Noname manuscript No.
(will be inserted by the editor)

Sort-Sharing-Aware Query Processing

Yu Cao - Ramadhana Bramandia - Chee-Yong Chan- Kian-Lee Tan

Received: date / Accepted: date

Abstract Many database applications require sorting a tatruly cheapest execution plan with the sort sharing (post-)
ble (or relation) over multiple sort orders. Some example®ptimization turned on. We demonstrate the efficiency of
include creation of multiple indices on a relation, genera-our ideas with a prototype implementation in PostgreSQL
tion of multiple reports from a table, evaluation of a com-and evaluate the performance using both TPC-DS bench-
plex query that involves multiple instances of a relatiord a mark and synthetic data. Our experimental results show sig-
batch processing of a set of queries. In this paper, we studyificant performance improvement over the traditional eval
how to optimize multiple sortings of a table. We investigateuation scheme.

the correlation between sort orders and exploit sort sharin

techniques of reusing the (partial) work done to sort a ta-

ble on a particular order for another order. Specifically, we| |ntroduction

introduce a novel and powerful evaluation technique, dalle

cooperative sorting, that enables sort sharing between-see Sorting is a frequent and expensive operation in database
ingly non-related sort orders. Subsequently, given a §ipeci systems. It is employed not only to produce sorted output,
set of sort orders, we determine the best combination of vabut also in many sort-based algorithms for aggregation, du-
ious sort sharing techniques so as to minimize the total prqslicate removal, join, and set operations. As such, it hasbe
cessing cost. We also develop techniques to make a tradéxtensively studied ([17,22,25,31-33]). The standarb-tec
tional query optimizer extensible so that it will not miseth nique adopted in most commercial systems is based on the
external merge-sort algorithm that consists of two phases:
an initial run formation phase that creates sorted subsets,

Yu Cao

Department of Computer Science called runs, and a merge phase that repeatedly merge runs
School of Computing into larger and larger runs, until a single run has been cre-
National University of Singapore ated.

E-mail: caoyu@comp.nus.edu.sg In this paper, we investigate the problem of efficiently

Ramadhana Bramandia sorting a table on multiple sort orders. It turns out thatisuc

Department of Computer Science
School of Computing multiple sortings of a table is not uncommon in many ap-

National University of Singapore
E-mail: bramandia@comp.nus.edu.sg

Chee-Yong Chan

Department of Computer Science
School of Computing

National University of Singapore
E-mail: chancy@comp.nus.edu.sg

Kian-Lee Tan

Department of Computer Science
School of Computing

National University of Singapore
E-mail: tankl@comp.nus.edu.sg

plications. For example, in data warehousing, a fact table
typically has two types of attributes: those that contagtsa
and those that are foreign keys pointing to dimension ta-
bles. According to the workload, the index selection pro-
gram may recommend to create both the primary key in-
dex and foreign key indices on the fact table, which requires
the table to be sorted multiple times to bulk load the vari-
ous indices. In many organizations, many reports are gen-
erated at the end of the day/week/month. Typically, these
reports contain the same content but on different sort or-
ders. A bank may produce reports ordered by amount de-

posited/withdrawn/balance, date, branch, and so on. Simthe minimum directed Steiner tree problem, which unfor-

larly, examination schedules are usually printed on déifér tunately is NP-Hard. When the number of sortings is man-
orders - such as course number, dates, examiners, and egeable, we will adopt a brute force algorithm to find the

vigilators. Yet another example arises in decision makingptimal solution on how each sorting should be sequenced
applications where a complex query typically contains mul-and accomplished. Otherwise, we will resort to heuristic or

tiple instances of a relation or view [4], and the executiomapproximation algorithms.

plan may introduce sortings on the instances. So far, we have implicitly assumed that the sortings on
Ir-lthe.above examples, the table could be §ep§1rate.ly Sorttl‘?éj table are the optimization decision of a conventional
multiple times, once per sort order. However, intuitivélist ;o1 gntimizer which is unaware of sort sharing optimiza-
IS wastefgl of resources (mainly 1/O COSt)_ espe_mally Whention. Further modifications of query plans generated by such
the table is huge, as after all we are manipulating the Samgsort-sharing-blind optimizer, such as replacing a haish jo
set of tuples. On the contrary, it seems promising to execute iy o sort-merge join and replacing a hash-based aggrega-
these sortings in a more collaborative manner so as to redugg ., \vith a sort-based aggregation, may enable additional

the overall processing C(,)St' by somehow salvggmg the (pa§'0rt-sharing opportunities and thereby lead to a lowenyguer
tial) efforts spent on sorting the table on a particular otde execution cost. Therefore, it would be beneficial to let sort

speed up the sortings on other orders. Ssmit sharingis sharing be explicitly considered during query optimizatio

exactly Wh"’.‘t we set outto ach|th.-:‘ in this paper. As a result, we propose solutions for the standard query opti
We begin by considering sorting a tableon two sort mjzer to directly generate optimal sort-sharing-awareyjue
orderso; andoy, both of which are sequences of some at-pjans. Our techniques are generally applicable to differen

tributes of T. Wheno, and o share a common prefix, it types of query optimizer, such as the System-R style and the
is obvious that, onc& has been sorted amy, the sorting \p|cano style.

output can be either re-used directly (if one order is a pre-

fix of the other) or be re-organized in a light-weight way (if ~ e have performed a comprehensive experimental eval-
neither order is a prefix of the other) in order to derive thedation of our proposed techniques with an implementation

sortedT on 0p. We refer to such kind of optimizations as in PostgreSQL. We ran a micro-benchmark test, on both

result sharing which leverages the output of one sorting to 1PC-DS dataset and our own synthetic dataset, to compare

more efficiently evaluate the other sorting. The result sharthe performance of cooperative sorting against two indepen
ing technique has been well recognized [3, 14]. dent sort operations. The performance results showed that

cooperative sorting improved the performance on average by
25% and up to 35%. We also conducted a case studgay-
erative index buildingwhere the standard cooperating sort-
ing technique is slightly extended and then exploited when
creating multiple indices on a single table. The correspond
ing performance study on TPC-DS dataset illustrated that
cooperative sorting is very helpful. The highest and the av-
erage performance improvementwere 37% and 24% respec-
tively. Finally, we studied the overall benefits of sort shgr
techniques and the enhanced sort-sharing-aware query opti
OImizer when executing normal queries.

However, whern; ando, do not share a common pre-
fix, the potential sort sharing opportunities have not been e
plored previously. In this paper, we introduce a new prgpert
between a pair of sort orders callsdbset-prefiand design
a novel sorting technique calledoperative sortinghat can
be applied to optimize two sort operations if their sort or-
ders satisfy the subset-prefix property. Cooperative raprti
first organizes the tuples df into an intermediate forri’
such that subsequently (&) can be used to produce the
sortedT on oy efficiently with only (possibly) in-memory
sorting; (b)T’ can also be viewed as a set of initial sorte
runs onop, which can be efficiently merged to derive the The rest of this paper is organized as follows. In Sec-
sortedT on 0,. In so doing, cooperative sorting saves thetion 2, we present some preliminaries. In Section 3, we in-
initial run formation phase faw,. Furthermore, for the gen- troduce our new sort order property, subset-prefix property
eral case of two seemingly non-related sort orders, we shownd categorize the relationship between two sort ordens int
that the pair of sort operations could still be optimized byfour cases. These four cases can be optimized by applying
first applying cooperative sorting on a derived pair of sort o the existing result-sharing sorting technique and/or @w n
ders followed possibly by using result-sharing optimiaati cooperative sorting technique. We elaborate on cooperativ
to achieve the desired sortings. Consequentially, wher sorsorting in Section 4. In Section 5, we generalize coopera-
ing a table on an arbitrary pair of sort orders, we can alwaysive sorting to evaluate more than two sort operations, ex-
optimize the evaluation by utilizing result sharing an@/e+r plain how to optimize the evaluation of multiple sortings on
operative sorting. a table, and discuss sort-sharing-aware query optimizatio

With the result sharing and cooperative sorting technigu€sirther general discussions about sort sharing are pesbent
we then tackle the optimization problem of evaluating moren Section 6. Our experimental study presented in Section 7
than two sortings on the table. We model this problem asalidates the effectiveness of our proposed techniques. We

discuss relevant work in Section 8 and finally conclude ina combination of ascending and descending sort orders in
Section 9. Section 6.

Consider two sort operatiorss = sort(T,01) ands, =
sort(T,0;). By exploiting the relationship between and
02, the pair of sort operations can be optimized for two well-
known cases. The first case is whenis a prefix ofo; (i.e.
02 < 0p), and the second case is wharando, share a non-
empty common prefix which is a proper prefix of (i.e.
0 < |o1A0g| < |0g]).

In this paper, we introduce a new property between two

2 Preliminaries

Sort orders are referred asoq,0, etc, each of which is a
sequence of distinct attributéas,ap,---an), n > 1, of the
relationT? to be sorted. In this paper we utilize the follow-
ing main notations, some of which are borrowed from [14]:

— 5 =sort(T,0;): a sort operatios, on T, with ordero;. sort orders termedubset-prefithat forms the basis of our

— cost(s): the 1/0 cost (in number of accessed blocks) fornovel cooperative sorting technique. Given two sort orders
sort operatiors. 01 andoy, 0z is defined to be aubset-prefibof oy if they

— attrs(0): the set of attributes in sort order satisfy two conditions:

— |o]: number of attributes in the sort order

— 01 < 02: 01 is a proper prefix 0b,.

— 01 < 02: 01 is a prefix ofos. 2

— 01 A 02: the longest common prefix betweenandos.

— 01+ 0p: sort order obtained by concatenatimgando,.

— 0— A: sort order obtained by removing fromthe at-
tributes that also appear in the set of attributes

— o-segmertt the cluster of tuples il that have the same As the name of the property suggestsyiis a subset-prefix
value forattrs(o). of 01, then the set of attributes mp is a subset of the set of

— B(e): size of tuples of expressianin number of blocks. ~ attributes in a prefix ob;.

— D(e,0): number of distinct values faattrs(o) in tuples))
of expressiore; i.e.,D(e,0) = |15 (€)|. Example 1Consider the following four sort orders; =

— M: number of memory blocks available for sorting. (a1, 82), 02= (@), 03 = (82,83, 24,85), andog = .(a47a3, a)-
We have three pairs of sort orders that satisfy the subset-

In this paper, we assume that initial sorted runs are gefyrefx property:o, is a subset-prefix oy, 0, is a subset-

1. some prefixop; of 0, = 021+ 02 is the substring (but
not prefix)o1, of 0; = 017+ 012+ 013, and

. the set of attributes in the suffog, of 0, is a subset
of the attributes in the prefig;; of 01; i.e., 012 = 0y,
attrs(0g2) C attrs(o11), |011] > 0, |013] > 0 and|ogz| >
0.

erated using replacement selection, and our cost model agrefix of 04, andoy is a subset-prefix ods. 0
sumes that each initial sorted run is of si2d Blocks. The
external sorting of a relation is done using the well-known Based on the new subset-prefix property, we can classify

F-way merge sort technique, wheFeis the merge order the relationship betweem ando, into four disjoint cases:
(i.e., number of runs that can be merged ugiig Our cost

) . — Case 1oy is a prefix ofo;.
model for a sort operatiosion T usingM blocks of memory 2 P !

— Case 2:0; and o, share a non-empty common prefix

Is given by which is a proper prefix ob,.
B(T) — Case 30y is a subset-prefix ad;.
cost(s) =2 x B(T) x ([IogF(Wﬂ +1) 1) — Case 401 ando, do not satisfy any of the above three

cases.

The first two cases are the more familiar and simpler
cases, whers; ands, can be efficiently evaluated using the
3 Sort Sharing Techniques result sharing technique which has been previously dis-
cussed in other contexts [3,14]. The idea is to leverage the
In this section, we present an overview of techniques fopytput of one sort operation to more efficiently evaluate the
optimizing the evaluation of multiple sorts on a relatibn other sort operation.
We will first focus on the basic Setting inVOlVing Only two For case 1, since a relatioh sorted ono; is tr|V|a||y
sort operations, and then explain how our techniques cagiso sorted om,, it is sufficient to perform onlgort(T, 0y);

be easily extended to the general setting in Section 5. FQherefores; is not evaluated explicitly ancost(s,) = 0.
simplicity, we assume that all the attributes in a sort oeder For case 2, SUppos£ = 01 A 0, such thab; = o 4 0},

to be sorted in ascending order. We discuss how to handig, — 0 +0), |0} > 0 and|0,| > 0. In this case, a relatioh

1 For simplicity, our discussion assum&so be a relation, but our sorted onog IS also partially sortgd ony: the output ofs;
techniques also apply whéhis the output of some query subplan. ~ €an be viewed as a concatenatiorobbegmentsand each
2 |tis also known awvalue packef18]. such segment can be sorted independentlyp/pito form

the sorted output fos,. If the size of eacto’-segmenis Recall that in this case, we hawge= 011+ 012+ 013 and
no larger tharM blocks, then the sorting of each segmento, = 0,1+ 022, such thaby» = 0p1, attrs(op2) C attrs(011),

on 0, can be performed efficiently using internal sorting|o11| > 0O, |0o13| > 0 and|oy,| > 0.

ands, can be evaluated with only a single pass of reading

the output ofs;. As noted by [14], the strategy to evalu-

ates, by sortingo’-segmentslso helps to significantly re- 4.1 Overview

duce the number of tuple comparisons: the complexity of

independently sortingx segments each of sizg/k tuples Observe that the output ef can be viewed as the concate-
is O(k *n/k log(n/k)) = O(n log(n/k)) in contrast to a hation ofoi;-segmentgi.e., a set of tuples with identical
complexity ofO(n log(n)) for a single sort of alh tuples. 011 values), each of which is also sorted @nand thus is
s is evaluated using the conventional external merge-sog sorted run fos,. As a result, the result sharing technique
and cost(s;) is given by the Equation 1. Following [14], can actually be applied to this case by first evaluasinigl-
cost(sy) — 2:3:(1,0’) cosi(sort(sa, 0,)), wherecost(sort(s, 0})) lowed by merging .the resultanh—segmentip (?omputesz.
denotes the cost of sorting tfth o-segment sén the sorted 1owever, depending on the number of distingi values
output ofsy. If B(sq) < M, cost(sort(se, 0})) is simply the and the extent of data skewTn the num.berobll-segments
cost of performing an internal sorting: otherwise, it isagiv 9€nerated by, could be very large with many small seg-
by Equation 1. If we assume that the valuesbfollow a ments. In this situation, merging a large humber of small

uniform distribution, therB(sq) = B(T)/D(T,). sorted runs to evaluat® could lead to an overall perfor-

. . mance that is bad or even worse than performing a conven-
The cases 3 and 4 are the new scenarios that we inves- P 9

