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Abstract In this paper, we introduce a new problem termed

Query Reverse Engineering (QRE). Given a database D and

a result table T – the output of some known or unknown

query Q on D – the goal of QRE is to reverse-engineer a

query Q′ such that the output of query Q′ on database D
(denoted by Q′(D)) is equal to T (i.e., Q(D)). The QRE

problem has useful applications in database usability, data

analysis, and data security. In this work, we propose a data-

driven approach, TALOS for Tree-based classifier with At

Least One Semantics, that is based on a novel dynamic data

classification formulation and extend the approach to effi-

ciently support the three key dimensions of the QRE prob-

lem: whether the input query is known/unknown, supporting

different query fragments, and supporting multiple database

versions.

1 Introduction

This paper introduces a new problem, termed Query Reverse

Engineering (QRE), that aims to reverse-engineer a query

given its output from a database. Formally, given a database

D and a result table T , which is the output of some known

or unknown query Q on D; the goal of QRE is to reverse-

engineer a query Q′ such that the output of query Q′ on

database D (denoted by Q′(D)) is equal to T (i.e., Q(D)).
We say that two queries Q and Q′ are instance-equivalent
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queries (IEQs) w.r.t. a database D if their results (w.r.t. D)

are equal; i.e., Q ≡D Q′.

In the following, we highlight several use cases of QRE.

Database Usability. The most obvious application of QRE

is in database usability. Consider the situation when a user

wants to evaluate a query Q on a database D. Instead of sim-

ply returning the query result Q(D) to the user, the database

system can also apply QRE to derive instance-equivalent

queries Q′ of Q that describe alternative characterizations

of tuples in the query result of Q.

Example 1 Suppose a user issues a query Q1 to a movie

database to search for movies that are directed by “James

Cameron” since 1997. The query result Q1(D) consists of

two movies: “Avatar” and “Titanic”. By applying QRE, the

database system could also have augmented the result the

following instance-equivalent query Q′
1 (w.r.t. D) “select

movies that have gross-revenue greater than $2 billion”. The

query Q′
1 provides a different and insightful characterization

of the query result to the user. �

As the above example illustrates, the ability to return

instance-equivalent queries for a given query Q can reveal

interesting properties of the query result Q(D). In addition,

unusual or surprising IEQs can be useful for uncovering hid-

den relationships among the data. In several instances, sim-

pler or easier to understand relationships may be uncovered,

which can again aid in the understanding of the data con-

tained within the complex database. As another example,

consider a skyline query Q2 to search for people with maxi-

mal capital gain and minimal age in the U.S. Census Income

dataset.1 An instance-equivalent query Q′
2 of Q2 provides a

simpler characterization of Q2 as “find people who are very

young (age ≤ 17) and have low capital gain (< 5000), or

1 http://archive.ics.uci.edu/ml/datasets/Adult
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who have very high capital gain (> 27828), work in the pro-

tective service and whose race is not classified as others”.

Besides providing alternative characterizations of the query

results, IEQs can also help users to better understand the

database schema. Since many enterprise data schema are

very complex and large, the part of the database schema that

is referenced by the user’s query may be quite different from

that referenced by an IEQ. The discovery of this alterna-

tive “part” in the schema to generate an instance-equivalent

query can aid the user’s understanding of the database schema,

or potentially help refine the user’s initial query.

Example 2 Consider the baseball data set2 and a query Q3

that finds managers of “Cincinnati Reds” team during the

years from 1982 to 1988. This query involves the join be-

tween two relations Manager and Team. An instance-equivalent

query Q′
3 of Q3 reveals that some of these managers were

also the players of “Cincinnati Reds” team at the same time

they managed the team. The IEQ Q′
3 has revealed the alter-

native schema part that involves the joins among Manager,

Team, Master, and Batting relations, and provided users use-

ful information about these player-managers. �

Explaining Why-not Questions. QRE can also be applied

to provide an explanation capability that allows users to seek

clarifications on unexpected query results. For example, con-

sider the scenario where a user has issued a query and is sur-

prised to find that the returned query result does not contain

certain expected tuples. It would be very useful to have some

functionality that enables the user to ask a follow-up query

on why those expected tuples are missing from the query re-

sult. The idea of QRE can be applied to automatically gen-

erate one or more refined query, whose result includes both

the original query’s result as well as the missing tuple(s).

The refined queries would serve as a form of explanation

for the missing tuples: they not only could help identify the

original query predicates that are responsible for the missing

tuples, but also suggest alternative means to “fix” the miss-

ing tuple(s). Essentially, QRE treats the query’s result Q(D)

together with the missing tuples as the output result of some

query Q′ and derives IEQs for Q′ as refined queries [28].

Data Exploration & Analysis. Another important class of

QRE applications is in scenarios where the input query Q is

unknown.

Consider a view V (defined on a database D) which may

have been derived manually (e.g., a user selected some tu-

ples of the database of interest to her), or by an application

program that is no longer available (e.g., the program is no

longer maintained or is lost). Therefore, given only the view

result V on the database D, it will be very useful to be able to

derive instance-equivalent queries Q′ of the unknown query

for V (i.e., V = Q′(D)) that describe the characteristics of

2 http://baseball1.com/statistics/

such tuples in V . In data exploration, such scenarios arise

when the documentation and meta-data for the data sets be-

ing analyzed are incomplete, inaccurate, or missing. As an

example, in the AT&T’s Bellman project [12], the data set

made available to data analysts is often in the form of a de-

limited ASCII text file representing the output result of some

query, where the query is not available for various reasons.

Clearly, it will be useful to reverse engineer the queries to

help make sense of the data before performing further anal-

ysis tasks (e.g., data mining).

Database Security. QRE may also have interesting appli-

cations in database security where attackers who have some

prior domain knowledge of the data may attempt to derive

sensitive information. For example, if an attacker is aware

of the existing correlation structure in the data, they can eas-

ily use this information to formulate two or more separate

queries that on paper look very different (e.g., using different

selection criteria), but in reality may be targeting the same

set of tuples in the database. Such sets or groups of queries

can potentially be used to reverse-engineer the privacy pre-

serving protocol in use. Subsequently, sensitive information

can be gleaned. As a specific example, consider a protocol

such as ǫ-diversity [32], which relies on detecting how sim-

ilar the current query is with a previous set of queries an-

swered by the database, to determine if the current query

can be answered without violating the privacy constraints.

By generating IEQs for the historical queries, the collection

of historical queries is enlarged thereby strengthening the

protection against such kinds of attacks.

1.1 Contributions

Despite its usefulness, there is very little work on the QRE

problem. An early version of this paper [29] introduces the

Query by Output (QBO) problem where the focus is on de-

riving select-project-join instance-equivalent queries (SPJ IEQs)

given an input query Q, database D, and the query’s result

Q(D). This paper is a significant extension that generalizes

QBO along three key dimensions of the problem space: (1)

the original query Q is unknown; (2) the derived query Q′

belongs to a more expressive query fragment beyond the

simple select-project-join (SPJ) query fragment; and (3) the

database D has multiple versions.

