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Abstract. Due to their expressive power, regular expressions
(REs) are quickly becoming an integral part of language spec-
ifications for several important application scenarios. Many of
these applications have to manage huge databases of RE speci-
fications and need to provide an effective matching mechanism
that, given an input string, quickly identifies the REs in the
database that match it. In this paper, we propose the RE-tree,
a novel index structure for large databases of RE specifica-
tions. Given an input query string, the RE-tree speeds up the
retrieval of matching REs by focusing the search and com-
paring the input string with only a small fraction of REs in
the database. Even though the RE-tree is similar in spirit to
other tree-based structures that have been proposed for in-
dexing multidimensional data, RE indexing is significantly
more challenging since REs typically represent infinite sets of
strings with no well-defined notion of spatial locality. To ad-
dress these new challenges, our RE-tree index structure relies
on novel measures for comparing the relative sizes of infinite
regular languages. We also propose innovative solutions for
the various RE-tree operations including the effective split-
ting of RE-tree nodes and computing a “tight” bounding RE
for a collection of REs. Finally, we demonstrate how sampling-
based approximation algorithms can be used to significantly
speed up the performance of RE-tree operations. Preliminary
experimental results with moderately large synthetic data sets
indicate that the RE-tree is effective in pruning the search space
and easily outperforms naive sequential search approaches.

Keywords: Regular expressions – Index structure – Size mea-
sures – Sampling-based approximations

1 Introduction

Regular expressions (REs) provide an expressive and powerful
formalism for capturing the structure of messages, events, and
documents. Consequently, they have been used extensively in
the specification of a number of languages for important appli-
cation domains including the XPath pattern language for XML
documents [7], the policy language of the border gateway pro-
tocol (BGP) for propagating routing information between au-

tonomous systems on the Internet [22], and the UNIX shell’s
grep utility. Many of these applications have to manage large
databases of RE specifications and need to provide an effec-
tive matching mechanism that, given an input string, quickly
identifies all the REs in the database that match it. This “RE
retrieval” problem is important for a variety of software com-
ponents in the middleware and networking infrastructure of
the Internet. We list some of these application domains below.

• XML filtering. Information dissemination applications
extensively use document-filtering techniques to avoid
flooding users with unnecessary information. The key idea
is to maintain, for each user, a profile that captures the
user’s interests/preferences and transmit to the user only
documents that match the profile. While most existing sys-
tems for selective dissemination of information typically
use simple keywords to specify profiles, the growing mo-
mentum of XML as the standard for information exchange
on the Internet has recently prompted proposals that use
more powerful RE-based languages for expressing user
profiles [1]. The primary reason for this is that XML docu-
ments are structured, and thus REs provide a succinct syn-
tax for creating more accurate and focused profiles. More
specifically, REs can be used to specify matching con-
straints on the sequence of elements along specific paths
in the XML document tree. Systems for filtering XML
documents [1,5,11] Represent user interests using XPath
expressions [7] that incorporate a restricted form of REs.

• XML routing. XML routers route XML documents based
on their content. By directing XML traffic to the least
loaded application server that is capable of processing a
request, an XML router can balance load and boost Web
site performance. Again, an RE-based language often pro-
vides a succinct and convenient tool for expressing the set
of rules for routing incoming XML traffic. As an exam-
ple, the Intel NetStructure XML Accelerator product [9]
uses XPath 1.0 for specifying the rules for directing XML
transac tions to the appropriate application servers.

• XML classification. As XML becomes a popular stan-
dard for exchanging data on the Web, the volume of XML-
encoded documents on theWeb is expected to grow rapidly
in coming years. Document type descriptors (DTDs) are
RE-based expressions that serve the role of schemas spec-
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ifying the internal structure of XML documents. However,
DTDs are not mandatory, and an XML document may not
always have an accompanying DTD. Thus, in many cases,
it becomes necessary to identify the subset of a “universe”
of known DTDs that match a new XML document. Iden-
tifying matching DTDs for XML documents, besides en-
abling document typing and classification, is also crucial
for the efficient storage and effective querying of XML
data [10].

• BGP routing. In the BGP4 Internet routing protocol [22],
routers transmit advertisements to neighboring routers;
each advertisement contains a destination IP address
reachable from the router as well as the sequence of routing
systems on the path from the router to the destination. In
case a router receives multiple advertisements (from differ-
ent neighbors) for the same destination, the BGP4 policy
language allows for priorities to be assigned to based on
the corresponding routing-system sequences. (The a dver-
tisement with the highest priority eventually determines
the route to the destination). The BGP4 policy language es-
sentially allows for network administrators to specify a set
of REs (on routing-system sequences) and associate pri-
orities with each RE. Advertisements containing routing-
system sequences that match a specific RE are then as-
signed the corresponding priority.

Another application involves finding the root-cause of a
fault in a network by matching the sequence of events (gener-
ated when a network fault occurs) to a database of RE patterns
that capture the association between high-level fault patterns
and their root causes. Clearly the above-mentioned applica-
tions have a critical need for a scalable and efficient structure
that can index large numbers of REs and that can quickly
retrieve all REs matching a given input string. For the XML-
filtering application, the input string is a path in the XML doc-
ument and the REs are user profiles, while for BGP routing the
input string is the routing system sequence in an advertisement
and the REs are the BGP policies.

In this paper, we propose the RE-tree, a novel index struc-
ture for performing fast retrievals of REs that match a given
input string. The RE-tree, to the best of our knowledge, is the
first truly scalable index structure that can handle the storage
and retrieval of REs in their full generality. The only prior work
along these lines that we are aware of are indexing schemes for
filtering XML documents based on XPath expressions [1,5,11,
19]. However, while the XPath language allows rich patterns
with tree structure to be specified, it lacks the full expressive
power of REs (e.g., XPath does not permit the RE operators
∗, | and · to be arbitrarily nested), and thus extending these
XML-filtering techniques to handle general REs may not be
straightforward. Further, all of the XPath-based methods are
designed for indexing main-memory resident data; in contrast,
REs in the RE-tree are organized hierarchically (in a manner
similar to the R-tree [14]), and thus the RE-tree is well suited
for disk-resident data. Another possible main-memory-based
approach would be to coalesce the automata for all the REs
into a single nondeterministic finite automaton and then use
this structure to determine the collection of matching REs. It
is unclear, however, if the performance of such an approach
would be superior to a simple sequential scan over the database

of REs; furthermore, it is not easy to see how such a scheme
could be adapted for disk-resident RE data sets.

The task of indexing REs is challenging because REs typ-
ically represent infinite sets with no well-defined notion of
spatial locality. While indexing of documents (which are es-
sentially a finite set/bag of elements) has been extensively
studied by the IR community [3], we are not aware of any
indexing techniques for infinite sets. The RE-tree employs a
number of novel and sophisticated techniques for indexing
infinite regular languages, which we list below.

• Novel measures for comparing the relative sizes of in-
finite regular languages. We develop three novel mea-
sures for the size of an infinite regular language – the first
counts the number of strings in the language that are less
than or equal to a certain size, the second computes the
“rate-of-growth” of the language between two consecutive
windows, and the third information-theoretic measure is
based on the cost (in bits) of encoding random samples in
the language. The latter measure is inspired by a general
observation in information theory that the cost of encoding
a random element of a set is proportional to the set’s size.

• Novel algorithms for splitting and generalizing a set of
REs. Like the R-tree, when an RE-tree index node over-
flows, the set of REs in the node are split and two new
compact parent REs that are more general than the two
subsets of REs (due to the split) are computed. We show
that both splitting and generalizing a set of REs are NP-
hard problems and present heuristics for these operations
in the context of the RE-tree.

• Novel sampling-based approximation algorithms for
speeding RE-tree operations. Specifically, we show how
random samples of RE languages can be used to effi-
ciently compute approximate counts (of the number of
strings with a fixed length in the language) and samples
for unions/intersections of regular languages.These counts
and samples are important for the RE-tree split and gen-
eralize operations. Also, we devise a novel practical algo-
rithm that employs a combination of dynamic program-
ming and sampling to compute counts/samples for an RE
using its nondeterministic finite automaton representation.
Previous algorithms computed these after converting the
RE to a deterministic finite automaton (see [17]), which
can be fairly expensive.

To measure the effectiveness of the RE-tree in retrieving the
set of REs that match an input query string, we conducted an
extensive experimental study with synthetic data sets. Prelimi-
nary experimental results with moderately large synthetic data
sets indicate that the RE-tree can drastically reduce the num-
ber of RE-comparison operations and easily outperforms naive
sequential-search approaches, improving the overall search
performance by up to an order of magnitude.

The remainder of this paper is organized as follows. We
first present an overview of the RE-tree in Sect. 2 and identify
the key design issues. Section 3 describes some fundamen-
tal algorithms for counting and sampling regular languages.
Building on these algorithms, we propose two different mea-
sures for comparing the relative sizes of infinite regular lan-
guages in Sect. 4. Section 5 then describes in detail our al-
gorithms for the various RE-tree operations. In Sect. 7, we
present the results of our experimental study comparing the
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Table 1. Notation

Symbol Description

Σ Alphabet over which REs are defined
δ() Automaton transition function
|M | Number of states in automaton M
L(M) Language of automaton M

(i.e., strings accepted by M )
Li(M) Set of length-i strings accepted by automaton M
|L(M)| Measure for size of L(M)
M1 ∪ M2 Automaton that accepts strings in L(M1) ∪ L(M2)
M1 ∩ M2 Automaton that accepts strings in L(M1) ∩ L(M2)
m Minimum occupancy for each RE-tree node
α Maximum number of states for a bounding automaton

RE-tree against sequential-search approaches. Finally, Sect. 9
concludes the paper with some directions for future research.
The proofs of all theoretical results in this paper can be found
in Appendix A.

2 Overview of RE-trees

An RE-tree indexes a large collection of REs such that, given
an arbitrary input string w, REs in the collection that match w
can be retrieved quickly and efficiently. In this section, we first
present an overview of the RE-tree index structure. Although
the design principles behind the RE-tree are similar in spirit to
those in the R-tree spatial index [14], the application of these
principles to indexing REs actually reveals a number of in-
teresting algorithmic issues and trade-offs that require novel
techniques. We identify these new design issues in Sect. 2.3,
deferring the details of our solutions to Sect. 5. Table 1 sum-
marizes some of the key notation used in this paper.

