|}. Thus, a smaller balance(D′)
value indicates a more desirable D′ that induces a partition-
ing with many subsets of about the same size. Furthermore,
a good balance limits the worst-case number of iterations.

The user’s effort is also reduced if both the differences
between the initial and modified databases as well as the
differences between the initial query result R and each new
query result Ri are small, since new information is mini-
mized. We quantify the difference between two instances of
a relation, T and T ′, by the minimum edit cost to trans-
form T to T ′, denoted by minEdit(T, T ′). We consider the
following three types of edit operations:

(E1) modifying an attribute value of a tuple in T ,

(E2) inserting a new tuple into T , and

(E3) deleting a tuple from T .

The edit cost of (E1) is one, and both (E2) and (E3) have
edit cost equal to the arity of the relation. For convenience,
we useminEdit(D,D′) to denote the sum ofminEdit(T, T ′)
for each relation T in database D that has been modified to
T ′ in the modified database D′.

The user’s effort relative to the modified database D′, de-
noted by cost(D′), is modeled as a sum of two components:

cost(D′) = currentCost + residualCost (1)

where currentCost and residualCost, respectively, denote
the user’s effort for the current iteration and the remaining
iterations. The effort for the current iteration is modeled as

currentCost = dbCost+ resultCost (2)

where dbCost denotes the user’s effort to identify the differ-
ences between the initial database D and modified database
D′, and resultCost denotes the user’s effort to identify the
differences between the initial query result R and each new
query result Ri. For dbCost, it is reasonable to expect that
more effort is required from the user if the modified tuples
come from a larger number of relations. Thus, we model

dbCost = minEdit(D,D′) + β × n (3)

where n denotes the number of modified relations in D′ and
β is a scale parameter to normalize the number of relations

in terms of some number of attribute modifications. For the
query result differences, we have

resultCost =

k∑

i=1

minEdit(R,Ri) (4)

Modeling residualCost is somewhat trickier as it depends
on the user’s feedback at each iteration. A conservative es-
timation of this is to assume that the user’s feedback in
the current iteration picks the largest query subset and for
each subsequent iteration, the partitioning creates only two
query subsets based on a single modified database tuple. We
estimate the minimum edit cost for this single tuple modi-
fication from the average of the current iteration’s database
edit costs. Hence, for each subsequent iteration, dbCost
is modeled as minEdit(D,D′)/µ + β, where µ denotes
the total number of modified database tuples in the cur-
rent iteration. Since there are only two query subsets in
each subsequent iteration, we model resultCost as twice of
the current iteration’s average query result edit cost; i.e.,
2
k

∑k

i=1 minEdit(R,Ri).
Putting everything together, we have

cost(D′) = minEdit(D,D′) + β · n+

k∑

i=1

minEdit(R,Ri)+

N × (minEdit(D,D′)/µ + β +
2

k

k∑

i=1

minEdit(R,Ri)) (5)

where N is the number of remaining iterations.
To minimize the user’s effort, the modified database D′

used in each iteration should have a small value for cost(D′).
Note that there is a tradeoff involved in making more database
modifications: although this tends to increase the cost of the
current iteration, it is likely to also increase the number of
query subsets in the partition (i.e., reduce the balance score
of modified database) which tends to reduce the number of
required iterations and the costs of the remaining iterations.

3.1 Estimation of Number of Iterations
The remaining issue for the cost model concerns the esti-

mation of the number of iterations N . One simple estima-
tion of N is given by

N = log2(max{|QC1|, · · · , |QCk|}) (6)

which is based on two assumptions about subsequent itera-
tions: (A1) the only available query partitionings are binary
ones that partition candidate queries into two subsets, and
(A2) the best partitioning that creates two balanced subsets
is always available.
In the following, we discuss how to improve the accuracy

of this simple estimation by exploiting additional informa-
tion that would be available as part of our approach (Al-
gorithm 3 to be presented in Section 5.2). Specifically, the
improvement comes from completely or partially eliminating
assumption (A2).
With assumption (A1), suppose that the most balanced

partitioning P in the current iteration creates two query
subsets, Sx and Sy, containing x and y queries, respectively,
where x ≤ y. As before, we always assume that the largest
query subset (i.e., Sy) is chosen for the next iteration. Thus,
the number of “false positive” queries eliminated by the cur-
rent iteration is x. Since P is the most balanced partitioning
in the current iteration, it follows that for any other binary

partitioning in the current iteration, the number of false
positive queries eliminated by it is at most x. With this
additional knowledge about x, the following property holds
for each subsequent iteration.

Lemma 3.1. Based on assumption (A1), the number of
false positive queries eliminated in each subsequent iteration
is at most x, where x is the number of false positive queries
eliminated by the most balanced binary partitioning in the
current iteration.

Proof. We establish the proof by contradiction. Sup-
pose that the claim is false; i.e., in some subsequent itera-
tion with S′ ⊆ Sy candidate queries, there exists a binary
partitioning P ′ that partitions S′ into two subsets of u and
v queries, where u ≤ v and u > x. This implies that had we
chosen P ′ to partition the queries in the current iteration,
each of the two subsets partitioned by P ′ would have more
than x queries, contradicting the fact that P is the most
balanced partitioning in the current iteration.

Based on Lemma 3.1, we refine the estimation of N as the
sum of two components as follows:

N = N1 +N2 (7)

N1 = ⌊(max{|QC1|, · · · , |QCk|})/x⌋ − 1 (8)

N2 = ⌈log2(max{|QC1|, · · · , |QCk|})− xN1)⌉ (9)

Here, x denotes the number of queries in the smaller query
subset created by the most balanced binary partitioning in
the current iteration. In contrast to Equation (6), which
optimistically assumes that half the number of queries are
eliminated as false positives in each iteration, N1 denotes
the number of iterations where x false positive queries (i.e.,
the upper bound established by Lemma 3.1) are eliminated
in each iteration. At the end of N1 iterations, the number
of remaining candidate queries is at most 2x − 1, and we
fall back to applying Equation (6) to estimate the number
of remaining iterations, which is given by N2. In the event
that no binary partitioning exists in the current iteration
(i.e., x is undefined), we fall back to using Equation (6) for
the estimation of N .

4. QUERY GENERATOR
The objective of the Query Generator module is to gener-

ate a set of candidate SQL queries QC for the user’s target
query given an initial database-result pair (D,R).

A number of approaches have recently been proposed to
reverse-engineer queries given an input database-result pair
[21, 23]. In this paper, we adopted the QBO approach of
Tran et al. [21] for our Query Generator module as it can
support more general candidate queries, specifically, select-
project-join (SPJ) queries, compared to the project-join queries
(i.e., without any selection predicates) considered by Zhang
et al. [23].