. oo . tional external sorting o on 0,. The following example
tigate in this paper. For case 3, the evaluationsiainds,

. : illustrates this drawback of applying the result sharirghte
can be optimized by our newly proposeabperative sort-)
)) .) . - nique for case 3.
ing technique, whose idea is to create “hybrid” sorted runs
that can benefit the evaluation of both sort operations. W%xample 2Consider the relatiofT (a,b) in Fig. 1, which

shall discuss the details of cooperative sorting in the nexf serve as a running example in this section. Assume the
section. following: each tuple occupies one disk block, the avadabl
For the most general cases},ands; can be optimized sorting memory can hold four tuples (i.&4, = 4), and the
as follows. First, we derive two new sort ordefsando,, merge ordefF = 2. Consider two sort operatioss ands,
whereo, is the longest prefix of; such thab; is a subset- on T, with orderso; = (a,b) and o, = (b), respectively.
prefix of oy = 01 + (0, — attrs(01)). Note that the derivation - opyiously,o, is a subset-prefix of; with 011 = (a). The
of 0y ando, is always possible; in particular, the trivied output ofs; is a concatenation of sia-segmentgse to
containing only the first attribute af; is a subset-prefix of gq.) each of which is sorted ofb). These sixa-segments
the corresponding). Second, we apply cooperative sorting can be merged fos, with three 1/0 passes of reading and
to evaluate two sort operatiossrt(T,0;) andsort(T,05). writing T tuples. However, this is actually not better than a
Sinceo; is a prefix ofo}, the output ofsort(T,0}) is also conventional external sorting: the replacement seledtion
sorted ono; and thus can be directly utilized as the out-cyrs one I/0 pass and generates three initial runs, which can
put of s;. Since0, is a prefix ofo,, there are two cases to pe merged with only two 1/0 passes. As a result, both ap-

be considered for the evaluation &6rt(T,02): if 0, =02, proaches for evaluating will incur three /O passes. [
then the output o$ort(T,0,) can be directly utilized as the

output ofsp; otherwise, we can derive the output ®fby Cooperative sorting is proposed in order to retain the
independently sorting eadj-segmentvithin the output of benefit of result sharing, i.e. avoiding scanniiigo gen-
sort(T,0,) on ordero, — attrs(05). In order to optimize the erate initial sorted runs fos,, and also overcome as much
independent sorting of th&,-segmentswe choos®), to be as possible the drawback of result sharing. The core of co-
the longest prefix ob, that meets the subset-prefix require- operative sorting is an intermediate sort operasigrbased
ment. on a special hybrid sort order, such that the outputs of both
s, ands, can be efficiently derived from the output®b.
We will discuss how to perform the intermediate sort op-
erations;» in Sections 4.2 and 4.3. The outputs$ will be
4 Cooperative Sorting a sequence dfiple chunksvhich are eithenatural or com-
posite Tuples of a natural chunk are ordereddaywhile tu-
In this section, we present a novel technique, tercmap- ples of a composite chunk are ordereddayFor each com-
erative sorting to efficiently evaluate two sort operations posite chunk, it consists of tuples from two or moomsecu-
s = sort(T,01) ands, = sort(T,02), whenoy is a subset- tive o13-segmentf the output ofs;, and its size is no larger
prefix of o, (i.e. case 3) as defined in the previous section. than the sorting memory (i.& blocks). For each natural

2 tz’ 2 g a_b . kl’ erative sorting is at least as good as and often better than
3 6 1 s Sel) e % 5 1 result sharing.
‘11 g g ; se, % g g However, the number of;, chunks generated in coop-
6 8 3 2 3 2 6 3 erative sorting could still be more than the number of ihitia
g g g ‘51 2 g é i sorted runs generated by a conventional initial run forma-
3 2 3 6 |sa—ck| 3 6 1 s tion phase foisy, and thus cooperative sorting may incur a
3 4 3 8 3 8 3 5 more costly run merging phase fer. As a result, coopera-
% 130 3 190 2 190 2 ? tive sorting is not guaranteed to be always superior to evalu
2 1 49 1%y o W 6 8 atings; ands, independently. Both cooperative sorting and
g ? 2 ; ® 6 3 i g conventional sorting should be considered in a cost-based
3 5 6 7 %% 6 7 3 9 manner by the query optimizer for evaluating multiple sorts
6 7 6 8 6 8 3 10 on a relation.
relation T s, on (a,b) S, chunks s, on (b)
Fig. 1 Cooperative Sorting Exampl& = 4 andF = 2 4.2 Intermediate Sort Operati®)

The computation 0§, consists of four main steps. In the
first step, we scan the relatioh to create initials; runs
(i.e., initial sorted runs ow;) with the conventional initial
run formation technique. We also collect the set of distinct
011 values, and count the number of tuples corresponding to
each distinct value, in each initig} run at runtime when it
is being generated. After all initig} runs have been gener-
ated, we combine statistics for each inigalrun to acquire
Example 3Look at the running example in Fig. 1. The out- the global statistics on the distinoi; values inT. Thus,
put of s;2 contains four tuple chunks, two compositda(4t the end of the first step, we know the size of eagh
andcks shown shaded) and two naturak{ andck, shown segmentnd the distribution of eachyi-segment’s tuples
non-shaded). The output ef contains sixa-segmentsse among the initiak; runs.
to se. In the output ofs 2, s andse are combined into We allocate a very small portion of memory for the pur-
cki, ses is exactlycky, s, andse are combined int@ks, pose of the above statistics collection, and flush the memory
andsg; is exactlycks. Both cky andcks are no larger than content to disk files when necessary (e.g., the statistics fo
M = 4 blocks, whileck; is larger tharM andck, is smaller gne injtials, run will be written to disk before the generation
thanM. U ofthe nextrun starts). The global statistics will be coneplut
from the disk files, which are also very small and thus incur
To derive the output 0, the s;> chunks are scanned negligible 1/O cost.
and processed sequentially: if the chunk is a natural chunk, The above accurate statistics collection procedure works
the tuples are already ordered @nand can simply be out- well when the domain o6y values is not large. As we shall
put sequentially; otherwise, we first load all the tuples insee, in our experimental study, with 0.5MB of memory, the
the chunk into the sorting memory, internally sort the tsple scheme performs well for 50k distino§; values. Alterna-
on oy, and then output the sorted tuples sequentially. Sinc@vely, we can estimate the statistics using approximation
the chunks are;-order preserving, the whole resultant tuple techniques such as [5,11]. In this case, the subsequest thre
stream will be ordered bgx. steps of computings (to be described shortly) need to be
Notice that the tuples in each natusa chunk are also modified to handle estimatexd statistics. This extension is
ordered byo,. Therefore, to derive the output &f, all the straightforward, and does not affect the correctness of our
s12 chunks can be treated as initial sorted runsoprand proposed scheme. However, some composite chunks might

chunk, it consists of tuples from exactly oog-segmenin
the output ofs;, and there is no constraint on its size. More-
over, the tuple chunks am-order preservingwhich means
that if a chunkck precedes another chugk; in the output
of s1o, then every tuple itk has ano; value smaller than
that of every tuple irck;.

merged recursively. have to be externally sorted due to an underestimation of
Compared with result sharing, cooperative sorting gentheir sizes.
erates longer and thus fewer initial sorted runsfdao merge. In the second step, we determine the output information

Although the evaluation cost @i is slightly more expen- of s;5: the number and the sequencegfchunks, the size of
sive than the normal cost af and deriving the output of each chunk, and thm 1-segments that comprise each chunk.
s from the output of;, requires additional internal sorting Intuitively, the composites;» chunks should be as large as
cost, the saving on run merge cost $armakes cooperative possible (within the size constraint), so as to minimize the
sorting competitive. As indicated by both the cost model intotal number o&;, chunks. We thereby applygeedy algo-
Section 4.4 and the experimental results in Section 7, coopithm that utilizes the statistics collected from the first step

and sequentially checks tlogi-segmentsis follows. If the external run merging technique with a minor extension for
size of anop;-segment seexceeddV, thensg forms a natu- the tuple comparison operator. Specifically, when compar-
ral chunk; otherwise, determine the longest sequence of coing two tuplest; andt, during the merging, if; andt, be-
secutiveor-segments $es€.,1,---Sg such that their total long to the same composite (resp. natural) chunk, then
size is no more thaM. If i = j, thensg forms a natural precedes; iff t; has a smaller value fay, (resp.o;) com-
chunk; otherwisese, - - - ,sg form a composite chunk. Re- pared tdy; otherwiset; precedes iff t; belongs to a chunk
peat the above procedure frasg (1 unlesssg is the last that precedes’s chunk. Note that the fourth step is skipped
011-segment if the third step produces only one initis» run as in the
Note that the tuples belonging tesg chunk are gener- above example.
ally distributed across multiple initia runs. Since the;,
chunks aren;-order preserving, each initigl run consists
of a sequence dfiple chunkletseach of which represents a 4.3 Generating Initiag; 2 Runs
subset of tuples of a distinst, chunk. Chunklets are also
correspondingly classified as natural and composite. In this section, we elaborate on the procedure of merging
initial 5; runs into an initiak; , run.
Merging a set of natural chunklets in the init&l runs
is simple and just follows the conventional external merge
procedure, since the input and output orders are the same.
However, as mentioned in Section 4.2, for each compos-
ite chunkletin the generated initigl, run, its tuples will be
ordered byo,, while the set of composite chunklets in the
initial s; runs are all sorted oo;. Therefore, before we can

Example 4Fig. 2 illustrates the two initiag; runs ordered
by 01 = (a,b) and generated from the relatidnin Fig. 1.
Based on the sizes @Fsegmentsthe above greedy algo-
rithm decides to form fous;» chunks. The first initias; run
consists of chunkletskly 1, ckl 1, cklz 1, andckls 1; the sec-
ond initial s; run consists of chunkletskly », ckly 2, ckls 2,
andckly p. Hereckl; ; denotes the chunklet in thié" initial

s1 run that corresponds to tfif€ s, chunk. O merge these composite chunklets in the inigakuns, we
need to internally sort each of them og?, which requires
a b a b that our tuple reading strategy, i.e. the way we read tuples
\\\}4\% " \%\ " from different initials; runs into the sorting memory during
§2\ " §X t run merging, should ensure that these composite chunklets
g g o, g g will be able to co-exist in the sorting memory when it is
3 9 ' 3 8 o2 their turn to be merged. Assume that these composite chun-
gy sy 3 10 klets correspond to thé" s;, chunk. When tuples in these
2 g cKlyy > \3\ 2‘;:32 composite chunklets are being read into the sorting memory,
4,2

the following constraint must always be satisfied until thes

initial run 1 initial run 2 .
composite chunklets are completely read:

Fig. 2 Initial s; Runs for RelatiorT in Example of Fig. 1 B(RF,’“) n B(RF{’) " Z B(RF{") <M)

k>i

In the third step, we merge the initigl runs to generate

the initial s; runs. Each initiak;» run is created by merg-

ing a set ofF initial 5, runs. Specifically, the chunklets in
the F initial s; runs that correspond to the saise chunk

are merged to form a longer chunklet in the initg run. .)
. 2) chunk from occupying the sorting memory space but not
Consequentially, each initi» run is also a sequence of = . ; .
being merged, while some tuples of th& chunk are still

chunklets, where tuples of a natural chunklet are ordered b

01, tuples of a composite chunklet are orderedpynd the |yema|n|ng on the disk. . S .
. . . N Tuple reading strategies violating the above Equation 2
chunklets ar@;-order preserving. This merging operation is

) . . an lead to “deadlock” situations. For example, consider th
different from the conventional run merging procedure an - N

)) . two initial 5, runs shown in Fig. 2 and suppose that we are
will be elaborated in Section 4.3.

merging the two composite chunkletkl; 1 and ckly » for
Example 5When merging the two initiad; runs in Fig. 2, the firsts;» chunk withM = 4. If we had read the first three
each pair of chunkletskl 1 andckli> (i € {1,2,3,4}) are tuples, (1,5), (2,2) and (3,2), of the first init@lrun into the
merged respectively. The resultant initgp run is exactly — sorting memory, then a deadlock situation would arise as the
the finals;» chunks as shown in Fig. 1. 00 remaining memory space is not adequate for loading the two

In the fourth step, the initiah , runs are recursively merged 3 |ntemal sortings are feasible as by design the total siziese
to generate the; chunks. This is done by the conventional composite chunklets will not exceed the sorting memidry

whereRR™ (resp.RF,Jd) denotes the set of tuples in the input
initial s, runs that belong to th#" s;, chunk and currently
are in the sorting memory (resp. still on the disk). Equa-
tion 2 prevents too many tuples sf, chunks after thet"

tuples ofckly 2, (1,3) and (2,1), in the second initisd run 3. the batch starts and ends both inside the same natural

for internal sorting. chunklet.
On the other hand, a sound yet conservative tuple read4. the batch starts inside a natural chunklet and ends at the
ing strategy might fragment the reading of the inigatuns tail of a (possibly different) composite/natural chunklet

into too many short sequential /0 reads. For example, con-
sider the following approach to mergeinitial s; runs into
an initials;o run. The merging reads and processes the chun-

klets in the initials; runs for ones;» chunk at a time based , Lype;2
on the chunk order. If the current chunk being processed is asmallnatural /| | 4_bate
pe-1 type-3

composite, we first read all the chunklets that belong to thi
chunk into the sorting memory, perform an internal sorting

a large natural
atch chunklet) batch

. -4
on each chunklet, and then merge the sorted chunklets. Ifthe - I ggumnpﬁg;;ei } gaptih
current chunk being processed is natural, we first read)
ples from the corresponding chunklet in each inigatun, initial run initial run

wheren = min{size of the chunkletM/F|}, to initialize
the merging. Each subsequent read includes at nwy$t| Fig. 3 lllustration of Four Types of Tuple Batches in Initiglruns
sequential tuples of a chunklet in some init&l run. By
applying this approach to merge the two init&gl runs in
Fig. 2 withM = 4, a total of 10 sequential reads is required,
which is suboptimal: we shall later illustrate how this can b
reduced to 8 sequential reads.

Fig. 3 illustrates the four types of tuple batches. A natu-
ral chunklet that is larger tham /F | will be partitioned into
one type-2 tuple batch, zero or several type-3 tuple batches
- . and one type-4 tuple batch. A composite chunklet, or a nat-
We thereby propose an efficienatched tuple reading ural chunklet that is no larger tham /F |, will be included

strafcegy for loading tuples from trFen?maI S runs mtp the by one type-1 or type-4 tuple batch. The size of a type-2 or
sorting memory. Our strategy consists of two main steps, . .