2.1 Index structure

An RE-tree is a dynamic, height-balanced, hierarchical index
structure where leaf nodes contain data entries correspond-
ing to the indexed REs and internal nodes contain “directory”
entries that point to nodes at the next level of the index. Specif-
ically, each leaf node entry is of the form (id, M), where id
is the unique identifier of an RE R and M is a finite automa-
ton representing R [15]. Each internal node stores a collec-
tion of finite automata. And each node entry is of the form
(M, ptr), where M is a finite automaton and ptr is a pointer
to some node N (at the next level) such that the following
containment property is satisfied: if for a set of automata M,
L(M) =

⋃
Mi∈M L(Mi), and M(N) denotes the collection

of automata contained in node N , then L(M(N)) ⊆ L(M).
We refer to the automaton M as the bounding automaton for
M(N). The containment property is key to improving the
search performance of hierarchical index structures like RE-
trees: if a query string w is not contained in L(M), then it
follows that w �∈ L(Mi) for all Mi ∈ M(N). As a result,
the entire subtree rooted at N can be pruned from the search
space. Clearly, the closer L(M) is to L(M(N)), the more
effective this search-space pruning will be.

In general, there are an infinite number of bounding au-
tomata for M(N) with different degrees of precision from the
least precise bounding automaton with L(M) = Σ∗ to the
most precise bounding automaton, called the minimal bound-
ing automaton, with L(M) = L(M(N)).

Since the storage space for an automaton is dependent
on its complexity (in terms of the number of its states and
transitions), there is a space-precision trade-off involved in the
choice of a bounding automaton for each internal node entry.1

Thus, even though minimal bounding automata result in the
best pruning due to their tightness, it may not be desirable
(or even feasible) to always store minimal bounding automata
in RE-trees since their space requirement can be too large
(possibly exceeding the size of an index node), thus resulting in
an index structure with a low fan-out. Therefore, to maintain a
reasonable fan-out for RE-trees, we impose a space constraint
on the maximum number of states (denoted by α) permitted
for each bounding automaton in internal RE-tree nodes.

The automata stored in RE-tree nodes are, in general, non-
deterministic finite automata (NFAs) with a minimum number
of states [15]. Also, for space efficiency, we require that each
individual RE-tree node contain at least m entries.An example
RE-tree is illustrated in Fig. 1, where only the top three levels
of internal nodes are shown. Each internal node has between
two and three entries, with each Mi representing a bounding
automaton; the details of some of these automata are shown
in the table on the right in the form of REs (for conciseness).
Note that each pair of parent-child node entries satisfies the
containment property.

2.2 Search and maintenance algorithms

Search. The input query to the search algorithm is a string
w ∈ Σ∗, and the outcome of the search is the set of all indexed
REs whose languages contain w. As in an R-tree, searching
in an RE-tree proceeds in a top-down manner starting with
the root node and might require traversing multiple paths of
the index structure. When searching an internal node N , the
search string w is compared against each index entry (M, ptr)
in N such that if w is accepted by M , then the search is con-
tinued at the node pointed by the pointer ptr; otherwise, the
search along that path is terminated. When the search reaches
a leaf node N , each automaton M in N is compared against
w, and if M accepts w, then M is returned as part of the result.

Insert. The algorithm to insert an automaton M (obtained
as a result of converting the input RE R) into an RE-tree is
comprised of two main phases. In the first phase, an optimal
path of nodes (starting from the root node) to some leaf node
N to insert the new automaton M is determined. The goal of
performing the insertion along an optimal path is to try and
ensure that automata along the path expand as little as possible
(when M is inserted into N ) since this would ensure better
search performance. An optimal path of nodes is determined
by choosing the best insertion node at each level (beginning
from the root level) using algorithm ChooseBestFA (to be
discussed later).

1 This is in contrast to R-trees, where the space of a bounding
rectangle is independent of its precision, and therefore the bounding
rectangles in R-trees are all minimal bounding rectangles.
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M1 M2

M3 M4 M5 M6 M7

M8 M9 M10 M12M11 M13 M14 M15 M16 M17 M19M18

M2

M6

M16

M18

M19

M7

 a ( a | b | c | e)* (b | d | e)*

 a ( a | b | c )*

 a b ( b | ac | eb )* (b | d | e)

 a ( a | b )  c* 
 a a ( a | b | c )*  c 

a b b* ( d | e )

 a b (ac | eb)* b

M17

Fig. 1. RE-tree Example

Algorithm Search (N, w)
Input: N is an index node being searched.

w is a query string.
Output: R is the set of qualified REs (i.e., r ∈ R iff w ∈ L(r))

contained in the leaf nodes of the subtree rooted at node N .
1) R = ∅;
2) if (N is an internal node) then
3) for each node entry (M, ptr) do
4) if (w ∈ L(M)) then
5) R = R ∪ Search (N ′, w), where N ′ is the node pointed to by ptr;
6) else
7) for each node entry (id, M) do
8) if (w ∈ L(M)) then
9) R = R ∪ {M};
10) return R; Fig. 2. Algorithm to search RE-tree

In the second phase, the new automaton M is inserted into
the selected leaf node N . This is achieved by the algorithm in
Fig. 3 (the input parameter ptr is set to R’s id). If N does not
have sufficient space to accommodate M , then in step 6, N is
split into another leaf node N ′ by distributing the collection
of automata M(N) ∪ {M} between the nodes N and N ′
using algorithm SplitFA (to be discussed later).

In the recursive call to Insert in step 15, two types of
insertion updates are propagated along the selected path of
nodes in a bottom-up manner from the leaf node N up to
the root node (&N ′ denotes the address of N ′ in the step).
The first type of insertion updates concerns the maintenance
of the containment property for the chain of internal node
entries along the selected path of nodes that led to N . Specif-
ically, since the insertion of M has modified the collection
of automata in N , we need to update N ’s entry in its parent
node Np with a new bounding automaton for M(N), which
is typically a more general (i.e., less precise) automaton than⋃

Mi∈M(N) Mi, computed using algorithm GeneralizeFA
(to be discussed later); this update in turn modifies M(Np),
and therefore the update is propagated up to the root node.

The second type of insertion updates deals with node
splits. If a node split has occurred at node N , a new internal
node entry needs to be inserted into N ’s parent node Np

to point to the newly created split node. The insertion of
an internal node entry into Np modifies M(Np), which
therefore necessitates an update propagation to maintain the
containment property. Furthermore, the insertion into Np

might in turn result in further node splits; in the event that the
root node itself is split, a new root node is created.

Delete. Deletion of an RE from the RE-tree is carried out in
a manner similar to R-trees except that algorithm General-
izeFA is used to compute new bounding automata for nodes.

2.3 Design issues

At a high level, RE-trees are conceptually similar to other hi-
erarchical, spatial index structures, like the R-tree [14]; this is
also true for RE-tree search and maintenance algorithms. RE-
tree search simply proceeds top-down along (possibly) multi-
ple paths whose bounding automaton accepts the input string;
RE-tree updates try to identify a “good” leaf node for insertion
and can lead to node splits (or node merges for deletions) that
can propagate all the way up to the root. There is, however, a
fundamental difference between the RE-tree and the R-tree in
the indexed data types: regular languages are much more com-
plex objects than multidimensional rectangles. This difference
mandates the development of novel algorithmic solutions for
the core RE-tree operations. Our main goal for the RE-tree is
to optimize search performance, and the key guiding principle
for achieving this goal is to keep each bounding automaton M
in every internal node as “tight” as possible. Thus, if M is
the bounding automaton for M(N), then L(M) should be as
close to L(M(N)) as possible. More specifically, the three
core new problems that we need to address in the RE-tree
context can be defined as follows (the algorithms shown in the
parentheses correspond to our solutions and are described in
detail later in the paper).

(P1) Selection of an optimal insertion node (algorithm
ChooseBestFA). The goal here is to choose an insertion path
for a new RE that leads to “minimal expansion” in the bound-
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Algorithm Insert (N, (M, ptr))
Input: N is node to be updated.

(M, ptr) is entry to be inserted into node N .
1) M ′ := N ′ := ∅;
2) if (M �= ∅) then
3) if (N has room for M ) then
4) Insert (M, ptr) into N ;
5) else
6) (N, N ′) := SplitFA (M(N) ∪ {M});
7) Let M ′ := GeneralizeFA (M(N ′));
8) Let M := GeneralizeFA (M(N));
9) if (N is the root node) then
10) if (N ′ �= ∅) then
11) Create a new root node Nr with two entries (M, &N) and (M ′, &N ′);
12) else
13) Let Np be the parent node of N ;
14) Replace N ’s old entry in Np with (M, &N);
15) Insert (Np, (M ′, &N ′)); Fig. 3. Algorithm to propagate an insertion

update in RE-tree

ing automaton in each internal node. Thus, given the collection
of automata M(N) in an internal index node N and a new
automaton M , we need to find the optimal Mi ∈ M(N) to
insert M such that |L(Mi) ∪ L(M)| − |L(Mi)| is minimum
(or, equivalently, |L(Mi) ∩ L(M)| is maximum).

(P2) Computing an optimal node split (algorithm
SplitFA). When splitting a set of REs during an RE-tree node-
split, we seek to identify a partitioning that results in the min-
imal amount of “covered area” in terms of the languages of
the resulting partitions. More formally, given the collection of
automata M = {M1, M2, · · · , Mk} in an overflowed index
node, we want to find the optimal partition of M into two dis-
joint subsets M1 and M2 such that |M1| ≥ m, |M2| ≥ m
and |L(M1)| + |L(M2)| is minimum.

(P3) Computing an optimal generalized automaton (al-
gorithm GeneralizeFA). During insertions, node-splits, or
node-merges, we need to be able to identify a bounding au-
tomaton for a set of REs that does not cover too much “dead
space.” Thus, given a collection of automata M, we seek to
find the optimal generalized automaton M such that |M | ≤ α,
L(M) ⊆ L(M) and |L(M)| is minimum.