QBO provides several configuration parameters to control
the search space for equivalent candidate queries, such as
the maximum number of selection-predicate attributes, the
maximum number of joined relations, the maximum number
of selection predicates in each conjunct, etc. In our exper-
iments, we configured QBO to generate as many candidate
queries as possible2.
2In practice, it might be better to set these parameters con-
servatively, then relax them if more candidate queries are
needed.

Each generated query is of the form πℓ(σp(J)), where ℓ
and p are the query’s projection list and selection predicate,
respectively. J is the foreign-key join3 of a subset of the
relations in the database D. For convenience, each selection
predicate is assumed to be in disjunctive normal form; i.e.,
p = p1 ∨ · · · ∨ pm, where each pi is a conjunction of one or
more terms and a term is a comparison between an attribute
and a constant.

5. DATABASE GENERATOR
The Database Generator module takes as input the ini-

tial database-result pair (D,R) and a set of candidate SPJ
queries QC, and generates a new database D′ to be used
to distinguish the queries in QC. Recall that D′ is used to
partition QC into subsets, QC = QC1 ∪ · · · ∪ QCk, such
that all the queries in each QCi generate the same output
result Ri on D′, and R1, · · · , Rk are all distinct. The goal is
to determine D′ such that it minimizes the user’s effort to
identify the target query.
Assumptions. To simplify the discussion in this section,
we make two assumptions about the queries QC and one
assumption on D′. First, we assume that all the queries in
QC share the same join schema with T being the foreign-key
join of all the relations in the database D. Thus, since R
determines the projection list ℓ, all the queries in QC are
essentially different selection queries on the single relation
T . Second, we assume that all the queries in QC preserve
duplicates (i.e., the DISTINCT keyword does not appear
in any query’s SELECT clause). Third, we assume that
any modified database D′ is valid (i.e., D′ does not violate
any integrity constraints). We discuss how to relax these
assumptions in Section 6.

5.1 Tuple Classes
To facilitate reasoning about the effects of database mod-

ifications on the partitioning of queries, we introduce the
concept of a tuple class.
Consider a database relation T (A1, · · · , An) and a set of

queries QC. For each attribute Ai in T , based on the se-
lection predicate constants involving Ai contained in the
queries in QC, we can partition the domain of Ai into a
minimum collection of disjoint subsets, denoted by PQC(Ai),
such that for each subset I ∈ PQC(Ai) and for each selection
predicate p on Ai in QC, either every value in I satisfies p
or no value in I satisfies p.

Example 5.1. Consider a relation T (A,B,C) where both
A and B have numeric domains; and a set of queries QC =
{Q1, Q2}, where Q1 = σ(A≤50)∧(B>60)(T) and
Q2 = σ(A∈(40,80])∧(B≤20)(T). We have PQC(A) = {[−∞, 40],
(40, 50], (50, 80], (80,∞]} PQC(B) = {[−∞, 20], (20, 60],
(60,∞]}, and PQC(C) = {[−∞,∞]}. �

The next example illustrates domain partitioning for non-
ordered attribute domains.

Example 5.2. Consider a relation T (A,B,C) where A
is a categorical attribute with an unordered domain given
by {a, b, c, d, e, f, g}. Suppose that we have a set of queries
QC = {Q1, Q2}, where Q1 = σA∈{b,c,e}(T) and Q2 = σA∈{a,b,d,e}

3If foreign-key constraints are not explicitly provided by the
user’s inputs, we can infer soft foreign-key constraints by
applying known techniques (e.g., [16]).

(T). Based on the subset of domain values that match the
various subsets of selection predicates in QC, the domain
of A is partitioned into 4 subsets, depending on whether the
values satisfy neither, both, or exactly one of Q1 and Q2:
PQC(A) = {{a, d}, {b, e}, {c}, {f, g}}. �

Given a relation T (A1, · · · , An) and a set of queries QC,
a tuple class for T relative to QC is defined as a tuple of
subsets (I1, · · · , In) where each Ij ∈ PQC(Aj). We say that
a tuple t ∈ T belongs to a tuple class TC = (I1, · · · , In),
denoted by t ∈ TC, if t.Aj ∈ Ij for each j ∈ [1, n].

Example 5.3. Continuing with Example 5.1, TC = ((40,
50], [−∞, 20], [−∞,∞]) is an example of a tuple class for
T , and (48, 3, 25) ∈ TC. �

By the definition of tuple class, we have the property that
for every query Q ∈ QC and for every tuple class TC for a
relation T relative to QC, either every tuple in TC satisfies
Q or no tuple in TC satisfies Q. In the former case, we say
that TC matches Q.

This property of a tuple class provides a useful abstrac-
tion to reason about the effects of a database modification.
Specifically, we can model a single-tuple modification in a
relation T by a pair of tuple classes (s, d) of T to represent
that some tuple t ∈ T , where t belongs to the tuple class
s (referred to as the source-tuple class(STC)), is modified
to another tuple t′, where t′ belongs to the tuple class d
(referred to as the destination-tuple class(DTC)).

Clearly, if we generate a modified database D′ by modify-
ing a single tuple t in D to t′ such that both t and t′ belong
to the same tuple class, then all the queries in QC would
still produce the same query result on D′. Thus, for QC to
be effectively partitioned by D′, the (STC,DTC) pair (s, d)
corresponding to a modified tuple in D′ must have s 6= d.
The following result states the maximum number of query
subsets that can be partitioned by a modified database.

Lemma 5.1. Consider a set of queries QC that have the
same query result on a database D, and a new database D′

that is obtained from D by modifying n distinct tuples in
D. D′ can partition QC into at most 4n query subsets,
QC = QC1∪QC2∪· · ·∪QCm, m ∈ [1, 4n], such that (1) all
the queries in each QCi produce the same query result on D′,
and (2) for each pair of queries Qi ∈ QCi, Qj ∈ QCj , i 6= j,
Qi(D

′) 6= Qj(D
′).

Proof. Consider the case where n = 1. Let D′ be a
modified database obtained from D by modifying a single
tuple t in D to t′ such that the projected attribute values of
t and t′ are, respectively, x and x′, where x 6= x′. For each
query Q ∈ QC, there are four possibilities for Q(D′): (1)
Q(D′) = Q(D) if neither t nor t′ matches Q; (2) Q(D′) =
Q(D) ∪ {x′}, if t does not match Q but t′ matches Q; (3)
Q(D′) = Q(D)− {x}, if t matches Q but t′ does not match
Q; and (4) Q(D′) = Q(D)∪{x′}−{x}, if both t and t′ match
Q. Thus, since there are only 4 potential results, QC can
be partitioned into at most 4 query subsets when a single
tuple is modified. It follows that the maximum number of
query subsets is 4n for n tuples modifications.