Unknown Query. First, unlike the QBO problem where the

original query Q is given as a part of the input (along with

the database D), Q is unknown in the QRE problem, and

the absence of Q makes it more challenging to identify the

relations to be included in the reverse-engineered query Q′

to generate the given result table T (i.e., T ≡ Q′(D)).

Supporting More Expressive IEQs. Second, for QRE to be

more practical, QRE should support more expressive IEQs

beyond the SPJ fragment (referred to as SPJ-IEQs) such as
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SPJ-IEQs with union operators (referred to as SPJU-IEQs),

and SPJ-IEQs with group-by aggregation operators (referred

to as SPJA-IEQs). With this enhanced expressiveness, QRE

becomes useful in more application domains such as data

integration, where SPJU-IEQs are predominant. In data in-

tegration systems, the goal is to combine data residing at dif-

ferent sources to provide users with a unified view of these

data [13]. The global-as-view integration approach requires

that the global schema be expressed in terms of the data

sources, which necessitates a query over the global schema

to be reformulated in terms of a set of queries over the data

sources. Thus, the QRE problem in this context requires de-

riving an IEQ that is a union of sub-queries over the data

sources given a result table T that is generated by the in-

tegration system. Another application domain that is sup-

ported by the enhanced expressiveness of IEQs is in data

analysis, where SPJA-IEQs are very common due to aggre-

gation computations (e.g. group-by aggregation queries in

OLAP applications).

Multiple Database Versions. Third, in contrast to the QBO

problem where the specific database D is known and given

as part of the input, the setting of the QRE problem is often

more general where there could be multiple database ver-

sions. We consider two specific scenarios of this generaliza-

tion and the additional challenges introduced by them.

The first scenarios occur in exploratory/analysis appli-

cations: it is typically the case that the time when a user

needs to reverse-engineer a query Q′ for a result table T oc-

curs much later than the time when T was actually produced.

Thus, it may not be meaningful or possible to derive Q′ from

the current version of the database, as this could be very dif-

ferent from the version that T was generated from. Specif-

ically, given a result table T and a sequence of database

versions < D1, D2, · · · , Dℓ >, a specific goal may be to

determine the most recent database version Di, i ∈ [1, ℓ],
and query Q′ such that Q′(Di) = T . Depending on the ap-

plications, other variations of the problem (e.g., finding the

earliest database version or all versions) are also possible.

The performance challenge is how to efficiently determine

both Di as well as Q′ for a given result T .

In the second scenario, the input to the QRE problem is

a sequence of database versions and result pairs (D1, T1),
(D2, T2), · · · (Dℓ, Tℓ); where each Ti is the result of the

same unknown query Q on database version Di (i.e., Ti =

Q(Di)). For example, the Ti’s could correspond to weekly

reports generated by the same query on weekly versions

of the database, or Q could be a continuous long standing

query that is run periodically on different snapshots of the

database. In this more general setting with multiple database

and result versions, the challenge is how to efficiently reverse-

engineer a query Q′ such that Q′(Di) = Ti for each i ∈
[1, ℓ].

In summary, this paper makes the following contribu-

tions. First, we introduce the novel problem of QRE and

propose a solution, TALOS, that models the QRE problem

as a data classification task with a unique property that we

term at-least-one semantics. Second, to handle data classifi-

cation with this new semantics, we develop a new dynamic

class labeling technique and propose effective optimization

techniques to efficiently compute IEQs. Third, to the best

of our knowledge, TALOS is the first comprehensive solu-

tion for the query reverse engineering problem that covers

three dimensions of the problem space: the original query is

known/unknown, the type of IEQ fragement (i.e., SPJ with

possibly union/aggregation), and the presence of multiple

database versions. Finally, our experimental evaluation of

TALOS demonstrates its efficiency and effectiveness in gen-

erating interesting IEQs.

Organization. In Section 2, we provide some basic back-

ground and describe an exemplar scenario for QRE that will

serve as a running example throughout this article. Sec-

tion 3 presents the concept of instance-equivalent queries

and establishes some complexity results for the QRE prob-

lem. Sections 4 to 6 present our solution, TALOS, to de-

rive IEQs. Section 7 discusses criteria for ranking IEQs.

Section 8 presents an extension to handle unknown input

query, and Section 9 presents an extension to support mul-

tiple database versions. Section 10 presents an experimen-

tal study to evaluate the effectiveness of TALOS. Section 11

presents related work. Finally, we conclude in Section 12.

Proofs of theoretical results and other details are given in

the Appendix.

2 Preliminaries

The QRE problem takes as inputs a database D, an optional

query Q, and the query’s output Q(D) (w.r.t. D) to compute

one or more IEQs Q′, where Q and Q′ are IEQs if Q ≡D Q′.

We refer to Q as the input query, Q(D) as the given result

table, and Q′ as the output query.

In this paper, we consider three fragments of SPJ rela-

tional queries for IEQs: (1) SPJ queries, which are the basic

Select-Project-Join queries, (2) SPJU queries, which are of

the form Q1 union Q2 · · · union Qn, where each Qi is

an SPJ query, and (3) SPJA queries, which correspond to

simple SPJ SQL queries with aggregation operators in the

select-clause and an optional group-by clause.

Given a query Q, we use rel(Q) to denote the collec-

tion of relations involved in Q (i.e., relations in SQL’s from-

clause); proj(Q) to denote the set of projected attributes in Q
(i.e., attributes in SQL’s select-clause); and sel(Q) to denote

the set of selection predicates in Q (i.e., conditions in SQL’s

where-clause).
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pID name country weight bats throws

P1 A USA 85 L R

P2 B USA 72 R R

P3 C USA 80 R L

P4 D Germany 72 L R

P5 E Japan 72 R R

(a) Master

pID year stint team HR

P1 2001 2 PIT 40
P1 2003 2 ML1 50
P2 2001 1 PIT 73
P2 2002 1 PIT 40
P3 2004 2 CHA 35
P4 2001 3 PIT 30
P5 2004 3 CHA 60

(b) Batting

pID year salary

P1 2003 80
P3 2002 35
P5 2004 60

team year rank

PIT 2001 7
PIT 2002 4

CHA 2004 3
(c) Salaries (d) Team

Fig. 1 Running Example - Baseball Data Set D

Consider two attributes: attribute A in relation R and at-

tribute B in relation S. If πB(S) ⊆ πA(R), we say that

A covers B and refer to A as a covering attribute of B. If

πB(S) ∩ πA(R) 6= ∅, we say that A partially covers B and

refer to A as a partially covering attribute of B. Clearly, A

partially covers B if and only if B partially covers A.

For ease of presentation and without loss of generality,

we express each Q′ as a relational algebra expression. To

keep our definitions and notations simple and without loss

of generality, we shall assume that there are no multiple in-

stances of a relation in Q and Q′.

Given a database, we use SG to denote its schema graph

where each node in SG represents a relation and each edge

between two nodes represents a primary-key-foreign-key re-

lationship between the relations corresponding to the nodes.

Running example. We use a database housing baseball statis-

tics as our running example as well as in our experiments.