The goal of the above operation specifications is to maxi-
mize the pruning during search by keeping bounding automata
tight. In (P1), the automaton Mi for which L(Mi) expands the
least due to the insertion of M is chosen to insert M . The set
of automata M are split into two tight clusters in (P2), while
in (P3) we are interested in finding the most precise automaton
covering the set of automata in M and with no more than α
states. As discussed earlier, the restriction on the number of
states is imposed to keep the fan-out of each node high since
this is critical to improving search performance. Essentially
(P3) represents the space-precision trade-off for bounding au-
tomata in RE-trees.

Note that while (P3) is unique to RE-trees, both (P1) and
(P2) have their equivalents in R-trees. Examples of heuristics
that have been proposed for (P1) in R-trees include minimizing
the increase in the area of the minimum bounding rectangle
(MBR) [14] and minimizing the overlap among the MBRs
within the node [4]. The heuristics for (P2) in R-trees are

similar to those for (P1); examples include minimizing the
total area of the two MBRs [14] and minimizing the area of
the intersection between the two MBRs [4]. The aim of all
these heuristics is to minimize the number of visits to nodes
that do not lead to any qualifying data entries.

Although the “MBRs” in RE-trees (which correspond to
regular languages) are very different from the MBRs in R-
trees, the intuition behind minimizing the area of MBRs (total
area or overlapping area) in R-trees should be effective for
RE-trees as well. The counterpart for area in an RE-tree is
|L(M)|, the size of the regular language for M . However,
since a regular language is generally an infinite set, we need
to develop new measures for the size of a regular language or
for comparing the sizes of two regular languages.

3 Counting and sampling Ln(M)

Before defining size measures for infinite regular languages
in the next section, we first describe two fundamental algo-
rithms for counting and sampling that form the basis of our
definitions. The first algorithm counts the number of length-n
strings accepted by an automaton M (i.e., |Ln(M)|), while
the second algorithm generates a random sample of Ln(M).
We begin by presenting the algorithms, originally proposed in
[17], for the simpler case when M is a DFA. We then present
novel practical counting and sampling algorithms for the case
when M is an NFA.

Let β(s, n) denote the number of distinct length-n paths
that can be generated using an automaton M (with start state
s0) from state s to any accepting state.

3.1 Algorithms for DFAs

For the case where M is a DFA, |Ln(M)| = β(s0, n). Clearly,
for n = 0, we have β(s, 0) = 1 if s is an accepting state,
and 0 otherwise. For n ≥ 1, β(s, n) can be computed recur-
sively as follows [17]: β(s, n) =

∑
x∈Σ, t=δ(s,x) β(t, n − 1).

Thus, dynamic programming can be used to compute β(s, i)
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Algorithm GenRandomString (M, s, n)
Input: M is a DFA, s is a state in M .

n is a length parameter, n ≥ 1.
Output: A random string in Ln(M).
1) for i := n downto 1 do
2) Select transition x out of s from Σ with probability

β(t,i−1)
β(s,i) , where t = δ(s, x);

3) Let yi be the selected transition;
4) s := δ(s, yi);
5) return yn · yn−1 · · · y1;

Fig. 4. Algorithm for generating a random string in Ln(M)

for all states s, first for i = 0 and then for successively in-
creasing values of i (until i = n) using the computed results
for i − 1. Since each β(s, i) is computed by considering all
states reachable from state s with a single transition, each
β(·) value can be computed in O(min{|Σ|, |M |}) time. Thus,
since there are |M |n values in β(·), it follows that there is an
O(n|M | min{|Σ|, |M |}) algorithm to compute |Li(M)| for
all 1 ≤ i ≤ n.

We now explain how to generate a random string from
Ln(M) based on the computed values of β(·). Consider the
collection of all length-n strings that can be generated from
some state s to any accepting state. Then the probability that
a randomly selected string from this collection has x ∈ Σ

as the first symbol is given by β(t,n−1)
β(s,n) , where t = δ(s, x).

Thus, a uniformly random string from Ln(M) can be gener-
ated iteratively by randomly choosing a transition at each state
beginning from the start state, as shown in Fig. 4. Algorithm
GenRandomString in the figure when invoked with input
parameter s = s0 returns a random string from Ln(M). It is
straightforward to show that if s0, sn, sn−1, . . . , s1 denote the
sequence of states visited by the algorithm, then the probability
that a string w ∈ Ln(M) is returned by algorithm GenRan-
domString is β(sn,n−1)

β(s0,n) × β(sn−1,n−2)
β(sn,n−1) × · · · × β(s1,0)

β(s2,1) =
1

β(s0,n) = 1
|Ln(M)| . Note that the time complexity of the al-

gorithm is O(n) if the function β(·) has been precomputed.
Also, a uniform random sample of Ln(M) of size k can be
generated by repeatedly invoking GenRandomString until
it has returned k distinct strings.

3.2 Algorithms for NFAs

For the case where M is an NFA2, β(s0, n) ≥ |Ln(M)|
since there can be multiple accepting paths in an NFA for
a given string. However, the problem of computing |Ln(M)|
for an NFA M is #P-complete3 [17]. An unbiased estimator
for |Ln(M)| can be computed as follows. Let p be a uniformly

2 The ε-transitions in M are assumed to be eliminated.
3 An enumeration problem belongs to #P if there is a nondeter-

ministic algorithm such that for each instance I of the problem, the
number of distinct “guesses” that lead to acceptance of I is exactly
|S(I)| (here, S(I) is the number of candidate solutions for I) and
such that the length of the longest accepting computation is bounded
by a polynomial in size of I [12]. The class of #P-complete enumera-
tion problems are believed to be even harder than NP-hard problems.

generated accepting path of length n in M , and let w be the
string labeling p. Then |Ln(M)| ≈ β(s0,n)

q , where q is the
number of accepting paths of w in M . Essentially, the unbi-
ased estimator is computed by scaling down the total number
of length-n accepting paths in M with the count of the number
of accepting paths for a randomly generated length-n string.
Note that since there is a one-to-one correspondence between
an accepting string and an accepting path in a DFA, algorithm
GenRandomString (in Fig. 4) can be used to generate the
path p. The number of accepting paths for w can be derived
by traversing M with w.

However, as pointed out in [17], the above estimator can
have a very large standard deviation. Although [17] proposes
a more accurate, randomized algorithm for approximating
|Ln(M)|, it is not very useful in practice due to its high time
complexity of O(nlog(n)).

In Fig. 5, we present a novel and practical algorithm for ap-
proximately counting strings in Ln(M) for an NFA M that has
a lower time complexity of O(n2|M |2 min{|Σ|, |M |}). Like
earlier approaches, the algorithm uses dynamic programming
to compute counts β(s, i). However, instead of computing in
each β(s, i), the number of length-i accepting paths from state
s, the algorithm adjusts this total count of accepting paths by
eliminating duplicate paths (recall that in an NFA, there can be
multiple accepting paths that correspond to the same string).
Thus, in our algorithm, each β(s, i) captures |Li(M, s)|, the
number of length-i accepting strings in M from state s, more
accurately.

When computing β(s, i) in steps 5–11, algorithm
CountStrings subtracts from the total count of accepting
paths

∑
x∈Σ, t∈δ(s,x)β(t, i−1) (due to the dynamic program-

ming relationship)4, the number of paths for the same string
that are counted multiple times. Thus, the key problem is esti-
mating the number of these duplicate length-i accepting paths
from s, which we solve as follows. First, observe that it is
not possible for two paths to be identical if they are such due
to transitions associated with different symbols; thus, dupli-
cate paths can only result due to transitions out of s on the
same symbol. Consequently, we only need to perform du-
plicate elimination from among the set of paths whose first
transitions have the same symbol.

Suppose that t1, t2, . . . , tl are the states due to transitions
out of s on symbol x. Note that each β(tj , i−1) is an estimate
of |Li−1(M, tj)|, which is the number of distinct accepting
paths of length i − 1 from state tj . However, for a pair of
states tj , tk, it is possible that Li−1(M, tj) and Li−1(M, tk)
have strings in common. The two paths from tj and tk for
each common string are identical and, with the two transi-
tions from s to tj and tk (on symbol x), result in duplicate
paths from s. Our strategy for eliminating such duplicates
is, for each tj , to subtract from β(tj , i − 1) the number of
strings in Li−1(M, tj) that have already been counted earlier
in Li−1(M, t1), Li−1(M, t2), . . . , Li−1(M, tj−1). In the al-
gorithm, we estimate the number of these strings by generating
a random sample r of Li−1(M, tj) and scaling β(tj , i − 1)
by the fraction of r not contained in ∪j−1

k=1Li−1(M, tk). Thus,

β(tj , i − 1) ∗ |r−(∪j−1
k=1Li−1(M,tk))|

|r| is a good estimate of the

4 Note that for an NFA M , δ(s, x) is a set of states.
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Algorithm CountStrings (M, n)
Input: M is an NFA, n is a length parameter, n ≥ 1.
Output: Counts β of accepting strings of length less than or equal

to n for each state in M .
1) for each state s ∈ M do β(s, 0) := 0;
2) for each accepting state s ∈ M do β(s, 0) := 1;
3) for i := 1 to n do
4) for each state s ∈ M do
5) β(s, i) := 0;
6) for each symbol x such that there is a transition out of s on x do
7) Let t1, . . . , tl be the resulting states for transitions out of s

on symbol x;
8) β(s, i) := β(s, i) + β(t1, i − 1);
9) for j := 2 to l do
10) Let r be a random sample of Li−1(M, tj) (generated by

repeatedly invoking GenRandomString (M, tj , i − 1)
a fixed number of times);

11) β(s, i) := β(s, i)+β(tj , i − 1)× |r−(∪j−1
k=1Li−1(M,tk))|

|r| ;
12) return β();

Fig. 5. Algorithm for computing approximate count
of Ln(M)

count of strings in Li−1(M, tj) not previously counted in
∪j−1

k=1Li−1(M, tk), and is added to β(s, i) in step 11.
We must point out that each string returned by GenRan-

domString (in step 10) is based on the previously computed
counts β(), which only estimate the number of accepting
strings. Thus, the sample r may not be a uniform random
sample. Further, GenRandomString assumes that M is a
DFA and so it needs to be modified when M is an NFA. De-
tails of the required modifications for NFAs can be found in
Appendix B.