Given a database D and set of (STC,DTC) pairs S rep-
resenting modifications to D, we can generate a modified
database D′ from D and S as follows: for each (s, d) ∈ S,
choose a tuple t in D that belongs to s and modify t to

Algorithm 2: Database-Generator

Input: A database D, a set of candidate queries QC
Output: A modified database D′

1 SP = Skyline-STC-DTC-Pairs(D, QC)
2 Sopt = Pick-STC-DTC-Subset(SP , QC)
3 Let D′ be a modified database generated from D and Sopt

4 return D′

t′ such that t′ belongs to d. Given this, it is convenient
to extend the definitions of balance(D′), minEdit(D,D′)
and cost(D′) to sets of (STC,DTC) pairs. Specifically, if
D′ is a modified database that is generated from D and
S as described, then we define balance(S) = balance(D′),
minEdit(S) = minEdit(D,D′), and cost(S) = cost(D′).

5.2 Overview of Approach
Generating a modified database D′ with a small value

of cost(D′) is a complex problem due to the large search
space of possible database modifications. In this section, we
present an effective heuristic approach to compute D′ by
searching in the smaller domain of tuple-class pairs. Our
approach first finds a set Sopt of (STC,DTC) pairs that
minimizes balance(Sopt) and minEdit(Sopt), and then maps
each tuple-class pair in Sopt to a concrete tuple modification
to form D′.
For efficiency, our search for Sopt is organized iteratively

in increasing cardinality of the candidate tuple-pair sets: we
first consider a search space consisting of single-pair sets,
and then extend this to consider a search space of two-pair
sets, and so on. The search space extension from i-pair sets
to (i + 1)-pair sets is done in such a way that only “good”
candidates are considered, to limit the search space.
The search space for single-pair sets is generated by con-

sidering the skyline (STC,DTC) pairs defined with respect
to their balance scores and minimum edit costs. Given two
(STC,DTC) pairs, (s, d) and (s′, d′), we say that (s, d) dom-
inates (s′, d′) if (1) balance({(s, d)}) ≤ balance({(s′, d′)}),
(2) minEdit(s, d) ≤ minEdit(s′, d′), and (3) at least one
of the two inequalities in (1) and (2) is strict. A set S of
skyline (STC,DTC) pairs has the property that for every
two distinct pairs (s, d), (s′, d′) ∈ S, neither (s, d) nor (s′, d′)
dominates the other.
The overall design of the database generator module is

shown in Algorithm 2, which takes the initial database D
and a set of candidate queries QC as inputs and outputs a
modified database D′ with a small value of cost(D′). The
algorithm first generates a set SP of skyline (STC,DTC)
pairs from D and QC using the function Skyline-STC-DTC-

Pairs. The second step selects a “good” subset of (STC,
DTC) pairs Sopt ⊆ SP using the function Pick-STC-DTC-

Subset. Finally, the modified database D′ is generated from
D and Sopt.

5.3 Algorithm SkylineSTCDTCPairs
The function Skyline-STC-DTC-Pairs, shown in Algo-

rithm 3, takes the initial database D and a set of can-
didate queries QC as inputs to generate a set of skyline
(STC,DTC) pairs SP .
The function first generates the set of all the source-tuple

classes STC from D and QC. Recall that all the queries
in QC are assumed to be selection queries on a single re-
lation T formed by joining all the relations in D based on

Algorithm 3: Skyline-STC-DTC-Pairs

Input: The initial database D, a set of candidate queries
QC

Output: A set of skyline tuple-class pairs
1 STC = set of source-tuple classes derived from D & QC
2 initialize set of skyline tuple-class pairs SP = ∅
3 initialize minbalance = ∞
4 let n be the number of distinct selection-predicate attributes

in QC
5 for i = 1 to n do

6 initialize SPi = ∅
7 foreach s ∈ STC do

8 let DTC = set of destination-tuple classes that can
be derived from s by modifying i subsets

9 foreach d ∈ DTC do

10 p = (s, d)
11 if balance({p}) < minbalance then

12 SPi = {p}
13 minbalance = balance({p})
14 else if balance({p}) == minbalance then

15 SPi = SPi ∪ {p}
16 SP = SP ∪ SPi

17 if the running time is larger than threshold δ then

18 break
19 return SP

their foreign-key relationships. The source-tuple classes are
derived by first using QC to compute PQC(Ai) for each at-
tribute Ai in the selection predicates in QC, and then map-
ping each tuple in T to its source-tuple class.

The skyline (STC,DTC) pairs are generated iteratively
in order of non-descending minimum edit cost starting from
one to n, where n is the number of distinct attributes that
appear in the selection predicates in QC. Thus, the ith

iteration generates SPi, the set of skyline (STC,DTC) pairs
with a minimum edit cost of i. By enumerating the skyline
pairs in this manner, any dominated tuple class pairs can be
detected efficiently and pruned.

The time complexity of this function is O(mkn), where m
is the total number of source-tuple classes and k is the max-
imum number of domain subsets over all selection-predicate
attributes; i.e., k = maxAi{|PQC(Ai)|}. Note that in the
ith iteration, the number of destination-tuple classes that
can be generated from one source-tuple class is Cn

i (k − 1)i.
Therefore, the total number of (STC,DTC) pairs consid-
ered is at most

∑n

i=1 C
n
i (k − 1)i, i.e., O(kn).

Given the high time complexity of this function, in our ex-
perimental evaluation, we used a threshold parameter δ to
control the maximum running time allocated for this func-
tion. Once the threshold is reached, the function terminates
and returns all the skyline pairs that it has enumerated so
far.

5.4 Algorithm PickSTCDTCSubset
The function Pick-STC-DTC-Subset, shown in Algorithm 4,

takes as inputs the set of skyline (STC,DTC) pairs SP and
the set of candidate queries QC to select a “good” subset of
SP for deriving D′. Steps 1 to 8 consider the search space of
single-pair sets and identify the optimal sets with minimum
cost, which are maintained in L. Steps 9 to 21 consider the
search space of i-pair sets iteratively, i ∈ [2, |SP |], which is
extended from the search space of (i− 1)-pair sets, denoted
by OPi−1. To maintain a small search space of good candi-
dates for the next iteration, only those i-pair sets that have a

Algorithm 4: Pick-STC-DTC-Subset

Input: A set of skyline (STC,DTC) pairs SP , a set of
candidate queries QC

Output: A subset of (STC,DTC) pairs Sopt ⊆ SP
1 initialize L = ∅
2 initialize mincost = ∞
3 foreach p ∈ SP do

4 if cost({p}) < mincost then
5 L = {{p}}
6 mincost = cost({p})
7 else if cost({p}) == mincost then
8 L = L ∪ {{p}}
9 initialize OP1 = SP

10 for i = 2 to |SP | do
11 initialize OPi = ∅
12 foreach op ∈ OPi−1 do

13 foreach p ∈ SP, p 6∈ op do

14 op′ = op ∪ {p}
15 if balance(op′) < balance(op) then

16 OPi = OPi ∪ {op′}
17 if cost(op′) < mincost then
18 L = {op′}
19 mincost = cost(op′)
20 else if cost(op′) == mincost then
21 L = L ∪ {op′}
22 let Sopt ∈ L such that balance(Sopt) ≤ balance(S) ∀ S ∈ L
23 return Sopt

lower balance score relative to their constituent (i− 1)-pair
sets are used for the next iteration. Finally, in the event
that L contains more than one optimal set, step 22 picks
the optimal set with the lowest balance score. The time
complexity of Algorithm 4 is O(2|SP |). Although the worst-
case complexity is high, our experimental results show that
in practice, the size of the search space considered is small
due to our balance-score-based pruning heuristic.