Part of the schema is illustrated in Figure 1, where the key

attribute names are shown in bold. The Master relation de-

scribes information about each player (identified by pID):

the attributes name, country, weight, bats, and throws refer

to his name, birth country, weight (in pounds), batting hand

(left, right, or both), and throwing hand (left or right) respec-

tively. The Batting relation provides the number of home

runs (HR) of a player when he was playing for a team in a

specific year and season (stint). The Salaries relation spec-

ifies the salary obtained by a player in a specific year. The

Team relation specifies the rank obtained by a team for a

specified year.

3 Instance-Equivalent Queries (IEQs)

3.1 Strong vs Weak IEQs

Our basic definition of instance-equivalent queries (IEQs)

requires that the IEQs Q and Q′ produce the same output

(w.r.t. some database D); i.e., Q ≡D Q′. The advantage of

this simple definition is that it does not require the knowl-

edge of Q to derive Q′, which is particularly useful for QRE

applications where Q is either missing or not provided. How-

ever, there is a potential “accuracy” tradeoff that arises from

the simplicity of this weak form of equivalence: an IEQ may

be “semantically” quite different from the input query that

produced Q(D) as the following example illustrates.

Example 3 Consider the following three queries on the base-

ball database D in Figure 1:

Q1 = πcountry(σbats=“R”∧throws=“R”(Master)),

Q2 = πcountry(σbats=“R”∧weight≤72(Master)), and

Q3 = πcountry(σbats=“R”(Master)).

Observe that although all three queries produce the same

output after projection ({USA, Japan}), only Q1 and Q2 se-

lect the same set of tuples {P2, P5} from Master . Specif-

ically, if we modify the queries by replacing the projection

attribute “country” with the key attribute “pID”, we have

Q1(D) = { P2, P5}, Q2(D) = {P2, P5}, and Q3(D) =
{P2, P3, P5}. Thus, while all three queries are IEQs, we see

that the equivalence between Q1 and Q2 is actually “stronger”

(compared to that between Q1 and Q3) in that both queries

actually select the same set of relation tuples. �

If Q is provided as part of the input, then we can de-

fine a stronger form of instance equivalence as suggested by

the above example. Intuitively, the stricter form of instance

equivalence not only ensures that the instance-equivalent queries

produce the same output (w.r.t. some database D), but it also

requires that their outputs be projected from the same set

of “core” tuples. We now formally characterize weak and

strong IEQs based on the concepts of core relations and core

queries.

Core relations. Given a query Q, we say that S ⊆ rel(Q) is

a set of core relations of Q if S is a minimal set of relations

such that for every attribute Ri.A ∈ proj(Q), (1) Ri ∈ S, or

(2) Q contains a chain of equality join predicates “Ri.A =

· · · = Rj .B” such that Rj ∈ S.

Intuitively, a set of core relations of Q is a minimal set of

relations in Q that “cover” all the projected attributes in Q.

As an example, consider a query Q = πR1.Xσp(R1 ×R2 ×
R3) where p = (R1.X = R3.Y ) ∧ (R2.Z = R3.Z). Here,

Q has two sets of core relations, {R1} and {R3}: {R1} is

clearly a set of core relations since the only projected at-

tribute in Q is from R1, while {R3} is another set of core

relations due to the join predicate “R1.X = R3.Y ”.
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Core queries. Given a query Q and a set of relations S ⊆
rel(Q), we use QS to denote the query that is derived from

Q by replacing proj(Q) with the key attribute(s) of each

relation in S. If S is a set of core relations of Q, we refer to

QS as a core query of Q.

Consider two IEQs Q and Q′ (w.r.t. a database D); i.e.,

Q ≡D Q′. We say that Q and Q′ are strong IEQs if Q has a

set of core relations S such that: (1) Q′
S is a core query of

Q′, and (2) QS(D) and Q′
S(D) are equal. IEQs that are not

strong are classified as weak IEQs.

The strong IEQ definition essentially requires that both

Q and Q′ share a set of core relations such that Q(D) and

Q′(D) are projected from the same set of selected tuples

from these core relations. Thus, in Example 3, Q1 and Q2

are strong IEQs whereas Q1 and Q3 are weak IEQs.

Note that in our definition of strong IEQ, we only impose

moderate restrictions on Q and Q′ (relative to the weak IEQ

definition) so that the space of strong IEQs is not overly con-

strained, and that the strong IEQs generated are hopefully

both interesting as well as meaningful.

As in the case with weak IEQs, two strong IEQs can

involve different sets of relations. As an example, suppose

query Q selects pairs of records from two core relations,

Supplier and Part, that are related via joining with a (non-

core) Supply relation. Then it is possible for a strong IEQ

Q′ to relate the same pair of core relations via a different

relationship (e.g., by joining with a different non-core Man-

ufacture relation).

We believe that each of the notions of query equivalence

has useful applications in different contexts depending on

the available type of information about the input query and

database. At one extreme, if both Q and the database in-

tegrity constraints are available, we can compute semanti-

cally strong equivalent queries. At the other extreme, if only

Q(D) and the database D are available, we can only com-

pute weak IEQs. Finally, if both Q and the database D are

available, we can compute both weak and strong IEQs.

3.2 Precise vs Approximate IEQs

It is also useful to permit some perturbation so as to include

IEQs that are “close enough” to the original query. Perturba-

tions could be in the form of extra records or missing records

or a combination thereof. Such generalizations are necessary

in situations where there are no precise IEQs, and useful for

cases where the computational cost for finding precise IEQs

is considered unacceptably high. Moreover, a precise IEQ

Q′ might not always provide insightful characterizations of

Q(D), as Q′ could be too “detailed” with many join rela-

tions and/or selection predicates.

The imprecision of a weak SPJ- or SPJU-IEQ Q′ of Q

(w.r.t. D) can be quantified by

|Q(D) − Q′(D)| + |Q′(D) − Q(D)|; the imprecision of a

strong IEQ can be quantified similarly. Thus, Q′ is consid-

ered an approximate (strong/weak) IEQ of Q if its impre-

cision is positive; otherwise, Q′ is a precise (strong/weak)

IEQ. For SPJA-IEQs, the imprecision metric is more in-

volved as it needs to take into account matching tuples in

Q(D) and Q′(D) that differ only on their aggregated at-

tribute value(s); the details are presented in Appendix B.

3.3 Complexity Results

In this section, we establish some complexity results for the

QRE problem.

Theorem 1 Given an input query Q, we define QRES to

be the problem to find the output query Q′, where Q′ is a

conjunctive query that involves only projection and selec-

tion (with predicates of the form “Ai op c”, where Ai is an

attribute, c is constant, and op ∈ {<,≤,=, 6=, >,≥}) such

that: (1) Q′ ≡D Q, and (2) the number of operators (AND,

OR and NOT) used in the selection condition is minimized.

Then QRES is unlikely to be in P .

Theorem 2 Given an input query Q, we define QREU to be

the problem to find an SPJU-IEQ Q′ of Q w.r.t. a database

D of the form Q′ = Q1 union · · · union Qk where each

Qi is an SPJ query such that (1) Q′ ≡D Q, and (2) k is

minimized. Then QREU is NP-hard.

