
Noname manuscript No.
(will be inserted by the editor)

Sort-Sharing-Aware Query Processing

Yu Cao · Ramadhana Bramandia · Chee-Yong Chan · Kian-Lee Tan

Received: date / Accepted: date

Abstract Many database applications require sorting a ta-
ble (or relation) over multiple sort orders. Some examples
include creation of multiple indices on a relation, genera-
tion of multiple reports from a table, evaluation of a com-
plex query that involves multiple instances of a relation, and
batch processing of a set of queries. In this paper, we study
how to optimize multiple sortings of a table. We investigate
the correlation between sort orders and exploit sort sharing
techniques of reusing the (partial) work done to sort a ta-
ble on a particular order for another order. Specifically, we
introduce a novel and powerful evaluation technique, called
cooperative sorting, that enables sort sharing between seem-
ingly non-related sort orders. Subsequently, given a specific
set of sort orders, we determine the best combination of var-
ious sort sharing techniques so as to minimize the total pro-
cessing cost. We also develop techniques to make a tradi-
tional query optimizer extensible so that it will not miss the

Yu Cao
Department of Computer Science
School of Computing
National University of Singapore
E-mail: caoyu@comp.nus.edu.sg

Ramadhana Bramandia
Department of Computer Science
School of Computing
National University of Singapore
E-mail: bramandia@comp.nus.edu.sg

Chee-Yong Chan
Department of Computer Science
School of Computing
National University of Singapore
E-mail: chancy@comp.nus.edu.sg

Kian-Lee Tan
Department of Computer Science
School of Computing
National University of Singapore
E-mail: tankl@comp.nus.edu.sg

truly cheapest execution plan with the sort sharing (post-)
optimization turned on. We demonstrate the efficiency of
our ideas with a prototype implementation in PostgreSQL
and evaluate the performance using both TPC-DS bench-
mark and synthetic data. Our experimental results show sig-
nificant performance improvement over the traditional eval-
uation scheme.

1 Introduction

Sorting is a frequent and expensive operation in database
systems. It is employed not only to produce sorted output,
but also in many sort-based algorithms for aggregation, du-
plicate removal, join, and set operations. As such, it has been
extensively studied ([17,22,25,31–33]). The standard tech-
nique adopted in most commercial systems is based on the
external merge-sort algorithm that consists of two phases:
an initial run formation phase that creates sorted subsets,
called runs, and a merge phase that repeatedly merge runs
into larger and larger runs, until a single run has been cre-
ated.

In this paper, we investigate the problem of efficiently
sorting a table on multiple sort orders. It turns out that such
multiple sortings of a table is not uncommon in many ap-
plications. For example, in data warehousing, a fact table
typically has two types of attributes: those that contain facts
and those that are foreign keys pointing to dimension ta-
bles. According to the workload, the index selection pro-
gram may recommend to create both the primary key in-
dex and foreign key indices on the fact table, which requires
the table to be sorted multiple times to bulk load the vari-
ous indices. In many organizations, many reports are gen-
erated at the end of the day/week/month. Typically, these
reports contain the same content but on different sort or-
ders. A bank may produce reports ordered by amount de-

2

posited/withdrawn/balance, date, branch, and so on. Simi-
larly, examination schedules are usually printed on different
orders - such as course number, dates, examiners, and in-
vigilators. Yet another example arises in decision making
applications where a complex query typically contains mul-
tiple instances of a relation or view [4], and the execution
plan may introduce sortings on the instances.

In the above examples, the table could be separately sorted
multiple times, once per sort order. However, intuitively this
is wasteful of resources (mainly I/O cost) especially when
the table is huge, as after all we are manipulating the same
set of tuples. On the contrary, it seems promising to execute
these sortings in a more collaborative manner so as to reduce
the overall processing cost, by somehow salvaging the (par-
tial) efforts spent on sorting the table on a particular order to
speed up the sortings on other orders. Suchsort sharingis
exactly what we set out to achieve in this paper.

We begin by considering sorting a tableT on two sort
orderso1 ando2, both of which are sequences of some at-
tributes ofT. When o1 and o2 share a common prefix, it
is obvious that, onceT has been sorted ono1, the sorting
output can be either re-used directly (if one order is a pre-
fix of the other) or be re-organized in a light-weight way (if
neither order is a prefix of the other) in order to derive the
sortedT on o2. We refer to such kind of optimizations as
result sharing, which leverages the output of one sorting to
more efficiently evaluate the other sorting. The result shar-
ing technique has been well recognized [3,14].

However, wheno1 ando2 do not share a common pre-
fix, the potential sort sharing opportunities have not been ex-
plored previously. In this paper, we introduce a new property
between a pair of sort orders calledsubset-prefixand design
a novel sorting technique calledcooperative sortingthat can
be applied to optimize two sort operations if their sort or-
ders satisfy the subset-prefix property. Cooperative sorting
first organizes the tuples ofT into an intermediate formT ′

such that subsequently (a)T ′ can be used to produce the
sortedT on o1 efficiently with only (possibly) in-memory
sorting; (b)T ′ can also be viewed as a set of initial sorted
runs ono2, which can be efficiently merged to derive the
sortedT on o2. In so doing, cooperative sorting saves the
initial run formation phase foro2. Furthermore, for the gen-
eral case of two seemingly non-related sort orders, we show
that the pair of sort operations could still be optimized by
first applying cooperative sorting on a derived pair of sort or-
ders followed possibly by using result-sharing optimization
to achieve the desired sortings. Consequentially, when sort-
ing a table on an arbitrary pair of sort orders, we can always
optimize the evaluation by utilizing result sharing and/orco-
operative sorting.

With the result sharing and cooperative sorting techniques,
we then tackle the optimization problem of evaluating more
than two sortings on the table. We model this problem as

the minimum directed Steiner tree problem, which unfor-
tunately is NP-Hard. When the number of sortings is man-
ageable, we will adopt a brute force algorithm to find the
optimal solution on how each sorting should be sequenced
and accomplished. Otherwise, we will resort to heuristic or
approximation algorithms.

So far, we have implicitly assumed that the sortings on
the table are the optimization decision of a conventional
query optimizer which is unaware of sort sharing optimiza-
tion. Further modifications of query plans generated by such
a sort-sharing-blind optimizer, such as replacing a hash join
with a sort-merge join and replacing a hash-based aggrega-
tion with a sort-based aggregation, may enable additional
sort-sharing opportunities and thereby lead to a lower query
execution cost. Therefore, it would be beneficial to let sort
sharing be explicitly considered during query optimization.
As a result, we propose solutions for the standard query opti-
mizer to directly generate optimal sort-sharing-aware query
plans. Our techniques are generally applicable to different
types of query optimizer, such as the System-R style and the
Volcano style.

We have performed a comprehensive experimental eval-
uation of our proposed techniques with an implementation
in PostgreSQL. We ran a micro-benchmark test, on both
TPC-DS dataset and our own synthetic dataset, to compare
the performance of cooperative sorting against two indepen-
dent sort operations. The performance results showed that
cooperative sorting improved the performance on average by
25% and up to 35%. We also conducted a case study ofcoop-
erative index building, where the standard cooperating sort-
ing technique is slightly extended and then exploited when
creating multiple indices on a single table. The correspond-
ing performance study on TPC-DS dataset illustrated that
cooperative sorting is very helpful. The highest and the av-
erage performance improvement were 37% and 24% respec-
tively. Finally, we studied the overall benefits of sort sharing
techniques and the enhanced sort-sharing-aware query opti-
mizer when executing normal queries.

The rest of this paper is organized as follows. In Sec-
tion 2, we present some preliminaries. In Section 3, we in-
troduce our new sort order property, subset-prefix property,
and categorize the relationship between two sort orders into
four cases. These four cases can be optimized by applying
the existing result-sharing sorting technique and/or our new
cooperative sorting technique. We elaborate on cooperative
sorting in Section 4. In Section 5, we generalize coopera-
tive sorting to evaluate more than two sort operations, ex-
plain how to optimize the evaluation of multiple sortings on
a table, and discuss sort-sharing-aware query optimization.
Further general discussions about sort sharing are presented
in Section 6. Our experimental study presented in Section 7
validates the effectiveness of our proposed techniques. We

3

discuss relevant work in Section 8 and finally conclude in
Section 9.

2 Preliminaries

Sort orders are referred aso,o1,o2 etc., each of which is a
sequence of distinct attributes(a1,a2, · · ·an), n≥ 1, of the
relationT1 to be sorted. In this paper we utilize the follow-
ing main notations, some of which are borrowed from [14]:

– si = sort(T,oi): a sort operationsi onT, with orderoi.
– cost(s): the I/O cost (in number of accessed blocks) for

sort operations.
– attrs(o): the set of attributes in sort ordero.
– |o|: number of attributes in the sort ordero.
– o1 < o2: o1 is a proper prefix ofo2.
– o1≤ o2: o1 is a prefix ofo2.
– o1∧o2: the longest common prefix betweeno1 ando2.
– o1 +o2: sort order obtained by concatenatingo1 ando2.
– o−A: sort order obtained by removing fromo the at-

tributes that also appear in the set of attributesA.
– o-segment2: the cluster of tuples inT that have the same

value forattrs(o).
– B(e): size of tuples of expressione, in number of blocks.
– D(e,o): number of distinct values forattrs(o) in tuples

of expressione; i.e.,D(e,o) = |πo(e)|.
– M: number of memory blocks available for sorting.

In this paper, we assume that initial sorted runs are gen-
erated using replacement selection, and our cost model as-
sumes that each initial sorted run is of size 2M blocks. The
external sorting of a relationT is done using the well-known
F-way merge sort technique, whereF is the merge order
(i.e., number of runs that can be merged usingM). Our cost
model for a sort operationsonT usingM blocks of memory
is given by

cost(s) = 2×B(T)× (⌈logF(
B(T)

2M
)⌉+1) (1)

3 Sort Sharing Techniques

In this section, we present an overview of techniques for
optimizing the evaluation of multiple sorts on a relationT.
We will first focus on the basic setting involving only two
sort operations, and then explain how our techniques can
be easily extended to the general setting in Section 5. For
simplicity, we assume that all the attributes in a sort orderare
to be sorted in ascending order. We discuss how to handle

1 For simplicity, our discussion assumesT to be a relation, but our
techniques also apply whenT is the output of some query subplan.

2 It is also known asvalue packet[18].

a combination of ascending and descending sort orders in
Section 6.

Consider two sort operationss1 = sort(T,o1) ands2 =

sort(T,o2). By exploiting the relationship betweeno1 and
o2, the pair of sort operations can be optimized for two well-
known cases. The first case is wheno2 is a prefix ofo1 (i.e.
o2≤ o2), and the second case is wheno1 ando2 share a non-
empty common prefix which is a proper prefix ofo2 (i.e.
0 < |o1∧o2|< |o2|).

In this paper, we introduce a new property between two
sort orders termedsubset-prefixthat forms the basis of our
novel cooperative sorting technique. Given two sort orders
o1 ando2, o2 is defined to be asubset-prefixof o1 if they
satisfy two conditions:

1. some prefixo21 of o2 = o21 + o22 is the substring (but
not prefix)o12 of o1 = o11+o12+o13, and

2. the set of attributes in the suffixo22 of o2 is a subset
of the attributes in the prefixo11 of o1; i.e., o12 = o21,
attrs(o22) ⊆ attrs(o11), |o11| > 0, |o13| ≥ 0 and|o22| ≥

0.

As the name of the property suggests, ifo2 is a subset-prefix
of o1, then the set of attributes ino2 is a subset of the set of
attributes in a prefix ofo1.

Example 1Consider the following four sort orders:o1 =

(a1,a2), o2 = (a2), o3 = (a2,a3,a4,a5), ando4 = (a4,a3,a2).
We have three pairs of sort orders that satisfy the subset-
prefx property:o2 is a subset-prefix ofo1, o2 is a subset-
prefix ofo4, ando4 is a subset-prefix ofo3. �

Based on the new subset-prefix property, we can classify
the relationship betweeno1 ando2 into four disjoint cases:

– Case 1:o2 is a prefix ofo1.
– Case 2:o1 and o2 share a non-empty common prefix

which is a proper prefix ofo2.
– Case 3:o2 is a subset-prefix ofo1.
– Case 4:o1 ando2 do not satisfy any of the above three

cases.

The first two cases are the more familiar and simpler
cases, wheres1 ands2 can be efficiently evaluated using the
result sharing technique, which has been previously dis-
cussed in other contexts [3,14]. The idea is to leverage the
output of one sort operation to more efficiently evaluate the
other sort operation.

For case 1, since a relationT sorted ono1 is trivially
also sorted ono2, it is sufficient to perform onlysort(T,o1);
therefore,s2 is not evaluated explicitly andcost(s2) = 0.

For case 2, supposeo′ = o1∧o2 such thato1 = o′+ o′1,
o2 = o′+o′2, |o

′
1| ≥ 0 and|o′2|> 0. In this case, a relationT

sorted ono1 is also partially sorted ono2: the output ofs1

can be viewed as a concatenation ofo′-segments, and each
such segment can be sorted independently ono′2 to form

4

the sorted output fors2. If the size of eacho′-segmentis
no larger thanM blocks, then the sorting of each segment
on o′2 can be performed efficiently using internal sorting
ands2 can be evaluated with only a single pass of reading
the output ofs1. As noted by [14], the strategy to evalu-
ates2 by sortingo′-segmentsalso helps to significantly re-
duce the number of tuple comparisons: the complexity of
independently sortingk segments each of sizen/k tuples
is O(k ∗ n/k log(n/k)) = O(n log(n/k)) in contrast to a
complexity ofO(n log(n)) for a single sort of alln tuples.
s1 is evaluated using the conventional external merge-sort
and cost(s1) is given by the Equation 1. Following [14],

cost(s2)= ∑D(T,o′)
i=1 cost(sort(sei,o′2)), wherecost(sort(sei,o′2))

denotes the cost of sorting theith o′-segment sei in the sorted
output ofs1. If B(sei) ≤M, cost(sort(sei ,o′2)) is simply the
cost of performing an internal sorting; otherwise, it is given
by Equation 1. If we assume that the values ofo′ follow a
uniform distribution, thenB(sei) = B(T)/D(T,o′).

The cases 3 and 4 are the new scenarios that we inves-
tigate in this paper. For case 3, the evaluations ofs1 ands2

can be optimized by our newly proposedcooperative sort-
ing technique, whose idea is to create “hybrid” sorted runs
that can benefit the evaluation of both sort operations. We
shall discuss the details of cooperative sorting in the next
section.