The overhead of generating the random sample r of length-
(i − 1) strings for states t1, t2, . . . , tl increases the time com-
plexity of the dynamic programming algorithm by a factor of
n|M | in the worst case, resulting in a worst-case time com-
plexity of O(n2|M |2 min{|Σ|, |M |}) for the algorithm. This
is because i ≤ n and l ≤ |M |. Note that the algorithm can
also handle DFAs very efficiently and its time complexity re-
duces to O(n|M | min{|Σ|, |M |}) if M is a DFA. The reason
for this is that for a DFA, l is always 1, and as a result random
samples r do not need to be generated.

4 Size measures for infinite regular languages

Estimating the size of a regular language L(M) is much
more difficult than computing |Ln(M)| since, unlike Ln(M),
L(M) can be an infinite set. In this section, we define three
different measures that attempt to capture the size of infinite
regular languages. We note that the techniques presented here
have applications beyond indexing REs and can also be used
for estimating the selectivities of REs, clustering REs, etc.

4.1 Definitions

Before we proceed to define our measures for the size of
L(M), we identify certain desirable properties for such mea-
sures. First, we note that it does not make sense to actually
count the number of strings in an infinite regular language.

However, we do know that while it is impossible to assign
a precise integer size to an infinite language, not all infinite
languages are equal with respect to size. For example, the lan-
guage for RE (a|b)∗ is larger than the language for a(a|b)∗
(since the latter is a proper subset of the former). Thus, we
would like to define a measure for the size of a language that
reflects our intuition of the “larger than” relationship between
languages. We denote this measure of the size of L(M) by
|L(M)|.

We can formalize our intuition of the “larger than” rela-
tionship between regular languages as follows.

Definition 4.1. For a pair of automata Mi, Mj , we say that
L(Mi) is larger than L(Mj) if there exists a positive integer N

such that for all k ≥ N ,
∑k

l=1 |Ll(Mi)| >
∑k

l=1 |Ll(Mj)|.

The various definitions for measure |L(M)| of the size of
L(M) that we present in the following subsections attempt
to capture this “larger than” relationship. Specifically, for a
pair of automata Mi, Mj , if L(Mi) is larger than L(Mj), then
|L(Mi)| > |L(Mj)|.

4.2 Max-count measure

An obvious measure for the size of a regular language L(M)
is to count L(M) up to some maximum length λ, i.e., |L(M)|
= |L1(M)| + |L2(M)| + · · · + |Lλ(M)|. Clearly, the larger
we choose λ to be, the more effective we can expect the max-
count measure to be at reflecting the larger than relationship.
However, for very large values of λ, the max-count measure
may not be practical. Thus, a good compromise is to set λ to be
equal to or slightly greater than |M |. This ensures that strings
due to all accepting states and traversing a fair proportion
of paths/cycles in M are counted in |L(M)|. This measure is
particularly useful for applications where the maximum length
of the query strings is known and its value is not too large. For
such cases, λ can be set to the maximum query length.
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Fig. 6. Examples of automata

4.3 Rate-of-growth measure

For applications where information about the maximum length
of the query strings is not known a priori, using the max-
count measure can be problematic due to its sensitivity to the
maximum length parameter value λ.

Example 4.2. Consider the two automata M1 and M2 in
Fig. 6. Figure 7a compares |L(M1)| and |L(M2)| using the
max-count measure for 3 ≤ λ ≤ 50. Clearly, L(M2) is larger
than L(M1) since |Ln(M2)| grows much faster than |Ln(M1)|
as n increases. In fact, one can show that |Ln+3(M1)| =
(n + 1)(n + 2)2(n−1) and |Ln+3(M2)| = 3n for n > 0.
The crossover point for |L(M1)| and |L(M2)| using the max-
count measure occurs for a maximum length of λ = 16, that
is,

∑λ
l=1 |Ll(M2)| >

∑λ
l=1 |Ll(M1)| for λ ≥ 16. Thus, if

the value of λ for the max-count measure is set at less than
16, then L(M1) would be considered, incorrectly, to be larger
than L(M2).

To obtain a more robust measure of the size of infinite
languages, we propose a second metric that attempts to cap-
ture the “rate-of-growth” of infinite regular languages. Intu-
itively, for a pair of automata Mi, Mj , if |Ln(Mi)| grows at
a faster rate than |Ln(Mj)|, then L(Mi) must be larger than
L(Mj) since there would exist an N such that for all k ≥ N ,
∑k

l=1 |Ll(Mi)| >
∑k

l=1 |Ll(Mj)|. Thus, the rate of growth of
a language can be a good measure of its size. In general, given
an unknown, nonnegative function f(·), we can determine how
fast f(·) is growing by computing the derivative of its cumu-
lative function; i.e., by computing F ′(λ, θ) = F (λ+θ)−F (λ)

θ ,

where F (k) =
∑k

l=1 f(l) is an increasing function. Apply-
ing this idea to compute the Rate-Of-growth measure of a
regular language L(M), we have |L(M)| = F ′(λ, θ), where

f(l) = |Ll(M)|; i.e., |L(M)| =
∑λ+θ

l=λ+1 |Ll(M)|
θ . However,

like the max-count case, the sum
∑λ+θ

l=λ+1 |Ll(M)| may be
sensitive to the values of λ and θ as well. For instance, for
the two automata M1 and M2 in Example 4.2, if θ = 2,
then we have (for λ = 13) |L13(M1)| + |L14(M1)| =
199168 > |L13(M2)| + |L14(M2)| = 157464, but (for
λ = 14) |L14(M1)| + |L15(M1)| = 449536 < |L14(M2)| +
|L15(M2)| = 472392.

The derivative approach based on function F ′ works well
for functions f with linear growth rates. However, since the
rate of growth of an infinite regular language is generally non-
linear, we propose an approximate measure of the size of a
language as the rate of change of its size from one “window”
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Fig. 7a,b. Comparison of size measures for L(M1) and L(M2).
a Max-count measure. b Rate-of-growth measure

of lengths to the next consecutive “window” of lengths; that is,
our rate-of-growth measure for the size of a regular language
L(M) is as follows:

|L(M)| =
∑λ+2θ−1

l=λ+θ |Ll(M)|
∑λ+θ−1

l=λ |Ll(M)|
(1)

where λ is some length parameter that denotes the start of the
first window and θ is a window-size parameter. Essentially,
Eq. 1 gives an indication of the rate of growth of L(M), which
alleviates some of the drawbacks of the max-count measure
as illustrated in the following example.

Example 4.3. Consider again the two automata M1 and M2
in Fig. 6. Figure 7b compares |L(M1)| and |L(M2)| using the
rate-of-growth measure, for 3 ≤ λ ≤ 50 and θ = 2 (note
that similar trends are observed for larger values of θ). The
graph correctly indicates that L(M2) is larger than L(M1)
irrespective of the value for λ.

Like the max-count case, in order to ensure that strings
involving a substantial portion of paths, cycles, and accepting
states are counted in each window, parameters λ and θ should
be chosen to be slightly greater than |M |.

4.4 Minimum description length (MDL)-based measure

Although the rate-of-growth measure appears to be a more
robust metric than the max-count measure, there are cases
where the rate-of-growth measure fails to capture the “larger
than” relationship between regular languages, as illustrated by
the following example.
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Example 4.4. Consider the two automata M3 and M4 in
Fig. 6. It is straightforward to observe that |Ln(M3)| = 2n

and |Ln(M4)| = 2n−1 since L(M4) only consists of strings
that begin with a while L(M3) consists of all strings. Thus,
for all k ≥ 1,

∑k
l=1 |Ll(M3)| >

∑k
l=1 |Ll(M4)| and L(M3)

is larger than L(M4). However, using the rate-of-growth mea-
sure, it is not possible to determine which of L(M3) or L(M4)
is larger. This is because for any value of λ and θ, |L(M3)| and
|L(M4)| are both equal to 2θ with the rate-of-growth measure.

To obtain a more robust measure of the size of infinite lan-
guages, we present an alternative metric that attempts to ad-
dress some of the shortcomings of the max-count measure and
is based on Rissanen’s Minimum description length (MDL)
principle [21]. The MDL principle has been applied to a vari-
ety of problems (e.g., constructing decision trees [20], learning
common patterns in a set of strings [18], inferring DTDs from a
collection of XML data [13]). An important observation made
in [13] is that for two given REs Ri and Rj , if Ri defines a
larger language than Rj (i.e., Ri is less precise than Rj with
respect to the same collection of input data sequences), then
the cost of encoding an input data sequence using Ri is likely
to be higher than using Rj . This observation is consistent with
information theory since, in general, more bits are needed to
specify an item that comes from a larger collection of items.

Our use of the MDL principle to define a measure of the
size of a regular language is also inspired by a similar observa-
tion and is based on the following intuition: given two DFAs
Mi and Mj , if L(Mi) is larger than L(Mj), then the per-
symbol-cost of an MDL-based encoding of a random string
in L(Mi) using Mi is very likely to be higher than that of a
string in L(Mj) using Mj . The per-symbol-cost of encoding
a string w ∈ L(M) is essentially the ratio of the cost of an
MDL-based encoding of w using M (defined below) to the
length of w. Therefore, a reasonable measure for the size of
a regular language L(M) is the expected per-symbol-cost of
an MDL-based encoding for a random sample of strings in
L(M). Let MDL(M, w) denote the cost of an MDL-based
encoding of a string w ∈ L(M) using M and let r be a ran-
dom sample of L(M). The MDL-based measure for the size
of L(M) is then as Follows.5

|L(M)| =
1
|r|

∑

w∈r

MDL(M, w)
|w| (2)

We next define the cost of an MDL-encoding ofw usingM .
Suppose that w = w1.w2. · · · .wn ∈ L(M) and s0, s1, . . . , sn

is the unique sequence of states visited by w in M . Then,

MDL(M, w) =
n−1∑

i=0

log2(ni) (3)

where each ni denotes the number of transitions out of state
si, and log2(ni) is the number of bits required to specify the
transition out of state si. Since the above formulation is based
on counting the number of transitions, to obtain an accurate
measure of the size of an infinite language, it is important
that M does not contain any “nonessential” transitions (i.e.,
transitions that are not part of an accepting path that involves
at least one cycle).6 Thus, M should be a minimal-state DFA

5 |w| denotes the length string w.
6 For example, in Fig. 10a, if the state labeled 5 does not have an a

self-loop transition, then both the a-transition from state 2 to state 5

without any nonessential transitions. The following example
illustrates how the MDL-based encoding costs are computed.