) - -) type-3 tuple batch is exactly/F|. The size of a type-4 tu-
First, we partition each initiad; run into a sequence of tu-

ple batches. An initia$; run containingn tuple batches will ple batch is at mosi/F). The size of a type-1 tuple batch

be read witm sequential reads, each of which reads a comF&Zligs\)zrger thagm/F | butis under constraint of the first

plete tuple batch. Second, we schedule the reading of tuple . - .
batches f i tinitizg, 1o do the tuol . GivenF initial s; runs, Algorithm 1 generates the com-
atches from drrierent inifi runs fo do the tuple merging. éolete set of tuple batches and records them in an ariay

Our goal is to minimize the total number of tuple batche . o .

. . _ . S Algorithm 1 essentially involves two nested computatiarps.
(_"e" maximize the sequential l/O) without violating Inex In the outer loop, each time it checks all the chunklets in the
tion 2. inifial s; runs that belong to onsy» chunk, based on the

For simplicity, our batched read strategy is designed basgﬁ}unk order; in the inner loop, it sequentially checks each
on the following tworules chunklet of the curreng;» chunk, and decides the specific
— In an initial s; run, a composite chunklet, or a natural tuple batch(es) that will include this chunklet. B, a type-
chunklet that is no larger tham /F |, will be completely 4 tuple batch immediately follows the corresponding type-2
included by a single tuple batch, where the total size ofuple batch, and the set of type-3 tuple batches in between
any natural chunklet along with all the following tuples are not recorded, as they can be easily deduced at runtime.
must not exceegM /F|. The composition of each type-1 (or type-4) tuple batch start
— In an initial s; run, a natural chunklet that is larger than ing from the head (or interior) of a chunklet is determined
IM/F | will be partitioned into a series of consecutive tu- by using Algorithm 2, which tries to maximize the batch
ple batches, each of which, except the last one, has a siz&ze by including as many tuples following this chunklet in
of [M/F|. The last tuple batch may contain tuples fromthe initials; run as feasible.
other chunklets, but its size is at most/F . At runtime of run merging, Algorithm 3 schedules the
reading of tuple batches. For type-1 and type-2 tuple batche
hey are read in the same order ag i& but are possibly in-
ferleaved with dynamically arranged type-3 and type-4eupl
batches. Moreover, when merging the chunklets for a natu-
1. the batch starts from the head of a composite/naturahl chunk, a type-3 or type-4 tuple batch associated with a
chunklet and ends at the tail of a (possible different)specific chunklet will be selected as the next one to read if
composite/natural chunklet. and only if in the sorting memory tuples belonging to the
2. the batch starts from the head of a natural chunklet ansame chunklet will be exhausted most quickly by the merg-
ends inside the same chunklet. ing. This ensures the correctness of merging and is consis-

It follows that each tuple batch can be classified into on
of four types based on its starting and ending points in th
initial s; run:

tent with the run merging procedure in conventional externaAlgorithm 1 ComputeTB

sorting.
a b a b
-1 -1

Ckll‘l N E?}) i 7t5)% 7 \XN\ Ck|1'2

3 2 tga b | 3 4 M=4
ey | 3.6 | T 4.3 5 |

3_9o |l o |3 8] F=2
ckly; RNSEY +- # 3 \1{1 .

6 3 CKlg 5
! 6 8 E?é B ”ﬂj’?” 6 7 | K

initial run 1 initial run 2

Fig. 4 Tuple Batches of the Two Initiay Runs in Fig. 2

i 1 2 3 4 5 6 7 8
TBJi] | thy | thy | ths | thg | thy | ths | thy | thg

Table 1 The Entries inT B for Example in Fig. 4

Example 6Fig. 4 shows the eight tuple batchébs(to thg)
comprising the two initia$; runs in Fig. 2. Table 1 shows the
tuple batch arrayl B. thy, thy, tby andtbg are type-1 tuple
batchestbsz andth, are type-2 tuple batches, atios and

ths are their corresponding type-4 tuple batches respectivel
There are no type-3 tuple batches in this example. During, .
run merging, these eight tuple batches will be read in the

following sequencetby, thy, ths, thy, ths, thg, thy, thg. Note
that since the last tuple (3,5) th, is smaller than the last
tuple (3,6) intbs, tuples intb, will be exhausted first and
thustbs will be read befordbg at runtime. This situation
cannot be predicated before runtime. O

4.4 Cost Model

In this subsection, we present an analytical cost model fo

cooperative sorting. The total cost of utilizing cooperati
sorting to evaluate two sort operatiogsands, consists of
three components: (1) the c&f, of generating; > chunks,
which is estimated as the cdS§, of independently evalu-
atings; (given by Equation 1) plus the coSf of perform-
ing internal sortings on composite chunklets within iditia
runs; (2) the costs , s, of derivings; which is equal to the
total cost of performing internal sortings for all the corspo
ite s1o chunks; (3) the co<ls , s, of derivings, by merging
$12 chunks which is given by x B(T) x [logeN], whereN is
the number o6;, chunks.

Assuming auniform distribution for the values 01,
there are only two cases to consider.

Output: a tuple batch array B according to the to be mergédinitial
$ runs
1 idx« 1
2: for i — 1toN do// N is the total number of;s chunks
3: if theith s;» chunk is compositéhen
4: for j«— 1toF do
5 if ckl; j is non-empty and has not been assigned to a tuple
batched yethen // ckl, ; denotes the chunklet in thjéh
initial s, run that corresponds to thi@ s;» chunk

6: TB[idX < TupleBatclicklj) // form a type-1 tuple
batch starting from the head of ¢kl
7: idx —idx+1
8. else
9: for j«— 1toF do
10: if ckl; j is non-empty and has not been assigned to tuple
batches yethen
11: if sizgckl; j) > [M/F] then
12: TB[idx] <« a type-2 tuple batch starting from the head
of Ck|i,j
13: idx —idx+1
14: TB[idx] < TupleBatclickl ;) // form the correspond-
ing type-4 tuple batch
15: idx —idx+1
16: else
17: TB[idX] < TupleBatclickl ;) // form a type-1 tuple
batch starting from the head of ¢kl
18: idx —idx+1

Algorithm 2 TupleBatch
Input: ckl; ;
Output: a type-1 (or type-4) tuple batdh starting from the head (or
}ﬁterior) of ckl;
initialize a type-1 (or type-4jb including the whole (or part of)
C|(|i_'
2 Kelit1
. while true do // check whether ckl; can be included by th
if (ckly j is natural && sizeckly ;) > [M/F]) ||
includingckly j in th violates the size restrictions in theles ||
including ckly j in tb violates the Inequation 2 for thé (i <
| < k) s12 chunk which is compositeéhen
break
includeckl j intb
7. k—k+1

A w

ase 1:B(T)/D(T,011) < 0.5M.
In this case, al§;» chunks are composite, and the number of
s12 chunks is given by

N = [D(T,011)/K] 3)

wherek = {%J is the number ob;;-segmentsn
each composite chunk.

Let cpucostS) denote the cost of internally sorting tu-
ples of total sizes. We have

Cis = BZ(,\-I/-I) x N x cpucost{2M/N) 4)
Cspp—s; = N x cpucostk x B(T)/D(T,011)) (5)

Algorithm 3 ScheduleReadingOfTupleBatches 4.5.1 Final Merge Optimization
Input: TB
OUtpUt: the Ord(.?r on which tUpIe batchesTBwill be read during the |f the external Sort|ng Operatlon |S part Of a p|pe||n|ng W'le
aCtu_al_ run merging plan, a common optimization is to stop the run merge phase
1: initialize an empty tuple batch poBl . . .
just before the final merge step so that the final merge step

2:i+1
3: while i < lengthTB) do can be done as part of the generation of the sorted output.
4: readT BJi| whenever enough memory space is available In this way, the final merge optimization saves one read and
5. tb < TBIi] // mark this tuple batch for later reference one write scan oif
6: if THi]is atype-1 tuple batctihen // otherwise it must be type- o T .
2 d yP P yP When the final merge optimization is enabled, the inter-
7: Pie—i+1 mediate sort operatiosi, of cooperative sorting will end up
gi elsedd 0P th i 4 tuple batTiEi+ 1 with N (1 < N <F) s12 runs. The output of; is derived by
: add intoP the corresponding type-4 tuple bat@B]i + ; tha. :

along with the set of type-3 tuple batches betw@&@ji] and merglng thesd s12 .runs on-the-fly, with thebatc.hed tuple .

TBi+1] readingstrategy being used to.sort the tuples in composite
10: i—i+2 chunklets oro; before the merging. As fa, each chunklet

11: if after readingth, the merging of chunklets for a natursl, within the s;» runs is treated as an initial sorted run r

chunk has just be initialized, i.e. all the type-1 and typ&r2 : P _
ple batches containing tuples of thgs chunk have been read For the special case where the number of insjalins gen

but none of the corresponding type-3 and type-4 tuple batche€rated fors;2 is no more thark, these initials; runs can be

(recorded inP) have been reathen transformed into initiak, runs by simply sorting the com-
12: if Pis non-emptythen 3 {:/osite chunklets based @a. In case many of the chunklets
13 driven by the merge progress, read on a specific order alliihin these initials; runs are composite, it could be overall

the type-3 and type-4 tuple batcheshin . . . S
14: restoreP to be empty cheaper to simply ignore the final merge optimization and

directly form a singles;, run.

Case 2:B(T)/D(T,011) > 0.5M.

In this case, al;» chunks are natural, and 4.5.2 Adapting to Other Merge Patterns

_ Our description of cooperative sorting in Section 4.2 has as
N = D(T,011) (6) :
. —0 . sumed that the sorted runs are merged by usiwgy merge
Cis = Cappos = @ pattern for ease of presentation. The cooperative sorping a

roach can be easily adapted to other merge patterns such
spolyphase mergandcascade mergglL7]. In the general
case, the collection of the sorted runs to be merged could

The performance of cooperative sorting depends partial
onD(T,011) and the relative sizes @fi1-segments. Besides

the distinct value cardinality afy 1, the statistical value dis- ; L L
o o consist of a combination of initia runs ands;> runs. The
tribution of 0,1 has little impact on the performance. . . o
batched tuple readingtrategy can be easily modified so that

We conduct a brief analytical comparison between e composite chunklets within tisg, runs, which have al-

sulfung sharing aqd cooper_atlve sor_tmg as follows. When apready been sorted @, need not be internally sorted again
plying result sharing technique to directly meme-segments

in the output ofs; to derive the output o$,, the total cost
consists ofCs; as well as the cost incurred fyge D(T,011)]
merge passes (i.€x B(T) x [logeD(T,011)]). In case 1, the
llogeN] component of th€s, s, (i.e.,2xB(T) x [logeN]) is 5 Optimization of Multiple Sortings
at most equal to and often less by at least 1 fixap D(T,011)].
As a result, considering the relatively minor CPU ca@ts In this section, we first consider the extension of coopera-
andCs,, s, the total cost of cooperative sorting is often tive sorting to handle more than two sort orders. We then
cheaper than that of result sharing. In case 2, the total cosbnsider post-processing the query execution plans egbult
of cooperative sorting is exactly the same as that of apglyinfrom a conventional query optimizer, so as to further opti-
result sharing. mize the evaluation of multiple sortings on a relation appea
ing within these plans. Specifically, we consider the evalu-
ation of a collection of sort operatiors= {s1,,--- ,%}
(k > 2), where eacls = sort(T,0;) is a sort operation on
4.5 Extensions relationT with sort ordero;. Finally, we describe how to en-
able the query optimizer to take into account the impact of
In this subsection, we describe two important practical exsort sharing and directly generate the optimal sort-sigarin
tensions of cooperative sorting. aware query execution plans.

as part of the merging.

10

5.1 K-way Cooperative Sorting € S we create a sort node € V, with order(u) o. Each
directed edgeu;Vv) from sort nodeu to sort nodev is as-

In Section 4, we develop cooperative sorting to evaluate twgociated withcost(u,v) equal to the cost of sorting that

sort operations; ands,. In this section, we consider whether satisfierder(u) to satisfyorder(v). There are two types of

it is feasible and makes sense to generalize the binary (%irected edges between sort nodes, corresponding to case 1

way) cooperative sorting tolkaway version so thatak sort and case 2 in Section 3.

operations can be simultaneously and efficiently evaluated For each pair of sort nodasandv such thatorder(u)

Given two sort orders; andoj, leto; - o; denote the sort andorder(v) satisfy case 3 or case 4, we create a new co-

ordero; + (0j — attrs(0j)). Thek-way cooperative sorting operative sort operator nosec Vj,. This node represents a

applicable to thek sort operations ir§ if there exists some potential cooperative sorting operation from whichndv

permutation ofS, (Sp1,Sp2, -+ ,Spk) (1 < pi < K), such that can be derived. From, we add two directed edgesw,(u)

for each pair of sort orders; = ((Op1-0p2) - Op3) *-.--Opi and (, v). Both cost(w,u) andcostw, V) are labeled based

(1 <i < k) andopi, the latter is a subset-prefix of the for- on the cost model in Section dostw,v) may additionally

mer.k-way cooperative sorting works as follows: it gener-include the cost of sorting tuple segmentsdoder(v).

atesk — 1 intermediate sort operatiofs,,s;,--- ,§ } from Finally, an artificial nodeoot € V, is added to represent

a single collection of initial runs that are sortedarm. Each the relationT without a particular order. We add an edge

§ corresponds to the pair of sort orderg andopi. Sp1 IS from root to each existing node in V, with costroot, v)

derived from anyg; (1 < j <K) following the way hows; is equal to the cost of a conventional sort operation.

derived froms; in the 2-way cooperative sorting, and each Once the graph has been constructed, the optimal solu-

spi (1 <i <K) is derived froms following the way hows; tion is obtained by computing the minimum directed Steiner

is derived froms;; in the 2-way cooperative sorting. tree spannings. The sort nodes iV, are the exact set of

) i vertices’s that the Steiner tree aims to interconnect.
Example 7Consider three sort operatiosis= sort(T, (a)),

s, = sort(T, (b)) ands; = sort(T, (c)), wherea, b, andc are
attributes ofT . Any permutation ok, s, ands;z is qualified
for 3-way cooperative sorting. For one such permutagn
S, S3), initial runs sorted orfa, b, c) are generated for two | abe [T Cabe,d
intermediate sort operatios$ (w.r.t sort order paif (a,b), ‘) NN o
(b)}) ands; (w.r.t sort order pai(a,b,c), (c)}). s; ands,

are then derived frord,, while s is derived froms;. O ‘

However, the following analytical result based on our f1OM r00t < Case 1 <——-case 2 ~— - case

cost model in Section 4.4 shows that it is not necessary to (@) The Sample Grap (b) steiner Tree o6
considek-way cooperative sorting fde > 2.