For the most general case 4,s1 ands2 can be optimized
as follows. First, we derive two new sort orderso′1 ando′2,
whereo′2 is the longest prefix ofo2 such thato′2 is a subset-
prefix ofo′1 = o1+(o′2−attrs(o1)). Note that the derivation
of o′1 ando′2 is always possible; in particular, the trivialo′2
containing only the first attribute ofo2 is a subset-prefix of
the correspondingo′1. Second, we apply cooperative sorting
to evaluate two sort operationssort(T,o′1) andsort(T,o′2).
Sinceo1 is a prefix ofo′1, the output ofsort(T,o′1) is also
sorted ono1 and thus can be directly utilized as the out-
put of s1. Sinceo′2 is a prefix ofo2, there are two cases to
be considered for the evaluation ofsort(T,o2): if o′2 = o2,
then the output ofsort(T,o′2) can be directly utilized as the
output ofs2; otherwise, we can derive the output ofs2 by
independently sorting eacho′2-segmentwithin the output of
sort(T,o′2) on ordero2−attrs(o′2). In order to optimize the
independent sorting of theo′2-segments, we chooseo′2 to be
the longest prefix ofo2 that meets the subset-prefix require-
ment.

4 Cooperative Sorting

In this section, we present a novel technique, termedcoop-
erative sorting, to efficiently evaluate two sort operations
s1 = sort(T,o1) ands2 = sort(T,o2), wheno2 is a subset-
prefix ofo1 (i.e. case 3) as defined in the previous section.

Recall that in this case, we haveo1 = o11+o12+o13 and
o2 = o21+o22, such thato12 = o21, attrs(o22)⊆ attrs(o11),
|o11|> 0, |o13| ≥ 0 and|o22| ≥ 0.

4.1 Overview

Observe that the output ofs1 can be viewed as the concate-
nation of o11-segments(i.e., a set of tuples with identical
o11 values), each of which is also sorted ono2 and thus is
a sorted run fors2. As a result, the result sharing technique
can actually be applied to this case by first evaluatings1 fol-
lowed by merging the resultanto11-segmentsto computes2.
However, depending on the number of distincto11 values
and the extent of data skew inT, the number ofo11-segments
generated bys1 could be very large with many small seg-
ments. In this situation, merging a large number of small
sorted runs to evaluates2 could lead to an overall perfor-
mance that is bad or even worse than performing a conven-
tional external sorting ofT on o2. The following example
illustrates this drawback of applying the result sharing tech-
nique for case 3.

Example 2Consider the relationT(a,b) in Fig. 1, which
will serve as a running example in this section. Assume the
following: each tuple occupies one disk block, the available
sorting memory can hold four tuples (i.e.,M = 4), and the
merge orderF = 2. Consider two sort operationss1 ands2

on T, with orderso1 = (a,b) and o2 = (b), respectively.
Obviously,o2 is a subset-prefix ofo1 with o11 = (a). The
output of s1 is a concatenation of sixa-segments(se1 to
se6), each of which is sorted on(b). These sixa-segments
can be merged fors2 with three I/O passes of reading and
writing T tuples. However, this is actually not better than a
conventional external sorting: the replacement selectionin-
curs one I/O pass and generates three initial runs, which can
be merged with only two I/O passes. As a result, both ap-
proaches for evaluatings2 will incur three I/O passes. �

Cooperative sorting is proposed in order to retain the
benefit of result sharing, i.e. avoiding scanningT to gen-
erate initial sorted runs fors2, and also overcome as much
as possible the drawback of result sharing. The core of co-
operative sorting is an intermediate sort operations12 based
on a special hybrid sort order, such that the outputs of both
s1 ands2 can be efficiently derived from the output ofs12.

We will discuss how to perform the intermediate sort op-
erations12 in Sections 4.2 and 4.3. The output ofs12 will be
a sequence oftuple chunkswhich are eithernaturalor com-
posite. Tuples of a natural chunk are ordered byo1, while tu-
ples of a composite chunk are ordered byo2. For each com-
posite chunk, it consists of tuples from two or moreconsecu-
tive o11-segmentsin the output ofs1, and its size is no larger
than the sorting memory (i.e.M blocks). For each natural

5

����
����
����
����

����
����
����
����

����
����
����
����

6 7

2 2
3 6
4 9
1 5
6 8

3 2

6 3
3 9

3 4
1 3
3 10
2 1
3 8
5 1
3 5

a b

relation T 2s on (b)

3 10

2 1

2 2
3 2

1 3
3 4

3 5

6 7

3 8

5 1

6 3

1 5

3 6

6 8

4 9
3 9

a b

s on (a,b)1

1 3
1 5
2 1
2 2
3 2

3 6

6 8

3 4
3 5

3 8
3 9
3 10
4 9
5 1
6 3
6 7

a b

se1

ck1

ck3

ck4

ck2

s chunks12

se2

se

se

se

se

3

4

5

6

3 2

3 6

6 8

3 4
3 5

3 8
3 9
3 10

6 3
6 7

2 1
2 2
1 3
1 5

5 1

a b

4 9

Fig. 1 Cooperative Sorting Example:M = 4 andF = 2

chunk, it consists of tuples from exactly oneo11-segmentin
the output ofs1, and there is no constraint on its size. More-
over, the tuple chunks areo1-order preserving, which means
that if a chunkcki precedes another chunkckj in the output
of s12, then every tuple incki has ano1 value smaller than
that of every tuple inckj .

Example 3Look at the running example in Fig. 1. The out-
put of s12 contains four tuple chunks, two composite (ck1

andck3 shown shaded) and two natural (ck2 andck4 shown
non-shaded). The output ofs1 contains sixa-segments, se1

to se6. In the output ofs12, se1 andse2 are combined into
ck1, se3 is exactlyck2, se4 andse5 are combined intock3,
andse6 is exactlyck4. Both ck1 andck3 are no larger than
M = 4 blocks, whileck2 is larger thanM andck4 is smaller
thanM. �

To derive the output ofs1, the s12 chunks are scanned
and processed sequentially: if the chunk is a natural chunk,
the tuples are already ordered ono1 and can simply be out-
put sequentially; otherwise, we first load all the tuples in
the chunk into the sorting memory, internally sort the tuples
on o1, and then output the sorted tuples sequentially. Since
the chunks areo1-order preserving, the whole resultant tuple
stream will be ordered byo1.

Notice that the tuples in each naturals12 chunk are also
ordered byo2. Therefore, to derive the output ofs2, all the
s12 chunks can be treated as initial sorted runs ono2 and
merged recursively.

Compared with result sharing, cooperative sorting gen-
erates longer and thus fewer initial sorted runs fors2 to merge.
Although the evaluation cost ofs12 is slightly more expen-
sive than the normal cost ofs1 and deriving the output of
s1 from the output ofs12 requires additional internal sorting
cost, the saving on run merge cost fors2 makes cooperative
sorting competitive. As indicated by both the cost model in
Section 4.4 and the experimental results in Section 7, coop-

erative sorting is at least as good as and often better than
result sharing.

However, the number ofs12 chunks generated in coop-
erative sorting could still be more than the number of initial
sorted runs generated by a conventional initial run forma-
tion phase fors2, and thus cooperative sorting may incur a
more costly run merging phase fors2. As a result, coopera-
tive sorting is not guaranteed to be always superior to evalu-
atings1 ands2 independently. Both cooperative sorting and
conventional sorting should be considered in a cost-based
manner by the query optimizer for evaluating multiple sorts
on a relation.

4.2 Intermediate Sort Operations12

The computation ofs12 consists of four main steps. In the
first step, we scan the relationT to create initials1 runs
(i.e., initial sorted runs ono1) with the conventional initial
run formation technique. We also collect the set of distinct
o11 values, and count the number of tuples corresponding to
each distinct value, in each initials1 run at runtime when it
is being generated. After all initials1 runs have been gener-
ated, we combine statistics for each initials1 run to acquire
the global statistics on the distincto11 values inT. Thus,
at the end of the first step, we know the size of eacho11-
segmentand the distribution of eacho11-segment’s tuples
among the initials1 runs.

We allocate a very small portion of memory for the pur-
pose of the above statistics collection, and flush the memory
content to disk files when necessary (e.g., the statistics for
one initials1 run will be written to disk before the generation
of the next run starts). The global statistics will be computed
from the disk files, which are also very small and thus incur
negligible I/O cost.

The above accurate statistics collection procedure works
well when the domain ofo11 values is not large. As we shall
see, in our experimental study, with 0.5MB of memory, the
scheme performs well for 50k distincto11 values. Alterna-
tively, we can estimate the statistics using approximation
techniques such as [5,11]. In this case, the subsequent three
steps of computings12 (to be described shortly) need to be
modified to handle estimatedo11 statistics. This extension is
straightforward, and does not affect the correctness of our
proposed scheme. However, some composite chunks might
have to be externally sorted due to an underestimation of
their sizes.

In the second step, we determine the output information
of s12: the number and the sequence ofs12 chunks, the size of
each chunk, and theo11-segments that comprise each chunk.
Intuitively, the composites12 chunks should be as large as
possible (within the size constraint), so as to minimize the
total number ofs12 chunks. We thereby apply agreedy algo-
rithm that utilizes the statistics collected from the first step

6

and sequentially checks theo11-segmentsas follows. If the
size of ano11-segment sei exceedsM, thensei forms a natu-
ral chunk; otherwise, determine the longest sequence of con-
secutiveo11-segments sei ,sei+1, · · ·sej such that their total
size is no more thanM. If i = j, thensei forms a natural
chunk; otherwise,sei , · · · ,sej form a composite chunk. Re-
peat the above procedure fromsej+1 unlesssej is the last
o11-segment.

Note that the tuples belonging to as12 chunk are gener-
ally distributed across multiple initials1 runs. Since thes12

chunks areo1-order preserving, each initials1 run consists
of a sequence oftuple chunklets, each of which represents a
subset of tuples of a distincts12 chunk. Chunklets are also
correspondingly classified as natural and composite.

Example 4Fig. 2 illustrates the two initials1 runs ordered
by o1 = (a,b) and generated from the relationT in Fig. 1.
Based on the sizes ofa-segments, the above greedy algo-
rithm decides to form fours12 chunks. The first initials1 run
consists of chunkletsckl1,1, ckl2,1, ckl3,1, andckl4,1; the sec-
ond initial s1 run consists of chunkletsckl1,2, ckl2,2, ckl3,2,
andckl4,2. Hereckli, j denotes the chunklet in thejth initial
s1 run that corresponds to theith s12 chunk. �

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����
����

1 5
2 2
3 2
3 6
3 9
4 9

6 8
6 3

ckl2,1

ckl3,1

ckl4,1

ckl1,1 ckl1,2

ckl2,2

ckl3,2

ckl4,2

a b
1 3
2 1
3 4
3 5
3 8
3 10

6 7

a b

5 1

initial run 1 initial run 2

Fig. 2 Initial s1 Runs for RelationT in Example of Fig. 1

In the third step, we merge the initials1 runs to generate
the initial s12 runs. Each initials12 run is created by merg-
ing a set ofF initial s1 runs. Specifically, the chunklets in
the F initial s1 runs that correspond to the sames12 chunk
are merged to form a longer chunklet in the initials12 run.
Consequentially, each initials12 run is also a sequence of
chunklets, where tuples of a natural chunklet are ordered by
o1, tuples of a composite chunklet are ordered byo2 and the
chunklets areo1-order preserving. This merging operation is
different from the conventional run merging procedure and
will be elaborated in Section 4.3.

Example 5When merging the two initials1 runs in Fig. 2,
each pair of chunkletsckli,1 andckli,2 (i ∈ {1,2,3,4}) are
merged respectively. The resultant initials12 run is exactly
the finals12 chunks as shown in Fig. 1. �

In the fourth step, the initials12 runs are recursively merged
to generate thes12 chunks. This is done by the conventional

external run merging technique with a minor extension for
the tuple comparison operator. Specifically, when compar-
ing two tuplest1 andt2 during the merging, ift1 andt2 be-
long to the same composite (resp. natural) chunk, thent1
precedest2 iff t1 has a smaller value foro2 (resp.o1) com-
pared tot2; otherwise,t1 precedest2 iff t1 belongs to a chunk
that precedest2’s chunk. Note that the fourth step is skipped
if the third step produces only one initials12 run as in the
above example.

4.3 Generating Initials12 Runs

In this section, we elaborate on the procedure of mergingF
initial s1 runs into an initials12 run.

Merging a set of natural chunklets in the initials1 runs
is simple and just follows the conventional external merge
procedure, since the input and output orders are the same.

However, as mentioned in Section 4.2, for each compos-
ite chunklet in the generated initials12 run, its tuples will be
ordered byo2, while the set of composite chunklets in the
initial s1 runs are all sorted ono1. Therefore, before we can
merge these composite chunklets in the initials1 runs, we
need to internally sort each of them ono2

3, which requires
that our tuple reading strategy, i.e. the way we read tuples
from different initials1 runs into the sorting memory during
run merging, should ensure that these composite chunklets
will be able to co-exist in the sorting memory when it is
their turn to be merged. Assume that these composite chun-
klets correspond to theith s12 chunk. When tuples in these
composite chunklets are being read into the sorting memory,
the following constraint must always be satisfied until these
composite chunklets are completely read:

B(RPm
i)+B(RPd

i)+ ∑
k>i

B(RPm
k)≤M (2)

whereRPm
i (resp.RPd

i) denotes the set of tuples in the input
initial s1 runs that belong to theith s12 chunk and currently
are in the sorting memory (resp. still on the disk). Equa-
tion 2 prevents too many tuples ofs12 chunks after theith

chunk from occupying the sorting memory space but not
being merged, while some tuples of theith chunk are still
remaining on the disk.

Tuple reading strategies violating the above Equation 2
can lead to “deadlock” situations. For example, consider the
two initial s1 runs shown in Fig. 2 and suppose that we are
merging the two composite chunkletsckl1,1 and ckl1,2 for
the firsts12 chunk withM = 4. If we had read the first three
tuples, (1,5), (2,2) and (3,2), of the first initials1 run into the
sorting memory, then a deadlock situation would arise as the
remaining memory space is not adequate for loading the two

3 Internal sortings are feasible as by design the total size ofthese
composite chunklets will not exceed the sorting memoryM.