5.4.1 Side Effects of TupleClass Modifications

Recall that given a set of (STC,DTC) pairs S, cost(S) is
derived by first mapping each tuple-class pair (s, d) ∈ S to
a pair of tuples (t, t′); where t ∈ D belongs to s, and t′ is
modified from t such that t′ belongs to d. The set of derived
modified tuples form D′, and cost(S), which is defined to be
cost(D′), is computed using Equation (5).
In general, a single database tuple modification from t

to t′ could result in more than one result tuple in Q(D)
being modified, since the modified base tuple could join with
multiple tuples and therefore contribute to multiple result
tuples as illustrated by the following example.

Example 5.4. Consider the following joined relation T =
T1(A,B,C) ⊲⊳A T2(A,D), where T2.A is a foreign key that
references T1.

A B C D

1 10 50 20
1 10 50 40
2 80 45 25
3 92 80 20

T = T1(A,B,C)⊲⊳AT2(A,D)

Assume that there is a (STC,DTC) pair (s, d) that corre-
sponds to modifying the value of attribute B in the base tuple
(1, 10, 50) in T1 to some other value. This single-tuple mod-
ification in T1 actually affects the first two tuples in T . �

Thus, the database modification corresponding to a sin-
gle tuple-class pair can potentially affect more than one
query result tuple. Since the affected tuples might not be-
long to the same destination-tuple class, we need to take
into account such unintended effects to accurately compute
cost(S).

Our implementation of QFE constructs a join index for
each foreign-key relationship in the database to efficiently
keep track of the set of related tuples (with respect to the
foreign-key relationship) for each base tuple. Using the join
index, the unintended side effects of a modification corre-
sponding to tuple-class pair can be easily identified to accu-
rately compute the cost(S). To minimize resultCost, tuple-
class modifications that have no side-effects are preferred.

6. DISCUSSION
We first discuss in Sections 6.1 to 6.3 how our approach

can be generalized by relaxing the three assumptions stated
in Section 5. We conclude with a discussion of how our ap-
proach can be extended to support more expressive queries
in Section 6.4.

6.1 Queries with Setbased Semantics
So far, our discussion is based on the assumption of bag-

semantics for the queries QC, where duplicate values are
preserved in the query results. We now explain how our
approach can handle queries with set-semantics, where there
are no duplicate values in the query results.

Consider an example where the schema of Q(D) consists
of a single attribute A and we are trying to distinguish the
set of queriesQC = {Q1, Q2} with an appropriateD′. There
are two basic ways to achieve this goal. The first approach
is to modify D such that some value, say a1 ∈ Q(D), is
removed from Q1(D

′) but remains in Q2(D
′). The second

approach is to modify D such that some value of attribute
A, say a2 6∈ Q(D), is inserted into Q1(D

′) but is not present
in Q2(D

′).
For the first approach, we need to modify the set of tuples

S ⊆ D that match Q1 with πA(S) = {a1} such that the
modified tuples do not match Q1. For the second approach,
it is sufficient to modify a single tuple in D such that the
modified tuple t has t.A = a2 and t matches Q1 but not Q2.
The first approach is more complex to handle since the set
of tuples S to be modified might not all belong to the same
tuple class. Thus, our existing QFE solution can handle
set semantics by adopting the second approach. Further
research is required to incorporate the first approach as well
into QFE.

6.2 Queries with Different Join Schema
We have so far assumed that all the queries in QC share

the same join schema. Our approach can be extended quite
easily to handle the more general case where this assumption
does not hold.

The simplest approach to handle different join schema is
to use a divide-and-conquer strategy. We first partition QC
into different groups so that queries in the same group share
the same join schema and then apply QFE on each of these
groups. There are different strategies to order the query
groups for processing. One strategy is to process the query
groups in non-ascending order of the group size based on
the assumption that the target query is more likely to be
contained in a larger query group. Once the target query

is identified in some query group, the processing terminates
without the need to process the remaining query groups.
A more complex approach to solve the problem is to com-

pute a full-outer join of all the relations in the database
and to extend our existing QFE approach to work with this
single joined relation. We plan to evaluate the tradeoffs of
these different approaches as part of our future work.

6.3 Database Constraints
We have so far not discussed how to ensure that the

generated modified databases are valid with respect to the
database integrity constraints that could be provided by the
users. For primary key constraints, it is trivial to ensure that
modified tuples do not violate such constraints. For foreign
key constraints, care must be taken to ensure a modified
non-null foreign key value refers to an existing primary key
value. However, more research is required to look into han-
dling more complex database constraints.

6.4 Supporting More Expressive Queries
In this section, we discuss how our approach could be

extended to handle more expressive queries.
For select-project-join-union (SPJU) queries, the problem

of distinguishing two SPJU queries can be reduced to that of
distinguishing two SPJ queries with some additional check-
ing. For example, consider the problem of distinguishing
two SPJU queries Q1 = Q11 ∪ Q12 and Q2 = Q21 ∪ Q22

with a modified database D′. Assume that t is an output
tuple that is produced by both Q11 and Q21 on database
D. The problem could be viewed as distinguishing two SPJ
queries Q11 and Q21. One way is to generate D′ such that
t ∈ Q11(D

′) and t 6∈ Q21(D
′); additionally, we need to

ensure that t 6∈ Q22(D
′). Another way is to modify the

database such that a new output tuple t′ is contained in
Q11(D

′) but not in Q2(D
′).

Supporting group-by aggregation (SPJA) queries, how-
ever, requires more significant extensions to our approach
due to the larger number of diverse options to distinguish
such complex queries. We plan to investigate this issue more
thoroughly as part of our future work.

7. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and scalability of

our approach using two real datasets. Our experiments were
performed on a PC with an Intel Core 2 Quad 2.83GHz pro-
cessor, 4GB RAM, and 256GB SATA HDD running Ubuntu
Linux 12.04. The algorithms were implemented in C++ and
the database was managed using MySQL Server 5.5.27. All
timings reported were averaged over three runs.
The default values for the two configurable parameters in

our approach are as follows: β = 1 for the scale parameter in
Equation (3), and δ = 1s for the time threshold parameter in
Algorithm 3. We examine the sensitivity of these parameters
in Sections 7.3 and 7.4.
Sections 7.2 to 7.6 present experimental results where the

result feedback interactions were automated without involv-
ing any real users, by always choosing the largest query sub-
set (to examine worst-case behavior) in each feedback iter-
ation. This practical approach enables us to conveniently
conduct many experiments to evaluate the effects of differ-
ent parameters on various properties of our approach, in-
cluding the number of feedback iterations, the number of
database and result modifications, and the execution time

of the algorithms. Finally, Section 7.7 briefly reports addi-
tional experimental results.

7.1 Database and Queries
Our experiments were conducted using two real datasets.

The first dataset is a scientific database of biology informa-
tion taken from SQLShare4 that consists of two tables: the
first table, named “PmTE ALL DE”, contains 3926 records
with 16 attributes; and the second table, named
“table Psemu1FL RT spgp gp ok”, contains 424 records with
3 attributes. The foreign-key join of these tables is a rela-
tion with 417 tuples. We used two actual queries (denoted
as Q1 and Q2 below) posed by a biologist on this database.

The second dataset is a baseball database containing vari-
ous statistics (e.g., batting, pitching, and fielding) for Major
League Baseball5. In our experiments, we used only three
of its tables (Manager, Team and Batting) which have 11,
29, and 15 columns; and contain 200, 252, and 6977 tuples,
respectively. The foreign-key join of these three tables is a
relation with 8810 tuples. Four synthetic queries were used
on this dataset (denoted by Q3 to Q6 below) with varying
complexity in terms of the number of relations, and use of
conjunctions and disjunctions in the selection predicates.

Q1 =π∗(σP.logFCF e<0.5∧P.logFCF e>−0.5∧P.logFCP <−1

∧P.logFCSi<−1∧P.logFCUrea<−1

∧(P.PV alueF e<0.05∨P.PV alueP <0.05∨P.PV alueSi<0.05

∨P.PV alueUrea<0.05))

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q2 =π∗(σP.logFCF e<1∧P.logFCP >1∧P.logFCSi>1

∧P.logFCUrea>1∧(P.PV alueF e<0.05∨P.PV alueP <0.05

∨P.PV alueSi<0.05∨P.PV alueUrea<0.05))

(PmTE ALL DE(P) ✶ table Psemu1FL RT spgp gp ok)

Q3 =πmanagerID,year,R(σteamID=“CIN”∧year>1982∧year<=1987)

(Manager ✶ Team)

Q4 =πManagerID,year,2B(σplayerID=“sotoma01”∨playerID=

“brownto05”∨playerID=“pariske01”∨playerID=“welshch01”)

(Manager ✶ Team ✶ Batting)

Q5 =πManagerID,year,HR(σplayerID=“rosepe01”∧HR>1∧2B<=3)

(Manager ✶ Team ✶ Batting)

Q6 =πManagerID,year,3B(σplayerID=“esaskni01”∧(IP>4380

∨(IP<=4380∧BBA<=485)))(Manager ✶ Team ✶ Batting)

The cardinalities of the query results for Q1 to Q6 are,
respectively, 1, 6, 5, 14, 4, and 4 tuples. Each of the above
queries Q is used to generate an initial (D,R) pair, and
the target query in an experiment could be Q or one of the
candidate queries generated from (D,R).

7.2 Results for Default Settings
In this section, we present experimental results for the

default settings with β = 1 and δ = 1s, where the largest
query subset is always chosen at each iteration. Due to
space constraints, we discuss only the results for the scien-
tific database; the results for the baseball database will be
partially presented in Section 7.3.

Both Q1 and Q2 require 6 iterations of result feedback
with our prototype. Table 1 shows the following per-round
performance statistics: (1) the number of candidate queries

4http://escience.washington.edu/sqlshare
5http://www.seanlahman.com/baseball-archive/statistics

Iteration No. 1 2 3 4 5 6

of queries 19 15 13 11 10 8
of query subsets 2 2 2 2 2 8
of skyline pairs 2 100 52 101 51 98
Execution time (s) 2.84 1.91 1.71 1.89 1.91 1.99
dbCost 1 2 2 1 2 8
resultCost 12 11 12 11 13 80
avgResultCost 6 5.5 6 5.5 6.5 10

(a) Results for Query Q1

Iteration No. 1 2 3 4 5 6

of queries 19 11 7 5 3 2
of query subsets 2 2 2 2 2 2
of skyline pairs 50 6 63 130 54 12
Execution time (s) 2.91 1.69 1.81 2.89 0.69 0.71
dbCost 1 2 2 2 1 2
resultCost 11 9 10 11 11 12
avgResultCost 5.5 4.5 5 5.5 5.5 6

(b) Results for Query Q2

Table 1: Per-round statistics for scientific database.

and (2) the number of query subsets partitioned at the start
of each iteration; (3) the number of skyline tuple-class pairs
enumerated by Algorithm 3; (4) the total execution time,
which is the sum of the running time for the Query Genera-
tor module (as part of the first iteration) and Database Gen-
erator module, and running time for modifying the database;
(5) the database modification cost, dbCost; (6) the query re-
sult modification cost, resultCost; and (7) the average query
result modification cost, avgResultCost, which is given by
the ratio of (6) to (2).
Note that the total execution times (over 6 iterations) for

Q1 and Q2 are 11.25s and 10.11s, respectively, of which less
than 1 second is spent on the Query Generator module. As
expected, the first iteration took the most time as it included
the query generation time and the first iteration also pro-
cessed the largest set of candidate queries. Generally, the
execution time decreases as the set of candidate queries pro-
gressively becomes smaller. However, for Q2, observe that
there is an increase in the execution time for its fourth itera-
tion, which is due to the large number of skyline tuple-class
pairs enumerated for that round. The maximum and aver-
age per-round execution times are about 3 and 2 seconds,
respectively.
In terms of modification costs, the highest costs were in-

curred in the last iteration for Q1 where the queries were
partitioned into 8 subsets resulting in 8 database attributes
and 7 query result tuples being modified. For each of the
other iterations, the queries were partitioned into 2 query
subsets requiring modifications of at most 2 database at-
tributes and a single query result tuple. Thus, the average
modification cost for each round is low, implying that the
expected user’s effort to provide result feedback is modest.
Besides the worst-case result feedback simulation, we also

experimented with an automated result feedback that al-
ways choose the query subset that contains the target query.
For Q1, it required 6 iterations, as with the worst-case re-
sults just presented. ForQ2, only 4 iterations were needed to
determine the target query with a total running time of 7.4s
and an average per-round modification cost of 1 database
attribute and an average of 5 modified attributes for each
query result.