Fig. 5 An Example of Multiple Sorting Optimization
Theorem 1 For each query plan P that involves k-way co-
operative sorting, k> 2, there exists another equivalent query
plan P that uses only 2-way cooperative sorting such thatExample 8Consider three sortingsort(T, (a,b)), sort(T,

the cost of Pis no higher than the cost of P. (a,b,c)) andsort(T, (d)), wherea, b, c andd are attributes
_ o _ _ of T. The graph for these three sortings is depicted in Fig. 5(a),
The proof of this theorem is given in Appendix A. where the sort (resp. cooperative sort) nodes are repegsent

by rectangles (resp. ellipses). The computed Steiner dree f
this graph is shown in Fig. 5(b). Based on the Steiner tree, a
feasible evaluation plan is as follows: first evalusde(T, (a, b, c))

. . : andsort(T, (d)) with cooperative sorting, and then derive
Given a collectionS of k sort operations, there are many sort(T, (a, b)) from sort(T, (a, b, c)). -

ways in which these operations can be ordered to exploit sort
sharing. In this section, we model this optimization prob- Although finding the minimum directed Steiner tree is
lem as a graph problem. Based on Theorem 1, we considen NP-hard problem [16], applying a brute-force algorithm
only the binary cooperative sorting in subsequent discuss actually acceptable |¥,| is small. Basically, we enumer-
sions. Givers, we construct a directed gra@{V,E), where ate every subset &f, to be used in the spanning tree and find
V =V, U W, Va represents the set 8brt nodesandV, rep- one with the minimum cost. The complexity of finding the
resents the set @boperative sort operator nodes directed minimum spanning tree ®(N?) whereN is the
Each sort nodes € V, is associated with a sort order, number of nodes in the graph [10]. Hence, the total com-
denoted byorder(u). For each sort operatig= sort(T,0) plexity of the algorithm i€0(2™I|V|2). In our context, since

5.2 Multiple Sorting Optimization

11

[Va| is small andVy| < |V,|? is also small, a brute-force so- are generated with the updated set of interesting progertie
lution is reasonable; otherwise, heuristic/approxinratit Generally speakingpss is used to ensure that a previously
gorithms [6,15] can be applied here. dominated subplasp will now remain inP’ if it could fi-

Execution order of sortings.Each sorting corresponds to a Nlly be part of the optimal global sort-sharing-aware plan
node in the Steiner tree. When an unfinished sorting is trigO"ce the plan s for V are available, we apply the post-
gered by the query execution, in the path from root to thiPtimization described in Section 5.2 to each pfein P to
node, all unfinished sortings will be conducted one after and®t @ Sort-sharing enhanced plan. Finally, the cheapest
other to complete the target sorting. If this target sorsrgn P S chosen as the final optimal plan fér
internal node of the tree, it is marked after the sorted tesul The modeling ofipss can be various and here we de-
is utilized; otherwise, it is deleted from the tree alonghwit Scribe one possible modeling. For single table access plan
the deletion of temporary sorting files. As old leaf nodes ared, letipss(p) = 0. A sort operatiors = sort(T,0) is called
deleted, some internal nodes become new leaves and thodginteresting sortingf T is a multi-instance relation iw'.
marked ones will be repeatedly deleted until all leaves ar&0r @ join planpiz = spy > Sy, let ipss(pi2) = cost(e<
unmarked yet.) +ipss(SpL) + ipss(Sp) — cost(x), wherecost(x) is the
cost of the join algorithm evaluation andst(x<) is the total
cost of the interesting sortings introduced by the join algo
5.3 Sort-sharing-aware Query Optimization rithm (e.g., sort-merge join). In other wordpss(p12) is the
reduced plan cost g, after subtracting the costs of all in-
The optimization techniques in Section 5.2 can be encapsi€resting sortings within the plan tree pf,. For two plans
lated into a post-optimizer, which receives an executianpl P12 and pj,, if cost(p12) < ipsy(pj,), thenpaz is superior
from the original query optimizer, exploits sharing and co-to Py, in terms ofipss. The intuition behind this modeling
operation opportunities between the sortings in a costas IS that, even if all interesting sortings withpi,'s plan tree
manner and, whenever possible, generates a cheaper pkah finally be waived via sort-sharing post-optimizatioreow
enhanced with the sort sharing techniques. While this twot0 the case 1 and thus incur no cqs; is still cheaper even
phase optimization procedure will be very effective and efWithout any sort sharing optimization. Such igs model-
ficient, it cannot guarantee that the refined plan still rermai iNg is conservative but can guarantee the optimality of the
optimal with additional sort sharing consideration. For ex resultant plan.
ample, the original optimizer may choose hash join over The additional optimization overhead incurred ipys
sort-merge join for a pair of relations, even if the latteryma is highly dependent on the number, the distribution and the
turn out to be cheaper after applying the sort sharing posphysical properties of the relational instances existmipe
optimization on the sortings it involves. join graphG. On the one hand, when there are few instances
In the rest of this section, we discuss how to equip thén G, we expect the optimization overhead will be negligi-
standard query optimizer with the ability of sort sharing op ble, as not many extra subplans will be reserved during plan
timization. As such, the whole search space will be enlargegruning. On the other hand, more instances imply a greater
by the sort sharing extension and an optimal sort-sharing epotential to generate a cheaper sort-sharing-aware egacut
hanced execution plan will be generated via the singleghaglan, and the cost saving in terms of query execution can
guery optimization. easily offset the relatively small cost increase of the gyuer
Here we restrict our focus to the system-R [26] styleoptimization.
query optimizer, which is also adopted by PostgreSQL. We
have modified the PostgreSQL optimizer for our experiments.
In Appendix B, we discuss how to extend the Volcano [13]
style query optimizer. 6 Discussions
The core of the System-R method is its join enumeration
algorithm, whose input is a connected join gréph- (V,E) In this section, we discuss the incorporation of ascending
whereV represents the set of relations to be joined, andnd descending orders into the sort sharing techniques (Sec
each edge il represents a join predicate between two relation 6.1). We present a dynamic way (Section 6.2) to choose
tions. During join enumeration, a set iofteresting proper- at runtime the smartest solution for sortings in cases 3 and 4
tiesare defined for subplan pruning. The frequent interestingnstead of the static estimation depending on historiaad (a
properties include the total execution cost and intergsiin thus possibly inaccurate) statistics. We also study how+to a
ders [26]. ply cooperative sorting to simultaneously build multipte i
Our approach to acquire an optimal sort-sharing-awardices on a table (Section 6.3). Finally, we briefly discuss th
plan forV works as follows. We add a new interesting prop-impact of functional dependency and attribute correlabion
ertyipss For each subs®t of V, its candidate subplan 98t sort sharing optimization (Section 6.4).

12

6.1 Ascending/Descending Ordering 6.3 Cooperative Index Building

Our proposed techniques can be extended to handle the gen—d . , licati h as decisi
eral case where a sort order can consist of attributes to lJ ata-intensive applications, such as decision suppait a

sorted in a combination of ascending and descending o latawarehousing, an important component of physical datab

ders. For a sort attributg leta’ anda’ denote the ascending :jesc;g;_rl]s Ser:ec“”g tg? right S?;]Of mdextezf_or abgl\t/er? vc\j/ork—
and descending ordering af respectively. We can treat oad. The chosen indices are then created in a batched man-

anda” as two different attributes in sort orders. For two sortg_er' Somerzlmes It WOEIId bIS benef|C|a|I to crea_l;[je mulftlple mb-l
orderso; and oy, we refer to them as eeverse pairif (1) ices on the same table. FFor example, consider a fact table

01 = 0, when ascending/descending orderings are ignore(!in a star schema, which contains foreign keys pointing to the

and (2) for each attribute (resp.a”) in oy, the correspond- other dimension tables. Each dimension table contains a key

ing attribute ino, is @’ (resp.a'). Clearly, 1:or a reverse pair, which corrg;pond§ to a foreign key of th? fact tablg and is

the result of one order can be easily converted into thetresu'I’S‘Gd fpr joining \,N'th the fact table. _AS pointed out in [30],

of the other by a backward scan of the sorted output. the existence of indices on the foreign keys of the fact table
We now revisit the four cases fog andos, with the ad- enables thindex push-downptimization, which effectively

ditional consideration of ascending/descending order. oymproves the execution of join queries on the star schema,
discussion is based on the case into which the relationship Sorting is widely utilized in DBMSs to speed up index

betweeno; ando falls if all the sort attributes were to be creation. The procedure of building an indeek(T, k) for
sorted in ascending order. a tableT with key k is as follows. First, sequentially scan
For cases 1 and 2, there must exist a longest pair of s tuples and extract a lidt of index tupleswhere each
prefixes,011 and 021, from o, and o, respectively, such jndex tuple consists of a key value and the tuple identifier.
that (011,021) forms a reverse pair. By using a backward second, externally or internally sdrton the sort ordek.
scan, we can treak; and oz, as a common prefix; thus, Finally, create the index via bulk loading the index tuplés o
the result sharing technique is still applicable. For examthe sorted. and each tuple becomes an entry in the index
ple,o, = (a,b") ando, = (a”, 1) still satisfy case 1, while |eaf page.
0; = (&,b') ando, = (a’,b’) now satisfy case 2.
For case 3, cooperative sorting is still applicable. For a Itis straightforward to exploit cooperative sorting to re-
composites;, chunk, the ascending/descending orders cafuce the total index building cost. For two indide(T, ki)
be handled by internal sorting. For a natural chunk, we ger@ndldx(T,kz), wherek; andk; satisfy case 3 or case 4, we
erate it as usual with a sorted oramp. To use this natural Make use of cooperative sorting to generate soltednd
chunk as an initial run is,, its sort order should be; (each L,, which are then bulk loaded separately. We call such a
tuple in the chunk has the same value &trs(0,2)). With ~ Procedureooperative index building

a backward scamg;, and 0y, satisfy either case 1 or case We uses; (resp.sp) to represent the independent sorting

2. Therefore, we can easily convert _th_e order of the natur%n orderk; (resp.ks) and uses; to represent the coopera-
chun_k on-the-fly from)lz 10 021 When 'F IS merged fos,. _tive sorting. After completing,», the generateg;» chunks
S.|nce case 4_'5 _handled by reducing it to case 3, the d'?:'onsist of index tuples containing redundant attribute&fo

cussion foritis similar to case 3. and/ork,. Therefore, we need to conduct a step of attribute
projection when scanning and merging thesehunks. De-

6.2 Dynamic Optimization for Cases 3 and 4 pgndmg on w_hlch cask«_el and k_z satisfy, the details of at-
tribute projection are slightly different.

Recall that for cases 3 and 4, all the three sorting techsique For case 3attrs(k,) C attrs(k;). The index tuples in

(conventional sorting, resuit sharing, and cooperative- so initial s; runs will contain attributesattrs(k;). Therefore,

ing) are applicable. The choice of which technique to appl)(Nhen merging resultesh, chunks to derive the output of
can actually be determined dynamically at run-time. Note

) 5, (i.e., the sorted.y), we remove the redundant attributes
that all the three techniques share a common step of geﬁftrs(kl— attrs(kz)).

erating initials; sorted runs. After the initiag; runs have

been computed, we have precise information on the number For case 4, the initiad; runs generated bs;» will con-

of distinct0y1 values, the number and sizess$ chunks, tain attributesttrs(k;) Uattrs(k). As aresult, it requires an
and the sizes and distributions of tee chunklets among attribute projection to remove redundant attribwtess(k, —
the s, initial runs. With this information, we can more ac- attrs(k;)) from index tuples when deriving the output®f
curately determine the cost estimates of the three contpetir(i.e., the sorted.;); it also requires another attribute pro-
techniques and choose the most efficient technique to evaljection to remove redundant attributatgrs(k; — attrs(kz))

ates; andsp at run-time. when scanning and merging the generaedhunks.

13

6.4 Functional Dependency and Attribute Correlation modified the PostgreSQL’s optimizer to implement the op-
timization techniques in Section 5.3. By switching between

The functional dependencies existing among relational athe original and the new optimizer, we can easily compare

tributes have been exploited for the purposesoit order the cost of processing a query under the cooperative sorting

reduction[27], which rewrites the order specification of a operation against that of the conventional approach based o

sort operation in a simple canonical form by eliminating re-two independent sort operations.

dundant sort attributes. As such, some sort operationgwith

the query execution plan become unnecessary and thus can .

be removed. Sort order reduction is complementary to soff-1 Micro-benchmark Test with TPC-DS Dataset

sharing optimization, and can be applied separately before hi .) bench K
sort sharing optimization. In this section, we use a micro-benchmark test to compare

However, during sort sharing optimization, it would be the performance of cooperative sorting against two indepen

beneficial to take functional dependencies into accounnwhedent sort operations. We define a query template
(select attrl,attr2 from T order by attrl,attr2)

classifying the relationship between two specific sort sde]
0, and op. For example, suppose = (a,b,d) ando, = union all
(select attrl,attr2 from T order by attr2)

b,c). Normally, 0, ando, would be judged to satisfy case __, . . .
(b,c) ¥:01 2 judg iy This template also serves to simulate two queries in a batch.

4 whereo; = (a,b,d) andd, = (b). However, if there is a : : : .)
. . The execution plan d is a result union (without duplicate

functional dependencja} — {c}, which means that for any . .
removal) of two sortingss; ands,, on the same relational

two tuples with the same attribuéevalues, their attribute
P . tableT. The sort orders of; ands, are (attrl,attr2) and
values are also the same, ttmrcan be equivalently treated i _
(attr2) respectively and thus satisfy case 3.

as(a,c,b,d). As suchp; ando, actually satisfy case 3, and . . .
(3,¢,b,d) 01 2 y fy We generate six concrete queries with the above query

thus can avoid the additional step of sortingegmentsn)) .
P mgeg template by using three different relations from the TPC-

introduced b 4 fap. .
(c) introduce ycase 2 . . DS [2] benchmark foll and two different scale factors (de-
The correlation among attributes could also contribute

) o . noted bySF) to vary the size off . The statistical informa-
to sort sharing optimization. For example, consider twa sor,. ; . . :
. . tion about the three relations, along with their sort atiiéls,
orderso; = (@) ando, = (b). Attributesa andb are highly

correlated so that for any two tuplesandty, if t; has a are shown in Table 2. The scale facg¥ values used are 40

. o and 100. Another experimental parameter that we varied is
smaller attributea value than that o, then it is very proba- . . .
. the available sorting memory dedicated to each sort opera-
ble (but not guaranteed) thiatalso has a smaller attribulte . .)
. tion (denoted byM) with values ranging from 5 MB to 200
value than that of,. As a result, after a relatioh has been }
. MB. The sorting memory values are chosen such that at least
sorted orp;, T can be viewed asearlysorted oro,. There-

) ! . half of them will result in a single run merge step.
fore, we can derive the sort output opby directly sorting . .
. We compare the performance of two basic evaluation
the sort output oro; and hopefully generating longer and) L . . .
- A techniques for sorting: the conventional technique of gisin
fewer initial sorted runs, which in turn lead to much cheaper_ " . X
rUn merae cost two independent sortingslenoted by IS) and our proposed
9 ' cooperative sortingdenoted by CS). We also enable/disable
the final merge optimization to study the combined effec-
tiveness of this optimization with the basic techniques. We
7 Performance Study use CS-OPT and IS-OPT to denote the variants that have the
optimization enabled, and CS and IS to denote the variants
We validated our ideas using a prototype builtin PostgreSQhat have the optimization disabled.
8.3.5 [1]. All experiments were performed on a Dell work- Each total execution time reported refers to the total query
station with a Quad-Core Intel Xeon 2.66GHz processorevaluation time including the I/O cost of reading the sorted
8GB of memory, one 500G SATA disk and another 750GBoutputs ofs; ands,. Each query timing is measured with the
SATA disk, running Linux 2.6.22. Both the operating systemquery running alone in the database system; and the operat-

and PostgreSQL system are built on the 500GB disk, whilgng system is restarted between queries to clear the system
the databases are stored on the 750GB disk. cache.