7

tuples ofckl1,2, (1,3) and (2,1), in the second initials1 run
for internal sorting.

On the other hand, a sound yet conservative tuple read-
ing strategy might fragment the reading of the initials1 runs
into too many short sequential I/O reads. For example, con-
sider the following approach to mergeF initial s1 runs into
an initials12 run. The merging reads and processes the chun-
klets in the initials1 runs for ones12 chunk at a time based
on the chunk order. If the current chunk being processed is
composite, we first read all the chunklets that belong to this
chunk into the sorting memory, perform an internal sorting
on each chunklet, and then merge the sorted chunklets. If the
current chunk being processed is natural, we first readn tu-
ples from the corresponding chunklet in each initials1 run,
wheren = min{size of the chunklet,⌊M/F⌋}, to initialize
the merging. Each subsequent read includes at most⌊M/F⌋

sequential tuples of a chunklet in some initials1 run. By
applying this approach to merge the two initials1 runs in
Fig. 2 withM = 4, a total of 10 sequential reads is required,
which is suboptimal: we shall later illustrate how this can be
reduced to 8 sequential reads.

We thereby propose an efficientbatched tuple reading
strategy for loading tuples from theF initial s1 runs into the
sorting memory. Our strategy consists of two main steps.
First, we partition each initials1 run into a sequence of tu-
ple batches. An initials1 run containingn tuple batches will
be read withn sequential reads, each of which reads a com-
plete tuple batch. Second, we schedule the reading of tuple
batches from different initials1 runs to do the tuple merging.
Our goal is to minimize the total number of tuple batches
(i.e., maximize the sequential I/O) without violating Inequa-
tion 2.

For simplicity, our batched read strategy is designed based
on the following tworules:

– In an initial s1 run, a composite chunklet, or a natural
chunklet that is no larger than⌊M/F⌋, will be completely
included by a single tuple batch, where the total size of
any natural chunklet along with all the following tuples
must not exceed⌊M/F⌋.

– In an initial s1 run, a natural chunklet that is larger than
⌊M/F⌋ will be partitioned into a series of consecutive tu-
ple batches, each of which, except the last one, has a size
of ⌊M/F⌋. The last tuple batch may contain tuples from
other chunklets, but its size is at most⌊M/F⌋.

It follows that each tuple batch can be classified into one
of four types based on its starting and ending points in the
initial s1 run:

1. the batch starts from the head of a composite/natural
chunklet and ends at the tail of a (possible different)
composite/natural chunklet.

2. the batch starts from the head of a natural chunklet and
ends inside the same chunklet.

3. the batch starts and ends both inside the same natural
chunklet.

4. the batch starts inside a natural chunklet and ends at the
tail of a (possibly different) composite/natural chunklet.

����
����
����
����

����
����
����
����

����
����
����
����

chunklet
a small natural

composite
chunklets

type−4

type−2
batch

type−3
batch

batch

chunklet
a large natural

type−1
batch

initial run initial run

Fig. 3 Illustration of Four Types of Tuple Batches in Initials1 runs

Fig. 3 illustrates the four types of tuple batches. A natu-
ral chunklet that is larger than⌊M/F⌋ will be partitioned into
one type-2 tuple batch, zero or several type-3 tuple batches,
and one type-4 tuple batch. A composite chunklet, or a nat-
ural chunklet that is no larger than⌊M/F⌋, will be included
by one type-1 or type-4 tuple batch. The size of a type-2 or
type-3 tuple batch is exactly⌊M/F⌋. The size of a type-4 tu-
ple batch is at most⌊M/F⌋. The size of a type-1 tuple batch
could be larger than⌊M/F⌋ but is under constraint of the first
rule above.

GivenF initial s1 runs, Algorithm 1 generates the com-
plete set of tuple batches and records them in an arrayTB.
Algorithm 1 essentially involves two nested computation loops.
In the outer loop, each time it checks all the chunklets in the
initial s1 runs that belong to ones12 chunk, based on the
chunk order; in the inner loop, it sequentially checks each
chunklet of the currents12 chunk, and decides the specific
tuple batch(es) that will include this chunklet. InTB, a type-
4 tuple batch immediately follows the corresponding type-2
tuple batch, and the set of type-3 tuple batches in between
are not recorded, as they can be easily deduced at runtime.
The composition of each type-1 (or type-4) tuple batch start-
ing from the head (or interior) of a chunklet is determined
by using Algorithm 2, which tries to maximize the batch
size by including as many tuples following this chunklet in
the initials1 run as feasible.

At runtime of run merging, Algorithm 3 schedules the
reading of tuple batches. For type-1 and type-2 tuple batches,
they are read in the same order as inTBbut are possibly in-
terleaved with dynamically arranged type-3 and type-4 tuple
batches. Moreover, when merging the chunklets for a natu-
ral chunk, a type-3 or type-4 tuple batch associated with a
specific chunklet will be selected as the next one to read if
and only if in the sorting memory tuples belonging to the
same chunklet will be exhausted most quickly by the merg-
ing. This ensures the correctness of merging and is consis-

8

tent with the run merging procedure in conventional external
sorting.

�����
�����
�����

�����
�����
�����

�����
�����
�����
���������

����
����
����

����
����
����

����
����
����

1,1ckl

3,1ckl

4,1ckl

2,1ckl

1,2ckl

2,2ckl

3,2ckl

4,2ckl

M = 4

F = 2

1 3
2 1
3 4
3 5
3 8
3 10

6 7

a b

initial run 2

5 1

a b

initial run 1

1 5
2 2
3 2
3 6
3 9

6 8
6 3
4 9

1tb

tb

tb

tb

3

6

tb

4tb

2

8

5tb

tb7

Fig. 4 Tuple Batches of the Two Initials1 Runs in Fig. 2

i 1 2 3 4 5 6 7 8
TB[i] tb1 tb2 tb3 tb6 tb4 tb5 tb7 tb8

Table 1 The Entries inTB for Example in Fig. 4

Example 6Fig. 4 shows the eight tuple batches (tb1 to tb8)
comprising the two initials1 runs in Fig. 2. Table 1 shows the
tuple batch arrayTB. tb1, tb2, tb7 andtb8 are type-1 tuple
batches;tb3 and tb4 are type-2 tuple batches, andtb6 and
tb5 are their corresponding type-4 tuple batches respectively.
There are no type-3 tuple batches in this example. During
run merging, these eight tuple batches will be read in the
following sequence:tb1, tb2, tb3, tb4, tb5, tb6, tb7, tb8. Note
that since the last tuple (3,5) intb4 is smaller than the last
tuple (3,6) intb3, tuples intb4 will be exhausted first and
thus tb5 will be read beforetb6 at runtime. This situation
cannot be predicated before runtime. �

4.4 Cost Model

In this subsection, we present an analytical cost model for
cooperative sorting. The total cost of utilizing cooperative
sorting to evaluate two sort operationss1 ands2 consists of
three components: (1) the costCs12 of generatings12 chunks,
which is estimated as the costCs1 of independently evalu-
atings1 (given by Equation 1) plus the costCis of perform-
ing internal sortings on composite chunklets within initial s1

runs; (2) the costCs12→s1 of derivings1 which is equal to the
total cost of performing internal sortings for all the compos-
ite s12 chunks; (3) the costCs12→s2 of derivings2 by merging
s12 chunks which is given by2×B(T)×⌈logF N⌉, whereN is
the number ofs12 chunks.

Assuming auniform distribution for the values ofo11,
there are only two cases to consider.

Algorithm 1 ComputeTB

Output : a tuple batch arrayTBaccording to the to be mergedF initial
s1 runs
1: idx← 1
2: for i← 1 to N do // N is the total number of s12 chunks
3: if the ith s12 chunk is compositethen
4: for j← 1 toF do
5: if ckli, j is non-empty and has not been assigned to a tuple

batched yetthen // ckli, j denotes the chunklet in thej th

initial s1 run that corresponds to theith s12 chunk
6: TB[idx] ← TupleBatch(ckli, j) // form a type-1 tuple

batch starting from the head of ckli, j

7: idx← idx+1
8: else
9: for j← 1 toF do

10: if ckli, j is non-empty and has not been assigned to tuple
batches yetthen

11: if size(ckli, j) > ⌊M/F⌋ then
12: TB[idx]← a type-2 tuple batch starting from the head

of ckli, j

13: idx← idx+1
14: TB[idx]←TupleBatch(ckli, j) // form the correspond-

ing type-4 tuple batch
15: idx← idx+1
16: else
17: TB[idx]← TupleBatch(ckli, j) // form a type-1 tuple

batch starting from the head of ckli, j

18: idx← idx+1

Algorithm 2 TupleBatch

Input : ckli, j

Output : a type-1 (or type-4) tuple batchtb starting from the head (or
interior) of ckli, j

1: initialize a type-1 (or type-4)tb including the whole (or part of)
ckli, j

2: k← i +1
3: while truedo // check whether cklk, j can be included by tb
4: if (cklk, j is natural &&size(cklk, j) > ⌊M/F⌋) ||

includingcklk, j in tb violates the size restrictions in therules||
including cklk, j in tb violates the Inequation 2 for thel th (i ≤
l < k) s12 chunk which is compositethen

5: break
6: includecklk, j in tb
7: k← k+1

Case 1:B(T)/D(T,o11)≤ 0.5M.
In this case, alls12 chunks are composite, and the number of
s12 chunks is given by

N = ⌈D(T,o11)/k⌉ (3)

wherek =
⌊

M×D(T,o11)
B(T)

⌋

is the number ofo11-segmentsin

each composite chunk.
Let cpu cost(S) denote the cost of internally sorting tu-

ples of total sizeS. We have

Cis =
B(T)

2M
×N×cpu cost(2M/N) (4)

Cs12→s1 = N×cpu cost(k×B(T)/D(T,o11)) (5)

9

Algorithm 3 ScheduleReadingOfTupleBatches

Input : TB
Output : the order on which tuple batches inTBwill be read during the
actual run merging
1: initialize an empty tuple batch poolP
2: i← 1
3: while i ≤ length(TB) do
4: readTB[i] whenever enough memory space is available
5: tb← TB[i] // mark this tuple batch for later reference
6: if TB[i] is a type-1 tuple batchthen // otherwise it must be type-

2
7: i← i +1
8: else
9: add intoP the corresponding type-4 tuple batchTB[i + 1]

along with the set of type-3 tuple batches betweenTB[i] and
TB[i +1]

10: i← i +2
11: if after readingtb, the merging of chunklets for a naturals12

chunk has just be initialized, i.e. all the type-1 and type-2tu-
ple batches containing tuples of thiss12 chunk have been read
but none of the corresponding type-3 and type-4 tuple batches
(recorded inP) have been readthen

12: if P is non-emptythen
13: driven by the merge progress, read on a specific order all

the type-3 and type-4 tuple batches inP
14: restoreP to be empty

Case 2:B(T)/D(T,o11) > 0.5M.
In this case, alls12 chunks are natural, and

N = D(T,o11) (6)

Cis = Cs12→s1 = 0 (7)

The performance of cooperative sorting depends partially
onD(T,o11) and the relative sizes ofo11-segments. Besides
the distinct value cardinality ofo11, the statistical value dis-
tribution ofo11 has little impact on the performance.

We conduct a brief analytical comparison between re-
sulting sharing and cooperative sorting as follows. When ap-
plying result sharing technique to directly mergeo11-segments
in the output ofs1 to derive the output ofs2, the total cost
consists ofCs1 as well as the cost incurred by⌈logF D(T,o11)⌉

merge passes (i.e.,2×B(T)×⌈logF D(T,o11)⌉). In case 1, the
⌈logF N⌉ component of theCs12→s2 (i.e.,2×B(T)×⌈logF N⌉) is
at most equal to and often less by at least 1 than⌈logF D(T,o11)⌉.
As a result, considering the relatively minor CPU costsCis

andCs12→s1, the total cost of cooperative sorting is often
cheaper than that of result sharing. In case 2, the total cost
of cooperative sorting is exactly the same as that of applying
result sharing.

4.5 Extensions

In this subsection, we describe two important practical ex-
tensions of cooperative sorting.

4.5.1 Final Merge Optimization

If the external sorting operation is part of a pipelining query
plan, a common optimization is to stop the run merge phase
just before the final merge step so that the final merge step
can be done as part of the generation of the sorted output.
In this way, the final merge optimization saves one read and
one write scan onT.

When the final merge optimization is enabled, the inter-
mediate sort operations12 of cooperative sorting will end up
with N (1 < N ≤ F) s12 runs. The output ofs1 is derived by
merging theseN s12 runs on-the-fly, with thebatched tuple
readingstrategy being used to sort the tuples in composite
chunklets ono1 before the merging. As fors2, each chunklet
within thes12 runs is treated as an initial sorted run fors2.
For the special case where the number of initials1 runs gen-
erated fors12 is no more thanF , these initials1 runs can be
transformed into initials2 runs by simply sorting the com-
posite chunklets based ono2. In case many of the chunklets
within these initials1 runs are composite, it could be overall
cheaper to simply ignore the final merge optimization and
directly form a singles12 run.

4.5.2 Adapting to Other Merge Patterns

Our description of cooperative sorting in Section 4.2 has as-
sumed that the sorted runs are merged by usingk-way merge
pattern for ease of presentation. The cooperative sorting ap-
proach can be easily adapted to other merge patterns such
aspolyphase mergeandcascade merge[17]. In the general
case, the collection of the sorted runs to be merged could
consist of a combination of initials1 runs ands12 runs. The
batched tuple readingstrategy can be easily modified so that
the composite chunklets within thes12 runs, which have al-
ready been sorted ono2, need not be internally sorted again
as part of the merging.

5 Optimization of Multiple Sortings

In this section, we first consider the extension of coopera-
tive sorting to handle more than two sort orders. We then
consider post-processing the query execution plans resulted
from a conventional query optimizer, so as to further opti-
mize the evaluation of multiple sortings on a relation appear-
ing within these plans. Specifically, we consider the evalu-
ation of a collection of sort operationsS= {s1,s2, · · · ,sk}

(k ≥ 2), where eachsi = sort(T,oi) is a sort operation on
relationT with sort orderoi . Finally, we describe how to en-
able the query optimizer to take into account the impact of
sort sharing and directly generate the optimal sort-sharing-
aware query execution plans.

10

5.1 K-way Cooperative Sorting

In Section 4, we develop cooperative sorting to evaluate two
sort operationss1 ands2. In this section, we consider whether
it is feasible and makes sense to generalize the binary (2-
way) cooperative sorting to ak-way version so that allk sort
operations can be simultaneously and efficiently evaluated.