Example 4.5. Consider the two automata M1 and M2 in Fig. 6
and two length-10 strings w1 = bbbdbbdbbd ∈ L(M1) and
w2 = ddbbbbbbbd ∈ L(M2). The per-symbol-costs of encod-
ing w1 and w2 using M1 and M2, respectively, are as follows:

MDL(M1, w1)
|w1| =

10 × log2(3)
10

≈ 1.5850 and

MDL(M2, w2)
|w2| =

(2 × 0) + (8 × log2(4))
10

≈ 1.6000

The computed per-symbol-costs correctly indicate that L(M2)
is larger than L(M1).

We still need to address the issue of generating the random
sample r of L(M) to encode. This can be carried out by select-
ing two values λ and θ, both slightly greater than |M | and for
a desired random sample of size k, generating k|Li(M)|

∑λ+θ−1
l=λ |Ll(M)|

random strings from each Li(M), λ ≤ i ≤ λ + θ − 1 (us-
ing algorithm GenRandomString). By sampling from each
Li(M) in proportion to its count, we ensure that paths in the
automaton that are traversed more frequently by accepting
strings have a greater likelihood of being included in the sam-
ple r.

5 Algorithms for RE-tree operations

Now that we have robust measures for comparing the relative
sizes of infinite regular languages, we are in a position to
present details of the three RE-tree operations for choosing
the best automaton, splitting a set of automata and computing
a generalized automaton [problems (P1), (P2), and (P3) from
Sect. 2.3]. The algorithms for the RE-tree operations presented
in this section perform a number of standard operations on
automata like union, intersection, and conversion of an NFA
to a DFA. Efficient algorithms for these automata operations
can be found in [15]. Note that while it is possible to compute
the union/intersection of a pair of automata Mi, Mj in time
proportional to |Mi||Mj |, the worst-case time complexity of
converting an NFA M to a DFA can be exponential in |M |.

5.1 Algorithm ChooseBestFA

From among the automata in M(N) contained in a node
N , algorithm ChooseBestFA returns the automaton Mi for
which |L(Mi)∩L(M)| is maximum. For each Mi ∈ M(N),
the algorithm constructs the DFA M ∩ Mi and computes
|L(M ∩ Mi)| using either the max-count or the MDL met-
ric from the previous section. The automaton Mi for which
the language L(M ∩ Mi) is the largest is chosen for inserting
M into the RE-tree.

as well as the b-transition from state 5 to state 6 are nonessential. The
removal of such nonessential transitions from an automaton does not
affect the infiniteness of its language.
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Algorithm SplitFA (M)
Input: M is a set of automata to be split.
Output: Two sets of automata M1 and M2 resulting from the split.
1) Let Mi, Mj ∈ M be the pair of automata such that

|L(Mi ∪ Mj)| −|L(Mi ∩ Mj)| is maximum;
2) M1 := {Mi}, M2 := {Mj};
3) M := M − {Mi, Mj};
4) while (M �= ∅) do
5) if (|M| = m − |M1|) then
6) M1 := M1 ∪ M;
7) break;
8) if (|M| = m − |M2|) then
9) M2 := M2 ∪ M;
10) break;
11) Let Mi ∈ M be the automaton for which min{|L(M1 ∪ {Mi})|

−|L(M1)|, |L(M2 ∪ {Mi})| − |L(M2)|} is minimum;
12) if (|L(M1 ∪ {Mi})| − |L(M1)| ≤ |L(M2 ∪ {Mi})|− |L(M2)|) then
13) M1 := M1 ∪ {Mi};
14) else
15) M2 := M2 ∪ {Mi};
16) M := M − {Mi};
17) return (M1, M2); Fig. 8. Algorithm for splitting a set of automata

Algorithm GeneralizeFA (M, α)
Input: M is a set of automata to be generalized.

α is maximum number of states in generalized automaton.
Output: The generalized automaton for M.
1) Compute DFA M for ∪Mi∈MMi

2) while (|M | > α) do
/* M(si,sj) is the resulting automaton when states si, sj in M are merged */

3) Let si, sj be the pair of states in M for which |L(M(si,sj))|
is minimum among all pairs of states in M ;

4) Set M to be equal to the DFA for M(si,sj);
5) return M ; Fig. 9. Algorithm for generalizing a set of au-

tomata

5.2 Algorithm SplitFA

For a set of automata M = {M1, . . . , Mk}, algorithm
SplitFA partitions M into M1 and M2 such that |M1| ≥ m,
|M1| ≥ m and |L(M1)| + |L(M2)| is minimum. Unfortu-
nately, it can be shown that even if L(Mi) for every Mi ∈ M
is finite, the problem of optimally splitting M is NP-hard (re-
duction from clique).7 Thus, one can expect that for infinite
languages the problem is even more difficult.

Theorem 5.1. Given finite sets of elements S1, . . . , Sn, the
problem of partitioning them into two sets S1 and S2 (each
containing at least m elements) such that |(∪Si∈S1Si)| +
|(∪Si∈S2Si)| is minimum, is NP-hard.

Since the problem of computing the optimal partitioning of
M is NP-hard, we resort to heuristics to generate the two sets
M1 and M2. Figure 8 contains the steps of the SplitFA algo-
rithm for splitting M into two compact well-separated subsets.

7 Given a graph and a constant k, an instance of the clique problem
seeks to determine whether the graph contains a clique of size at least
k. (A clique is a set of nodes such that there is an edge between every
pair of nodes.)

Algorithm SplitFA is similar in spirit to the Quadratic Split
algorithm from [14]; however, instead of trying to minimize
the area of MBRs, our splitting algorithm attempts to reduce
the size of regular languages. The algorithm begins by picking
as seeds (in step 1) the two automata from M whose languages
have large nonoverlapping portions and then greedily assigns
each remaining automaton Mi in M to the set whose language
increases the least due to the addition of Mi.

Note that step 1 requires O(|M|2) automata intersection,
union, and size measure computations to be performed, one
for each pair of automata in M. For efficiency purposes, the
algorithm caches DFAs for M1 and M2 as well as |L(M1)|
and |L(M2)| between successive iterations of the while loop.
Thus, in step 11, the algorithm performs 2(|M|− i) automata
union and size measure computations in the ith iteration of
the while loop, two for each of the remaining automata in M.

5.3 Algorithm GeneralizeFA

Recall from Sect. 2.3 that the objective of the GeneralizeFA
algorithm is to generate for a set of automata M an automaton
M with no more than α states such that L(M) ⊆ L(M) and



112 C.-Y. Chan et al.: RE-tree: an efficient index structure for regular expressions

(b) M2
(a) M 1

c 4

b 3

c 4

(c) M 3 (d) M4

1 2
a

a 

b 

c 

a

b 

c 

3

4

5

1 2
a

a 

b 

c 

a

b 

c 

3

4

5

b 

6
b 

1

a

b 

c 

1 2
a

b 

b 3
a 

c 

Fig. 10. Automaton generalization example

|L(M)| are minimum. This problem can be shown to be NP-
hard by reducing the partition problem [12] to it.

Theorem 5.2. Given a set of automata M, the problem of
computing a DFA M with no more than α states and for which
L(M) ⊆ L(M) and |L(M)| are minimum is NP-hard.

The algorithm for generalizing a set of automata M is
shown in Fig. 9. The algorithm greedily merges pairs of states
(that result in the smallest regular languages) in the union au-
tomaton M until |M | ≤ α. Note that the automaton M(si,sj)
resulting from merging states si and sj in M may not be a
DFA. Thus, if we want to compute accurate counts and sam-
ples for Ll(M(si,sj)), we may need to convert M(si,sj) into
a DFA first. However, an option with lower overhead, if ap-
proximate counts and samples are acceptable, is to directly
apply to M(si,sj) the counting and sampling algorithms for
NFAs described in Sect. 3. This would avoid converting NFA
M(si,sj) to a DFA, an operation which could be potentially ex-
pensive and also cause the number of states in the automaton
to increase.

A further optimization is to not consider all pairs of states
si, sj in M as candidates for merging in step 3. One heuristic
is to consider as candidates only those state pairs si, sj that
have similar incoming and outgoing transitions. The rationale
here is that merging such similar states is more likely to result
in automata with compact languages.

Example 5.3. Suppose we want to generalize the three au-
tomata for the REs abb∗, acc∗, and aa∗b. The DFA for the
union of the three automata is depicted in Fig. 10a. Suppose
α = 3, that is, we would like the final generalized automaton
to contain at most three states. We trace the steps of algo-
rithm GeneralizeFA on the union automaton M1. The first
pair of states merged by the algorithm are states 3 and 6 since
the language for the resulting automaton M2 in Fig. 10b is
aa∗bb∗|acc∗, which is smaller than the resulting languages
when other pairs of states are merged. For instance, merg-
ing states 3 and 4 results in the language (a(b|c)(b|c)∗)|aa∗b,
while aa∗(bb∗|cc∗) is the language when states 2 and 5 are
merged. In the next iteration, states 2 and 5 are merged to
yield automaton M3 in Fig. 10c whose language is aa∗(bb∗

|cc∗). And in the final iteration, states 1 and 2 are merged, and
the final automaton M4 in Fig. 10d containing three states is
returned by the algorithm (i.e., L(M4) is a∗(bb∗|cc∗)).

6 Optimizations

The RE-tree operations ChooseBestFA and SplitFA de-
scribed in previous subsections required frequent computa-
tions of |L(Mi ∩ Mj)| and |L(Mi ∪ Mj)| to be performed
for pairs of automata Mi, Mj . These computations can ad-
versely affect RE-tree performance since construction of the
intersection and union automaton M can be expensive. Fur-
ther, the final automaton M may have many more states than
the two initial automata Mi and Mj . This could be a problem
since computing |L(M)| using any of the size measures from
Sect. 4 requires |Ll(M)| for a range of l values to be calcu-
lated using algorithm CountStrings. [The MDL metric also
requires random samples for each Ll(M) to be generated].