Theorem 3 Given an input query Q, we define QREA to be

the problem to find an SPJA-IEQ Q′ of Q w.r.t. a database

D where each aggregation operator (SUM or AVG) does

not involve any arithmetic expression in the operator’s ar-

gument. Then QREA is NP-hard.

Given the above results, we consider relational queries

Q where the select-clause refers to either some relation’s

attribute, or a value computed by an aggregation operator

(COUNT, SUM, AVG, MIN, or MAX) that does not involve

any arithmetic expression in the operator’s argument to en-

sure that Q′ can be derived from Q(D) efficiently. We also

require that Q(D) 6= ∅ for the problem to be interesting.

Other fragments of SQL queries (e.g., SPJA queries with

HAVING clause, queries with arithmetic expressions) are

beyond the scope of this paper.

4 Overview of Approach

In this section, we give an overview of our approach, named

TALOS (Tree-based classifier with At Least One Semantics),

for the QRE problem.
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4.1 Data Classification Formulation

Given an input result table Q(D), to generate an SPJ Q′

that is an IEQ of Q, we basically need to determine the

three components of Q′: rel(Q′), sel(Q′), and proj(Q′).

Clearly, if rel(Q′) contains a set of core relations of Q, then

proj(Q′) can be trivially derived from these core relations.3

Thus, the possibilities for Q′ depend mainly on the options

for both rel(Q′) and sel(Q′). Between these two compo-

nents, enumerating different rel(Q′) is the easier task, as

rel(Q′) can be obtained by choosing a subgraph G of the

schema graph SG such that G contains a set of core relations

of Q: rel(Q′) is then given by all the relations represented

in G. Note that it is not necessary for rel(Q) ⊆ rel(Q′),
as Q may contain some relations that are not core relations.

The reason for exploring different possibilities for rel(Q′)

is to find interesting alternative characterizations of Q(D)
that involve different join paths or selection conditions from

those in Q. TALOS enumerates different schema subgraphs

by starting out with minimal subgraphs that contain a set of

core relations of Q, and then incrementally expanding the

minimal subgraphs to generate larger, more complex sub-

graphs.

We now come to the most critical and challenging part

of our solution, which is how to generate “good” sel(Q′)’s

such that each sel(Q′) is not only succinct (without too many

conditions) and insightful, but also minimizes the impreci-

sion between Q(D) and Q′(D) if Q′ is an approximate IEQ.

We propose to formulate this problem as a data classifica-

tion task as follows.

Consider the relation J that is computed by joining all

the relations in rel(Q′) based on the foreign-key joins rep-

resented in G. Without loss of generality, let us suppose

that we are looking for weak IEQs Q′. Let L denote the

ordered listing of the attributes in proj(Q′) such that the

schema of πL(J) and Q(D) are equivalent.4 J can be par-

titioned into two disjoint subsets, J = Jin ∪ Jout such that

πL(Jin) ⊆ Q(D) and πL(Jout) ∩ Q(D) = ∅. For the pur-

pose of deriving sel(Q′), one simple approach to classify the

tuples in J is to label the tuples in Jout, which do not con-

tribute to the query’s result Q(D), as negative tuples, and

label the tuples in Jin as positive tuples.

Example 4 To illustrate how we derive IEQs, consider the

following query on the baseball database D:

Q4 = πname (σbats=“R”∧throws=“R” Master). Note that

Q4(D) = {B,E}. Suppose that the schema subgraph G

considered contains both Master and Batting, i.e., rel(Q′
4) =

3 Note that even though the definition of a weak IEQ Q′ of Q does

not require the queries to share a set of core relations, we find this

restriction to be a reasonable and effective way to obtain “good” IEQs.
4 If the search is for strong IEQs, then the discussion remains the

same except that L is the ordered listing of the key attributes of a set of

core relations S of Q, and we replace Q(D) by QS(D).

{Master,Batting}. The output of J = Master ⊲⊳pID Batting

is shown in Figure 2(a). Using ti to denote the ith tuple in J ,

we observe that J is partitioned into Jout = {t1, t2, t5, t6}
and Jin = {t3, t4, t7}, since πname(Jin) = Q(D) and

πname(Jout) ∩ Q(D) = ∅. We therefore label tuples t3, t4
and t7 as positive tuples, and the other tuples (t1, t2, t5, t6)

as negative tuples. �

Given the labeled tuples in J , the problem of finding a

sel(Q′) can now be viewed as a data classification task to

separate the positive and negative tuples in J : sel(Q′) is

given by the selection conditions that specify the positive

tuples. A natural solution is to examine if an off-the-shelf

data classifier can give us what we need. To determine what

kind of classifier to use, we must consider what we need to

generate our desired IEQ Q′. Clearly, the classifier should

be efficient to construct and the output should be easy to

interpret and express using SQL; i.e., the output should be

expressible in axis parallel cuts of the data space. These cri-

teria rule out a number of classifier systems such as neural

networks, k-nearest neighbor classification, Bayesian clas-

sifiers, and support vector machines [21]. Rule based classi-

fiers or decision trees (a form of rule-based classifier) are a

natural solution in this context. TALOS uses a decision tree

classifier for generating sel(Q′).

By computing IEQs in this way, our approach also gen-

erates a useful by-product: the set of labeled tuples in J
could be used to derive the potential data provenance (i.e.,

the source tuples) of each output tuple in the query result.

4.1.1 Decision Tree Construction

We now briefly describe how a simple binary decision tree

is constructed to classify a set of data records D. For ex-

pository simplicity, assume that all the attributes in D have

numerical domains. A decision tree DT is constructed in a

top-down manner. Each leaf node N in the tree is associated

with a subset of the data records, denoted by DN , such that

D is partitioned among all the leaf nodes. Initially, DT has

only a single leaf node (i.e., its root node), which is asso-

ciated with all the records in D. Leaf nodes are classified

into pure and non-pure nodes depending on a given good-

ness criterion. Common goodness criteria include entropy,

classification error and the Gini index [21]. At each itera-

tion of the algorithm, the algorithm examines each non-pure

leaf node N and computes the best split for N that creates

two child nodes, N1 and N2, for N . Each split is computed

as a function of an attribute A and a split value v associated

with the attribute. Whenever a node N is split (w.r.t. attribute

A and split value v), the records in DN are partitioned be-

tween DN1
and DN2

such that a tuple t ∈ DN is distributed

into DN1
if t.A ≤ v; and DN2

, otherwise.