Given two sort ordersoi ando j , let oi ·o j denote the sort
orderoi +(o j−attrs(oi)). Thek-way cooperative sortingis
applicable to thek sort operations inS if there exists some
permutation ofS, (sp1,sp2, · · · ,spk) (1≤ pi ≤ k), such that
for each pair of sort orderso′pi = ((op1 · op2) · op3) · ... · opi

(1 < i ≤ k) andopi, the latter is a subset-prefix of the for-
mer.k-way cooperative sorting works as follows: it gener-
atesk−1 intermediate sort operations{s′2,s

′
3, · · · ,s

′
k} from

a single collection of initial runs that are sorted ono′pk. Each
s′i corresponds to the pair of sort orderso′pi andopi. sp1 is
derived from anys′j (1 < j ≤ k) following the way hows1 is
derived froms12 in the 2-way cooperative sorting, and each
spi (1 < i ≤ k) is derived froms′i following the way hows2

is derived froms12 in the 2-way cooperative sorting.

Example 7Consider three sort operationss1 = sort(T,(a)),
s2 = sort(T,(b)) ands3 = sort(T,(c)), wherea, b, andc are
attributes ofT. Any permutation ofs1, s2 ands3 is qualified
for 3-way cooperative sorting. For one such permutation(s1,
s2, s3), initial runs sorted on(a,b,c) are generated for two
intermediate sort operationss′2 (w.r.t sort order pair{(a,b),
(b)}) ands′3 (w.r.t sort order pair{(a,b,c), (c)}). s1 ands2

are then derived froms′2, while s3 is derived froms′3. �

However, the following analytical result based on our
cost model in Section 4.4 shows that it is not necessary to
considerk-way cooperative sorting fork > 2.

Theorem 1 For each query plan P that involves k-way co-
operative sorting, k> 2, there exists another equivalent query
plan P′ that uses only 2-way cooperative sorting such that
the cost of P′ is no higher than the cost of P.

The proof of this theorem is given in Appendix A.

5.2 Multiple Sorting Optimization

Given a collectionS of k sort operations, there are many
ways in which these operations can be ordered to exploit sort
sharing. In this section, we model this optimization prob-
lem as a graph problem. Based on Theorem 1, we consider
only the binary cooperative sorting in subsequent discus-
sions. GivenS, we construct a directed graphG(V,E), where
V = Va ∪ Vb, Va represents the set ofsort nodesandVb rep-
resents the set ofcooperative sort operator nodes.

Each sort nodeu ∈ Va is associated with a sort order,
denoted byorder(u). For each sort operations= sort(T,o)

∈ S, we create a sort nodeu ∈ Va with order(u) o. Each
directed edge (u,v) from sort nodeu to sort nodev is as-
sociated withcost(u,v) equal to the cost of sortingT that
satisfiesorder(u) to satisfyorder(v). There are two types of
directed edges between sort nodes, corresponding to case 1
and case 2 in Section 3.

For each pair of sort nodesu andv such thatorder(u)

andorder(v) satisfy case 3 or case 4, we create a new co-
operative sort operator nodew∈Vb. This node represents a
potential cooperative sorting operation from whichu andv
can be derived. Fromw, we add two directed edges: (w, u)
and (w, v). Both cost(w,u) andcost(w,v) are labeled based
on the cost model in Section 4.cost(w,v) may additionally
include the cost of sorting tuple segments fororder(v).

Finally, an artificial noderoot ∈Va is added to represent
the relationT without a particular order. We add an edge
from root to each existing nodev in V, with cost(root,v)
equal to the cost of a conventional sort operation.

Once the graph has been constructed, the optimal solu-
tion is obtained by computing the minimum directed Steiner
tree spanningG. The sort nodes inVa are the exact set of
vertices’s that the Steiner tree aims to interconnect.

abc, d

from root case 2 case 4

d, abcab, d

d, ab

dabc ab

root

case 1

(a) The Sample GraphG

root

abc d

ab

abc, d

(b) Steiner Tree ofG

Fig. 5 An Example of Multiple Sorting Optimization

Example 8Consider three sortingssort(T,(a,b)), sort(T,

(a,b,c)) andsort(T,(d)), wherea, b, c andd are attributes
of T. The graph for these three sortings is depicted in Fig. 5(a),
where the sort (resp. cooperative sort) nodes are represented
by rectangles (resp. ellipses). The computed Steiner tree for
this graph is shown in Fig. 5(b). Based on the Steiner tree, a
feasible evaluation plan is as follows: first evaluatesort(T,(a,b,c))
and sort(T,(d)) with cooperative sorting, and then derive
sort(T,(a,b)) from sort(T,(a,b,c)). �

Although finding the minimum directed Steiner tree is
an NP-hard problem [16], applying a brute-force algorithm
is actually acceptable if|Vb| is small. Basically, we enumer-
ate every subset ofVb to be used in the spanning tree and find
one with the minimum cost. The complexity of finding the
directed minimum spanning tree isO(N2) whereN is the
number of nodes in the graph [10]. Hence, the total com-
plexity of the algorithm isO(2|Vb||V|2). In our context, since

11

|Va| is small and|Vb| ≤ |Va|
2 is also small, a brute-force so-

lution is reasonable; otherwise, heuristic/approximation al-
gorithms [6,15] can be applied here.

Execution order of sortings.Each sorting corresponds to a
node in the Steiner tree. When an unfinished sorting is trig-
gered by the query execution, in the path from root to this
node, all unfinished sortings will be conducted one after an-
other to complete the target sorting. If this target sortingis an
internal node of the tree, it is marked after the sorted result
is utilized; otherwise, it is deleted from the tree along with
the deletion of temporary sorting files. As old leaf nodes are
deleted, some internal nodes become new leaves and those
marked ones will be repeatedly deleted until all leaves are
unmarked yet.

5.3 Sort-sharing-aware Query Optimization

The optimization techniques in Section 5.2 can be encapsu-
lated into a post-optimizer, which receives an execution plan
from the original query optimizer, exploits sharing and co-
operation opportunities between the sortings in a cost-based
manner and, whenever possible, generates a cheaper plan
enhanced with the sort sharing techniques. While this two-
phase optimization procedure will be very effective and ef-
ficient, it cannot guarantee that the refined plan still remains
optimal with additional sort sharing consideration. For ex-
ample, the original optimizer may choose hash join over
sort-merge join for a pair of relations, even if the latter may
turn out to be cheaper after applying the sort sharing post-
optimization on the sortings it involves.

In the rest of this section, we discuss how to equip the
standard query optimizer with the ability of sort sharing op-
timization. As such, the whole search space will be enlarged
by the sort sharing extension and an optimal sort-sharing en-
hanced execution plan will be generated via the single-phase
query optimization.

Here we restrict our focus to the system-R [26] style
query optimizer, which is also adopted by PostgreSQL. We
have modified the PostgreSQL optimizer for our experiments.
In Appendix B, we discuss how to extend the Volcano [13]
style query optimizer.

The core of the System-R method is its join enumeration
algorithm, whose input is a connected join graphG= (V,E)
whereV represents the set of relations to be joined, and
each edge inE represents a join predicate between two rela-
tions. During join enumeration, a set ofinteresting proper-
tiesare defined for subplan pruning. The frequent interesting
properties include the total execution cost and interesting or-
ders [26].

Our approach to acquire an optimal sort-sharing-aware
plan forV works as follows. We add a new interesting prop-
erty ipss. For each subsetV ′ ofV, its candidate subplan setP′

are generated with the updated set of interesting properties.
Generally speaking,ipss is used to ensure that a previously
dominated subplansp will now remain inP′ if it could fi-
nally be part of the optimal global sort-sharing-aware plan.
Once the plan setP for V are available, we apply the post-
optimization described in Section 5.2 to each planp in P to
get a sort-sharing enhanced planp+. Finally, the cheapest
p+ is chosen as the final optimal plan forV.

The modeling ofipss can be various and here we de-
scribe one possible modeling. For single table access plan
p, let ipss(p) = 0. A sort operations= sort(T,o) is called
as interesting sortingif T is a multi-instance relation inV.
For a join planp12 = sp1 ⊲⊳ sp2, let ipss(p12) = cost(⊲⊳
) + ipss(sp1) + ipss(sp2)− costs(⊲⊳), wherecost(⊲⊳) is the
cost of the join algorithm evaluation andcosts(⊲⊳) is the total
cost of the interesting sortings introduced by the join algo-
rithm (e.g., sort-merge join). In other words,ipss(p12) is the
reduced plan cost ofp12 after subtracting the costs of all in-
teresting sortings within the plan tree ofp12. For two plans
p12 and p′12, if cost(p12) < ipss(p′12), then p12 is superior
to p′12 in terms ofipss. The intuition behind this modeling
is that, even if all interesting sortings withinp′12’s plan tree
can finally be waived via sort-sharing post-optimization owe
to the case 1 and thus incur no cost,p12 is still cheaper even
without any sort sharing optimization. Such anipss model-
ing is conservative but can guarantee the optimality of the
resultant plan.

The additional optimization overhead incurred byipss

is highly dependent on the number, the distribution and the
physical properties of the relational instances existing in the
join graphG. On the one hand, when there are few instances
in G, we expect the optimization overhead will be negligi-
ble, as not many extra subplans will be reserved during plan
pruning. On the other hand, more instances imply a greater
potential to generate a cheaper sort-sharing-aware execution
plan, and the cost saving in terms of query execution can
easily offset the relatively small cost increase of the query
optimization.

6 Discussions

In this section, we discuss the incorporation of ascending
and descending orders into the sort sharing techniques (Sec-
tion 6.1). We present a dynamic way (Section 6.2) to choose
at runtime the smartest solution for sortings in cases 3 and 4,
instead of the static estimation depending on historical (and
thus possibly inaccurate) statistics. We also study how to ap-
ply cooperative sorting to simultaneously build multiple in-
dices on a table (Section 6.3). Finally, we briefly discuss the
impact of functional dependency and attribute correlationon
sort sharing optimization (Section 6.4).

12

6.1 Ascending/Descending Ordering

Our proposed techniques can be extended to handle the gen-
eral case where a sort order can consist of attributes to be
sorted in a combination of ascending and descending or-
ders. For a sort attributea, leta′ anda′′ denote the ascending
and descending ordering ofa, respectively. We can treata′

anda′′ as two different attributes in sort orders. For two sort
orderso1 ando2, we refer to them as areverse pairif (1)
o1 = o2 when ascending/descending orderings are ignored;
and (2) for each attributea′ (resp.a′′) in o1, the correspond-
ing attribute ino2 is a′′ (resp.a′). Clearly, for a reverse pair,
the result of one order can be easily converted into the result
of the other by a backward scan of the sorted output.

We now revisit the four cases foro1 ando2 with the ad-
ditional consideration of ascending/descending order. Our
discussion is based on the case into which the relationship
betweeno1 ando2 falls if all the sort attributes were to be
sorted in ascending order.

For cases 1 and 2, there must exist a longest pair of
prefixes,o11 and o21, from o1 and o2, respectively, such
that (o11,o21) forms a reverse pair. By using a backward
scan, we can treato11 and o21 as a common prefix; thus,
the result sharing technique is still applicable. For exam-
ple,o1 = (a′,b′′) ando2 = (a′′,b′) still satisfy case 1, while
o1 = (a′,b′) ando2 = (a′′,b′) now satisfy case 2.

For case 3, cooperative sorting is still applicable. For a
composites12 chunk, the ascending/descending orders can
be handled by internal sorting. For a natural chunk, we gen-
erate it as usual with a sorted ordero12. To use this natural
chunk as an initial run ins2, its sort order should beo21 (each
tuple in the chunk has the same value forattrs(o22)). With
a backward scan,o12 ando21 satisfy either case 1 or case
2. Therefore, we can easily convert the order of the natural
chunk on-the-fly fromo12 to o21 when it is merged fors2.

Since case 4 is handled by reducing it to case 3, the dis-
cussion for it is similar to case 3.

6.2 Dynamic Optimization for Cases 3 and 4

Recall that for cases 3 and 4, all the three sorting techniques
(conventional sorting, result sharing, and cooperative sort-
ing) are applicable. The choice of which technique to apply
can actually be determined dynamically at run-time. Note
that all the three techniques share a common step of gen-
erating initials1 sorted runs. After the initials1 runs have
been computed, we have precise information on the number
of distinct o11 values, the number and sizes ofs12 chunks,
and the sizes and distributions of thes12 chunklets among
the s1 initial runs. With this information, we can more ac-
curately determine the cost estimates of the three competing
techniques and choose the most efficient technique to evalu-
ates1 ands2 at run-time.

6.3 Cooperative Index Building

In data-intensive applications, such as decision support and
data warehousing, an important component of physical database
design is selecting the right set of indexes for a given work-
load. The chosen indices are then created in a batched man-
ner. Sometimes it would be beneficial to create multiple in-
dices on the same table. For example, consider a fact table
in a star schema, which contains foreign keys pointing to the
other dimension tables. Each dimension table contains a key
which corresponds to a foreign key of the fact table and is
used for joining with the fact table. As pointed out in [30],
the existence of indices on the foreign keys of the fact table
enables theindex push-downoptimization, which effectively
improves the execution of join queries on the star schema.

Sorting is widely utilized in DBMSs to speed up index
creation. The procedure of building an indexIdx(T,k) for
a tableT with key k is as follows. First, sequentially scan
T’s tuples and extract a listL of index tupleswhere each
index tuple consists of a key value and the tuple identifier.
Second, externally or internally sortL on the sort orderk.
Finally, create the index via bulk loading the index tuples of
the sortedL and each tuple becomes an entry in the index
leaf page.

It is straightforward to exploit cooperative sorting to re-
duce the total index building cost. For two indicesIdx(T,k1)

andIdx(T,k2), wherek1 andk2 satisfy case 3 or case 4, we
make use of cooperative sorting to generate sortedL1 and
L2, which are then bulk loaded separately. We call such a
procedurecooperative index building.

We uses1 (resp.s2) to represent the independent sorting
on orderk1 (resp.k2) and uses12 to represent the coopera-
tive sorting. After completings12, the generateds12 chunks
consist of index tuples containing redundant attributes for k1

and/ork2. Therefore, we need to conduct a step of attribute
projection when scanning and merging theses12 chunks. De-
pending on which casek1 andk2 satisfy, the details of at-
tribute projection are slightly different.