This performance study focused on the effect of coop-
erative sorting. In our implementation, the cooperativé-so 7.1.1 General Results
ing is integrated into PostgreSQL as a standard operator. It
adopts k-way merge pattern and is capable of final mergEig. 6 compares the performance of the four evaluatiorestrat
optimization. For the purpose of fair comparison, we alsaggies as a function of the sorting memory size; the compar-
converted the run merge pattern of the original sort operason for each query is shown on a separate graph. The de-
tion in PostgreSQL from polyphase to k-way. Moreover, wetailed breakdown of the various cost components for CS and

14

relation attrl attr2 number of tuples (in million)| tuple size (in byte)
wehsales | ws_item sk | ws_sold time_sk 0.72x SF 226
catalogsales | cs_item_sk | cs_sold_time._sk 1.44x SF 226
storesales | ss_item sk | ss_sold time_sk 2.88x SF 164

Table 2 Tested TPC-DS Dataset

500 1000 T— notation description
Z ool : g ook R initial run formation cost fos;»
€ w0 € 7004 RFes(s12) (i.e., creating initiak, sorted runs)
£ 2501 E o T run merge cost f
= 200 5 400 RMes(st2) (i.e crea?in ch?Js?]f(s)
3 igg cs-og; —a-—1 5 300 cs—og; i -€., P12 e
Swo| 0 % v $ 200 | CS run merge cost fos,
[N} IS-OPT *- w IS-OPT -3
K IS 9 o s B CS | RMe(s) (i.e., mergings;2 chunks to derives,)
5 15 30 45 60 100 5 15 30 45 60 100 H =
Sorting Memory (in MB) Sorting Memory (in MB) SQS(SELZ) A COSt of internal SOr.t”?g. to create
(a) weh.salesSF 40 (b) catalogsales SF 40 mmaltsl? _rutns fr(l)m IT_Itlalzl runs
cost of internal sorting during
1800 - . .
3 3 1eoo>: - SGs(s1) the derivation of; output froms;»
% §i§88>i RFs(s1) initial run formation cost fos;
E £ w000 is(S1 (i.e., creating initiak; sorted runs)
5 5 run merge cost fos;
2 g 600 CS-OPT -4 : ;
g g 400 I o IS RMs(s1) (i.e., mergings; sorted runs)
o 1S -8 RFs(s) initial run formation cost fos,
15 30) 45 60 75 100 10 25) 50 75 100 150 Is S2 (i.e., Creating |n|t|abz Sorted rUnS)
Sorting Memory (in MB) Sorting Memory (in MB) Tan merge cost fOSQ
C) storesalesSF 40 d) wehsalesSF 100 . .
© s O s RMs(s2) (i.e., mergings; sorted runs)
g B
* Herr
T X Table 3 Component Costs of CS and IS
______ A I,
CS-OFL
ISOPT % vation validates the I/O effectiveness and efficiency of our
0 0 .
50 7zomn100 125 150 200 50 75 100 125 150 200 batched tuple readmgtrategy_
g Memory (in MB) Sorting Memory (in MB) . . .
(e) catalogsales SF 100 (f) storesalesSF 100 Third, for all the six queriesRFes(s12), RRs(s1) andRFs(sy)

are more or less the same with any amount of sorting mem-
Fig. 6 Performance Comparison on TPC-DS Dataset ory. This is due to the fact that during the initial run for-
mation phase, the reading and writing of tuples to the disk
)) files are interleaved and the cost of the incurred random I/O
IS are shown in Table 4. The meanings of these cost COMPQs jngependent of the size of the sorting memory. On the
nents are given in Table 3. other handRMes(S12), RMes(S2), RMs(st), andRMs(sy) all
We shall not present detailed query-by-query analysisjecrease when the sorting memory increases, as the larger
Instead, we will summarize the more interesting 1‘indings50rting memory makes the run merging more 1/0-efficient.
here. Finally, for all the six relationsSGs(s12) and SG(sz)
First, we observe that CS(-OPT) offers significant perincrease along with the size of sorting memory. The rea-
formance improvement over IS(-OPT) in many queries. Th&on is two-fold: on the one hand, the larger sorting mem-
savings range from a few seconds to 1,033 seconds which ¢gy means that more tuples will be combined into compos-
achieved by CS-OPT over IS-OPT for the quenstre sales jte chunks/chunklets and more tuples need to be internally
with M = 50 andSF = 100 in Fig. 6(f). In terms of rela- sorted; on the other hand, it is cheaper to independently
tive improvement, the average percentage improvement isort many smaller composite chunks/chunklets than inde-
around 25% and the highest improvement is 35% achievegendently sort fewer larger composite chunks/chunklets, a
by CS over IS for the query ocatalogsaleswith M =30 shown by the analysis of case 2 in Section 3.
andSF = 40.
Second, although operating on the same set of initiaf.1.2 Effect of Result Sharing
runs, the run merge phase ®b incurs a higher CPU cost
than that ofs; due to the additional tuple comparison steps.As discussed at the beginning of Section 4.1, the result shar
Note thatRMg(s12) does not include the internal sorting ing technique (denoted by RS) can actually be applied to
costSGs(s12). However, in Table 4, for all the six queries, evaluate case 3. In this section, we compare the effectsgene
RMs(s12) is close to or even less th&Ms(sp). This obser- of RS against CS for the six queries. Fig. 7 compares the per-

15

Table 4 Component Costs of Sortings in the Micro-benchmark Tesséoonds)

CS IS
Memory || RRs(S12) | RMes(S12) | RMes(2) | SGs(S12) | SGs(S1) RFs(s1) | RMs(s1) | RFs(s2) | RMs(s2)
5MB 129.25 70.29 59.15 3.45 22.98 127.39 70.90 128.71 54.43
15MB 126.62 69.47 32.57 8.30 23.57 126.36 75.54 125.70 71.79
30MB 129.62 58.64 28.12 11.47 23.80 126.52 60.05 126.24 53.60
45MB 130.18 53.87 27.46 15.45 24.51 129.92 55.22 125.84 53.24
60MB 126.27 47.89 28.81 18.41 24.85 126.23 50.96 129.36 47.61
100MB 125.64 34.90 24.52 22.11 25.32 125.93 49.26 129.59 46.88
weh. sales,SF 40 TPC-DS Dataset
CS IS
Memory || RFRs(S12) | RMes(S12) | RMes(2) | SGes(S12) | SGs(S1) RFs(s1) | RMs(s1) | RFs(s2) | RMs(2)
5MB 256.60 221.96 230.49 7.58 45.38 259.03 219.82 255.64 192.93
15MB 260.75 229.75 91.48 16.65 46.29 263.36 188.90 | 254.87 164.14
30MB 254.66 121.97 58.62 20.65 47.19 257.42 155.15 | 260.35 136.16
45MB 258.27 149.05 55.25 25.48 47.21 260.98 150.07 258.29 132.78
60MB 255.65 132.31 54.76 32.59 47.71 258.62 137.59 261.16 118.33
100MB 262.61 118.78 51.89 40.62 48.43 261.75 126.01 269.65 106.86
catalogsales,SF 40 TPC-DS Dataset
CS IS
Memory || RRs(S12) | RMes(S12) | RMes(s2) | SGes(S12) | SGs(S1) RFs(s1) | RMs(s1) | RRs(s2) | RMs(s)
15MB 352.36 934.28 244.45 19.21 70.28 410.03 539.52 399.86 492.84
30MB 377.94 385.95 236.96 28.94 72.11 392.31 399.09 370.46 381.49
45MB 362.83 195.38 224.75 39.27 72.91 351.04 | 277.77 358.31 259.73
60MB 384.26 291.87 102.73 49.96 73.91 354.45 279.03 384.18 242.23
75MB 377.61 243.56 93.21 64.51 75.17 380.68 256.74 | 360.36 217.99
100MB 393.62 263.99 99.12 67.59 76.32 385.29 270.82 375.42 232.20
storesales,SF 40 TPC-DS Dataset
CS IS
Memory || RRs(S12) | RMes(S12) | RMes(s2) | SGes(S12) | SGs(S1) RFs(s1) | RMs(s1) | RRs(s2) | RMs(s2)
10MB 491.59 335.56 312.58 12.46 67.81 497.00 354.79 | 496.74 290.32
25MB 482.22 235.16 181.37 20.17 68.40 482.43 278.31 | 478.44 242.93
50MB 476.58 219.54 60.73 32.56 70.54 477.87 187.49 466.16 154.08
75MB 483.23 164.60 76.37 46.81 72.64 487.61 177.98 | 481.98 143.24
100MB 476.82 165.38 70.67 51.36 73.02 477.90 162.51 | 467.08 143.35
150MB 478.52 133.11 95.14 63.77 78.61 481.79 141.69 | 472.28 121.95
weh.sales SF 100 TPC-DS Dataset
CS IS
Memory || RFRs(S12) | RMes(S12) | RMes(2) | SGes(S12) | SGs(S1) RFs(s1) | RMs(s1) | RFs(s2) | RMs(s2)
50MB 705.38 338.82 565.95 54.38 112.06 703.48 | 457.27 693.35 | 419.20
75MB 711.31 398.54 304.16 69.84 119.20 714.88 394.66 694.66 342.41
100MB 715.49 385.83 329.92 77.85 127.05 716.09 395.31 706.47 352.02
125MB 720.86 334.10 330.60 89.33 135.23 723.51 337.24 | 721.25 319.61
150MB 753.44 312.17 300.76 104.36 147.99 726.86 339.33 703.37 285.73
200MB 726.80 310.83 306.59 107.31 147.15 722.88 335.29 707.18 282.62
catalogsales,SF 100 TPC-DS Dataset
CS IS
Memory || RFRs(S12) | RMes(S12) | RMes(2) | SGes(S12) | SGs(S1) RFs(s1) | RMs(s1) | RFRs(s2) | RMs(s2)
50MB 1051.42 | 1513.20 | 1204.94 64.11 158.26 || 1044.71| 1474.01 | 1022.83 | 1245.96
75MB 999.68 893.91 694.19 78.83 165.50 || 1052.69| 799.03 | 1048.09| 707.88
100MB 976.48 967.27 677.03 91.12 165.33 || 1026.37| 832.70 | 1047.79| 724.80
125MB 1045.31 752.22 689.59 108.00 178.09 || 1038.55| 791.06 | 1034.95| 656.65
150MB 1002.96 614.47 600.49 130.60 187.06 || 1075.51| 739.58 | 1061.20| 601.23
200MB 1079.92 648.63 590.58 152.59 194.64 || 1043.65| 703.66 | 1048.80| 595.02
storesales,SF 100 TPC-DS Dataset

16

formance of the query on wednles withSF40; the compar- 7.2 Micro-benchmark Test with Synthetic Dataset
ison for other queries have similar trends and are omitted.
We also utilize synthetic data to investigate the sensjtivi
of CS. We generate synthetic tables following the schema
450 aCs of thewehsalesrelation in TPC-DS benchmark usii®f =

g A0l 8BRS 40; each table has 28.8 million tuples. We run template query
é :g””"” e] Q defined in the previous section on the synthetic tables to
g . B B B B B m compare the performance of CS and IS.

E PIJEEEE BN RN RN DR RN S

§ S BN BN NEE BN RN NS 7.2.1 Varying Total Number of sChunks

L RN BN RS N PN e

5;) """" Under CS, there will ba initial runs fors, if n chunks are
5MB 15MB 30MB 45MB 60MB 100MB formed bys;». The purpose of this experiment is to learn
Sorting Memory (in MB) how the total number af;» chunks will affect the run merge

cost fors,. We vary the numben of distinctws_item_sk

(theo1q) values inside avehsalestable. Six values of are
used: 15, 25, 50, 100, 150 and 200. A uniform distribution is
The results clearly demonstrate that CS significantly outys(Ed for the values Ofs‘ltem‘Sk'. We fix the sorting mem-
:) . ory to 20MB, so that even whamis 200 the tuples with the
performs RS in all sorting memory settings. The performance . - .
of RS is just a little better than IS (see Fig. 6(a)) samews_item_sk value cannot fit in memory and thus will
J 9 ' form a natural chunk. As a result, there will be a totahof

natural chunks.

Fig. 7 Comparison of CS with RS on wedales SF 40

7.1.3 Effect of Polyphase Merge Pattern

al
o

o o 4m. o = é """"""""""" é 0
The original sort operation in PostgreSQL adopts the pagpeh 5400
run merge pattern, while we implemented a k-way version 5357 s
sort operation for performance comparison with coopegativ <30 IS i
sorting. It is natural to ask whether changing the merge pat- £ 22* ------------------- Koo X
tern will affect the conclusions obtained in Section 7.1n1. %15 |
this experiment, we evalua@ against the 6 tables with the =0l
original sort operation (polyphase IS) and compare the exe- 5 ¢
cution times with our sort operation (k-way IS). 0 : : : :

15 25 50 100 150 200

Number of Chunks

500 ; ‘

A0~ T B K ohahase 1s|

400 B B R

350

300

250

200

150

100
50

Fig. 9 Varying Total Number of;, Chunks

"""" The experimental result is shown in Fig. 9. The y-axis
] denotes the run merge time fg: With 20MB sorting mem-
,,,,,,, ory, the merge ordd¥ is 73. Moreover, the number of initial
"""" runs to merge fos, under IS is 56. Therefore, with all the
"""" differentn values, the number of merge passes for IS0n
5MB 15MB 30MB 45MB 60MB 100MB is always 1 and the merge costs are more or less the same.
Sorting Memory (in MB) . .
As for CS, the merge cost increases significantly winbe-
Fig. 8 Comparison of K-way IS with Polyphase IS on wehles SF comes larger than 73. This is be<_:ause t_he number of merge
40 passes changes from 1 to 2. This confirms the expectation
that when varyingn, the merge costs of CS remain more or
less unchanged as long as the numbers of merge passes re-
Only the results of welsales withSF 40 are shown in quired stay the same. We also notice that with the same num-
Fig. 8. We observe that the performances of polyphase I8er of merge passes, the merge cost of CS is always lower
and k-way IS are more or less the same, which demonstratéizan that of IS, which is consistent with the observation in
that our results hold independent of the merge pattern. the micro-benchmark test.