7.3 Effect of Scale Factor β

In this section, we examine the effect of the scale param-
eter β on performance by varying its value in the range
{1, 2, 3, 4, 5} on the number of iterations and the actual to-
tal modification costs (i.e., for both database and query re-
sult modifications). Recall that the parameter β is used in
Equation (3) of the cost model to normalize the number of
relations in terms of number of attribute modifications.

For both queries Q1 and Q2 on the scientific database,
neither the number of iterations nor the actual modification
costs were affected by the variation in β.

The results for queries Q3 to Q6 on the baseball database
are shown in Table 2. In terms of the effect on the number
of iterations, only queries Q3 and Q4 were slightly affected
with a decrement of one round when β is increased to 2 and
3, respectively. In terms of the effect on the modification
costs, only Q4’s cost was affected with an increment of 3
when β is increased to 3.

Effect of β on Effect of β on
number of iterations modification cost

Query 1 2 3 4 5 1 2 3 4 5

Q3 7 6 6 6 6 29 29 29 29 29
Q4 6 6 5 5 5 24 24 27 27 27
Q5 7 7 7 7 7 32 32 32 32 32
Q6 5 5 5 5 5 25 25 25 25 25

Table 2: Effect of β for baseball database

Our experimental results indicate performance does not
depend greatly upon β. The reason is that when the mod-
ified tuples come mostly from the same relation, the value
of β does not matter. For Q1, except for the last iteration
where two relations were modified, only one relation is mod-
ified in each iteration. For Q2, only one relation is modified
in all iterations. For Q3 and Q6, except for one iteration
which modified only one relation, all iterations modified two
relations. For Q4 and Q5, only one relation is modified in
all iterations. Given this behavior, all our experiments used
the default value of 1 for β.

7.4 Effect of Time Threshold δ

In this section, we examine the effect of the time thresh-
old parameter δ on performance by varying δ in the range
{0.1, 0.2, 0.5, 1, 2, 5, 10}.

Table 3 shows the effect of δ on the number of iterations,
total modification cost, and execution time for the scientific
database. Although the execution time generally increases
with δ, an increase in δ could reduce the overall execution
time. This is because by increasing the time for finding
skyline tuple-class pairs (i.e., Algorithm 3), the quality of
the subset of tuple-class pairs derived by Algorithm 4 could
improve leading to a more balanced partitioning of the can-
didate queries thereby possibly reducing the number of iter-
ations or modification cost. For example, in Table 3(a), the
execution time for Q1 decreases when δ increases from 0.1 to
0.2, due to a decrease in the number of iterations. Similarly
in Table 3(b), the execution time for Q2 decreases when δ
increases from 0.1 to 0.2 for the same reason.

For the baseball database (results not shown due to space
constraints), we observe that for queries Q3, Q5 and Q6,
their lowest execution times occurred when δ = 1s, and for
Q4, its lowest execution time occurred when δ = 2s.

δ (s) 0.1 0.2 0.5 1 2 5 10

of iterations 11 9 9 6 5 8 8
Modification cost 201 201 179 155 155 122 122
Execution time (s) 9.7 9.0 12.2 11.2 14.1 47.4 83.2

(a) Effect of δ on Q1

δ (s) 0.1 0.2 0.5 1 2 5 10

of iterations 7 4 6 6 4 4 4
Modification cost 87 90 74 74 70 70 70
Execution time (s) 7.2 5.1 8.1 10.0 14.4 26.3 48.4

(b) Effect of δ on Q2

Table 3: Effect of δ for scientific database

Our experimental results suggest that a reasonable value
for the time threshold parameter is 1 or 2 seconds.

7.5 Efficiency of Algorithm 4
In this section, we examine the efficiency of Algorithm 4

in finding a “good” subset of tuple-class pairs to generate
the modified database. Although the algorithm has a time
complexity of O(2|SP |), where SP denote the input set of
skyline tuple-class pairs, our experimental results demon-
strate that the algorithm actually performs well in practice
even with a reasonably large input set for SP .
Table 4 shows performance results of Algorithm 4 for

queries Q1 and Q2 on the scientific database. Recall that
both queries require 6 iterations with the default worst-case
automated result feedback. For each query, Table 4 shows
the number of skyline tuple-class pairs (i.e, |SP |) and the
execution time of Algorithm 4 for each iteration.

Iteration No. 1 2 3 4 5 6

Q1

of skyline pairs 2 100 52 101 51 98
Exec. time (ms) 0.0689 189 11.5 161 33.7 283

Q2

of skyline pairs 50 6 63 130 54 12
Exec. time (ms) 125 0.598 131 1267 7.71 1.78

Table 4: Performance of Algorithm 4 for scientific database

The results show that the running times of Algorithm 4
were very short. For Q1, the longest running time was 0.283
seconds in last iteration; and for Q2, the longest running
time was slightly over one second in the 4th iteration.
To evaluate the scalability of Algorithm 4 with respect to

|SP |, we consider the 2nd iteration for Q1 with |SP | = 100
which was generated with δ = 1s. By progressively in-
creasing the time threshold to 15 seconds, we generated 5
subsets of skyline tuple-class pairs of increasing size with
|SP | ∈ {200, 400, 600, 800, 1000}. Table 5 compares the ex-
ecution timings of Algorithm 4 for these 5 subsets.

of skyline pairs 200 400 600 800 1000
Exec. time (s) 3.22 24.55 65.76 104.54 156.49

Table 5: Execution time of Algorithm 4 for varying |SP |

The results show that the performance of Algorithm 4 was
still reasonably fast (less than 25s) when |SP | = 400. We
also observed that the query partitionings produced by Algo-
rithm 4 were all the same as the size of the skyline tuple-class
subset was increased from 50 to 1000. Thus, this suggests
that the size of SP need not be large to find good query
partitionings.

7.6 Effect of Number of Candidate Queries
In this section, we examine the effect of the number of

candidate queries produced by the Query Generator module.
Due to space constraints, we present the results only for Q2.

To go beyond the 19 initial candidate queries generated for
Q2, we generated 61 additional candidate queries from the
initial candidate queries by modifying their selection pred-
icate constants. From the 80 candidate queries for Q2, we
created 6 subsets of candidate queries (denoted by S1, S2,
· · · , S6) such that S1 ⊂ S2 ⊂ · · · ⊂ S6 and Q2 ∈ S1. The
cardinality of these query subsets and their performance re-
sults are shown in Table 6.