For case 3,attrs(k2) ⊂ attrs(k1). The index tuples in
initial s1 runs will contain attributesattrs(k1). Therefore,
when merging resulteds12 chunks to derive the output of
s2 (i.e., the sortedL2), we remove the redundant attributes
attrs(k1−attrs(k2)).

For case 4, the initials1 runs generated bys12 will con-
tain attributesattrs(k1)∪attrs(k2). As a result, it requires an
attribute projection to remove redundant attributesattrs(k2−

attrs(k1)) from index tuples when deriving the output ofs1

(i.e., the sortedL1); it also requires another attribute pro-
jection to remove redundant attributesattrs(k1−attrs(k2))

when scanning and merging the generateds12 chunks.

13

6.4 Functional Dependency and Attribute Correlation

The functional dependencies existing among relational at-
tributes have been exploited for the purpose ofsort order
reduction[27], which rewrites the order specification of a
sort operation in a simple canonical form by eliminating re-
dundant sort attributes. As such, some sort operations within
the query execution plan become unnecessary and thus can
be removed. Sort order reduction is complementary to sort
sharing optimization, and can be applied separately before
sort sharing optimization.

However, during sort sharing optimization, it would be
beneficial to take functional dependencies into account when
classifying the relationship between two specific sort orders
o1 and o2. For example, supposeo1 = (a,b,d) and o2 =
(b,c). Normally,o1 ando2 would be judged to satisfy case
4 whereo′1 = (a,b,d) ando′2 = (b). However, if there is a
functional dependency{a}→{c}, which means that for any
two tuples with the same attributea values, their attributec
values are also the same, theno1 can be equivalently treated
as(a,c,b,d). As such,o1 ando2 actually satisfy case 3, and
thus can avoid the additional step of sortingb-segmentson
(c) introduced by case 4 foro2.

The correlation among attributes could also contribute
to sort sharing optimization. For example, consider two sort
orderso1 = (a) ando2 = (b). Attributesa andb are highly
correlated so that for any two tuplest1 and t2, if t1 has a
smaller attributea value than that oft2, then it is very proba-
ble (but not guaranteed) thatt1 also has a smaller attributeb
value than that oft2. As a result, after a relationT has been
sorted ono1, T can be viewed asnearlysorted ono2. There-
fore, we can derive the sort output ono2 by directly sorting
the sort output ono1 and hopefully generating longer and
fewer initial sorted runs, which in turn lead to much cheaper
run merge cost.

7 Performance Study

We validated our ideas using a prototype built in PostgreSQL
8.3.5 [1]. All experiments were performed on a Dell work-
station with a Quad-Core Intel Xeon 2.66GHz processor,
8GB of memory, one 500G SATA disk and another 750GB
SATA disk, running Linux 2.6.22. Both the operating system
and PostgreSQL system are built on the 500GB disk, while
the databases are stored on the 750GB disk.

This performance study focused on the effect of coop-
erative sorting. In our implementation, the cooperative sort-
ing is integrated into PostgreSQL as a standard operator. It
adopts k-way merge pattern and is capable of final merge
optimization. For the purpose of fair comparison, we also
converted the run merge pattern of the original sort opera-
tion in PostgreSQL from polyphase to k-way. Moreover, we

modified the PostgreSQL’s optimizer to implement the op-
timization techniques in Section 5.3. By switching between
the original and the new optimizer, we can easily compare
the cost of processing a query under the cooperative sorting
operation against that of the conventional approach based on
two independent sort operations.

7.1 Micro-benchmark Test with TPC-DS Dataset

In this section, we use a micro-benchmark test to compare
the performance of cooperative sorting against two indepen-
dent sort operations. We define a query templateQ:

(select attr1,attr2 from T order by attr1,attr2)
union all

(select attr1,attr2 from T order by attr2)
This template also serves to simulate two queries in a batch.
The execution plan ofQ is a result union (without duplicate
removal) of two sortings,s1 ands2, on the same relational
tableT. The sort orders ofs1 ands2 are(attr1,attr2) and
(attr2) respectively and thus satisfy case 3.

We generate six concrete queries with the above query
template by using three different relations from the TPC-
DS [2] benchmark forT and two different scale factors (de-
noted bySF) to vary the size ofT. The statistical informa-
tion about the three relations, along with their sort attributes,
are shown in Table 2. The scale factorSFvalues used are 40
and 100. Another experimental parameter that we varied is
the available sorting memory dedicated to each sort opera-
tion (denoted byM) with values ranging from 5 MB to 200
MB. The sorting memory values are chosen such that at least
half of them will result in a single run merge step.

We compare the performance of two basic evaluation
techniques for sorting: the conventional technique of using
two independent sortings(denoted by IS) and our proposed
cooperative sorting(denoted by CS). We also enable/disable
the final merge optimization to study the combined effec-
tiveness of this optimization with the basic techniques. We
use CS-OPT and IS-OPT to denote the variants that have the
optimization enabled, and CS and IS to denote the variants
that have the optimization disabled.

Each total execution time reported refers to the total query
evaluation time including the I/O cost of reading the sorted
outputs ofs1 ands2. Each query timing is measured with the
query running alone in the database system; and the operat-
ing system is restarted between queries to clear the system
cache.

7.1.1 General Results

Fig. 6 compares the performance of the four evaluation strate-
gies as a function of the sorting memory size; the compar-
ison for each query is shown on a separate graph. The de-
tailed breakdown of the various cost components for CS and

14

relation attr1 attr2 number of tuples (in million) tuple size (in byte)
web sales ws item sk ws sold time sk 0.72×SF 226

catalogsales cs item sk cs sold time sk 1.44×SF 226
storesales ss item sk ss sold time sk 2.88×SF 164

Table 2 Tested TPC-DS Dataset

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(a) web sales,SF 40

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(b) catalogsales,SF 40

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

15 30 45 60 75 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(c) storesales,SF 40

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

10 25 50 75 100 150

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(d) web sales,SF 100

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(e) catalogsales,SF 100

 0
 400
 800

 1200
 1600
 2000
 2400
 2800
 3200
 3600
 4000
 4400
 4800
 5200

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CS-OPT
CS

IS-OPT
IS

(f) storesales,SF 100

Fig. 6 Performance Comparison on TPC-DS Dataset

IS are shown in Table 4. The meanings of these cost compo-
nents are given in Table 3.

We shall not present detailed query-by-query analysis.
Instead, we will summarize the more interesting findings
here.

First, we observe that CS(-OPT) offers significant per-
formance improvement over IS(-OPT) in many queries. The
savings range from a few seconds to 1,033 seconds which is
achieved by CS-OPT over IS-OPT for the query onstore sales
with M = 50 andSF = 100 in Fig. 6(f). In terms of rela-
tive improvement, the average percentage improvement is
around 25% and the highest improvement is 35% achieved
by CS over IS for the query oncatalogsaleswith M = 30
andSF= 40.

Second, although operating on the same set of initial
runs, the run merge phase ofs12 incurs a higher CPU cost
than that ofs1 due to the additional tuple comparison steps.
Note thatRMcs(s12) does not include the internal sorting
costSCcs(s12). However, in Table 4, for all the six queries,
RMcs(s12) is close to or even less thanRMis(s1). This obser-

notation description

CS

RFcs(s12)
initial run formation cost fors12

(i.e., creating initials1 sorted runs)

RMcs(s12)
run merge cost fors12

(i.e., creatings12 chunks)

RMcs(s2)
run merge cost fors2

(i.e., mergings12 chunks to derives2)

SCcs(s12)
cost of internal sorting to create

initial s12 runs from initials1 runs

SCcs(s1)
cost of internal sorting during

the derivation ofs1 output froms12

IS

RFis(s1)
initial run formation cost fors1

(i.e., creating initials1 sorted runs)

RMis(s1)
run merge cost fors1

(i.e., mergings1 sorted runs)

RFis(s2)
initial run formation cost fors2

(i.e., creating initials2 sorted runs)

RMis(s2)
run merge cost fors2

(i.e., mergings2 sorted runs)

Table 3 Component Costs of CS and IS

vation validates the I/O effectiveness and efficiency of our
batched tuple readingstrategy.

Third, for all the six queries,RFcs(s12), RFis(s1) andRFis(s2)
are more or less the same with any amount of sorting mem-
ory. This is due to the fact that during the initial run for-
mation phase, the reading and writing of tuples to the disk
files are interleaved and the cost of the incurred random I/O
is independent of the size of the sorting memory. On the
other hand,RMcs(s12), RMcs(s2), RMis(s1), andRMis(s2) all
decrease when the sorting memory increases, as the larger
sorting memory makes the run merging more I/O-efficient.

Finally, for all the six relations,SCcs(s12) andSCcs(s2)
increase along with the size of sorting memory. The rea-
son is two-fold: on the one hand, the larger sorting mem-
ory means that more tuples will be combined into compos-
ite chunks/chunklets and more tuples need to be internally
sorted; on the other hand, it is cheaper to independently
sort many smaller composite chunks/chunklets than inde-
pendently sort fewer larger composite chunks/chunklets, as
shown by the analysis of case 2 in Section 3.

7.1.2 Effect of Result Sharing

As discussed at the beginning of Section 4.1, the result shar-
ing technique (denoted by RS) can actually be applied to
evaluate case 3. In this section, we compare the effectiveness
of RS against CS for the six queries. Fig. 7 compares the per-

15

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

5MB 129.25 70.29 59.15 3.45 22.98 127.39 70.90 128.71 54.43
15MB 126.62 69.47 32.57 8.30 23.57 126.36 75.54 125.70 71.79
30MB 129.62 58.64 28.12 11.47 23.80 126.52 60.05 126.24 53.60
45MB 130.18 53.87 27.46 15.45 24.51 129.92 55.22 125.84 53.24
60MB 126.27 47.89 28.81 18.41 24.85 126.23 50.96 129.36 47.61
100MB 125.64 34.90 24.52 22.11 25.32 125.93 49.26 129.59 46.88

web sales,SF 40 TPC-DS Dataset

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

5MB 256.60 221.96 230.49 7.58 45.38 259.03 219.82 255.64 192.93
15MB 260.75 229.75 91.48 16.65 46.29 263.36 188.90 254.87 164.14
30MB 254.66 121.97 58.62 20.65 47.19 257.42 155.15 260.35 136.16
45MB 258.27 149.05 55.25 25.48 47.21 260.98 150.07 258.29 132.78
60MB 255.65 132.31 54.76 32.59 47.71 258.62 137.59 261.16 118.33
100MB 262.61 118.78 51.89 40.62 48.43 261.75 126.01 269.65 106.86

catalogsales,SF 40 TPC-DS Dataset

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

15MB 352.36 934.28 244.45 19.21 70.28 410.03 539.52 399.86 492.84
30MB 377.94 385.95 236.96 28.94 72.11 392.31 399.09 370.46 381.49
45MB 362.83 195.38 224.75 39.27 72.91 351.04 277.77 358.31 259.73
60MB 384.26 291.87 102.73 49.96 73.91 354.45 279.03 384.18 242.23
75MB 377.61 243.56 93.21 64.51 75.17 380.68 256.74 360.36 217.99
100MB 393.62 263.99 99.12 67.59 76.32 385.29 270.82 375.42 232.20

storesales,SF 40 TPC-DS Dataset

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

10MB 491.59 335.56 312.58 12.46 67.81 497.00 354.79 496.74 290.32
25MB 482.22 235.16 181.37 20.17 68.40 482.43 278.31 478.44 242.93
50MB 476.58 219.54 60.73 32.56 70.54 477.87 187.49 466.16 154.08
75MB 483.23 164.60 76.37 46.81 72.64 487.61 177.98 481.98 143.24
100MB 476.82 165.38 70.67 51.36 73.02 477.90 162.51 467.08 143.35
150MB 478.52 133.11 95.14 63.77 78.61 481.79 141.69 472.28 121.95

web sales,SF 100 TPC-DS Dataset

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

50MB 705.38 338.82 565.95 54.38 112.06 703.48 457.27 693.35 419.20
75MB 711.31 398.54 304.16 69.84 119.20 714.88 394.66 694.66 342.41
100MB 715.49 385.83 329.92 77.85 127.05 716.09 395.31 706.47 352.02
125MB 720.86 334.10 330.60 89.33 135.23 723.51 337.24 721.25 319.61
150MB 753.44 312.17 300.76 104.36 147.99 726.86 339.33 703.37 285.73
200MB 726.80 310.83 306.59 107.31 147.15 722.88 335.29 707.18 282.62

catalogsales,SF 100 TPC-DS Dataset

CS IS
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) SCcs(s1) RFis(s1) RMis(s1) RFis(s2) RMis(s2)

50MB 1051.42 1513.20 1204.94 64.11 158.26 1044.71 1474.01 1022.83 1245.96
75MB 999.68 893.91 694.19 78.83 165.50 1052.69 799.03 1048.09 707.88
100MB 976.48 967.27 677.03 91.12 165.33 1026.37 832.70 1047.79 724.80
125MB 1045.31 752.22 689.59 108.00 178.09 1038.55 791.06 1034.95 656.65
150MB 1002.96 614.47 600.49 130.60 187.06 1075.51 739.58 1061.20 601.23
200MB 1079.92 648.63 590.58 152.59 194.64 1043.65 703.66 1048.80 595.02

storesales,SF 100 TPC-DS Dataset

Table 4 Component Costs of Sortings in the Micro-benchmark Test (inseconds)

16

formance of the query on websales withSF40; the compar-
ison for other queries have similar trends and are omitted.

CS
RS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5MB 15MB 30MB 45MB 60MB 100MB

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

Fig. 7 Comparison of CS with RS on websales,SF 40

The results clearly demonstrate that CS significantly out-
performs RS in all sorting memory settings. The performance
of RS is just a little better than IS (see Fig. 6(a)).

7.1.3 Effect of Polyphase Merge Pattern

The original sort operation in PostgreSQL adopts the polyphase
run merge pattern, while we implemented a k-way version
sort operation for performance comparison with cooperative
sorting. It is natural to ask whether changing the merge pat-
tern will affect the conclusions obtained in Section 7.1.1.In
this experiment, we evaluateQ against the 6 tables with the
original sort operation (polyphase IS) and compare the exe-
cution times with our sort operation (k-way IS).

k−way IS
polyphase IS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

5MB 15MB 30MB 45MB 60MB 100MB

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

Fig. 8 Comparison of K-way IS with Polyphase IS on websales,SF
40

Only the results of websales withSF 40 are shown in
Fig. 8. We observe that the performances of polyphase IS
and k-way IS are more or less the same, which demonstrates
that our results hold independent of the merge pattern.