A popular goodness criterion for splitting is the Gini in-

dex, which is computed as follows. For a data set S with k
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pID name country weight bats throws year team stint HR

t1 P1 A USA 85 L R 2001 PIT 2 40
t2 P1 A USA 85 L R 2003 ML1 2 50
t3 P2 B USA 72 R R 2001 PIT 1 73
t4 P2 B USA 72 R R 2002 PIT 1 40
t5 P3 C USA 80 R L 2004 CHA 2 35
t6 P4 D Germany 72 L R 2001 PIT 3 30
t7 P5 E Japan 72 R R 2004 CHA 3 60

Name

B

E

(a) J = Master ⊲⊳pID Batting (b) Q4(D)

N1

N2 N3

stint   1 stint > 1

DT1

{ t3, t4 }

{ t7 }

N2 N3

HR   50 HR > 50

{ t1, t2, t5, t6 }

N1

N2 N3

HR   50 HR > 50

DT2

{ t1, t2, t4, t5, t6 } { t3, t7 }

(c) Decision trees DT1 and DT2

Fig. 2 Example of deriving IEQs for Q4 on D

distinct classes, its Gini index is given by

Gini(S) = 1−
k
∑

j=1

(f2
j ) (1)

where fj denotes the fraction of records in S belonging to

class j. Thus, if S is split into two subsets S1 and S2, then

the Gini index of the split is given by

Gini(S1, S2) =
|S1| Gini(S1) + |S2| Gini(S2)

|S1|+ |S2|
(2)

where |Si| denotes the number of records in Si. The general

objective is to pick the splitting attribute whose best splitting

value reduces the Gini index the most (i.e., the ideal goal is

to reduce Gin i to 0 resulting in all pure leaf nodes).

Example 5 Continuing with Example 4 when we have la-

beled tuples t3, t4, t7 as positive and the other tuples as neg-

ative. Using the above algorithm, we build the decision tree

DT1 that separates the positive and negative tuples in J , as

shown in Figure 2(c). (Ignore for now the decision tree DT2

in this figure.) The IEQ derived from DT1 is given by Q′
4:

πnameσstint≤1∨(stint>1∧HR>50)(Master ⊲⊳ Batting). �

4.1.2 An Overview of TALOS

The overall approach of TALOS is outlined in Algorithm 1.

TALOS takes as inputs a query Q, a database instance D, and

the query result Q(D) of Q on D. The output of TALOS is

a set R of IEQs of Q. First, TALOS derives the set of core

relations of Q (line 1). For each schema subgraph G that

contains the set of core relations, TALOS computes the join

J of relations in G (line 4). TALOS next enumerates a set

of decision trees for J and derives an IEQ of Q for each of

the decision trees (lines 5 - 8). Finally, TALOS returns the

collection R of IEQs of Q.

As the search space for IEQs can be very large, particu-

larly with large complex database schema where each rela-

tion has foreign-key joins with other relations, the search

ALGORITHM 1: TALOS(Q, D, Q(D))

1 let S be the set of core relations of Q
2 let R be the set of IEQs of Q which is initialized to be empty

3 foreach schema subgraph G that contains S do

4 let J be the join of the relations in G
5 Enumerate a set of decision trees for J

6 foreach decision tree DT for J do

7 Derive the IEQ Q′ corresponding to DT
8 Add Q′ into R

9 return R

space could be restricted by providing users with certain

control knobs in the form of hint/preference specifications.

The following five are some examples of control knobs to

limit the search space. The first three knobs enable users to

constrain the complexity of the derived IEQs in terms of the

number of relations/conjuncts/disjuncts while the last two

knobs enable users to specify more schema-specific infor-

mation (relations/attributes) to control the search space.

(K1) Constraining the number of relations in the from-clause

of each IEQ to be in the range [nmin, nmax]. This control

knob constrains the number of vertices of each schema sub-

graph G to be in the range [nmin, nmax].

(K2) Constraining the number of disjunctive clauses in the

query’s selection condition to be in the range [lmin, lmax].

Recall that the selection condition of an IEQ is expressed

in disjunctive normal form where each disjunctive clause is

a conjunction of selection predicates. This is implemented

by limiting the number of leaf nodes that are selected in the

derived decision trees to be in the range [lmin, lmax].

(K3) Constraining the number of conjunctions in each dis-

junctive clause to be in the range [hmin, hmax]. This is im-

plemented by limiting the height of the derived decision

trees to be in the range [hmin, hmax].
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(K4) Specifying a specific set of relations to be included

in (or excluded from) Q′. This knob controls the space of

schema subgraphs considered.

(K5) Specifying a specific set of attributes to be included in

(or excluded from) the selection predicates in Q′. This knob

controls the space of attributes considered for decision tree

construction.

We discuss metrics to rank IEQs for a query in Section 7.

4.2 Challenges

There are two key challenges in adapting decision tree clas-

sifier for the QRE problem.

4.2.1 Challenge 1: At Least One Semantics

The first challenge concerns the issue of how to assign class

labels in a flexible manner without over constraining the

classification problem and limiting its effectiveness. Con-

trary to the impression given by the above simple class label-

ing scheme, the task of assigning class labels to J is actually

a rather intricate problem. The reason is that multiple tuples

in Jin can be projected to the same tuple in πL(Jin). Recall

that in the simple class labeling scheme described, a tuple

t is labeled positive if and only if t ∈ Jin. However, note

that it is possible to label only a subset of tuples J+
in ⊆ Jin

as positive (with tuples in J − J+
in labeled as negative), and

yet achieve πL(J
+
in) = πL(Jin) (without affecting the im-

precision of Q′). In other words, the simple scheme of label-

ing all tuples in Jin as positive is just one (extreme) option

out of many other possibilities. For instance, in Example 4,

it is possible to label tuples in J+
in = {t3, t7} ⊂ Jin as

positive and tuples in J − J+
in as negative and yet achieve

πname(J
+
in) = πname(Jin).

We now discuss more precisely the various possibilities

of labeling positive tuples in J to derive different sel(Q′).

Let πL(Jin) = {t1, · · · , tk}. Then Jin can be partitioned

into k subsets, Jin = P1 ∪ · · · ∪ Pk, where each Pi = {t ∈
Jin | the projection of t on L is ti}. Thus, each Pi represents

the subset of tuples in Jin that project to the same tuple in

πL(Jin). Define J+
in to be a subset of tuples of Jin such that

it consists of at least one tuple from each subset Pi. Clearly,

πL(J
+
in) = πL(Jin), and there is a total of

∏k
i=1(2

|Pi| − 1)

possibilities for J+
in. For a given J+

in, we can derive sel(Q′)

using a data classifier by labeling the tuples in J+
in as positive

and the remaining tuples in J − J+
in as negative.

Based on the above discussion on labeling tuples, each

tuple in J can be classified as either a bound tuple or free

tuple depending on whether there is any freedom to label the

tuple. A tuple t ∈ J is a bound tuple if either (1) t ∈ Jout,

in which case t must be labeled negative, or (2) t is the only

tuple in some subset Pi, in which case t must certainly be

included in J+
in and be labeled positive. Otherwise, t is a

free tuple; i.e., t is in some subset Pi that contains more

than one tuple. Thus, a free tuple could be labeled positive or

negative. In Example 4, Jin is partitioned into two subsets:

P1 = {t3, t4} and P2 = {t7}, where P1 and P2 contribute

to the outputs “B” and “E”, respectively. The tuples in Jout
(i.e., t1, t2, t5, t6) and P2 (i.e., t7) are bound tuples, while

the tuples in P1 are free tuples.