Execution Time (in sec)

17

7.2.2 Varying Number of Composite £hunks s runs generated is no more than the merge oFjewe
disable the final merge optimization for a cheaper cost.
In this experiment, we examine the contributions of interna Each total execution time reported refers to the total query

sorting cost to the total CS cost. These internal sortings arevaluation time including the cost of bulk loading the sdrte
applied to composite chunklets and chunks. We fix the totabutputs ofs; ands,.

numberm of chunks generated and vary the numhesf
composite chunks. We set the sorting memory to 50 MB and

.) 40
mto 55. Five values o are used: 0, 13, 27, 42 and 55. ook o s R
@) Ko *: . e —
2w) 0 SIS
‘@ 254-enen T — N B p o
£ 20 £
300 o 515 520
’ 310 a1 3 CIB —are
. 2500 & = = g s NlB % gl NIB -3
2 0 0
» 1 2 3 4 5 6 1 3 5 7 9 11
é 200 r Sorting Memory (in MB) Sorting Memory (in MB)
] a) wehreturns,SF 40 b) catalogreturns SF 40
E ¢
= 150 ¢ internal sorting - 1204 400
s S = * * L — X o 360% Ko
= © 100 A, @ * K .
S 100 8 8 320 ¥
8 < g T L N A i £2804 A
M g - 2 240 Lt N — N A
w 50 L B E 60 = 200
........... X S a2 5128
[R ¥ g cB o | § CIB —&--
0 S é'; jé ‘2 i NIB % b ig NIB %
1 7 4 55 0 o
. 1 4 7 10 13 16 5 15 30 45 60 100
Number of Composne Chunks Sorting Memory (in MB) Sorting Memory (in MB)
])) (c) storereturns SF 40 (d) wehsalesSF 40
Fig. 10 Varying Number of Compositg; Chunks 800 1900 —
g 7001;1\ . e % % ﬁggzs. A * * &
2600t Ta X 1900 SN S
A T — NS A 800

Fig. 10 shows the internal sorting cost as well as the-gigg
overall CS cost. As expected, the internal sorting cost in- £
creases along with the number of composite chunks. Wherg 1o NIB % 200 NiB %
all the 55 chunks become composite, this cost takes 20% of s 55 s 4 e w0 15 3 45 e 75 100

Sorting Memory (in MB) Sorting Memory (in MB)
the total CS cost.

Execution Time (in sec)
@
(=]
o

(e) catalogsales SF 40 (f) storesalesSF 40

) - Fig. 11 Performance Comparison on TPC-DS Dataset, 8F#0
7.3 Performance of Cooperative Index Building

We run another test to compare the performance of coop- Figs. 11 and 12 compare the performance of CIB and
erative sorting against two independent sort operations fo\IB as a function of the sorting memory size; the compar-
index creation. To achieve this, we create a primary keyson for each query is shown on a separate graph. The de-
index idx; = 1dx(T,keyl) as well as a foreign key index tailed breakdown of the various cost components for CIB
idx, = 1dx(T,key2) on a tableT. The index keykeyl and and NIB are shown in Tables 7 and 8. The meanings of these
key? satisfy case 4. cost components are given in Table 6. If a specific merge

We generated twelve concrete queries by using six difstep is skipped because of final merge optimization, the cor-
ferent relations from the TPC-DS benchmarkToand two responding entry valueRMs(sp) or RMs(sp)) in Tables 7
different scale factors (denoted ISF) to vary the size of and 8 is marked as zero. Note that for every row in Tables 7
T. The statistical information about the six relations, glon and 8,RMs(s) is always zero and is thus omitted. Due to
with the index keys, are shown in Table 5. The scale facspace limitationSGs(s1) is not separately listed but merged
tor SF values used are 40 and 100. Another experimentahto LD¢s(s1). For each row in Tables 7 and 8 RMs(s;) is
parameter that we varied is the available sorting memorgero, it means that there is only one merge level for the ini-
dedicated to each sort operation (denoted/®with values tial s, runs ands 2 does not apply final merge optimization
ranging from 1 MB to 200 MB. as stated above.

We compare the performance érmal index building First, even though sorting is just a part of the index build-
using two independent sortings (denoted by NIB) and oumg procedure, CIB still offers significant performance im-
proposeaooperative index buildingsing cooperative sort- provement over NIB for most queries. The savings range
ing (denoted by CIB). We always enable the final merge opfrom a few seconds to 683 seconds which is achieved for the
timization as it is desirable during index creation. Howeve query onstoresaleswith M = 100 andSF= 100 in Fig. 12.
for the cooperative sorting 2, when the number of initial In terms of relative improvement, the average percentage

18

relation keyl key2 number of tuples (in million){ tuple size (in byte)
wehreturns (wr-item_sk, wr_order_number) wr_returned_time_sk 0.072x SF 150
catalogreturns | (cr_item_sk, cr_order_number) cr_returned_time_sk 0.144x SF 162
storereturns (sr_item_sk, sr_ticket_number) sr_returned_time_sk 0.288x SF 134
weh.sales (ws_item_sk, ws_order_number) ws_sold_time_sk 0.72x SF 226
catalogsales | (cs.item_sk, cs_order_number) cs_sold_time_sk 1.44x SF 226
storesales (ss_item_sk, ss_ticket_number) ss_sold_time_sk 2.88x SF 164

Table 5 TPC-DS Dataset for Comparing Performance of Index Contsbruc

9 o 200 notation description
— *- - - —_ — T
580 KoK Kons D10 g K e initial run formation cost fors;»
® 70 7]
< c 1604 RFCS(Sg_z) . . L
Soopbaaa | S0 (i.e., creating initiak; sorted runs)
£ %0 EROL AT A run merge cost fos»
¥ S 8 RMcs(s12) - . hunk
£ %0 g % (i.e., creatings 2 chunks)
g0 B A S 40 CIB —A—
5 o] & 40 ci —= RM(s2) | run merge costfos,
0 0 (i.e., mergingsi2 chunks to derives)
1 3 5 7 9 11 1 5 9 13 17 21 H H
Sorting Memory (in MB) Sorting Memory (in MB) C|B SQS(SJ.Z) i COSt Of Internal Sor.tll’.lg to create
(a) wehreturns,SF 100 (b) catalogreturns,SF 100 initial s1 runs from 'n_malsi runs
400 1100 SGa(s1) cost of internal sorting during
F O -5 s S S S S the derivation of; output froms;»
300 £ 8004 LDes(s1) cost of deriving and bulk-loading
S e - = A S
g 20 “ e S R cs output ofs; to buildidx,
= = — -
S 150 s o cost of deriving and bulk-loading
£l cooa] § . LDes(2) output ofs, to buildidx;
g 50 NIB 3 & 700 NIB 3% — =
o o RFq(s1) initial run formation cost fois;
1 6 11 16 21 26 10 25 50 75 100 150 IS A H it
Sorting Memory (in MB) Sorting Memory (in MB) (l €, Creatlng Inmabl tS;)rted rUnS)
(c) storereturns SF 100 (d) wehsalesSF 100 RMs(s1) | fun merge cost fos,
2000 200 (i.e., mergings; sorted runs)
o 1800 F T F I e k3600 % initial run formation cost fois,
4 1600 3 30004 RFis(%2) (i.e., creating initiak, sorted runs)
1800 f A ppheeh € 2700 [AR | NIB il 9
g 1200 g 2408 RMs(s2) ~ run merge cost fos,
g o §§§§ s (i-e., mergings, sorted runs)
3 0 ce o] 3 200 o a LDis(s1) cost of deriving and _bu!k-loadlng
@ 200 NIB -3 300 NIB -3 output ofs; to buildidx;
50 75 100 125 150 200 50 75 100 125 150 200 cost of deriving and bulk-loading
Sorting Memory (in MB) Sorting Memory (in MB) LDIS(SZ) OUtpUt OfSQ tO bu”d |d X2
(e) catalogsales SF 100 (f) storesalesSF 100

. . Table 6 Component Costs of CIB and NIB
Fig. 12 Performance Comparison on TPC-DS Dataset, ®F100 P Sts

improvementis around 24% and the highestimprovementis Fourth, for most tables, in terms of the total cost of run
37% achieved for the query aratalogreturnswith M =9 merge plus bulk loading fosp, CIB’s cost is higher than
andSF = 100 in Fig. 12. The main reason for such perfor-NIB’s cost when the sorting memory size is small, iRMcs(S,)
mance gain is due to the fact that the sorting time is always- LD¢s(S2) > RMs(S2) + LDis(s,). This is expected as CIB
much higher than the subsequent bulk loading time. is operating on a larger set gf data and generates more ini-
Second, there are some trends similar to those in the préal s, runs to merge than NIB. However, when the sorting
vious micro-benchmark test (Section 7.1). For all queriesmemory increases, the difference between these two costs
RRs(s12), RRs(s1) andRFs(sy) are always more or less the decreases, and eventually the cost in CIB is even cheaper
same with any amount of sorting memory. For all tablesthan the cost in NIB.
SGs(s12) andSGs(s1) increase along with the size of sort-
ing memory.
Third, for all queries that require more than one merge7.4 Query Processing with Sort Sharing
level for the initials; runs (i.e.,RMs(s1) # 0), RMes(S12)
(resp.LDcs(s1) — SGs(s1)) is close to or even less than the So far, we have evaluated cooperative sorting for the basic
correspondindRMs(s1) (resp.LDis(s1)). This is due to the scenario of processing two sort operations on different or-
1/0 effectiveness and efficiency of obatched readingtrat- ders. In this section, we evaluate the effectiveness of sort
egy. Note thaRM(s12) does not include the internal sort- sharing techniques and the enhanced sort-sharing-awang qu
ing costSGes(S12)- optimizer when executing queries. We generate a synthetic

19

CiB NIB
Memory || RRs(Si2) | RMus(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(s2) || RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(sz)
1MB 12.17 1.67 3.16 0.38 4.90 2.58 12.35 1.84 12.56 5.26 2.31
2MB 12.15 1.08 4.74 0.65 3.46 2.42 12.40 121 12.46 3.81 2.14
3MB 12.12 1.33 2.34 0.77 4.80 2.43 12.66 1.56 11.92 3.80 2.47
4MB 12.53 2.05 0.88 0.91 4.76 2.89 12.04 1.66 12.00 3.16 2.79
5MB 12.18 1.52 0.97 0.90 4.71 2.16 12.61 1.84 12.18 3.79 2.33
6MB 12.01 1.65 0.92 1.04 4.41 2.46 13.09 0.0 12.34 4.30 2.45
weh.returns,SF 40 TPC-DS Dataset
CIB NIB
Memory || RRs(S12) | RMes(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(S2) || RFs(s1) | RMs(s1) | RFs(s2) | LDis(s1) | LDis(s2)
1MB 19.07 3.85 10.53 0.66 4.77 3.73 19.39 3.74 17.88 5.98 3.74
3MB 18.96 2.67 3.69 1.11 8.02 4.65 18.13 3.00 18.02 7.54 4.15
5MB 20.31 3.61 1.90 1.52 7.94 4.79 19.28 4.09 19.50 6.37 4.98
7™MB 19.40 3.84 2.01 1.93 10.28 4.55 18.75 4.85 18.99 6.01 4.29
9MB 19.05 4.03 1.91 2.01 8.77 4.69 20.02 0.0 19.15 6.11 3.44
11MB 19.85 3.72 0.0 2.04 9.26 6.14 19.14 0.0 19.85 6.00 3.68
catalogreturns,SF 40 TPC-DS Dataset
CIB NIB
Memory || RFes(Si2) | RMes(S12) | RMus(Sp) | SGs(S12) | LDes(S1) | LDes(S2) || RFs(s1) | RMs(s1) | RRs(S2) | LDis(s1) | LDis(sp)
1MB 39.76 15.53 21.52 1.37 11.62 8.89 39.96 15.41 42.29 12.54 5.76
4MB 42.90 5.96 9.94 2.33 13.23 7.69 40.42 6.76 41.27 10.68 5.96
7™MB 40.07 7.65 4.00 2.80 18.80 7.34 42.76 10.17 39.85 10.60 7.14
10MB 39.28 8.64 4.44 3.04 15.45 7.34 39.27 10.79 39.87 11.93 6.82
13MB 40.49 8.44 5.00 3.36 10.81 7.17 42.56 0.0 39.61 14.34 9.93
16MB 41.20 8.21 0.0 3.81 12.25 8.29 40.13 0.0 42.36 16.55 9.10
storereturns,SF 40 TPC-DS Dataset
CIB NIB
Memory || RRs(Si2) | RMes(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(s2) || RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(sz)
5MB 114.82 42.92 21.38 3.75 36.72 37.79 122.94 50.88 121.70 31.09 31.65
15MB 118.25 37.73 12.19 8.37 48.49 28.39 122.58 61.13 122.55 29.07 31.81
30MB 114.79 46.11 0.0 11.92 38.00 26.29 124.16 0.0 123.13 65.71 31.46
45MB 121.06 46.90 0.0 13.42 34.97 22.50 123.30 0.0 129.82 56.49 27.42
60MB 121.00 40.29 0.0 16.16 31.37 22.16 119.95 0.0 121.78 50.88 31.87
100MB 120.71 38.80 0.0 22.60 30.42 21.39 120.30 0.0 122.86 46.29 29.64
weh sales SF 40 TPC-DS Dataset
CIB NIB
Memory || RRs(Si2) | RMes(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(s2) || RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(sz)
5MB 242.68 132.64 137.28 6.94 86.53 80.35 251.62 144.24 | 250.50 47.85 63.00
15MB 248.14 122.63 32.24 16.41 88.32 73.82 244.54 125.28 243.98 57.23 63.78
30MB 243.26 81.99 26.56 23.51 69.05 66.49 227.69 0.0 229.18 | 112.56 55.81
45MB 243.86 110.16 0.0 28.42 68.74 50.27 226.68 0.0 227.72 | 141.63 56.25
60MB 244.23 97.42 0.0 34.17 63.00 50.71 244.42 0.0 242.53 | 104.58 59.26
100MB 245.17 85.09 0.0 48.15 61.91 45.87 243.59 0.0 244.63 98.61 60.58

catalogsales SF 40 TPC-DS Dataset

CIB NIB
Memory RFs(s12) | RMes(s12) | RMes(S2) | SGs(S12) | LDes(s1) | LDes(S2) RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(s2)
15MB 357.17 376.00 56.68 18.42 172.56 156.89 362.11 229.02 | 354.70 | 150.13 114.50
30MB 394.37 225.36 64.21 29.86 201.09 151.49 353.83 | 257.54 | 356.87 | 140.07 123.38
45MB 364.07 172.20 69.11 33.98 140.53 130.42 384.02 0.0 367.14 | 263.73 128.57