7.2 Micro-benchmark Test with Synthetic Dataset

We also utilize synthetic data to investigate the sensitivity
of CS. We generate synthetic tables following the schema
of thewebsalesrelation in TPC-DS benchmark usingSF=

40; each table has 28.8 million tuples. We run template query
Q defined in the previous section on the synthetic tables to
compare the performance of CS and IS.

7.2.1 Varying Total Number of s12 Chunks

Under CS, there will ben initial runs fors2 if n chunks are
formed bys12. The purpose of this experiment is to learn
how the total number ofs12 chunks will affect the run merge
cost fors2. We vary the numbern of distinct ws item sk

(theo11) values inside aweb salestable. Six values ofn are
used: 15, 25, 50, 100, 150 and 200. A uniform distribution is
used for the values ofws item sk. We fix the sorting mem-
ory to 20MB, so that even whenn is 200 the tuples with the
samews item sk value cannot fit in memory and thus will
form a natural chunk. As a result, there will be a total ofn
natural chunks.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

15 25 50 100 150 200

M
er

ge
 T

im
e

(in
 s

ec
)

Number of Chunks

CS
IS

Fig. 9 Varying Total Number ofs12 Chunks

The experimental result is shown in Fig. 9. The y-axis
denotes the run merge time fors2. With 20MB sorting mem-
ory, the merge orderF is 73. Moreover, the number of initial
runs to merge fors2 under IS is 56. Therefore, with all the
differentn values, the number of merge passes for IS ons2

is always 1 and the merge costs are more or less the same.
As for CS, the merge cost increases significantly whenn be-
comes larger than 73. This is because the number of merge
passes changes from 1 to 2. This confirms the expectation
that when varyingn, the merge costs of CS remain more or
less unchanged as long as the numbers of merge passes re-
quired stay the same. We also notice that with the same num-
ber of merge passes, the merge cost of CS is always lower
than that of IS, which is consistent with the observation in
the micro-benchmark test.

17

7.2.2 Varying Number of Composite s12 Chunks

In this experiment, we examine the contributions of internal
sorting cost to the total CS cost. These internal sortings are
applied to composite chunklets and chunks. We fix the total
numberm of chunks generated and vary the numbern of
composite chunks. We set the sorting memory to 50 MB and
m to 55. Five values ofn are used: 0, 13, 27, 42 and 55.

 0

 50

 100

 150

 200

 250

 300

0 13 27 42 55

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Number of Composite Chunks

internal sorting
CS

Fig. 10 Varying Number of Composites12 Chunks

Fig. 10 shows the internal sorting cost as well as the
overall CS cost. As expected, the internal sorting cost in-
creases along with the number of composite chunks. When
all the 55 chunks become composite, this cost takes 20% of
the total CS cost.

7.3 Performance of Cooperative Index Building

We run another test to compare the performance of coop-
erative sorting against two independent sort operations for
index creation. To achieve this, we create a primary key
index idx1 = Idx(T,key1) as well as a foreign key index
idx2 = Idx(T,key2) on a tableT. The index keyskey1 and
key2 satisfy case 4.

We generated twelve concrete queries by using six dif-
ferent relations from the TPC-DS benchmark forT and two
different scale factors (denoted bySF) to vary the size of
T. The statistical information about the six relations, along
with the index keys, are shown in Table 5. The scale fac-
tor SF values used are 40 and 100. Another experimental
parameter that we varied is the available sorting memory
dedicated to each sort operation (denoted byM) with values
ranging from 1 MB to 200 MB.

We compare the performance ofnormal index building
using two independent sortings (denoted by NIB) and our
proposedcooperative index buildingusing cooperative sort-
ing (denoted by CIB). We always enable the final merge op-
timization as it is desirable during index creation. However,
for the cooperative sortings12, when the number of initial

s1 runs generated is no more than the merge orderF , we
disable the final merge optimization for a cheaper cost.

Each total execution time reported refers to the total query
evaluation time including the cost of bulk loading the sorted
outputs ofs1 ands2.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(a) web returns,SF 40

 0

 10

 20

 30

 40

 50

1 3 5 7 9 11

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(b) catalogreturns,SF 40

 0

 20

 40

 60

 80

 100

 120

1 4 7 10 13 16

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(c) storereturns,SF 40

 0
 40
 80

 120
 160
 200
 240
 280
 320
 360
 400

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(d) web sales,SF 40

 0

 100

 200

 300

 400

 500

 600

 700

 800

5 15 30 45 60 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(e) catalogsales,SF 40

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300

15 30 45 60 75 100

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(f) storesales,SF 40

Fig. 11 Performance Comparison on TPC-DS Dataset, withSF 40

Figs. 11 and 12 compare the performance of CIB and
NIB as a function of the sorting memory size; the compar-
ison for each query is shown on a separate graph. The de-
tailed breakdown of the various cost components for CIB
and NIB are shown in Tables 7 and 8. The meanings of these
cost components are given in Table 6. If a specific merge
step is skipped because of final merge optimization, the cor-
responding entry value (RMcs(s2) or RMis(s1)) in Tables 7
and 8 is marked as zero. Note that for every row in Tables 7
and 8,RMis(s2) is always zero and is thus omitted. Due to
space limitation,SCcs(s1) is not separately listed but merged
into LDcs(s1). For each row in Tables 7 and 8, ifRMis(s1) is
zero, it means that there is only one merge level for the ini-
tial s1 runs ands12 does not apply final merge optimization
as stated above.

First, even though sorting is just a part of the index build-
ing procedure, CIB still offers significant performance im-
provement over NIB for most queries. The savings range
from a few seconds to 683 seconds which is achieved for the
query onstore saleswith M = 100 andSF= 100 in Fig. 12.
In terms of relative improvement, the average percentage

18

relation key1 key2 number of tuples (in million) tuple size (in byte)
web returns (wr item sk, wr order number) wr returned time sk 0.072×SF 150

catalogreturns (cr item sk, cr order number) cr returned time sk 0.144×SF 162
storereturns (sr item sk, sr ticket number) sr returned time sk 0.288×SF 134

web sales (ws item sk, ws order number) ws sold time sk 0.72×SF 226
catalogsales (cs item sk, cs order number) cs sold time sk 1.44×SF 226
storesales (ss item sk, ss ticket number) ss sold time sk 2.88×SF 164

Table 5 TPC-DS Dataset for Comparing Performance of Index Construction

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 3 5 7 9 11

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(a) web returns,SF 100

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

1 5 9 13 17 21

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(b) catalogreturns,SF 100

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 6 11 16 21 26

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(c) storereturns,SF 100

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

10 25 50 75 100 150

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(d) web sales,SF 100

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(e) catalogsales,SF 100

 0
 300
 600
 900

 1200
 1500
 1800
 2100
 2400
 2700
 3000
 3300
 3600
 3900

50 75 100 125 150 200

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Sorting Memory (in MB)

CIB
NIB

(f) storesales,SF 100

Fig. 12 Performance Comparison on TPC-DS Dataset, withSF 100

improvement is around 24% and the highest improvement is
37% achieved for the query oncatalogreturnswith M = 9
andSF = 100 in Fig. 12. The main reason for such perfor-
mance gain is due to the fact that the sorting time is always
much higher than the subsequent bulk loading time.

Second, there are some trends similar to those in the pre-
vious micro-benchmark test (Section 7.1). For all queries,
RFcs(s12), RFis(s1) andRFis(s2) are always more or less the
same with any amount of sorting memory. For all tables,
SCcs(s12) andSCcs(s1) increase along with the size of sort-
ing memory.

Third, for all queries that require more than one merge
level for the initials1 runs (i.e.,RMis(s1) 6= 0), RMcs(s12)

(resp.LDcs(s1)−SCcs(s1)) is close to or even less than the
correspondingRMis(s1) (resp.LDis(s1)). This is due to the
I/O effectiveness and efficiency of ourbatched readingstrat-
egy. Note thatRMcs(s12) does not include the internal sort-
ing costSCcs(s12).

notation description

CIB

RFcs(s12)
initial run formation cost fors12

(i.e., creating initials1 sorted runs)

RMcs(s12)
run merge cost fors12

(i.e., creatings12 chunks)

RMcs(s2)
run merge cost fors2

(i.e., mergings12 chunks to derives2)

SCcs(s12)
cost of internal sorting to create

initial s12 runs from initials1 runs

SCcs(s1)
cost of internal sorting during

the derivation ofs1 output froms12

LDcs(s1)
cost of deriving and bulk-loading

output ofs1 to build idx1

LDcs(s2)
cost of deriving and bulk-loading

output ofs2 to build idx2

NIB

RFis(s1)
initial run formation cost fors1

(i.e., creating initials1 sorted runs)

RMis(s1)
run merge cost fors1

(i.e., mergings1 sorted runs)

RFis(s2)
initial run formation cost fors2

(i.e., creating initials2 sorted runs)

RMis(s2)
run merge cost fors2

(i.e., mergings2 sorted runs)

LDis(s1)
cost of deriving and bulk-loading

output ofs1 to build idx1

LDis(s2)
cost of deriving and bulk-loading

output ofs2 to build idx2

Table 6 Component Costs of CIB and NIB

Fourth, for most tables, in terms of the total cost of run
merge plus bulk loading fors2, CIB’s cost is higher than
NIB’s cost when the sorting memory size is small, i.e.,RMcs(s2)

+ LDcs(s2) > RMis(s2) + LDis(s2). This is expected as CIB
is operating on a larger set ofs2 data and generates more ini-
tial s2 runs to merge than NIB. However, when the sorting
memory increases, the difference between these two costs
decreases, and eventually the cost in CIB is even cheaper
than the cost in NIB.

7.4 Query Processing with Sort Sharing

So far, we have evaluated cooperative sorting for the basic
scenario of processing two sort operations on different or-
ders. In this section, we evaluate the effectiveness of sort
sharing techniques and the enhanced sort-sharing-aware query
optimizer when executing queries. We generate a synthetic

19

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 12.17 1.67 3.16 0.38 4.90 2.58 12.35 1.84 12.56 5.26 2.31
2MB 12.15 1.08 4.74 0.65 3.46 2.42 12.40 1.21 12.46 3.81 2.14
3MB 12.12 1.33 2.34 0.77 4.80 2.43 12.66 1.56 11.92 3.80 2.47
4MB 12.53 2.05 0.88 0.91 4.76 2.89 12.04 1.66 12.00 3.16 2.79
5MB 12.18 1.52 0.97 0.90 4.71 2.16 12.61 1.84 12.18 3.79 2.33
6MB 12.01 1.65 0.92 1.04 4.41 2.46 13.09 0.0 12.34 4.30 2.45

web returns,SF 40 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 19.07 3.85 10.53 0.66 4.77 3.73 19.39 3.74 17.88 5.98 3.74
3MB 18.96 2.67 3.69 1.11 8.02 4.65 18.13 3.00 18.02 7.54 4.15
5MB 20.31 3.61 1.90 1.52 7.94 4.79 19.28 4.09 19.50 6.37 4.98
7MB 19.40 3.84 2.01 1.93 10.28 4.55 18.75 4.85 18.99 6.01 4.29
9MB 19.05 4.03 1.91 2.01 8.77 4.69 20.02 0.0 19.15 6.11 3.44
11MB 19.85 3.72 0.0 2.04 9.26 6.14 19.14 0.0 19.85 6.00 3.68

catalogreturns,SF 40 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 39.76 15.53 21.52 1.37 11.62 8.89 39.96 15.41 42.29 12.54 5.76
4MB 42.90 5.96 9.94 2.33 13.23 7.69 40.42 6.76 41.27 10.68 5.96
7MB 40.07 7.65 4.00 2.80 18.80 7.34 42.76 10.17 39.85 10.60 7.14
10MB 39.28 8.64 4.44 3.04 15.45 7.34 39.27 10.79 39.87 11.93 6.82
13MB 40.49 8.44 5.00 3.36 10.81 7.17 42.56 0.0 39.61 14.34 9.93
16MB 41.20 8.21 0.0 3.81 12.25 8.29 40.13 0.0 42.36 16.55 9.10

storereturns,SF 40 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

5MB 114.82 42.92 21.38 3.75 36.72 37.79 122.94 50.88 121.70 31.09 31.65
15MB 118.25 37.73 12.19 8.37 48.49 28.39 122.58 61.13 122.55 29.07 31.81
30MB 114.79 46.11 0.0 11.92 38.00 26.29 124.16 0.0 123.13 65.71 31.46
45MB 121.06 46.90 0.0 13.42 34.97 22.50 123.30 0.0 129.82 56.49 27.42
60MB 121.00 40.29 0.0 16.16 31.37 22.16 119.95 0.0 121.78 50.88 31.87
100MB 120.71 38.80 0.0 22.60 30.42 21.39 120.30 0.0 122.86 46.29 29.64

web sales,SF 40 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

5MB 242.68 132.64 137.28 6.94 86.53 80.35 251.62 144.24 250.50 47.85 63.00
15MB 248.14 122.63 32.24 16.41 88.32 73.82 244.54 125.28 243.98 57.23 63.78
30MB 243.26 81.99 26.56 23.51 69.05 66.49 227.69 0.0 229.18 112.56 55.81
45MB 243.86 110.16 0.0 28.42 68.74 50.27 226.68 0.0 227.72 141.63 56.25
60MB 244.23 97.42 0.0 34.17 63.00 50.71 244.42 0.0 242.53 104.58 59.26
100MB 245.17 85.09 0.0 48.15 61.91 45.87 243.59 0.0 244.63 98.61 60.58

catalogsales,SF 40 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)
15MB 357.17 376.00 56.68 18.42 172.56 156.89 362.11 229.02 354.70 150.13 114.50
30MB 394.37 225.36 64.21 29.86 201.09 151.49 353.83 257.54 356.87 140.07 123.38
45MB 364.07 172.20 69.11 33.98 140.53 130.42 384.02 0.0 367.14 263.73 128.57
60MB 389.42 240.03 0.0 47.61 136.47 107.93 384.39 0.0 353.24 279.82 121.23
75MB 391.61 240.29 0.0 58.01 141.05 108.65 359.72 0.0 354.20 277.25 120.84
100MB 390.97 200.70 0.0 70.37 144.21 108.10 363.89 0.0 351.61 245.71 111.46

storesales,SF 40 TPC-DS Dataset

Table 7 Component Costs of CIB and NIB withSF 40 (in seconds)

database with three relationsEmployee(id, name, countryid,
supervisorid), Sales(employeeid, item id, quantity, profit)
andItem(id, name). Employee records the information of

salespersons and has 10 million 32-byte tuples,Sales records
the sale transactions and has 50 million 12-byte tuples and