In this section, we show how sampling can be used to speed
up the performance of the RE-tree operations ChooseBestFA
and SplitFA. Specifically, we show that if we have counts and
samples for each L(Mi), then we can utilize this information
to derive approximate counts and samples for L(Mi∩Mj) and
L(Mi ∪ Mj) without incurring the overhead of constructing
the automata Mi ∩ Mj and Mi ∪ Mj and without reinvoking
algorithm CountStrings on these new automata. Thus, by
eliminating the building of union and intersection automata,
the sampling-based approximation algorithms have the po-
tential to considerably improve the overall performance of
RE-trees.

6.1 Approximate counting and sampling techniques

Before we show how sampling can be used to speed up
the computation of |L(Mi ∩ Mj)| and |L(Mi ∪ Mj)|, we
present results for approximating the sizes and generating
uniform samples of unions and intersections of arbitrary sets.
These results for finite sets constitute the building block for
our sampling-based schemes for approximating counts and
samples of the finite sets Ll(Mi ∩ Mj) and Ll(Mi ∪ Mj),
which in turn form the basis of our three size measures for
regular languages.

Counts and samples for set intersections. The following two
theorems (see [8]) suggest how counts and samples for the
intersection of two sets S1 and S2 can be generated using the
count and sample information for one of them.

Theorem 6.1. Suppose r1 is a uniform random sample of set
S1. Then |r1∩S2||S1|

|r1| is an unbiased estimator of the size of
S1 ∩ S2.

Theorem 6.2. Suppose r1 is a uniform random sample of set
S1. Then r1 ∩ S2 is a uniform random sample of S1 ∩ S2 with
size |r1 ∩ S2|.

6.2 Counts and samples for set unions

Algorithm SampleUnion in Fig. 11 returns a uniform ran-
dom sample r of S1 ∪ S2 under the assumption that S1 and
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S2 are disjoint sets. Further, the size of sample r is at least
min{|r1|, |r2|}, where ri is a uniform random sample of Si.
The input parameters to the algorithm include samples r1 and
r2 of sets S1 and S2, respectively, and the sizes of the two sets
|S1| and |S2|. Note that the sets themselves are not required
by the algorithm – only their samples and their sizes. In the
algorithm, variables k1 and k2 keep track of the number of
elements in r that are chosen so far from samples r1 and r2,
respectively. During each iteration, in steps 4 and 5, sample r1
is chosen as the set for selecting the next element from, with
probability |S1|−k1

|S1|+|S2|−k1−k2
.

Theorem 6.3. Let r1 and r2 be uniform random samples of
sets S1 and S2, respectively. If sets S1 and S2 are disjoint, then
algorithm SampleUnion returns a uniform random sample of
S1 ∪ S2.

Note that the computed sample r contains at least
min{|r1|, |r2|} elements. Also, from Theorem 6.3, it follows
that algorithm SampleUnion returns a uniform random sam-
ple of S1 ∪ S2 only if sets S1 and S2 are disjoint. A possible
alternative for obtaining an approximately uniform random
sample of S1∪S2 if sets S1 and S2 are not disjoint is as follows.
Consider the set S3 = S2−S1. Sets S1 and S3 are disjoint and
can be passed as arguments to algorithm SampleUnion. We
already have r1 and |S1|. Further, due to Theorem 6.2, r2 −S1
is a uniform random sample of S3 = S2 −S1 (since r2 −S1 is
basically the same as r2∩(S2−S1), which, due to the theorem,
is a uniform random sample of S2 ∩ (S2 − S1) = S2 − S1).
The problem, however, is that it is not possible to accurately
determine |S3| from r1, r2, |S1| and |S2|. Thus, the only avail-
able option is to use an estimate of |S3| instead of the accurate
value. We use the value |r2−S1||S2|

|r2| , which can be shown to be
an unbiased estimator of |S3| using Theorem 6.1, as an esti-
mate of |S3|. Thus, by passing the samples and (approximate)
sizes for disjoint sets S1 and S3 to algorithm SampleUnion,
we can obtain an approximately uniform random sample of
S1 ∪S2. Note also that |S1 ∪S2| = |S1|+ |S3|, and thus, due
to Theorem 6.1, |S1|+ |r2−S1||S2|

|r2| is an unbiased estimator of
|S1 ∪ S2|.

6.3 Algorithm ChooseBestFA

The ChooseBestFA algorithm requires that |L(M ∩ Mi)| be
estimated, where M is the automaton being inserted into the
tree and Mi is an automaton in the current RE-tree node. In
the following, we show how a random sample of Ll(M) and
knowledge of |Ll(M)| for a range of l values can be used to
compute |L(M ∩ Mi)| very fast for all three size measures
proposed earlier. Thus, for an automaton M being inserted
into the RE-tree index, our algorithm only requires us to
generate counts and samples for Ll(M) for specific values
of l.

Max-count. For the max-count measure, we need to compute
|Ll(M ∩ Mi)| for l values in the range [1, λ]. We assume
that for these l values, we have already computed |Ll(M)|
and L̂l(M), a uniform random sample of Ll(M). From

Theorem 6.1 it follows that |L̂l(M)∩L(Mi)||Ll(M)|
|L̂l(M)| is an

unbiased estimate of |Ll(M ∩ Mi)|. Here L̂l(M) ∩ L(Mi)
can be computed efficiently by simply checking for each
string in sample L̂l(M) if it is accepted by Mi. Thus, with
our sampling approach we only need to compute counts and
samples for Ll(M) (the automaton being inserted) once at the
beginning. There is no need to either construct the automaton
for each M ∩ Mi or count Ll(M ∩ Mi) using the dynamic
programming algorithm CountStrings.

MDL. For computing |L(M ∩ Mi)| using the MDL mea-
sure, we need to generate random samples of Ll(M ∩ Mi)
for λ ≤ l ≤ λ + θ − 1. Suppose that L̂l(M) denotes
the random sample of Ll(M). Then, due to Theorem 6.2,
L̂l(M)∩L(Mi) is a uniform random sample of Ll(M ∩Mi).
Thus, using our sampling-based approach, sample L̂l(M)
needs to be computed only once in the beginning. In addi-
tion, we also need to construct the intersection automaton for
each M ∩ Mi to encode the strings in the sample. However,
we completely eliminate the need to count Ll(M ∩ Mi) us-
ing algorithm CountStrings or generate new samples for
Ll(M ∩ Mi) using algorithm GenRandomString.

6.4 Algorithm SplitFA

In step 1 of the SplitFA algorithm (see Fig. 8), we need
to estimate |L(Mi ∪ Mj)| and |L(Mi ∩ Mj)| for pairs of
automata Mi, Mj ∈ M. Similarly, in step 11, for each re-
maining automaton Mi ∈ M we need to estimate |L(M1 ∪
{Mi})| and |L(M2∪{Mi})|. Below, we show how sampling-
based techniques can reduce the number of times algorithm
CountStrings is invoked from O(|M|2) down to O(|M|).
Further, with sampling, the DFA’s input to the counting algo-
rithm are the much smaller initial automata in M rather than
the union or intersection automata. In the following, we only
show how step 1 can be made more efficient; however, the
same techniques can also be used to speed up step 11.
Max-count. For this measure we need to compute
|Ll(Mi ∩ Mj)| and |Ll(Mi ∪ Mj)| for a range of l val-
ues. Suppose for each Mi ∈ M we computed |Ll(Mi)| and a
random sample L̂l(Mi) of Ll(Mi). Then, from Theorem 6.1 it

follows that |L̂l(Mi)∩L(Mj)||Ll(Mi)|
|L̂l(Mi)| is an unbiased estimate of

|Ll(Mi ∩Mj)|. Also, as described in Sect. 6.1, |Ll(Mi ∪Mj)|
can be estimated as |Ll(Mi)|+
|L̂l(Mj)−L(Mi)||Ll(Mj)|

|L̂l(Mj)| . Thus, our sampling-based approach

only requires counts and samples to be generated for O(|M|)
automata as opposed to O(|M|2) automata without sampling
(see Sect. 5.2). Further, it does not require that a single union
and intersection automaton be constructed, while the original
approach without sampling required a union and intersection
automaton to be constructed for each pair Mi, Mj ∈ M and
counts to be computed subsequently for these much larger
automata.

MDL. For computing |L(Mi ∩ Mj)| and |L(Mi ∪ Mj)| us-
ing the MDL measure we need to generate random sam-
ples of Ll(M ∩ Mi) for λ ≤ l ≤ λ + θ − 1. Suppose
for each Mi ∈ M we computed |Ll(Mi)| and a random
sample L̂l(Mi) of Ll(Mi). Then, from Theorem 6.2 it fol-
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Algorithm SampleUnion (r1, r2, |S1|, |S2|)
Input: r1, r2 are random samples of sets S1 and S2.

|S1|, |S2| are sizes of sets S1 and S2.
Output: A random sample of S1 ∪ S2.
1) r := ∅;
2) k1 := k2 := 0;
3) while (r1 �= ∅ and r2 �= ∅) do
4) Let rand be a uniform random real value between 0 and 1;
5) if (rand ≤ |S1|−k1

|S1|+|S2|−k1−k2
) then

6) i := 1;
7) else
8) i := 2;
9) Choose an element e uniformly and randomly from ri;
10) r := r ∪ {e};
11) ri := ri − {e};
12) ki := ki + 1;
13) return r;

Fig. 11. Algorithm for computing random sample of
the union of two disjoint sets

lows that L̂l(Mi) ∩ L(Mj) is a uniform random sample of
Ll(M ∩Mi). Also, an approximately uniform random sample
of Ll(M ∪ Mi) can be computed using algorithm SampleU-
nion described in Fig. 11. Thus, our sampling-based approach
only requires counts and samples to be generated for O(|M|)
automata as opposed to O(|M|2) automata without sampling
(see Sect. 5.2). Further, counting and sampling using our ap-
proach are performed on the individual automata in M, which
are much smaller than the union and intersection automata on
which the original approach performs counting and sampling.
Note, however, that our sampling methods do require union
and intersection automata to be constructed in order to encode
the samples.