60MB 389.42 240.03 0.0 47.61 136.47 107.93 384.39 0.0 353.24 | 279.82 121.23
75MB 391.61 240.29 0.0 58.01 141.05 108.65 359.72 0.0 354.20 | 277.25 120.84
100MB 390.97 200.70 0.0 70.37 144.21 108.10 363.89 0.0 351.61 | 245.71 111.46

storesales SF 40 TPC-DS Dataset

Table 7 Component Costs of CIB and NIB withF 40 (in seconds)

database with three relatioRsployee(id, name, countryd, salespersons and has 10 million 32-byte tueses records
supervisorid), Sales(employead, item.id, quantity, profit) the sale transactions and has 50 million 12-byte tuples and
andItem(id, name)Employee records the information of

20

CiB NIB
Memory || RRs(Si2) | RMus(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(s2) || RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(sz)
1MB 31.48 7.51 11.25 1.04 5.26 4.45 31.91 6.59 32.04 6.28 4.50
3MB 32.91 3.30 11.17 1.55 6.17 5.77 31.43 3.29 32.39 8.56 4.77
5MB 32.21 3.98 5.22 1.84 9.63 6.04 32.04 4.72 31.58 7.13 5.18
7MB 32.08 4.62 2.65 2.50 11.14 6.07 31.73 5.71 32.06 7.63 4.89
9MB 32.09 4.79 2.57 2.65 9.69 6.37 33.86 0.0 32.97 7.84 3.16
11MB 33.32 4.98 2.78 2.84 6.95 4.56 32.52 0.0 32.94 7.77 3.21
weh.returns,SF 100 TPC-DS Dataset
CIB NIB
Memory || RFes(Si2) | RMes(S12) | RMos(Sp) | SGs(S12) | LDcs(S1) | LDes(S2) || RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(sp)
1MB 72.09 24.75 25.88 1.83 15.78 10.64 70.06 24.38 71.50 14.13 8.33
5MB 69.96 13.01 10.10 2.85 17.78 12.37 71.73 12.77 70.36 12.35 7.59
9MB 64.80 14.71 5.33 3.77 18.95 11.31 72.77 18.21 70.64 13.81 12.19
13MB 69.73 14.96 5.73 4.99 17.60 10.68 71.93 0.0 72.94 23.74 12.14
17MB 69.61 14.04 0.0 5.47 16.76 12.98 71.41 0.0 68.80 21.22 11.99
21MB 72.55 13.79 0.0 6.00 17.24 10.28 70.43 0.0 72.77 22.40 13.04
catalogreturns,SF 100 TPC-DS Dataset
CiB NIB
Memory || RFes(Si2) | RMes(S12) | RMus(Sp) | SGs(S12) | LDes(S1) | LDes(S2) || RFs(s1) | RMs(s1) | RRs(2) | LDis(s1) | LDis(s)
1MB 119.64 65.80 70.51 2.84 38.58 27.45 122.96 77.21 119.67 27.94 27.37
6MB 122.45 51.49 27.87 3.89 35.98 24.98 119.46 36.36 121.23 29.65 26.42
11MB 119.78 45.89 16.56 5.65 36.27 23.23 120.42 44.74 122.27 27.82 26.01
16MB 123.37 45.95 12.20 7.63 37.71 24.77 122.79 0.0 121.99 57.61 23.74
21MB 120.31 45.31 12.08 8.54 34.67 28.62 122.44 0.0 119.80 55.89 28.44
26MB 121.33 47.55 0.0 9.05 30.58 21.90 120.69 0.0 118.96 59.74 22.27

storereturns,SF 100 TPC-DS Dataset

ciB NIB
Memory || RRs(S12) | RMes(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(S2) || RRs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(s2)
10MB 367.37 185.29 64.86 28.33 11541 | 72.73 367.88 | 130.74 | 353.44 | 76.76 67.55
25MB 366.31 101.06 35.17 36.52 147.14 | 63.19 364.42 | 140.74 | 367.71 | 74.39 7451

50MB 366.29 134.47 0.0 49.96 109.81 62.53 367.67 0.0 367.48 | 161.26 75.56
75MB 353.53 107.97 0.0 62.23 119.55 68.41 366.20 0.0 365.19 | 145.66 74.17
100MB 355.73 98.76 0.0 87.97 105.77 62.54 367.09 0.0 368.00 | 131.01 75.88
150MB 367.23 95.03 0.0 110.87 113.11 64.53 365.35 0.0 364.66 | 117.61 75.23
weh_sales SF 100 TPC-DS Dataset
CIB NIB
Memory || RRs(Si2) | RMes(S12) | RMes(S2) | SGes(S12) | LDes(S1) | LDes(s2) || RFs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(sz)
50MB 684.11 286.07 0.0 54.49 194.25 139.52 700.05 0.0 701.99 | 318.83 166.82
75MB 699.00 306.33 0.0 73.87 191.15 146.53 698.60 0.0 698.12 | 346.95 167.25
100MB 692.16 255.92 0.0 83.69 191.43 131.78 696.26 0.0 698.25 | 300.61 166.82
125MB 691.51 239.11 0.0 100.66 192.40 141.00 696.13 0.0 698.65 | 284.29 166.21
150MB 697.67 252.29 0.0 112.42 196.01 137.42 698.40 0.0 701.03 | 284.75 167.67
200MB 698.56 214.58 0.0 121.02 209.85 133.78 702.50 0.0 700.29 | 250.96 149.78

catalogsales SF 100 TPC-DS Dataset

ciB NIB
Memory || RFRs(si2) | RMes(S12) | RMes(S2) | SGs(S12) | LDes(s1) | LDes(s2) || RRs(s1) | RMs(s1) | RRs(s2) | LDis(s1) | LDis(s2)
50MB 1021.32 | 616.76 353.91 7212 635.00 | 359.47 || 1025.74| 832.74 | 1033.73| 359.41 | 343.69
75MB 1022.98 | 44850 361.05 85.49 45738 | 430.03 || 1025.55 0.0 1026.94| 717.00 | 308.64

100MB 959.97 629.48 0.0 103.33 453.39 408.62 973.20 0.0 1024.31| 933.09 | 305.94
125MB 991.77 820.71 0.0 115.40 430.16 413.82 978.07 0.0 983.09 | 714.52 | 316.50
150MB 977.85 588.76 0.0 145.80 460.39 417.66 || 1025.25 0.0 951.52 | 696.81 | 266.49
200MB 1000.33 502.42 0.0 164.53 431.94 413.46 972.06 0.0 942.63 | 634.19 | 300.10

storesales SF 100 TPC-DS Dataset

Table 8 Component Costs of CIB and NIB withF 100 (in seconds)

Itemrecords the products in transactions and has 10 million We evaluate two queries on this database:
24-byte tuples. Q1: Find the name of each salesperson and its supervisor
select A.id, A.name, B.id, B.name

21

from Employee A, Employee B We also optimize Q1 and Q2 with our enhanced Post-
where B.id = A.supervisord greSQL optimizer. The resultant optimal plans enable the
Q2: Find each salesperson who has sold more than 100000perative sorting between two instance&efloyee in
units of a product in a single transaction or his supervisorboth Q1 and Q2. For Q2, the plan also skips one redundant
has done so sort onSales via result sharing for case 1 and thus saves
(select A.id, A.namefrom Employee A, Sales B about another 90 seconds’ time. The comparison of the over-
where A.id=B.employedd and B.quantity>1000 all query execution times are shown in Fig. 14. The results

union all clearly show that both queries can be processed in lesser
(select A.id, A.namefrom Employee A, Sales B time with sort sharing techniques.
where A.supervisold = B.employedd We then study the potential benefit of enriching the op-
and B.quantity> 1000 timizer search space with sort sharing. In PostgreSQL, each

sorting and hashing operation has a dedicated operator mem-
ory. We vary this operator memory and compare various ex-

MergeJoin ecution plans for Q1: Hybrid Hash Join (HHJ), Sort Merge
Join (SMJ) and Sort Merge join with Cooperative Sort (SMJ-
Sort Sort CS)
(on supervisor_id) (onid) ’
Scan Scan 600 :
o SMLCS TR
(a) Q1 £ 400 |]
v 3503

Append Eaof i
/P\ 5 250

MergeJoin MergeJoin § 200 1

2 150 |

/q\ /\ g1

Sort Sort Sort Sort 50
(onid) (onemployee_id) (on supervisor_id) (on employee_id) 0 .
‘ ‘ ‘ ‘ 5 10 15
STan Tan STan S‘can Operator Memory (in MB)
‘ Employee‘ ‘ Sales ‘ ‘ Employee‘ ‘ Sales ‘ Fig. 15 Plans Considered During Query Optimization for Q1

b) Q2
® Fig. 15 shows the candidate plans considered during op-
Fig._l3_ The Optimal Plans for Q1 and Q2 by the Original PostgreSQLtimizing Q1, along with their actual execution times (we
Optimizer force the execution of a non-optimal plan). Besides the SMJ
and HHJ that are enumerated by the original PostgreSQL
optimizer, our enhanced PostgreSQL optimizer also mea-

With 50MB-sprting memory, the o.pti.mal plans gener- sures SMJ-CS. When the operator memory is 15MB, both
ated by the original PostgreSQL optimizer for these Woihe original optimizer and our enhanced optimizer gener-

queries are shown in Fig. 13. ate the same optimal HHJ plan. However, when the operator

memory is 5MB or 10MB, the SMJ-CS is recognized by our
enhanced optimizer as the optimal plan, instead of the SMJ

700 ; . L -

S | enanced pian or HHJ recognized by the original optimizer.

]

é B0~

_é 7o) o| U 8 Related Work

=

S BOO o I . . .

= Sorting is one of the most extensively studied problems in

g 200 computing. Knuth's classical text [17] provides extensive
100 -—‘ """" coverage of the fundamentals of sorting, including both re-

0 o1 Q2 placement selection for run formation and run merge pat-
Oueries terns.

Standard replacement selection produces runs twice the
Fig. 14 Query Execution Times of Q1 and Q2 size of memory on average. There have been several efforts

22

to increase the run length further ([7,9,28]). Larson [19]9 Conclusion

introduced a cache-aware replacement selection that works

for various length keys. There are also many techniques ti this paper, we have examined the problem of sorting a
speed up the run merge phase ([31-33]), focusing on how t¢lational table on multiple sort orders. Such collectiohs
improve 1/O performance during the merge phase becaus®rtings are common in many applications. We have identi-
this phase is typically I/O bound. These techniques are howfied several cases in which the (partial) work done in sorting
ever complementary to our batched tuple reading strategg table on a particular order can be re-used for a subsequent
which relies more on the pre-collected knowledge about insort of the same table on a different order. We proposed the
put data distribution. Our current implementation only ap-cooperative sorting technique to efficiently handle sgrth
plies simple forecasting technique to read the type-3 tupl@ table on two orders. We also proposed optimization tech-
batches. But it is possible to incorporate other optimizahiques to exploit sort sharing in a traditional query evalu-
tion techniques like double buffering [17], read-ahead [32 ation plan. We have implemented our techniques in Post-
etc. Much research has been done on adaptive sorting [8y€SQL, and our extensive performance study indicated a
exploiting near-sortedness. The survey [12] by Graefe dissignificant performance gain over the naive strategy of pro-

cussed how sorting is implemented in database systems wi@i¢ssing each sorting independently.
many tricks and optimizations. Specifically, [12] identifie AcknowledgementsThis research is supported in part by

special instance of case 3, where= (a,b) ando, = (b),
and pointed out that the sorting @a can be evaluated by
directly merging the output of the sorting @aa, which is

NUS Grant R-252-000-271-112.

exactly the same as we discuss at the beginning of Se&keferences

tion 4.1. However, neither analytical nor experimentatigtu

: 1.
on the effectiveness of the proposed approach were Cong' 1o "p e \ciMARK Decision Supporthttp: //waw. tpc.org/

ducted. Moreover, [12] did not generalize this special in-

stance to the general case 3. 3.

Simmen et al. [27] described how to determine the or- 4

dering propagation from the inputs to the outputs of joins,

based on functional dependencies and selection conditions-

As such, some sort operations within the query execution

plan become redundantand thus can be removed. Their work

was followed and extended by [20,29,21], which are all in-
dependent and complementary to our work.

7.

In [14], Sudarshan et al. observed that the order require-=s.

ments of operators are often partially satisfied by the isput

They proposed to maximize the benefit of such partial sort%
order by modifying the standard replacement selection-algo,

rithm and improving the selection of interesting orders. We
instead consider the opportunity of partial sort sharing be
tween two distinct sort operations. To some extent, [14] and

our work are complementary to each other. A similar idea;»

to partial sorting was considered previously in [3] for the

CUBE operator, which computes group-bys corresponding3:

to all possible combinations of a list of attributes. Coesid
two group-by8={aj,ay,...,a;} andS={as,a,...,a_1,
a41,...,a; . With sort-based aggregation, the resultBof
can be viewed as a concatenation of one or npamitions
and the result 0§is the union of independently computing 16
aggregation within each partition.

Finally, there have been a few previous work on optimiz-
ing multiple scans on the same table, suchARLE [4] and
cooperative scaf34].

14.

15.

17.

18.

Postgresgl Offical Websit@ttp: //www.postgresql.org/.

tpcds/.

S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naungh
R. Ramakrishnan, and S. Sarawagi. On the computation of-mult
dimensional aggregates. YiLDB, 1996.

Y. Cao, G. C. Das, C.-Y. Chan, and K.-L. Tan. Optimizing eom
plex queries with multiple relation instances.StGMOD, 2008.
M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya- T
wards estimation error guarantees for distinct valuesP@DS
2000.

M. Charikar, C. Chekuri, Z. Dai, A. Goel, S. Guha, and M.Ap-
proximation algorithms for directed steiner problems.Jauirnal
of Algorithms pages 73-91, 1999.

R. Dinsmore. Longer strings for sortingcomm. ACM 8(1):48,
1965.

V. Estivill-Castro and D. Wood. A survey of adaptive sogtalgo-
rithms. ACM Computing Surveys (CSURN(4):441-476, 1992.
W. Frazer and C. Wong. Sorting by natural selectiGommuni-
cations of the ACM15(10):910-913, 1972.