20

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 31.48 7.51 11.25 1.04 5.26 4.45 31.91 6.59 32.04 6.28 4.50
3MB 32.91 3.30 11.17 1.55 6.17 5.77 31.43 3.29 32.39 8.56 4.77
5MB 32.21 3.98 5.22 1.84 9.63 6.04 32.04 4.72 31.58 7.13 5.18
7MB 32.08 4.62 2.65 2.50 11.14 6.07 31.73 5.71 32.06 7.63 4.89
9MB 32.09 4.79 2.57 2.65 9.69 6.37 33.86 0.0 32.97 7.84 3.16
11MB 33.32 4.98 2.78 2.84 6.95 4.56 32.52 0.0 32.94 7.77 3.21

web returns,SF 100 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 72.09 24.75 25.88 1.83 15.78 10.64 70.06 24.38 71.50 14.13 8.33
5MB 69.96 13.01 10.10 2.85 17.78 12.37 71.73 12.77 70.36 12.35 7.59
9MB 64.80 14.71 5.33 3.77 18.95 11.31 72.77 18.21 70.64 13.81 12.19
13MB 69.73 14.96 5.73 4.99 17.60 10.68 71.93 0.0 72.94 23.74 12.14
17MB 69.61 14.04 0.0 5.47 16.76 12.98 71.41 0.0 68.80 21.22 11.99
21MB 72.55 13.79 0.0 6.00 17.24 10.28 70.43 0.0 72.77 22.40 13.04

catalogreturns,SF 100 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)

1MB 119.64 65.80 70.51 2.84 38.58 27.45 122.96 77.21 119.67 27.94 27.37
6MB 122.45 51.49 27.87 3.89 35.98 24.98 119.46 36.36 121.23 29.65 26.42
11MB 119.78 45.89 16.56 5.65 36.27 23.23 120.42 44.74 122.27 27.82 26.01
16MB 123.37 45.95 12.20 7.63 37.71 24.77 122.79 0.0 121.99 57.61 23.74
21MB 120.31 45.31 12.08 8.54 34.67 28.62 122.44 0.0 119.80 55.89 28.44
26MB 121.33 47.55 0.0 9.05 30.58 21.90 120.69 0.0 118.96 59.74 22.27

storereturns,SF 100 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)
10MB 367.37 185.29 64.86 28.33 115.41 72.73 367.88 130.74 353.44 76.76 67.55
25MB 366.31 101.06 35.17 36.52 147.14 63.19 364.42 140.74 367.71 74.39 74.51
50MB 366.29 134.47 0.0 49.96 109.81 62.53 367.67 0.0 367.48 161.26 75.56
75MB 353.53 107.97 0.0 62.23 119.55 68.41 366.20 0.0 365.19 145.66 74.17
100MB 355.73 98.76 0.0 87.97 105.77 62.54 367.09 0.0 368.00 131.01 75.88
150MB 367.23 95.03 0.0 110.87 113.11 64.53 365.35 0.0 364.66 117.61 75.23

web sales,SF 100 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)
50MB 684.11 286.07 0.0 54.49 194.25 139.52 700.05 0.0 701.99 318.83 166.82
75MB 699.00 306.33 0.0 73.87 191.15 146.53 698.60 0.0 698.12 346.95 167.25
100MB 692.16 255.92 0.0 83.69 191.43 131.78 696.26 0.0 698.25 300.61 166.82
125MB 691.51 239.11 0.0 100.66 192.40 141.00 696.13 0.0 698.65 284.29 166.21
150MB 697.67 252.29 0.0 112.42 196.01 137.42 698.40 0.0 701.03 284.75 167.67
200MB 698.56 214.58 0.0 121.02 209.85 133.78 702.50 0.0 700.29 250.96 149.78

catalogsales,SF 100 TPC-DS Dataset

CIB NIB
Memory RFcs(s12) RMcs(s12) RMcs(s2) SCcs(s12) LDcs(s1) LDcs(s2) RFis(s1) RMis(s1) RFis(s2) LDis(s1) LDis(s2)
50MB 1021.32 616.76 353.91 72.12 635.09 359.47 1025.74 832.74 1033.73 359.41 343.69
75MB 1022.98 448.50 361.05 85.49 457.38 430.03 1025.55 0.0 1026.94 717.00 308.64
100MB 959.97 629.48 0.0 103.33 453.39 408.62 973.20 0.0 1024.31 933.09 305.94
125MB 991.77 820.71 0.0 115.40 430.16 413.82 978.07 0.0 983.09 714.52 316.50
150MB 977.85 588.76 0.0 145.80 460.39 417.66 1025.25 0.0 951.52 696.81 266.49
200MB 1000.33 502.42 0.0 164.53 431.94 413.46 972.06 0.0 942.63 634.19 300.10

storesales,SF 100 TPC-DS Dataset

Table 8 Component Costs of CIB and NIB withSF 100 (in seconds)

Item records the products in transactions and has 10 million
24-byte tuples.

We evaluate two queries on this database:
Q1: Find the name of each salesperson and its supervisor.

select A.id, A.name, B.id, B.name

21

from Employee A, Employee B
where B.id = A.supervisorid

Q2: Find each salesperson who has sold more than 1000
units of a product in a single transaction or his supervisor
has done so.

(select A.id, A.namefrom Employee A, Sales B
where A.id = B.employeeid and B.quantity> 1000)
union all

(select A.id, A.namefrom Employee A, Sales B
where A.supervisorid = B.employeeid
and B.quantity> 1000)

MergeJoin

Sort
(on id)

Sort
(on supervisor_id)

Scan Scan

Employee Employee

(a) Q1

MergeJoin

Sort
(on employee_id)

Sort
(on id)

Scan Scan

Employee Sales

MergeJoin

Sort
(on employee_id)

Sort
(on supervisor_id)

Scan Scan

Employee Sales

Append

(b) Q2

Fig. 13 The Optimal Plans for Q1 and Q2 by the Original PostgreSQL
Optimizer

With 50MB sorting memory, the optimal plans gener-
ated by the original PostgreSQL optimizer for these two
queries are shown in Fig. 13.

enhanced plan
conventional plan

 0

 100

 200

 300

 400

 500

 600

 700

Q1 Q2

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Queries

Fig. 14 Query Execution Times of Q1 and Q2

We also optimize Q1 and Q2 with our enhanced Post-
greSQL optimizer. The resultant optimal plans enable the
cooperative sorting between two instances ofEmployee in
both Q1 and Q2. For Q2, the plan also skips one redundant
sort onSales via result sharing for case 1 and thus saves
about another 90 seconds’ time. The comparison of the over-
all query execution times are shown in Fig. 14. The results
clearly show that both queries can be processed in lesser
time with sort sharing techniques.

We then study the potential benefit of enriching the op-
timizer search space with sort sharing. In PostgreSQL, each
sorting and hashing operation has a dedicated operator mem-
ory. We vary this operator memory and compare various ex-
ecution plans for Q1: Hybrid Hash Join (HHJ), Sort Merge
Join (SMJ) and Sort Merge join with Cooperative Sort (SMJ-
CS).

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

5 10 15

E
xe

cu
tio

n
T

im
e

(in
 s

ec
)

Operator Memory (in MB)

SMJ-CS
SMJ
HHJ

Fig. 15 Plans Considered During Query Optimization for Q1

Fig. 15 shows the candidate plans considered during op-
timizing Q1, along with their actual execution times (we
force the execution of a non-optimal plan). Besides the SMJ
and HHJ that are enumerated by the original PostgreSQL
optimizer, our enhanced PostgreSQL optimizer also mea-
sures SMJ-CS. When the operator memory is 15MB, both
the original optimizer and our enhanced optimizer gener-
ate the same optimal HHJ plan. However, when the operator
memory is 5MB or 10MB, the SMJ-CS is recognized by our
enhanced optimizer as the optimal plan, instead of the SMJ
or HHJ recognized by the original optimizer.

8 Related Work

Sorting is one of the most extensively studied problems in
computing. Knuth’s classical text [17] provides extensive
coverage of the fundamentals of sorting, including both re-
placement selection for run formation and run merge pat-
terns.

Standard replacement selection produces runs twice the
size of memory on average. There have been several efforts

22

to increase the run length further ([7,9,28]). Larson [19]
introduced a cache-aware replacement selection that works
for various length keys. There are also many techniques to
speed up the run merge phase ([31–33]), focusing on how to
improve I/O performance during the merge phase because
this phase is typically I/O bound. These techniques are how-
ever complementary to our batched tuple reading strategy,
which relies more on the pre-collected knowledge about in-
put data distribution. Our current implementation only ap-
plies simple forecasting technique to read the type-3 tuple
batches. But it is possible to incorporate other optimiza-
tion techniques like double buffering [17], read-ahead [32],
etc. Much research has been done on adaptive sorting [8]
exploiting near-sortedness. The survey [12] by Graefe dis-
cussed how sorting is implemented in database systems with
many tricks and optimizations. Specifically, [12] identified a
special instance of case 3, whereo1 = (a,b) ando2 = (b),
and pointed out that the sorting ono2 can be evaluated by
directly merging the output of the sorting ono1, which is
exactly the same as we discuss at the beginning of Sec-
tion 4.1. However, neither analytical nor experimental study
on the effectiveness of the proposed approach were con-
ducted. Moreover, [12] did not generalize this special in-
stance to the general case 3.

Simmen et al. [27] described how to determine the or-
dering propagation from the inputs to the outputs of joins,
based on functional dependencies and selection conditions.
As such, some sort operations within the query execution
plan become redundant and thus can be removed. Their work
was followed and extended by [20,29,21], which are all in-
dependent and complementary to our work.

In [14], Sudarshan et al. observed that the order require-
ments of operators are often partially satisfied by the inputs.
They proposed to maximize the benefit of such partial sort
order by modifying the standard replacement selection algo-
rithm and improving the selection of interesting orders. We
instead consider the opportunity of partial sort sharing be-
tween two distinct sort operations. To some extent, [14] and
our work are complementary to each other. A similar idea
to partial sorting was considered previously in [3] for the
CUBE operator, which computes group-bys corresponding
to all possible combinations of a list of attributes. Consider
two group-bysB= {a1,a2, . . . ,a j} andS= {a1,a2, . . . ,al−1,
al+1, . . . ,a j}. With sort-based aggregation, the result ofB
can be viewed as a concatenation of one or morepartitions
and the result ofS is the union of independently computing
aggregation within each partition.

Finally, there have been a few previous work on optimiz-
ing multiple scans on the same table, such asMAPLE [4] and
cooperative scan[34].

9 Conclusion

In this paper, we have examined the problem of sorting a
relational table on multiple sort orders. Such collectionsof
sortings are common in many applications. We have identi-
fied several cases in which the (partial) work done in sorting
a table on a particular order can be re-used for a subsequent
sort of the same table on a different order. We proposed the
cooperative sorting technique to efficiently handle sorting of
a table on two orders. We also proposed optimization tech-
niques to exploit sort sharing in a traditional query evalu-
ation plan. We have implemented our techniques in Post-
greSQL, and our extensive performance study indicated a
significant performance gain over the naive strategy of pro-
cessing each sorting independently.

AcknowledgementsThis research is supported in part by
NUS Grant R-252-000-271-112.

References

1. Postgresql Offical Website.http://www.postgresql.org/.
2. TPC BENCHMARK Decision Support.http://www.tpc.org/

tpcds/.
3. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton,

R. Ramakrishnan, and S. Sarawagi. On the computation of multi-
dimensional aggregates. InVLDB, 1996.

4. Y. Cao, G. C. Das, C.-Y. Chan, and K.-L. Tan. Optimizing com-
plex queries with multiple relation instances. InSIGMOD, 2008.

5. M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. To-
wards estimation error guarantees for distinct values. InPODS,
2000.

6. M. Charikar, C. Chekuri, Z. Dai, A. Goel, S. Guha, and M. Li.Ap-
proximation algorithms for directed steiner problems. InJournal
of Algorithms, pages 73–91, 1999.

7. R. Dinsmore. Longer strings for sorting.Comm. ACM, 8(1):48,
1965.

8. V. Estivill-Castro and D. Wood. A survey of adaptive sorting algo-
rithms. ACM Computing Surveys (CSUR), 24(4):441–476, 1992.

9. W. Frazer and C. Wong. Sorting by natural selection.Communi-
cations of the ACM, 15(10):910–913, 1972.

10. L. Georgiadis. Arborescence optimization problems solvable by
edmonds’ algorithm. Theor. Comput. Sci., 301(1-3):427–437,
2003.

11. P. B. Gibbons. Distinct sampling for highly-accurate answers to
distinct values queries and event reports. InVLDB, 2001.

12. G. Graefe. Implementing sorting in database systems.ACM Com-
put. Surv., 38(3):10, 2006.

13. G. Graefe and W. J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. InICDE, 1993.

14. R. Guravannavar and S. Sudarshan. Reducing order enforcement
cost in complex query plans. InICDE, 2007.

15. M.-I. Hsieh, E. H.-K. Wu, and M.-F. Tsai. Fasterdsp: A faster
approximation algorithm for directed steiner tree problem. J. Inf.
Sci. Eng., 22(6):1409–1425, 2006.

16. R. M. Karp. Reducibility among combinatorial problems.In Com-
plexity of Computer Computations, pages 85–103. Plenum Press,
1972.

17. D. E. Knuth. The art of computer programming, volume 3: (2nd
ed.) sorting and searching. Addison-Wesley, 1998.

18. R. P. Kooi. The optimization of queries in relational databases.
PhD thesis, Case Western Reserve University, 1980.

23

19. P. Larson. External sorting: Run formation revisited.IEEE
Transactions on Knowledge and Data Engineering, 15(4):961–
972, 2003.

20. T. Neumann and G. Moerkotte. A combined framework for group-
ing and order optimization. InVLDB, 2004.

21. T. Neumann and G. Moerkotte. An efficient framework for order
optimization. InICDE, 2004.

22. V. Pai and P. Varman. Prefetching with multiple disks forexternal
mergesort: simulation and analysis. InICDE, 1992.

23. N. Roussopoulos. View indexing in relational databases. ACM
Trans. Database Syst., 7(2):258–290, 1982.

24. P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficientand
extensible algorithms for multi query optimization. InSIGMOD,
2000.