Candidate query set S1 S2 S3 S4 S5 S6

of candidate queries 5 10 20 40 60 80
of selection attributes 9 14 18 18 18 18
of iterations 2 3 4 5 6 6
Execution time (s) 3.9 6.4 8.5 7.7 9.4 10.0
Modification cost 37 49 70 82 104 103
Avg. dbCost per round 1.5 2 1 1.6 1.5 2.2
Avg. resultCost per result set 6.8 6.1 6.6 6.2 6.3 6

Table 6: Effect of the number of candidate queries on Q2

Note that the execution timings reported here did not in-
clude the running time of the Query Generator module, since
we had manually generated additional candidate queries;
and in any case, the candidate-query generation time was
only a small fraction of the total execution time. Observe
also that both the number of iterations and execution time
increase with the number of candidate queries, and the per-
round database and query result modification costs are rea-
sonably low.

Since the first iteration’s running time is the most time-
consuming, Table 7 presents a breakdown of this running
time in terms of the time spent at each of the three key
steps of the Database Generator module (i.e., Algorithm 2).

Query set S1 S2 S3 S4 S5 S6

Algorithm 3 1.04 1.12 1.10 1.10 1.10 1.10
Algorithm 4 0.11 0.0006 0.00007 0.000065 0.005 0.002
Modify DB 0.68 0.70 0.67 0.68 0.68 1.02

Total 2.94 2.88 2.85 2.86 2.89 3.24

Table 7: Breakdown of first iteration’s runing time (in sec)

Observe that the running time is dominated by the first
and third steps, with Algorithm 4 incurring the least amount
of time. The results demonstrate that our approach can
scale for a reasonably large number of candidate queries.

7.7 Other Experiments
In this section, we briefly discuss the results of three ad-

ditional experiments that we have conducted. The first two
experiments aim to find out how sensitive our approach is
to the user’s choice of the initial (D,R) pair, and the last
experiment is a preliminary user study to evaluate the ef-
fectiveness of our approach. Due to space constraints, the
details are given elsewhere [14].
Effect of size of initial database-result pair. This
experiment evaluated the effect of the size of the initial
database-result pair on performance. For a given initial
database-result pair (D,R), we created four subsets of D:
D1, D2, D3, D4; where D4 = D, and for i ∈ [1, 3], we have

|Di| =
i
4
× |D4| and Q(Di) ⊆ Q(Di+1). We measured the

performance using each of the initial database-result pair
(Di, Q(Di)), i ∈ [1, 4], in terms of the number of iterations,
modification cost, and execution time. From our experimen-
tal results, we did not observe any clear trend in the effect
of the size of initial database-result pair on performance.
For some queries, using the largest initial database-result
pair gave the best performance; while for other queries, the
best performance was obtained for using the smallest initial
database-result pair. In terms of the running time, the best-
performance execution time could be up to 2.2 times faster
than the worst-performance execution time.
Effect of entropy of attributes’ active domains. This
experiment evaluated the effect of the entropy of an at-
tribute’s active domain on performance. For an initial database-
result (D,R) pair for a target query Q, we selected an at-
tribute T.A that appears as a selection attribute in many of
the candidate queries for (D,R), and created five datasets
(denoted by D1, · · · , D5) which are equivalent except for the
number of distinct values in T.A. Specifically, let Ti denote
the instance of relation T in Di, i ∈ [1, 5]. The datasets were
created such that πA(T1) = πA(T), and |πA(Ti)| =

6−i
5

×
|πA(T1)|, i ∈ [1, 5]. Thus, πA(Ti) ⊃ πA(Ti+1), i ∈ [1, 5).
Furthermore, Q(Di) = Q(Dj) for any i, j ∈ [1, 5]. Our ex-
perimental results show that there is no clear trend in the
effect of the entropy of attributes’ active domain on perfor-
mance. In terms of the running time, the best-performance
execution time could be up to 1.3 times faster than the
worst-performance execution time.
User Study. We also conducted a preliminary user study
to evaluate the feasibility of our approach. This study in-
volved three participants (all of whom were CS graduate
students) and used three synthetic target queries over the
Adult relation (containing 5227 tuples) extracted from the
1994 Census database6. This dataset was chosen over the
scientific and baseball datasets as we felt that its data do-
main would be easier to understand for users. To evaluate
the effectiveness of our cost-based approach, we compared it
against an alternative cost model that aims to reduce both
the size of query subsets as well as the number of iterations
by choosing data modifications to maximize the number of
partitioned query subsets. Thus, for each target query Q,
each participant used two different approaches to determine
Q; the order of interaction with the two approaches were
alternated for each query to ensure fairness.
All the participants succeeded in determining the target

queries. The total time taken for each iteration was domi-
nated by the user response time, which was on average 92.4%
of the total time. The longest and shortest user response
times were, respectively, 85 seconds and 2 seconds. The
highest and lowest modification costs were, respectively, 5
and 3. The experimental results also demonstrated the ef-
fectiveness of our cost model: although using the alternative
cost model enabled the target queries to be determined with
fewer iterations, the total execution time incurred by the al-
ternative approacher was longer. Our proposed approach
was up to 1.5 times faster than the alternative approach.
Overall, our preliminary study demonstrates the feasibility
of our approach as all the participants were able to effec-
tively determine the target queries with reasonable effort.
Moreover, the comparison against an alternative approach

6http://archive.ics.uci.edu/ml/datasets/Adult

also suggests that our cost-based approach is effective.

8. RELATED WORK
Several different approaches have been developed with the

broad objective of helping database users construct queries.
These approaches differ mainly in their assumptions about
the users’ level of database expertise (e.g., whether users are
knowledgeable in SQL), their familiarity with the database
schema, the type of help provided (e.g., query recommenda-
tion, query completion), and the resources available to help
with the query construction process (e.g., whether query
logs of past queries are available).

Several approaches [2, 7, 9] make query recommendations
based on queries from other users who have similar informa-
tion needs, which are maintained in a query log. Another
direction studied is query auto-completion [12, 17], which
aims to interactively help users compose their queries. As
users type an attribute or table name, the system will au-
tomatically provide several available query fragments, such
as selection or join predicates, on the fly, based on the fre-
quency of fragments or schema information. However, such
solutions are based on the users’ previous actions, and not
on the users’ query intention. Another approach that has
been proposed is query reuse systems [10, 13]. The idea here
is to store users’ previous queries in a shared repository so
that those users (or new users) can later browse them when
constructing new queries. Our QFE approach differs from
all the above approaches in that it does not require users to
be familiar with SQL and also does not rely on the avail-
ability of query logs.