In contrast to the conventional classification problem where

each record in the input data comes with a well defined class

label, the classification problem formulated for QRE has the

unique characteristic where there is some flexibility in the

class label assignment. We refer to this property as at-least-

one semantics in the sense that at least one tuple from each

subset Pi must be labeled positive. For instance, to derive

an IEQ of Q4, at least one of the free tuples in P1 must be

labeled positive. To the best of our knowledge, we are not

aware of any work that has addressed the data classification

problem involving at-least-one semantics.

An obvious approach to solve the at-least-one seman-

tics variant is to map the problem into the traditional variant

by first applying some arbitrary class label assignment that

is consistent with the at-least-one semantics. In our exper-

imental study, we compare against two such static labeling

schemes, namely, (1) NI, which labels all free tuples as pos-

itive, and (2) RD, which labels a random non-empty subset

of free tuples in each Pi as positive.5 However, such static

labeling schemes do not exploit the flexible class labeling

opportunities to compute optimal node splits for decision

tree construction.

To avoid the limitations of static labeling schemes, TALOS

employs a novel dynamic class labeling scheme to compute

optimal node splits for decision tree construction without

having to enumerate an exponential number of combina-

tions of class labeling schemes for the free tuples. Contin-

uing with Example 4, if t3 is labeled positive and t4 is la-

beled negative, then DT2 in Figure 2(c) is a simpler decision

tree constructed by partitioning J based on a selection pred-

icate on attribute HR. The IEQ derived from DT2 is Q
′′

4 :

πname σHR>50 (Master ⊲⊳ Batting).

Exactly-k semantics. In a more general SQL setting where

the query result is a bag instead of a set (i.e., the “distinct”

keyword is not used in the select-clause), the at-least-one se-

mantics becomes exactly-k semantics in the following sense:

if there are m instances of a tuple ti in the query result

Q(D), then the exactly-k semantics requires that J+
in must

contain exactly m tuples from the subset Pi ⊆ J corre-

sponding to ti. For example, consider the following query:

5 We also experimented with a scheme that randomly labels only

one free tuple for each subset as positive, but its performance is worse

than NI and RD.
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Q4,k: SELECT name

FROM Master, Batting

WHERE Master.pID = Batting.pID

AND bats = “R”AND throws = “R”.

We have Q4,k(D) = {B,B,D}. Suppose that the schema

subgraph G considered to derive the IEQs for Q4,k contains

Master and Batting. The output of J = Master ⊲⊳pID Batting

is shown in Figure 2(a) (similar to the relation J for query

Q4). The partition corresponding to tuple “B” is P1 = {t3, t4}.

The exactly-k semantics requires that J+
in contains exactly

two tuples from P1. In this case, both t3 and t4 must be la-

beled positive.

For simplicity and without loss of generality, we will

mainly focus on the at-least-one semantics in the following

discussion. We defer the discussion about the exactly-k se-

mantics to Section 5.2.

4.2.2 Challenge 2: Performance Issues

The second challenge concerns the performance issue of

how to efficiently generate candidates for rel(Q′) and op-

timize the computation of the single input table J required

for the classification task. To improve performance, TALOS

exploits join indices (discussd in Section 6) to avoid a costly

explicit computation of J and constructs mapping tables to

optimize decision tree construction. TALOS also uses an-

other type of indices, domain indices (discussed in Section 8),

to efficiently identify covering attributes when the input query

is unknown.

5 Data Classification with At-Least-One Semantics

In this section, we address the first challenge of TALOS and

present a novel approach for classifying data with the at-

least-one semantics and the exactly-k semantics in deriving

SPJ-IEQs (Sections 5.1 & 5.2). We then present techniques

to derive more expressive IEQs beyond the basic SPJ queries

(Section 5.3).

5.1 Computing Optimal Node Splits

The main challenge for classification with the at-least-one

semantics is how to optimize the node splits given the pres-

ence of free tuples that offers flexibility in the class label

assignment. We present a novel approach that computes the

optimal node split without having to explicitly enumerate all

possible class label assignments to the free tuples. The idea

is based on exploiting the flexibility offered by the at-least-

one semantics.

Let us consider an initial set of tuples S that has been

split into two subsets, S1 and S2, based on a value v of a

numeric attribute A (the same principle applies to categori-

cal attributes as well); i.e., a tuple t ∈ S belongs to S1 iff

t.A ≤ v. The key question is how to compute the optimal

Gini index of this split without having to enumerate all pos-

sible class label assignments for the free tuples in S such

that the at-least-one semantics is satisfied. Without loss of

generality, suppose that the set of tuples in S is partitioned

into m + 2 subsets, P1, · · · , Pm+2, where P1, · · · , Pm are

the partitioned subsets of free tuples (as described in Sec-

tion 4.2) such that each |Pi| > 1 and at least one tuple in

each of them must be labeled positive; Pm+1 is the set of

bound tuples that are labeled positive; and Pm+2 is the set

of bound tuples that are labeled negative.

Let ni,j denote the number of tuples in Pi ∩ Sj , i ∈
[1,m + 2], j ∈ {1, 2}. Thus, the total number of free tu-

ples in Sj , j ∈ {1, 2}, is given by
∑m

i=1 ni,j . Let fi denote

the number of free tuples in Si, i ∈ {1, 2}, that are labeled

positive to satisfy the at-least-one semantics. After the free

tuples have been labeled, the total number of positive and

negative tuples in each Sj , j ∈ {1, 2}, are, nm+1,j + fj and

nm+2,j +
∑m

i=1 ni,j − fj , respectively. By Equation 1, the

Gini index of each Sj , j ∈ {1, 2}, is given by:

Gini(Sj) = 1 −

(

nm+1,j + fj
∑m+2

i=1 ni,j

)2

−

(

nm+2,j +
∑m

i=1 ni,j − fj
∑m+2

i=1 ni,j

)2

By Equation 2, the Gini index of the split S into S1 and

S2 is given by:

Gini(S1, S2) = α1 ·Gini(S1) + α2 ·Gini(S2), (3)

where αj = (
∑m+2

i=1 ni,j)/(
∑2

k=1

∑m+2
i=1 ni,k), j ∈ {1, 2}.

After simplification, Gini(S1, S2) is of the form

Gini(S1, S2) = H(f1, f2) = c−(a1·f1+b1)
2−(a2·f2+b2)

2,

(4)

where f1 and f2 are two variables to be optimized to min-

imize Gini(S1, S2), and c, a1, a2, b1, and b2 are constants

defined as follows:

aj =

√

2 · αj
∑m+2

i=2 ni,j

, j ∈ {1, 2}

bj =

√

αj

2
·

(

nm+1,j − nm+2,j −
∑m

i=1 ni,j
∑m+2

i=1 ni,j

)

, j ∈ {1, 2}

c =
∑

j∈{1,2}

αj − αj ·
n2
m+1,j + (nm+2,j +

∑m
i=1 ni,j)

2 − d

(
∑m+2

i=1 ni,j)2

d =
(nm+1,j − nm+2,j −

∑m
i=1 ni,j)

2

4
.