25. B. Salzberg. Merging sorted runs using large main memory. Acta
Informatica, 27(3):195–215, 1989.

26. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. InSIGMOD, 1979.

27. D. Simmen, E. Shekita, and T. Malkemus. Fundamental tech-
niques for order optimization. InSIGMOD, 1996.

28. T. Ting and Y. Wang. Multiway replacement selection sortwith
dynamic reservoir.The Computer Journal, 20(4):298–301, 1977.

29. X. Wang and M. Cherniack. Avoiding sorting and grouping in
processing queries. InVLDB, 2003.

30. A. Weininger. Efficient execution of joins in a star schema. In
SIGMOD, 2002.

31. W. Zhang and P. Larson. Dynamic memory adjustment for exter-
nal mergesort. InVLDB, 1997.

32. W. Zhang and P.-A. Larson. Buffering and read-ahead strategies
for external mergesort. InVLDB, 1998.

33. L. Zheng and P. Larson. Speeding up external mergesort.IEEE
Transactions on Knowledge and Data Engineering, 8(2):322–332,
1996.

34. M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Cooperative
scans: Dynamic bandwidth sharing in a DBMS. InVLDB, 2007.

APPENDIX

A The Proof of Theorem 1

In this section, we provide the proof of Theorem 1 in Section 5.1. The
proof is based on induction. We first analyze the performanceof 3-
way and 4-way cooperative sorting and compare them with the alter-
native realizations using 2-way cooperative sorting. Subsequently, we
generalize the analysis tok-way cooperative sorting fork≥ 3. For sim-
plicity, we assume the permutation ofS is s1s2 · · ·sk and leto′i denote
((o1 ·o2) ·o3) · ... ·oi.

The figures below represent the execution plans of differentcoop-
erative sortings. Each node represents the set of tuples in relation T
associated with a specific tuple arrangement. Each directededge rep-
resents an operation which reorganize the tuples of one nodeto derive
another node. The edges are annotated with the I/O costs of opera-
tions. Besides the I/O costs, we also explicitly count in twotypes of
non-trivial CPU costs incurred by cooperative sortings, i.e. the cost
of internally sorting the composite chunklets within initial sorted runs
during the intermediate sort operations12 and the cost of internally
sorting the composite chunks ofs12 to derives1. We assume that CPU
costs of the same type are universally equal.

Analysis of 3-way cooperative sorting. Fig. 16 shows an execution
plan of 3-way cooperative sorting. The tableT is first sorted into initial
runs ono′3 = o1 · o2 · o3, which are then separately fed into the two
intermediate sort operationss′2 ands′3. Finally, s1 and s2 are derived
from s′2, while s3 is derived froms′3.

3’s

2s1s 3s

o .
1 o .o2

2’s

T

3

2B

0

initial runs of .oo1
. o2 3

F F

2B log (B/2M)F

2B log (N)1 2B log (N)2

2B log (B/2M)F

Fig. 16 The Execution Plan of 3-way Cooperative Sorting

The cost of generating initial sorted runs ono′3 is 2×B, where
B is the total number of blocks of tuples inT (i.e., B = B(T)). The
costs ofs′2 and s′3 are both 2×B×⌈logF

B
2M ⌉ plusCis, which is the

cost of performing internal sortings on composite chunklets within the
initial runs.s1 can be derived froms′2 with the costCs′2→s1

of perform-
ing internal sortings for all the composite chunks ofs′2, and s2 can
be produced by the chunk merging procedure (Section 4.1) from s′2
with a cost 2×B×⌈logF N1⌉, whereN1 is the number of chunks of
s′2. s3 is computed by a chunk merge procedure froms′3 with a cost
2×B×⌈logFN2⌉, whereN2 is the number of chunks ofs′3. Hence, the
total cost of 3-way cooperative sorting is

2×B× (1+2×⌈logF
B

2M
⌉+ ⌈logF N1⌉+ ⌈logF N2⌉)

+2×Cis +Cs′2→s1

(8)

T

2B

o .
1 o2

’s2

T

2B

o3o1
. o2

initial runs of

2s1s

s3

0

2B log (B/2M) 2B log (B/2M)FF

F2B log (N)1

Fig. 17 The Alternative Execution Plan of 2-way Cooperative Sorting

We compare this execution plan with another plan that is based
on 2-way cooperative sorting depicted in Fig. 17, wheres1 ands2 are
derived from the intermediate sort operations′2 of a 2-way cooperative
sorting, ands3 is a normal external sorting. The total cost of this plan
is

2×B× (2+2×⌈logF
B

2M
⌉+ ⌈logF N1⌉)+Cis +Cs′2→s1

(9)

The difference obtained by subtracting Eqn. 9 from Eqn. 8 is:2×
B×(⌈logF N2⌉−1)+Cis, which is always non-negative. Hence, 3-way
cooperative sorting is no cheaper than its alternative realizations using
2-way cooperative sorting.

Analysis of 4-way cooperative sorting. A similar analysis can be de-
rived to compare the performance of 4-way cooperative sorting with
2-way cooperative sorting.

24

3o. .o3
.o4o1 o2

.

4’s2’s

2s1s

3’s

3s

T

2B

initial runs of o .
1 o2

.o4

s4

0 2B log (N)

2B log (B/2M)F

F F 2B log (N)F

2B log (B/2M)F

1
2B log (N)2

2B log (B/2M)F

3

Fig. 18 The Execution Plan of 4-way Cooperative Sorting

T

2B

o .
3 o4 o3

. o

’sa

3s 4s

T

2B

o .
1 o2o1

. o2

initial runs of

’s2

2s1s

initial runs of
4

0

2B log (B/2M)F

F 0 F
2B log (N)1 2B log (N)4

2B log (B/2M)F

Fig. 19 The Alternative Execution Plan of 2-way Cooperative Sorting

The execution plan of 4-way cooperative sorting is shown in Fig. 18.
The tableT is first sorted into initial runs ono′4 = o1 ·o2 ·o3 ·o4, which
are then separately fed into the three intermediate sort operationss′2, s′3
ands′4. Finally,s1 ands2 are derived froms′2, s3 is derived froms′3 and
s4 is derived froms′4. Ni (i ∈ {1,2,3}) is the number of chunks ofs′i .
The total cost of this execution plan is

2×B× (1+3×⌈logF
B

2M
⌉+ ⌈logFN1⌉+ ⌈logFN2⌉

+⌈logFN3⌉)+3×Cis +Cs′2→s1

(10)

The alternative execution plan that utilizes binary cooperative sort-
ing is depicted in Fig. 19. In this plan,s′a is the intermediate sort op-
eration for the cooperative sorting betweens3 ands4 whereN4 is the
number of chunks ofs′a. s1 ands2 are still derived from the intermediate
sort operations′2. The total cost of this plan is

2×B× (2+2×⌈logF
B

2M
⌉+ ⌈logFN1⌉+ ⌈logFN4⌉)

+2×Cis +Cs′2→s1
+Cs′a→s3

(11)

whereCs′a→s3
is the cost of internally sorting composite chunks ofs′a

to derives3.
The difference obtained by subtracting Eqn. 11 from Eqn. 10 is

2×B× (⌈logF
B

2M
⌉+ ⌈logF N2⌉+ ⌈logF N3⌉−⌈logF N4⌉

−1)+Cis−Cs′a→s3

(12)

First of all, we assume that the value of|Cis−Cs′a→s3
| is negligible

compared to the dominant I/O cost.
Note that eacho31-segmentof s′a consists of one or multipleo′41-

segmentsof s′4. With this constraint, the maximum possible value of
N4/N3 is achieved when all chunks ofs′a ands′4 are composite. In this

case,N4 = 2∗B
M (the upper bound of total number of chunks possible)

andN3 = B
M (the lower bound of the total number of chunks possible).

Since the merge orderF is at least 2,⌈logF N4⌉−⌈logF N3⌉ ≤ 1.
Therefore, the minimum value of Eqn. 12 is 2×B× (⌈logF

B
2M ⌉+

⌈logFN2⌉−2), which is always non-negative. This means that 4-way
cooperative sorting is no cheaper than its alternative realizations using
2-way cooperative sorting.

Analysis of k-way cooperative sorting. The generalized execution
plan of k-way cooperative sorting as well as the alternative plan with
cooperative sorting are depicted in Fig. 20 and Fig. 21, respectively.
In Fig. 21, sai is the intermediate sort operation for the cooperative
sorting betweensi andsi+1.

As shown, the plan in Fig. 20 is composed of three parts: part 1
represents equivalently a 2-way cooperative sorting betweens1 ands2;
part 2 is the derivation ofs3 to sk−1 (or sk, if k is even) from their corre-
sponding intermediate sort operations; part 3 contains thederivation of
sk if k is odd. Both part 2 and part 3 are probably but always exclusively
empty.

Similarly, the plan in Fig. 21 also consists of three parts: part 1 is a
2-way cooperative sorting betweens1 ands2; part 2 contains(k−2)/2
2-way cooerpative sortings to derives3 to sk−1 (or sk, if k is even), each
of which is betweensi andsi+1; part 3 is a normal external sortingsk
if k is odd. Both part 2 and part 3 are probably but always exclusively
empty.

i’s

is

i+1’s2’s

2s1s

k’s

T

2B

o .
1 o2

.o
.....

. ...
k

si+1 s

part 1: appear 1 time part 3: appear if k is odd

0 2B log (N)

2B log (B/2M)F

F
F F F

2B log (B/2M)F

2B log (B/2M)F

2B log (B/2M)F

1
2B log (N)i 2B log (N)i+1 k2B log (N)

k

part 2: appear (k−2)/2 times

Fig. 20 The Execution Plan ofk-way Cooperative Sorting

is

T

2B

o .
1 o2

’s2

i+1s

T

2B

sk

ok

2s1s

T

2B

sa’i

0

part 1: appear 1 time

0

o .
i oi+1

2B log (B/2M)F
2B log (B/2M)F2B log (B/2M)F

2B log (N)1F
2B log (N) F i+1

part 2: appear (k−2)/2 times part 3: appear if k is odd

Fig. 21 The Alternative Execution Plan of 2-way Cooperative Sorting

First of all, the cost of part 1 in both figures are equal. Note that
the cost difference between part 3 in Fig. 20 and in Fig. 21 is exactly
the same as the difference between Eqn. 8 and Eqn. 9 in the analysis

25

of 3-way cooperative sorting, which is always non-negative. Also ob-
serve that for each pair ofsi andsi+1 that are generated in part 2 of
both Fig. 20 and Fig. 21, the cost difference of deriving thembetween
the former figure and the latter is actually the same as the difference
between Eqn. 10 and Eqn. 11, i.e. Eqn. 12, in the analysis of 4-way co-
operative sorting, which is always non-negative. As a result, the cost of
part i (i ∈ {1,2,3}) in Fig. 21 is no higher than parti in Fig. 20. There-
fore, it is easy to deduce that in general,k-way cooperative sorting
(k≥ 3) is not more efficient compared to their equivalent realizations
using 2-way cooperative sorting.

B Incorporate Sort Sharing Optimization In
Volcano-style Optimizers

In Section 5.3, we have discussed how to integrate the sort sharing
optimization into a system-R style query optimizer. In thissection, we
describe how to make a Volcano [13] style query optimizer to be sort-
sharing aware.

The Volcano method is based on an AND-OR DAG representa-
tion [23], [13] to compactly represent alternative query plans. The op-
timizer traverses the DAG expanded by applying all possiblealgebraic
transformation rules on every node to search for the cheapest plan. In
the AND-OR DAG, we useAN(op) to denote an AND-node accord-
ing to an operationop; useON(e,P) to denote an OR-node according
to a logical expressione and an optional interesting physical property
setP. Normally, theenforceroperations (e.g., hashing and sorting) are
implicitly represented by their caller AND-nodes.

Given a query, we generate with the traditional method the fully
expanded AND-OR DAG, on which we subsequently apply modifica-
tions.

First of all, we treat sorting as if it is a logical algebraic operation.
As a result, in the DAG, for each enforcer sort operations= sort(T,o),
we add a new AND-nodeAN(s) and a new OR-nodeON(T,{o}). AN(s)
corresponds to the physical sort operations, and ON(T,{o}) corre-
sponds to the sortedT with order o. Suppose the caller AND-node
of s is AN(c), thenON(T,{}) is originally one child ofAN(c). Now,
this chainAN(c)→ ON(T,{}) in the DAG is replaced with a new chain
AN(c)→ ON(T,{o})→ AN(s)→ ON(T,{}).

We then model the sort sharing between two sortingss1 = sort(T,o1)
ands2 = sort(T,o2) in above partially modified DAG. For case 1, we
add a new AND-nodeAN(ds) to form a new chainON(T,{o2}) →
AN(ds) → ON(T,{o1}), whereds represents the dummy operation of
deriving s2 from s1. For case 2, we add a new AND-nodeAN(ps) to
form a new chainON(T,{o2}) → AN(ps) → ON(T,{o1}), whereps
represents the partial sort operation of derivings2 from s1.

For case 3, we add three new AND-nodes,AN(s12), AN(s12 ։ s1)

and AN(s12 ։ s2), as well as a new OR-nodeON(T,{o1 ⊎ o2}), to
form two new chainsON(T,{o1}) → AN(s12 ։ s1) → ON(T,{o1 ⊎
o2}) → AN(s12) → ON(T,{}) andON(T,{o2}) → AN(s12 ։ s2) →
ON(T,{o1⊎o2})→ AN(s12)→ ON(T,{}). Heres12 is the cooperative
sorting based on (o1, o2); s12 ։ s1 is the operation of derivings1 from
s12; s12 ։ s2 is the operation of derivings2 from s12; o1⊎o2 denotes
the hybrid output format of a cooperative sortings12 for s1 ands2. The
processings for case 4 are straightforward extensions of case 3 and thus
omitted.

Till now, we get a completely modified AND-OR DAG. In this
DAG, it is possible that a sorting or cooperative sorting OR-node may
have more than one parent AND-node. Such OR-nodes can be viewed
as unified common subexpressions, and their sort results arematerial-
ized and reusable. Therefore, the multiple query optimization (MQO)
techniques (e.g., [24]) can be utilized to find the optimal sort-sharing-
aware execution plan.