7 Experimental evaluation

To determine the effectiveness of the RE-tree, we compare its
performance against the sequential file approach, which stores
the REs in a flat file and searches the entire file sequentially for
each search query. As we noted in Sect. 1, we are not aware of
any disk-based indexing method for indexing REs (in their full
generality). Our experimental results (based on synthetic data
sets) indicate that the RE-tree approach offers a significant
performance improvement (up to an order of magnitude) over
the sequential search approach.

Data sets: each synthetic data set is comprised of clus-
ters of similar REs that are generated using a synthetic RE
generator, where the number of clusters and the size of each
cluster are controlled by the input parameters cnum and csize,
respectively. The REs in each cluster are similar in terms of
both their content (i.e., symbol distribution) and their structure
(i.e., parse tree). Content-wise, each cluster is associated with
some subset of the alphabet Σ′ ⊆ Σ, referred to as its hot
alphabet, such that each RE symbol is drawn from Σ′ with a
probability of ρ and drawn from (Σ − Σ′) with a probability
of (1 − ρ). The parameter ρ applies to all the clusters and is
referred to as the hot probability. Each cluster is mapped to its
hot alphabet as follows: first, the alphabet Σ is arbitrarily par-
titioned into nσ disjoint subsets Σ = ∪nσ

i=1Σi such that each

subset Σi consists of |Σ|
nσ

symbols, where nσ is another input
parameter.8 Each cluster is then randomly mapped to one of
the nσ subsets as its hot alphabet.

In terms of structural similarity, each cluster of similar REs
is generated by first randomly generating a seed RE Ri and
then using Ri to derive the other REs in the cluster by making a
random modification to the parse tree ofRi. Note that in a parse
tree for an RE, the leaf nodes correspond to symbols in Σ while
the internal nodes correspond to one of the three operators:
union, concatenation, or kleene star. The structure of each seed
RE is controlled by two parameters θE and θe such that each
seed RE is of the form Ri = E1.E2. · · · .En, where n is a ran-
dom integer between 1 and θE and each Ej has one of the fol-
lowing four forms: (1) (e1|e2| · · · |enj

), (2) (e1.e2. · · · .enj
),

(3) (e1|e2| · · · |enj )
∗, or (4) (e1.e2. · · · .enj )

∗, where nj is a
random integer between 1 and θe. A similar RE is derived
from a seed RE Ri by adding a new internal node to its parse
tree (corresponding to either the kleene star operator or union
operator) at a randomly selected location in the parse tree.
For instance, when adding a new union operator, one of the
operands of the union operator is one of the existing nodes
in the parse tree while the other operand is a new leaf node
corresponding to a randomly generated symbol. Examples of
random regular expressions generated by our synthetic RE
generator include “g.(d|i) ∗ .(e|a|m)” and “(q|b).c.(f |k)∗”.

Queries: For each data set, we generate a set of 1000
random queries, where each query w ∈ Σ∗ is generated as
follows. First, randomly select an RE R from the data set
and randomly generate an integer n between 5 and 10. Next,
generate a random length-n string w that matches R; if no such
string exists, we repeat the generation process with another
randomly chosen pair of values for R and n.

Algorithms: For the sequential file approach, a file of au-
tomata is created for each data set by packing the collection
of automata into as few pages as possible. To find match-
ing REs for a query string w requires sequentially checking
against each automaton in the file. For the RE-tree approach,
our implementation is based on the algorithms presented in

8 For simplicity, assume that |Σ| is a multiple of nσ .
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Fig. 12. Varying α, D = 50000, ρ = 0.75. a Ratio of automaton comparisons, Nseq(n)
Nrt(n) . b Ratio of evaluation time, Tseq(n)

Trt(n)

Sects. 2–5. We use the MDL measure for comparing sizes of
regular languages since in our experiments we found it to be
more effective than the max-count and rate-of-growth met-
rics. The RE-tree operations are implemented as described in
Sect. 5, with the sampling-based optimizations discussed in
Sect. 6.

The experiments were conducted on a 2.0-GHz Intel Pen-
tium IV machine with 1 GB memory running Red Hat Linux
7.2. Both the sequential file and RE-tree methods were im-
plemented as Unix files on a local disk. For each query and
each method we measured both the evaluation time (including
both CPU and I/O times) as well as the number of automaton
comparisons (i.e., the number of automata that were checked
against the query). Each query was run 10 times (for each
method) to compute its average measurement values.

7.1 Experimental results

This section presents experimental results that compare the
performance of the two approaches by varying three main pa-
rameters: (1) α, the maximum size of a bounding automaton;
(2) ρ, the hot probability; and (3) the size of the data set (num-
ber of REs) given by D = cnum × csize. Table 2 summarizes
the values of the parameters used in our experiments.

The performance results are presented in terms of two ra-
tios, Nseq(n)

Nrt(n) and Tseq(n)
Trt(n) , where Nseq(n) (Nrt(n)) is the av-

erage number of automaton comparisons incurred by the se-
quential (RE-tree) approach for queries with a result size (that
is, number of matching REs) of n, and Tseq(n) (Trt(n)) is the
average evaluation time incurred by the sequential (RE-tree)
approach for queries with a result size of n. Note that the num-
ber of automaton comparisons incurred by the sequential file
approach Nseq(n) is always equal to D, the size of the data
set.

Figure 12 shows the performance results as α is varied.
The graphs indicate that RE-trees outperform the sequential
file approach by up to a factor of 7 and 20, respectively, for the
number of automaton comparisons and search time. Our re-
sults indicate that both the number of automaton comparisons
(Fig. 12a) and running time (Fig. 12b) improve with larger val-
ues of α. This is because as α increases, the precision of the

Table 2. Experimental parameters and values

Param Meaning Value

P Page Size (in KB) 4
|Σ| Size of alphabet 20
θE Max. number of first-level

expressions (per RE) 3
θe Max number of second-level

symbols (per first-level expression) 3
nσ Number of alphabet subsets 5
α Maximum number of states for

bounding automata 10, 20
cnum Number of RE clusters 250, 500
csize Size of RE cluster 200
D Size of data set given by cnum × csize 50000, 100000
ρ Probability that a symbol belongs to

“hot” alphabet subset 0.25, 0.5, 0.75

bounding automata generally becomes higher, thereby result-
ing in better pruning of “false-drops” (i.e., path traversals that
do not lead to any qualifying REs) and hence fewer number
of automaton comparisons and index page accesses.

Figure 13 depicts the performance results as ρ is varied.
Since the similarity of the REs in each cluster becomes higher
with a larger value of ρ, the RE-tree approach is able to im-
prove its filtering (with tighter bounding automata) thereby
resulting in less false drops and hence improved query evalu-
ation. Therefore, the performance of RE-trees improves as ρ
increases.

Figure 14 illustrates the performance results as D is var-
ied. We note that the performance gain of RE-trees generally
increases with a larger value of D, indicating that the effective
pruning of search space becomes even more crucial for search
performance as the data size increases.

Our experimental results indicate that the performance of
both the sequential file approach and RE-tree approach are
dominated by CPU time, with at least 75% of the total eval-
uation time being consumed for CPU processing. Thus, these
results demonstrate that the RE-tree approach is very effective
in pruning the search space, thereby leading to a significant
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reduction in the number of automata comparisons compared
to the sequential approach.

8 Related work

Although several indexing methods have been proposed to
speed up the search of textual data with REs (e.g., bit-parallel
implementation of NFA [23] and suffix trees [2]), there is
very little work on the reverse indexing problem involving the
retrieval of REs that match an input string. Besides the recent
main-memory indexes proposed for filtering XML documents
using XPath expressions [1,5,11,19], which is a specialized
class of REs, we are not aware of any work on (disk-based)
indexes for general REs.

Recently, several indexing methods [1,5,11,19] have been
proposed for filtering incoming XML documents against a
collection of user profiles expressed as XPath queries, where
each XPath query specifies patterns pertaining to paths in the
document graph. Our work in this paper (which is a full version
of [6]) differs from these indexing schemes in two important
aspects. First, the class of REs supported by XPath queries is
more specialized as both the union and kleene operators are
to be used only with the entire alphabet (i.e., as Σ and Σ∗,

respectively). Consequently, the associated finite automata are
simpler as there are no cycles (besides self-loops) and each
state has at most two outgoing transitions: a self-loop transition
to itself and a transition to one other state (labeled with either
a single letter of the alphabet or the entire alphabet). This
is in contrast to our work that deals with REs in their full
generality. Second, as opposed to our hierarchical disk-based
index approach, the existing XPath-based indexing schemes
are designed for main-memory resident data.

A related problem is that of indexing sets of objects, which
has been addressed in various contexts, including document
retrieval (where each document is characterized by a set of
keywords) [3] and evaluation of set predicates (involving set-
valued attributes) [16]. Inverted lists and signature files are
two well-known techniques that have been developed for this
problem [3]. However, since these methods are targeted for
indexing finite sets of objects, they are not appropriate for
indexing infinite regular languages.

9 Conclusions

In this paper, we presented the RE-tree, which is a novel in-
dex structure for performing fast retrievals of REs that match



C.-Y. Chan et al.: RE-tree: an efficient index structure for regular expressions 117

a given input string. In order to overcome the challenge of
indexing the infinite regular sets (corresponding to REs) with
no well-defined notion of spatial locality, we developed novel
measures for comparing the relative sizes of infinite regular
languages; these range from “rate-of-growth” estimates to en-
coding costs of sample strings using the corresponding REs.
We also proposed innovative solutions for the various RE-
tree operations, including the effective splitting of RE-tree
nodes and computing a “tight” bounding RE (under a space
constraint) for a collection of REs. Finally, we showed how
sampling-based approximation algorithms can be used to sig-
nificantly speed up the performance of RE-tree operations.