For each partition of free tuples Pi, i ∈ [1,m], we clas-

sify Pi as a SP1-set (resp. SP2-set) if Pi is completely con-

tained in S1 (resp. S2); otherwise, Pi is a SP12-set (i.e.,
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ni,1 > 0 and ni,2 > 0). Let Tj denote the minimum number

of free tuples in Sj to be labeled positive, j ∈ {1, 2}. Since

for each SPj-set, at least one of its tuples must be labeled

positive to satisfy the at-least-one constraint, Tj is equal to

the number of SPj sets.

The following result establishes that the optimal value of

Gini(S1, S2) is computed by considering only five combi-

nations of f1 and f2 values.

Theorem 4 The optimal value of Gini(S1, S2) is given by

min{H1, H2, H3, H4, H5}, where

H1 = H(
∑m

i=1 ni,1,
∑m

i=1 ni,2),

H2 = H(
∑m

i=1 ni,1, T2), H3 = H(T1,
∑m

i=1 ni,2),

H4 = H(T1,m− T1), and H5 = H(m− T2, T2). �

The five combinations of f1 and f2 values considered in

Theorem 4 actually correspond to the different ways to max-

imize the number of positive or negative tuples in S1 and S2:

H1 maximizes the number of positive tuples in both S1 and

S2; H2 maximizes the number of positive tuples in S1 and

maximizes the number of negative tuples in S2; H3 maxi-

mizes the number of negative tuples in S1 and maximizes

the number of positive tuples in S2; and finally, H4 and H5
correspond to the two possibilities to maximize the number

of negative tuples in both S1 and S2.

5.2 Updating Labels & Propagating Constraints

Once the optimal Gini(S1, S2) is determined for a given

node split, we need to update the split of S by converting

the free tuples in S1 and S2 to bound tuples with either pos-

itive/negative class labels. The details of this updating de-

pend on which of the five cases the optimal Gini value was

derived from, and are summarized by the last four columns

in Table 1.

For case H1, which is the simplest case, all the free tu-

ples in S1 and S2 will be converted to positive tuples. How-

ever, for the remaining cases, which involve maximizing the

number of negative tuples in S1 or S2, some of the free tu-

ples may not be converted to bound tuples. Instead, the max-

imization of negative tuples in S1 or S2 is achieved by prop-

agating another type of constraints, referred to as “exactly-

one” constraints, to some subsets of tuples in S1 or S2. Sim-

ilar to the principle of at-least-one constraints, the idea here

is to make use of constraints to optimize the Gini index val-

ues for subsequent node splits without having to explicitly

enumerate all possible class label assignments. Thus, in Ta-

ble 1, the fourth and fifth columns specify which free tuples

are to be converted to bound tuples with positive and nega-

tive labels, respectively; where a ‘-’ entry means that no free

tuples are to be converted to bound tuples. The sixth and

seventh columns specify what subsets of tuples in S1 and

S2, respectively, are required to satisfy the exactly-one con-

straint; where a ‘-’ entry column means that no constraints

are propagated to S1 or S2.

We now consider the exactly-one constraint, a special

case of exactly-k semantics, and explain why it is necessary.

An exactly-one constraint on a set of free tuples S′ requires

that exactly one free tuple in S′ must become labeled as pos-

itive with the remaining free tuples in S′ labeled as negative.

Consider case H2, which is to maximize the number of pos-

itive (resp. negative) tuples in S1 (resp. S2). The maximiza-

tion of the number of positive tuples in S1 is easy to achieve

by converting all the free tuples in S1 to positive. In this

way, the at-least-one constraints on the SP1-sets and SP12-

sets are also satisfied. Consequently, for each SP12-set Pi,

all the free tuples in Pi ∩ S2 can be converted to negative tu-

ples to maximize the number of negative tuples in S2. This

will not violate the at-least-one constraint on the SP12-set

Pi. However, for a SP2-set Pi, the constraint to maximize

the number of negative tuples in Pi while satisfying the at-

least-one semantics translates to an exactly-one constraint

on Pi. Thus, for case H2, an exactly-one constraint is propa-

gated to each SP2-set in S2, and no constraint is propagated

to S1. A similar reasoning applies to the other cases.

Therefore, while the at-least-one constraint is applied to

each subset of free tuples Pi in the initial node split, the

exactly-one constraint is applied to each Pi for subsequent

node splits. This second variant of the node split problem

can be optimized by techniques similar to what we have ex-

plained so far for the first variant. In particular, the exactly-

one semantics means that f1 + f2 = m if there are m par-

titions of free tuples. Consequently, the optimization of the

Gini index value becomes simpler and only needs to con-

sider cases H4 and H5.

Example 6 To illustrate how class labels are updated and

how constraints are propagated during a node split, con-

sider the following query on the baseball database D: Q5 =

πstint (σcountry=“USA” Master⊲⊳pID Batting). Suppose that

the weak-IEQ Q′
5 being considered has rel(Q′

5) = {Master,

Batting}. Let J = Master⊲⊳pID Batting (shown in Fig-

ure 2(a)). Since Q5(D) = {1, 2}, we have J0 = {t6, t7},

P1 = {t1, t2, t5} (corresponding to stint = 2), and P2 =
{t3, t4} (corresponding to stint = 1). The tuples in J0 are

labeled negative, while the tuples in P1 and P2 are all free

tuples.

Suppose that the splitting attribute considered is “weight”,

and the optimal splitting value for “weight” is 72. The Gini(S1,

S2) values computed (w.r.t. “weight = 72”) for the five

cases, H1 to H5, are 0.29, 0.48, 0.21, 0.4 and 0.4, respec-

tively. Thus, the optimal value of Gini(S1, S2) is 0.21 (due

to case H3). We then split tuples with weight ≤ 72 (i.e.,

{t3, t4, t6, t7}) into S1, and tuples with weight > 72 (i.e.,

{t1, t2, t5}) into S2. Thus, P1 is a SP2-set while P2 is a

SP1-set. Since the optimal Gini index computed is due to

case H3 (i.e., maximizing negative tuples in S1 and maxi-
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Number of free tuples Exactly-One

to be labeled positive Labeling of free tuples Constraint Propagation

Case f1 f2 positive negative S1 S2

H1
∑m

i=1 ni,1

∑m
i=1 ni,2 S1 ∪ S2 - - -

H2
∑m

i=1 ni,1 T2 S1 SP12-sets in S2 - SP2-sets

H3 T1
∑m

i=1 ni,2 S2 SP12-sets in S1 SP1-sets -

H4 T1 m− T1 - SP12-sets in S1 SP1-sets All subsets

H5 m− T2 T2 - SP12-sets in S2 All subsets SP2-sets

Table 1 Optimizing Node Splits

mizing positive tuples in S2), all the free tuples in S2 (i.e., t1,

t2 and t5) are labeled positive, and an exactly-one constraint

is propagated to the set of tuples P2 ∩ S1 (i.e., {t3, t4}). �

Handling Exactly-k Semantics. In the following, we dis-

cuss how to extend the above technique to handle the exactly-

k semantics. The exactly-k semantics is required when there

is a constraint on the number of instances of a specific tuple

in the query result. Recall that the exactly-k semantics ap-

plied on a set of free tuples S′ requires exactly k of its free

tuples to be labeled positive and the remaining free tuples in

S′ to be labeled negative.