L. Georgiadis. Arborescence optimization problemsadae by
edmonds’ algorithm. Theor. Comput. Sci.301(1-3):427-437,
2003.

1. P. B. Gibbons. Distinct sampling for highly-accuratewaers to

distinct values queries and event reportsVLDB, 2001.

G. Graefe. Implementing sorting in database syst&@#/ Com-
put. Surv, 38(3):10, 2006.

G. Graefe and W. J. McKenna. The volcano optimizer g¢oera
Extensibility and efficient search. ICDE, 1993.

R. Guravannavar and S. Sudarshan. Reducing order enfent
cost in complex query plans. ICDE, 2007.

M.-I. Hsieh, E. H.-K. Wu, and M.-F. Tsai. Fasterdsp: Atéas
approximation algorithm for directed steiner tree prohleminf.
Sci. Eng, 22(6):1409-1425, 2006.

. R. M. Karp. Reducibility among combinatorial problertrsCom-

plexity of Computer Computationsages 85-103. Plenum Press,
1972.

D. E. Knuth. The art of computer programming, volume 3: (2nd
ed.) sorting and searchingAddison-Wesley, 1998.

R. P. Kooi. The optimization of queries in relational databases
PhD thesis, Case Western Reserve University, 1980.

23

19. P. Larson. External sorting: Run formation revisitedEEE
Transactions on Knowledge and Data Engineeyid§(4):961—
972, 2003.

T. Neumann and G. Moerkotte. A combined framework fougro
ing and order optimization. INLDB, 2004.

T. Neumann and G. Moerkotte. An efficient framework fatesr
optimization. InICDE, 2004.

V. Pai and P. Varman. Prefetching with multiple disksegiernal
mergesort: simulation and analysis.|ICDE, 1992.

N. Roussopoulos. View indexing in relational databas&€M
Trans. Database Sysf(2):258-290, 1982.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Effeeht
extensible algorithms for multi query optimization. $iGMOD,
2000.

B. Salzberg. Merging sorted runs using large main memfcia
Informaticg 27(3):195-215, 1989.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.ieor

20.

21.

22.

23.

24.

25.

26.

and T. G. Price. Access path selection in a relational dagaba

management system. 8iIGMOD, 1979.

D. Simmen, E. Shekita, and T. Malkemus.
niques for order optimization. I8IGMOD, 1996.
T. Ting and Y. Wang. Multiway replacement selection sath
dynamic reservoirThe Computer JournaR0(4):298-301, 1977.
X. Wang and M. Cherniack. Avoiding sorting and grouping i
processing queries. MLDB, 2003.

A. Weininger. Efficient execution of joins in a star scleenin
SIGMOD, 2002.

W. Zhang and P. Larson. Dynamic memory adjustment farext
nal mergesort. I'VLDB, 1997.

W. Zhang and P.-A. Larson. Buffering and read-aheadesfies
for external mergesort. INLDB, 1998.

L. Zheng and P. Larson. Speeding up external mergeHoEE
Transactions on Knowledge and Data Engineeyi®@):322—-332,
1996.

M. Zukowski, S. Heman, N. Nes, and P. A. Boncz. Coopezati
scans: Dynamic bandwidth sharing in a DBMSMhDB, 2007.

27.
28.
29.
30.
31.
32.

33.

34.

APPENDIX

A The Proof of Theorem 1

In this section, we provide the proof of Theorem 1 in Sectidh $he
proof is based on induction. We first analyze the performasfcg-
way and 4-way cooperative sorting and compare them with itee-a
native realizations using 2-way cooperative sorting. 8ghently, we
generalize the analysis keway cooperative sorting fdc> 3. For sim-
plicity, we assume the permutation 8fis 515, - -5 and leto] denote
((01-02)-0g) ... 0.

The figures below represent the execution plans of diffezeap-
erative sortings. Each node represents the set of tuplesdatian T
associated with a specific tuple arrangement. Each dirextgd rep-
resents an operation which reorganize the tuples of one toodierive
another node. The edges are annotated with the I/O costseoé-op
tions. Besides the 1/O costs, we also explicitly count in tyoes of
non-trivial CPU costs incurred by cooperative sortings, the cost
of internally sorting the composite chunklets within ialtsorted runs
during the intermediate sort operatisfp and the cost of internally
sorting the composite chunks sf, to derives;. We assume that CPU
costs of the same type are universally equal.

Analysis of 3-way cooperative sorting Fig. 16 shows an execution
plan of 3-way cooperative sorting. The tables first sorted into initial

initial runs of 0, 0,03

28[log, (B/2M)]

NWOQF(NJ 2Bllog, (N,)

s> Ce D oo

Fig. 16 The Execution Plan of 3-way Cooperative Sorting

28Bllog, (B/2M)]

The cost of generating initial sorted runs ofis 2x B, where
B is the total number of blocks of tuples i (i.e., B=B(T)). The

Fundamental techCOSts ofs, ands; are both 2< B x [logr %1 plus Cis, which is the

cost of performing internal sortings on composite churskethin the
initial runs.s; can be derived frorg, with the COSCgZ_,Sl of perform-
ing internal sortings for all the composite chunksshf ands, can
be produced by the chunk merging procedure (Section 4.1) &p
with a cost 2x B x [loge N1], whereN; is the number of chunks of
s,. s3 is computed by a chunk merge procedure frepwith a cost
2x B x [logeN2], whereN, is the number of chunks &. Hence, the
total cost of 3-way cooperative sorting is

B
2xBx (14+2x [logr =]+ [loge N1] + [loge N
([9F2M1 [logr Ny] + [loge N2 1) ®)
+2><CiS+C§Z—>sl

G

2B 2B
e | o]
2Bllog; (B/2M)| 2B]log, (B/2M)|
s Cs O
0 2Blog,. (N,)]

s > s o

Fig. 17 The Alternative Execution Plan of 2-way Cooperative Sgrtin

We compare this execution plan with another plan that isdase
on 2-way cooperative sorting depicted in Fig. 17, wharands, are
derived from the intermediate sort operat®rof a 2-way cooperative
sorting, ands; is a normal external sorting. The total cost of this plan
is

B
2xBx (2+2x {logpm]+|'|Og|:N1‘D+Qs+C%_,Sl 9)

The difference obtained by subtracting Eqn. 9 from Eqn. 8 is:

B x ([loge Nz] — 1) 4+ Cis, which is always non-negative. Hence, 3-way
cooperative sorting is no cheaper than its alternativeza#ns using
2-way cooperative sorting.

runs onoj = 01 - 0z - 03, Which are then separately fed into the two Analysis of 4-way cooperative sortingA similar analysis can be de-

intermediate sort operatiorss ands;. Finally, s; ands, are derived
from s,, while sz is derived froms;.

rived to compare the performance of 4-way cooperative rspmivith
2-way cooperative sorting.

24

caseN; = ZB (the upper bound of total number of chunks possible)
andN; = % (the lower bound of the total number of chunks possible).
Since the merge ordér is at least 2]1ogr N4 | — [loge N3] < 1.

Therefore, the minimum value of Eqn. 12 is<B x ([logr %1 +
[logeN2] — 2), which is always non-negative. This means that 4-way
2B[log; (B/2M)| 2B[log, (B/2M)] cooperative sorting is no cheaper than its alternativéza#&ns using
2-way cooperative sorting.

initial runs of 0,+0,:0;:0,

2B[log; (B/2M)]

@ o Analysis of k-way cooperative sorting The generalized execution
plan of k-way cooperative sorting as well as the alternative plam wit
0 280, (N} 28flog. (N} 2Bflog, (Ny)] cooperative sorting are depicted in Fig. 20 and Fig. 21,ees®ly.
In Fig. 21, s3 is the intermediate sort operation for the cooperative

@ @ @ sorting betweers; ands 1.
As shown, the plan in Fig. 20 is composed of three parts: part 1

represents equivalently a 2-way cooperative sorting beweands;;

Fig. 18 The Execution Plan of 4-way Cooperative Sorting part 2 is the derivation af; to ¢_1 (or &, if kis even) from their corre-
sponding intermediate sort operations; part 3 containdehigation of
s¢ if kis odd. Both part 2 and part 3 are probably but always exalsiv

2B 2B Similarly, the plan in Fig. 21 also consists of three parést fb is a
- _— 2-way cooperative sorting betwespands,; part 2 containgk — 2) /2
initial runs of tial f

0,0, 0+ 0, 05° 04 " gz -rgjs ° 2-Wa¥ coperpative sortings to deris;gth sc_1 (ors, if kis even), e_ach
of which is betweers; ands;1; part 3 is a normal external sortirsy

28]log;. (B/2M)] 28loge (B/2M)] if k is odd. Both part 2 and part 3 are probably but always exahlsiv
s s empty.

0 28iog (N;) 0 28llog. (N,}
Cs D Cs > T o

Fig. 19 The Alternative Execution Plan of 2-way Cooperative Sgrtin

The execution plan of 4-way cooperative sorting is showrign £8.
The tableT is first sorted into initial runs onj = 01 - 02 - 03 04, which
are then separately fed into the three intermediate soratipess,, s;
ands,. Finally,s; ands, are derived frons,, s; is derived froms; and
s is derived froms). N; (i € {1,2,3}) is the number of chunks of.
The total cost of this execution plan is

part 1: appear 1 time part 2: appear (k-2)/2 times part 3: appear if k is odd

B
2xBx (1+3x [Iogpml + [loge Ny | + [1oge N2 | (10)
+[logeNz]) +3 x Cis+cgz_.sl Fig. 20 The Execution Plan df-way Cooperative Sorting

The alternative execution plan that utilizes binary coapee sort-
ing is depicted in Fig. 19. In this plas, is the intermediate sort op-
eration for the cooperative sorting betwegrands; whereN, is the
number of chunks of,. s; ands; are still derived from the intermediate
sort operatiors,. The total cost of this plan is

2B

B |
2xBx (2+2x [loge W“ + [loge Ny | + [1oge Na]) 11) |
28]log,. (B/2M)]

g

whereCy g, is the cost of internally sorting composite chunksspf
to derivess.
The difference obtained by subtracting Egn. 11 from Eqns10 i

+2 x Cis + C%Hsl +Cq gy izaﬁogF (B/2M)]

,,,

B
2xBx ([logr m“ + [1ogr N2 | + [1ogr N3] — [10gr Ny | (12) part 1: apgear 1 time part 2: appear (k-2)/2 times part 3: appe\ar if k is odd
—1)+Cis —Cq, s

First of all, we assume that the value|Gf —Cy s, | is negligible
compared to the dominant 1/O cost.

Note that eaclos;-segmenbf s, consists of one or multiple),;- First of all, the cost of part 1 in both figures are equal. Not t
segment®f s,. With this constraint, the maximum possible value of the cost difference between part 3 in Fig. 20 and in Fig. 2késy
Nz /N3 is achieved when all chunks &f ands, are composite. In this the same as the difference between Eqgn. 8 and Eqgn. 9 in thgsenal

Fig. 21 The Alternative Execution Plan of 2-way Cooperative Sgrtin

25

of 3-way cooperative sorting, which is always non-negatdso ob-
serve that for each pair ¢f ands.; that are generated in part 2 of
both Fig. 20 and Fig. 21, the cost difference of deriving thmtween
the former figure and the latter is actually the same as tlerdifce
between Eqgn. 10 and Eqn. 11, i.e. Eqn. 12, in the analysisaafydeo-
operative sorting, which is always non-negative. As a tethg cost of
parti (i € {1,2,3}) in Fig. 21 is no higher than pairin Fig. 20. There-
fore, it is easy to deduce that in generaiyway cooperative sorting
(k > 3) is not more efficient compared to their equivalent reéilire
using 2-way cooperative sorting.

B Incorporate Sort Sharing Optimization In
Volcano-style Optimizers

In Section 5.3, we have discussed how to integrate the sartngh
optimization into a system-R style query optimizer. In thégtion, we
describe how to make a Volcano [13] style query optimizerdbrt-
sharing aware.

The Volcano method is based on an AND-OR DAG representa-
tion [23], [13] to compactly represent alternative quergrd. The op-
timizer traverses the DAG expanded by applying all possilijebraic
transformation rules on every node to search for the chéafes In
the AND-OR DAG, we useli(op) to denote an AND-node accord-
ing to an operatiop; useoN (e, P) to denote an OR-node according
to a logical expressioe and an optional interesting physical property
setP. Normally, theenforceroperations (e.g., hashing and sorting) are
implicitly represented by their caller AND-nodes.

Given a query, we generate with the traditional method thig fu
expanded AND-OR DAG, on which we subsequently apply modifica
tions.

First of all, we treat sorting as if it is a logical algebrajoepation.
As aresult, in the DAG, for each enforcer sort operatiensort(T,0),
we add a new AND-nod& (s) and a new OR-noden (T, {0}). AN(S)
corresponds to the physical sort operatmrand oN(T,{o}) corre-
sponds to the sorte@ with order o. Suppose the caller AND-node
of sis AN(c), thenon(T,{}) is originally one child ofan(c). Now,
this chainan (c) — 0N (T, {}) in the DAG is replaced with a new chain
AN(C) — ON(T,{0}) — AN(S) — ON(T,{}).

We then model the sort sharing between two sortggssort(T,01)
ands; = sort(T,02) in above partially modified DAG. For case 1, we
add a new AND-nodan(ds) to form a new chairoN(T,{o2}) —
AN(ds) — ON(T,{01}), wheredsrepresents the dummy operation of
deriving s, from s;. For case 2, we add a new AND-nodg(ps) to
form a new chairoN(T,{oz}) — AN(pS) — ON(T,{01}), whereps
represents the partial sort operation of deriviagrom s; .

For case 3, we add three new AND-nod&Es(s;,), AN(S;2 — S1)
and AN(s;2 —), as well as a new OR-nod&(T,{o; W0y}), to
form two new chainN(T,{01}) — AN(S;2 — $1) — ON(T,{o1 W
02}) — AN(S12) — ON(T,{}) andON(T,{02}) — AN(S12 -) —
ON(T, {01 W0p}) — AN(S12) — ON(T,{}). Heres;z is the cooperative
sorting based orof, 0); 512 — 1 is the operation of deriving; from
S12; S12 — S is the operation of deriving, from s;5; 0; W0, denotes
the hybrid output format of a cooperative sortmg for s; ands,. The
processings for case 4 are straightforward extensionssefgand thus
omitted.

Till now, we get a completely modified AND-OR DAG. In this
DAG, it is possible that a sorting or cooperative sorting @dtle may
have more than one parent AND-node. Such OR-nodes can bediiew
as unified common subexpressions, and their sort resultwaterial-
ized and reusable. Therefore, the multiple query optirozatMQO)
techniques (e.g., [24]) can be utilized to find the optimat-sbaring-
aware execution plan.