Our experimental results with synthetic data sets clearly
demonstrate that the RE-tree index is significantly more effec-
tive than performing a sequential search for matching REs and
in a number of cases outperforms sequential search by up to an
order of magnitude. An interesting direction for future work
is the application of the counting, sampling, and size estima-
tion techniques for regular languages that we developed in the
paper to other problem domains like selectivity estimation of
REs, clustering REs, etc.
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A Proofs of theorems

Proof of Theorem 5.1: We show that the set-partitioning
problem is NP-hard by reducing the clique problem associated
with it. The clique problem is as follows: given an undirected
graph G = (V, E) and a constant K, does G contain a clique
of size K or more? Let |V | = n, deg(vi) be the degree of
vertex vi ∈ V and D the maximum degree of any vertex in V .
We construct the sets S1, . . . , Sn+1 from G as follows. There
is a distinct set Si corresponding to each vertex vi in V . In
addition, there is a distinct element e for each undirected edge
(vi, vj) in E. Set Si corresponding to vertex vi contains all
elements for edges (vi, vj) incident on vertex vi. In addition,
Si contains D−deg(vi) new elements. Finally, Sn+1 contains
all of the elements in sets S1, . . . , Sn corresponding to vertices
in V . Note that the new elements added to each Si (that do not
correspond to edges in E) only appear in Si and Sn+1. Also,
the total number of elements is |Sn+1|.

We show that G contains a clique at least of size K if
and only if there exists a partitioning into S1 and S2, each set
containing at least K elements (thus m = K) and such that
| ∪Si∈S1 Si| + | ∪Si∈S2 Si| is less than or equal to |Sn+1| +
DK − (

K
2

)
. Observe that in the optimal partitioning of sets

S1, . . . , Sn+1, Sn+1 is contained in one of the sets, say, S1, and
the other set S2 contains K sets from S1, . . . , Sn (since Sn+1
contains all the elements). Further, the cost of the partitioning
| ∪Si∈S1 Si| + | ∪Si∈S2 Si| is equal to |Sn+1| + | ∪Si∈S2 Si|.

Suppose G contains a clique of size at least K. We con-
struct the sets S1 and S2 as follows. For every vertex vi

in the clique, S2 contains the set Si. S1 contains the re-
maining sets not contained in S2 (including Sn+1). Thus,
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| ∪Si∈S1 Si| = |Sn+1|. Further, each set Si in S2 contains
D elements. However, K − 1 of these are due to edges be-
tween vi and other vertices in the clique. Since there are

(
K
2

)

of these edges between vertices of the clique and the
(
K
2

)
el-

ements for these edges occur in two sets in S2, it follows that
the total number of elements in ∪Si∈S2Si is DK − (

K
2

)
.

On the other hand, suppose that there is a partitioning of
sets into S1 and S2 whose cost is less than or equal to |Sn+1|+
DK − (

K
2

)
. Without loss of generality, let S1 contain the set

Sn+1 and S2 contain K other sets from S1, . . . , Sn. Thus,
S2 must contain less than or equal to DK − (

K
2

)
distinct

elements. Of the total of DK elements in the K sets in S2,
only elements corresponding to edges connecting vertices for
sets in S2 are counted twice. Thus, if S2 contains less than or
equal to DK − (

K
2

)
distinct elements, then there must be at

least
(
K
2

)
edges between the K vertices for S2. This is possible

only if the K vertices form a clique in which an edge exists
between every pair of the K vertices. �

Proof of Theorem 5.2: We reduce the partition problem to
the problem of computing the desired DFA M . In the partition
problem, there is a set of elements S with each element e ∈ S
associated with a weight w(e). The idea is to partition S into
two subsets S1 and S2 such that the sum of weights of elements
in each subset is equal.

Given an instance of the partition problem, we map it to the
automaton computation problem as follows. For each ei ∈ S
we add to M the automaton that accepts the language for
regular expression Ri = (ei1| · · · |eiw(ei))

∗ (here each symbol
eij is distinct). The DFA for the union of the set of regular
expressions in M essentially has a start state s0 and a separate
state si for each automaton Mi. Further, there are transitions
from a to si for every symbol eij (j ≤ w(ei)). Also, there are
transitions from si to itself for every symbol eij (j ≤ w(ei)).
Finally, every state in the union automaton is an accept state.
Suppose B =

∑
ei∈S w(ei)/2. We show that there exists an

automaton M more general that the union automaton with at
most 2 states and such that |Ll(M)| ≤ (l + 1)Bl if and only
if there exists a partitioning of S.

Suppose there exists a partitioning of S into sets S1 and S2.
Then, consider the DFA (derived from the union automaton)
in which all the states si corresponding to ei ∈ S1 are merged
with the start state s0 and all the remaining states are merged
among themselves. One can easily show that |Ll(M)| ≤ (l +
1)Bl for this automaton with two states (since each state has
exactly B self-transitions). On the other hand, suppose that
there exists an automaton with two states such that |Ll(M)| ≤
(l+1)Bl. Then we show that for all the states si corresponding
to elements ei that are merged with start state s0, the sum of
w(ei) = B. Suppose that this is not the case. Then, of the two
states, one must have transitions to itself for at least B + 1
symbols. Thus, |Ll(M)| ≥ (B + 1)l, which contradicts the
fact that |Ll(M)| ≤ (l + 1)Bl for all l. Consequently, for all
the states si corresponding to elements ei that are merged with
start state s0, the sum of w(ei) = B. �

Proof of Theorem 6.1: Let N1 = |S1| and n1 = |r1|. Each
random sample r1 of S1 with size n1 is selected with a uni-
form probability of 1/

(
N1
n1

)
. Thus, the expected value of the

estimator is given by (N1/n1)× (1/
(
N1
n1

)
)×∑

r1
|(r1 ∩S2)|.

In order to estimate
∑

r1
|(r1 ∩ S2)|, we note that each ele-

ment of S1∩S2 can occur in
(
N1−1
n1−1

)
samples of size n1. Thus,

∑
r1

|(r1 ∩ S2)| =
(
N1−1
n1−1

) × |S1 ∩ S2|. Thus, the expected
value of the estimator is |S1 ∩ S2|. �

Proof ofTheorem 6.2: Let N1 = |S1|, k = |r1∩S2| and n1 =
|r1|, and N = |S1 ∩S2|. We need to show that the probability
of a set of size k being chosen is 1/

(
N
k

)
. This is essentially the

probability of a random sample r1 (of size n1) containing the
specific k elements of S1 ∩ S2. The number of subsets of S1

of size n1 containing the specific k elements is
(
N1−N
n1−k

)
. The

total number of distinct subsets of S1 of size n1 containing
any k elements from S1 ∩ S2 is

(
N
k

) × (
N1−N
n1−k

)
. Thus, the

probability of r1 ∩ S2 containing the specific k elements is
equal to

(
N1−N
n1−k

)
/(

(
N
k

) × (
N1−N
n1−k

)
), which is equal to 1/

(
N
k

)
.

�

Proof of Theorem 6.3: Let N1 = |S1|, N2 = |S2| and
n = |r|. Consider any set r returned by algorithm SampleU-
nion. We show that this is a uniform random sample of size n
by showing that the probability of selecting r is 1/

(
N1+N2

n

)
.

Consider an arbitrary permutation of elements in r. We show
that the ith element of the permutation is chosen with prob-
ability 1/(N1 + N2 − i + 1). Suppose that, of the previous
i − 1 elements, i1 are chosen from r1 and i2 are chosen from
r2 (note that i1 + i2 = i − 1). Further, without loss of gen-
erality, the ith element belongs to r1. Then the probability of
choosing the ith element is (N1 − i1)/(N1 + N2 − i1 − i2)
× (|r1| − i1)/(N1 − i1) × 1/(|r1| − i1), which is equal to
1/(N1 + N2 − i + 1). Of the three terms in the probability
computation, the first is the probability of selecting an element
from S1, the second is the probability that the ith element be-
longs to r1 after the previous i1 elements have been deleted
from it, and the final term is the probability that the ith el-
ement is chosen from r1 (without the previous i1 elements).
We elaborate further on the second term – once i1 elements
are deleted from r1, an argument similar to that used in The-
orem 6.2 can be used to show that r1 without the i1 elements
is a uniform random sample of S1 without the i1 elements.

Thus, from the above discussion it follows that the proba-
bility of choosing the ith element in any given permutation of r
is 1/(N1+N2−i+1). Thus, the probability of choosing all the
elements in any permutation of r is (N1+N2−n)!/(N1+N2)!.
Since there are n! different permutations of r, the probability
that r is selected is ((N1 +N2 −n)!×n!)/(N1 +N2)!, which
is essentially 1/

(
N1+N2

n

)
. This proves the theorem. �

B Generating random strings for NFAs

In this section, we explain how algorithm GenRandom-
String can be modified to generate random strings for NFAs.

Essentially, for an NFA, since there can be multiple tran-
sitions for the same symbol x out of a state s of M , choosing
the (symbol, state) pair for the next transition needs to be
carried out in two phases (step 2 of algorithm GenRandom-
String). Suppose that for each value of i from 1 to n, for each
state s and each symbol x, during the execution of steps 7–11
of algorithm CountStrings, we store in variable γxtj (s, i)
the contribution of symbol x and state tj (1 ≤ j ≤ l) to
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β(s, i). Thus, γxt1(s, i) = β(t1, i − 1) (step 8) and for j ≥ 2,

γxtj (s, i) = β(tj , i − 1) ∗ |r−(∪j−1
k=1Li−1(M,tk))|

|r| (step 11).
Essentially, γxtj (s, i) stores the number of distinct length-
i accepting paths from s whose first transition is on x and
that pass through tj but have not been counted earlier in
γxt1(s, i), . . . , γxtj−1(s, i). Also, let γx(s, i) =∑

tj∈δ(s,x) γxtj (s, i).
We now describe the two phases when choosing a (sym-

bol, state) pair for the next transition when generating a
length-i random string from state s. In the first phase, symbol
x for the transition is chosen with probability γx(s,i)

β(s,i) (this is

approximately the fraction of distinct length-i accepting paths
from s beginning with symbol x). Once a symbol x has been
chosen, in the second phase, if tj ∈ δ(s, x), then state tj for

the transition on x is chosen with probability
γxtj

(s,i)
γx(s,i) (this

is approximately equal to the fraction of distinct length-i ac-
cepting paths from s whose first transition is on x and that
pass through tj). Note that during the ith iteration of the “for”
loop in step 3 of algorithm CountStrings, random strings of
length i−1 need to be generated in step 10. This only requires
γ for values less than i for each state, which should have been
computed in previous iterations of the algorithm.