The broad idea of an example-driven approach for prob-
lem solving has been applied in diverse contexts (e.g., [3,
4, 8, 19, 22]). Dimitriadou et al. proposed an interactive,
example-driven approach named AIDE to help users explore
their databases, which is related to the general framework
for automatic navigation of databases first introduced in [5].
AIDE helps users to formulate a plausible SQL query based
on the user’s feedback on samples of database tuples pre-
sented to the user. At each iteration, AIDE presents the user
with a sample of tuples for feedback on which of those tuples
are relevant to the user’s intention. Based on the user’s feed-
back, the system generates a different sample of database tu-
ples for the next iteration of user feedback. When the user
decides to terminate this steering process after some number
of iterations, a SQL query representing the user’s intended
query is generated from a classification model constructed
by the system. The approach is designed to minimize the
size of the samples shown and the total processing time.
Our work differs from AIDE in three key aspects. First, our
context is different, as our work is not focused on data ex-
ploration, and users using QFE are required to provide an
input-output example to indicate the query intention. Sec-
ond, our approach differs from AIDE as QFE operates by
first generating a set of candidate queries and then prun-
ing away false positives via user feedback on possible query
results shown in each iteration. In addition, QFE also gen-
erates a modified database in each iteration to distinguish
different subsets of candidate queries. In contrast, AIDE
generates a plausible query (out of possibly many candidate
queries) using classification techniques, and their focus is not
on distinguishing away alternative candidate queries. Third,
AIDE only supports queries on a single relation, whereas our
approach is more general.

Example-driven techniques have also been applied for de-
bugging scheme mappings [3, 4]. Users are shown examples
to differentiate alternative mapping specifications, and the
system finds the desired mapping based on the user’s inter-
ests of these data examples. Although we also show different
query outputs to help the user pick the correct query from
the candidates, the methods are different. Unlike schema
mapping, we need to modify the database to distinguish the
false positive SPJ queries. Qian et al. also proposed a sys-
tem for sample-driven schema mapping [19]. The user gives
example tuples in a result table (or partial tuples), and the
system attempts to find the best queries that will produce
(at least) those results. However, they look only at project-
join mappings and do not handle queries with selection.
For non-database related applications, S. Gulwani et al.

have developed example-driven techniques to solve many di-
verse problems. For instance, they have applied example-
driven techniques to reformat text documents [22]. Due to
the different contexts, the techniques developed there are
not applicable to our work.
There is also related work on generating database to dis-

tinguish queries. Mannila and Räihä first introduced a method
to distinguish one query Q from a set of queries Q [15]. Re-
lated to the well-known concept of an Armstrong database,
they defined the notion of a complete test database for the
query Q, which is used to establish the non-equivalence of Q
and Qi, for every Qi ∈ Q. Their technique is not applicable
to our work because the set of queries being distinguished
are more restricted as each Qi is formed from Q by remov-
ing some selection predicate(s), and the selection predicates
must not be disjunctive.
Shah et al. addressed the problem of generating test

data to distinguish an input query from a set of so-called
mutant queries to help users learn SQL [20]. The mutant
queries are pre-defined using certain query templates, such
as join-outerjoin mutations (e.g., change equijoin to outer
join), comparison operator mutations (e.g., change < to ≤),
and so on. Thus, the technique developed for this specific
problem is not applicable to our work.

9. CONCLUSION
In this paper, we have developed a new approach, called

Query from Examples (QFE), to help non-expert database
users construct SQL queries. Our approach does not ex-
pect users to be familiar with SQL and only requires that
users are able to determine whether a given output table
is the result of his or her intended query on a given input
database. Using an initial user-specified pair of database
D and output table for the user’s target query on D, QFE is
able to identify the user’s target query through a sequence of
rounds of interactions with the user. Each interaction round
obtains feedback from the user to identify the correct output
result for a modified database that is judiciously generated
to minimize the user’s effort to provide feedback. Our ex-
perimental evaluation of QFE demonstrates the feasibility
of our approach and the effectiveness of our techniques. As
part of our future work, we plan to extend our approach to
support more expressive queries and explore optimization
techniques to improve performance. In addition, we also
plan to conduct a more extensive user study to evaluate the
approach’s effectiveness.

Acknowledgements We would like to thank the reviewers

for their constructive comments. This research is supported
in part by NUS Grant R-252-000-512-112 and by a Shaw
Foundation Visiting Professorship.

10. REFERENCES
[1] Sloan digital sky survey. http://www.sdss.org/.

[2] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. SQL
QueRIE recommendations. PVLDB, 3(1-2), 2010.

[3] B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. Muse:
Mapping understanding and design by example. In ICDE,
2008.

[4] B. Alexe, L. Chiticariu, and W.-C. Tan. Spider: A schema
mapping debugger. In VLDB, 2006.

[5] U. Çetintemel, M. Cherniack, J. DeBrabant, Y. Diao,
K. Dimitriadou, A. Kalinin, O. Papaemmanouil, and S. B.
Zdonik. Query steering for interactive data exploration. In
CIDR, 2013.

[6] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[7] G. Chatzopoulou et al. The QueRIE system for
personalized query recommendations. IEEE Data Eng.
Bull., 34(2), 2011.

[8] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
Explore-by-example: An automatic query steering
framework for interactive data exploration. In SIGMOD,
2014.

[9] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query
recommendations for OLAP discovery driven analysis. In
DOLAP, 2009.

[10] B. Howe, G. Cole, N. Khoussainova, and L. Battle.
Automatic starter queries for ad hoc databases. In
SIGMOD(demo), 2011.

[11] B. Howe, G. Cole, E. Souroush, P. Koutris, A. Key,
N. Khoussainova, and L. Battle. Database-as-a-service for
long-tail science. In SSDBM, 2011.

[12] N. Khoussainova et al. Snipsuggest: Context-aware
autocompletion for SQL. PVLDB, 4(1), 2010.

[13] N. Khoussainova, Y. Kwon, W.-T. Liao, M. Balazinska,
W. Gatterbauer, and D. Suciu. Session-based browsing for
more effective query reuse. In SSDBM, 2011.

[14] H. Li, C.-Y. Chan, and D. Maier. Query from examples:
An iterative, data-driven approach to query construction.
Technical report, National University of Singapore, August
2015. http://www.comp.nus.edu.sg/∼chancy/techreport-
august-2015-qfe.pdf.

[15] H. Mannila and K.-J. Räihä. Automatic generation of test
data for relational queries. J. Comput. Syst. Sci., 38(2),
1989.

[16] F. D. Marchi, S. Lopes, and J.-M. Petit. Efficient
algorithms for mining inclusion dependencies. In EDBT,
2002.

[17] A. Nandi and H. V. Jagadish. Assisted querying using
instant-response interfaces. In SIGMOD, 2007.

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for data
processing. In SIGMOD, 2008.

[19] L. Qian, M. J. Cafarella, and H. V. Jagadish.
Sample-driven schema mapping. In SIGMOD, 2012.

[20] S. Shah et al. Generating test data for killing SQL mutants:
A constraint-based approach. In ICDE, 2011.

[21] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
reverse engineering. The VLDB Journal, 23(5), 2014.

[22] K. Yessenov, S. Tulsiani, A. Menon, R. C. Miller,
S. Gulwani, B. Lampson, and A. Kalai. A colorful approach
to text processing by example. In UIST, 2013.

[23] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join queries. In
SIGMOD, 2013.