Suppose that there are m partitions of free tuples P1,

· · · , Pm such that exactly ki tuples from each of Pi need

to be labeled positive, where ki ∈ [1, |Pi|]. Thus, the to-

tal number of free tuples to be labeled positive to satisfy

the exactly-ki constraint is given by f1 + f2 =
∑m

i=1 ki.
Since each Pi needs exactly ki free tuples to be labeled pos-

itive, minimizing the number of free tuples in Pi ∩ S1 to

be labeled positive maximizes the number of free tuples in

Pi ∩ S2 to be labeled positive, and vice versa. Therefore,

the minimum number of free tuples to be labeled positive in

each Pi ∩ Sj is given by max{0, ki − ni,3−j}, and thus

we have Tj =
∑m

i=1 max{0, ki − ni,3−j}, j ∈ {1, 2}. Con-

sequently, the optimization of the Gini index value becomes

simpler and needs to consider only two cases H’4 and H’5

(analogous to H4 and H5): case H’4 corresponds to f1 = T1

and f2 =
∑m

i=1 ki − T1; while case H’5 corresponds to

f1 =
∑m

i=1 ki − T2 and f2 = T2.

In summary, TALOS is able to efficiently compute the

optimal Gini index value for each attribute split value con-

sidered without enumerating an exponential number of class

label assignments for the free tuples.

5.3 Supporting More Expressive IEQs

Our discussion so far has focused on IEQs that are simple

SPJ queries. In this section, we present techniques to derive

more expressive IEQs beyond the basic SPJ queries. The in-

creased expressiveness is important to broaden the range of

applications of QRE. Specifically, we discuss the derivation

of IEQs that belong to the following two additional query

ALGORITHM 2: TALOS-SPJU (T,D, k)

1 foreach column Ci of T do

2 CAi ← {(A,L) | A is an attribute of some relation R,

L = {t.rid | t ∈ T, t.Ci ∈ πA(R)}, L 6= ∅};

3 SCA← {((A1, L1), · · · , (Ak, Lk)) | (Ai, Li) ∈ CAi};
4 Q← an empty query;

5 while (SCA 6= ∅) ∧ (T 6= ∅) do

6 Pick the element ((A1, L1), · · · , (Ak, Lk)) from SCA
such that |L1 ∩ L2 · · · ∩ Lk ∩ πrid(T )| is largest among

all possible elements from SCA and remove this element

from SCA ;

7 T ′ ← {t ∈ T | t.rid ∈ L1 ∩ L2 · · · ∩ Lk};
8 Derive an IEQ Q′ using the set of covering attributes

{A1, · · · , Ak} w.r.t. the input table T ′;

9 if Q′ exists then

10 Q← Q ∪Q′
i;

11 T ← T − Q′(D);

12 return Q;

fragments: SPJ with union (SPJU) and SPJ with aggregation

(SPJA).

In the default mode of operation, TALOS will attempt to

derive IEQs that belong to a simpler fragment before pro-

ceeding to the more complex fragments in the following or-

der: SPJ, SPJU, and SPJA. In this way, simpler IEQs (which

are preferred) are generated before the more complex IEQs.

5.3.1 Deriving SPJU-IEQs

Since an SPJU-IEQ Q′ is a union of some n number of SPJ

queries (n > 1), Q′ is conceptually derived by partitioning

T = Q(D) into n non-empty subsets, T = T1 ∪ · · · ∪ Tn,

where each Ti is produced by some SPJ-IEQ Q′
i. It is de-

sirable to generate a succinct SPJU-IEQ Q′ where n is min-

imized. However, minimizing n is an NP-hard problem as

shown by Theorem 2.

TALOS uses a simple greedy heuristic to derive the SPJU-

IEQ by generating the Q′
i’s iteratively, where the largest can-

didate Ti is selected at each iteration to derive an IEQ Q′
i.

Algorithm 2 shows the heuristic used by TALOS to derive

a SPJU-IEQ for an output table T containing k columns

{C1, · · · , Ck} with respect to a database D.

The algorithm first identifies all partially covering at-

tributes for each column Ci of T (line 2). Here, we use t.A

to denote the value of attribute A of a tuple t, and use rid to
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refer to an implicit attribute of each tuple that represents the

tuple’s row identifier (RID). (A,L) ∈ CAi if A is a partially

covering attribute of Ci, and L represents the set of tuples in

T whose Ci column values are “covered” by attribute A.

Next, the algorithm enumerates all combinations of par-

tially covering attributes for all the k output columns and

stores them in SCA (line 3). The k attributes in each combi-

nation ((A1, L1), · · · , (Ak, Lk)) can potentially form a join

relation that “covers” a partition Ti of T to generate an IEQ

Qi. TALOS uses the metric |L1∩L2 · · ·∩Lk∩πrid(T )| as an

estimate of the cardinality of the partition Ti corresponding

to the combination.

The algorithm generates the SPJ-IEQs iteratively using a

greedy heuristic. At each iteration, it picks the combination

from SCA that has the largest estimated partition cardinal-

ity (line 6). The target partition of tuples in T is given by T ′

(line 7). The algorithm then tries to generate a SPJ-IEQ Q′

(using the previously discussed technique) for the output ta-

ble T ′ using {A1, · · · , Ak} as the set of projected attributes

for Q′ (line 8). If the IEQ Q′ exists, Q′ is added as a compo-

nent to the final SPJU-IEQ Q (line 10), and T is updated by

removing the tuples in T that are covered by the output of

Q′ on D (line 11). Note that Q′(D) may not be equal to T ′ if

Q′ is an approximate IEQ for T ′. The algorithm terminates

when all the combinations in SCA have been considered or

if all the tuples in T have been covered.

5.3.2 Deriving SPJA-IEQs

For each output column Ci in the output table T , let Cover(Ci)

denote the set of attributes in the database that completely

covers Ci. TALOS classifies each Ci as an aggregated output

column if Cover(Ci) is empty; otherwise, Ci is classified as

a non-aggregated output column. As the name implies, each

aggregated output column in T will be generated by apply-

ing some aggregation function on some database attribute.

Recall that we do not consider arithmetic expressions in an

aggregation operator’s argument in this paper.

Specifically, if T consists of k+m output columns where

C1, · · · , Ck are non-aggregated output columns and Ck+1, · · · ,
Ck+m are aggregated output columns, the SPJA-IEQ Q′ de-

rived by TALOS for T is of the form

“SELECT B1, · · · , Bk, F1(A1), · · · ,Fm(Am)

FROM J(G)
WHERE p

GROUP BY B1, · · · , Bk”.

Here, J(G) refers to the join relation (corresponding to some

schema subgraph G) that is formed by joining all the rela-

tions contained in G based on their foreign-key joins, and p
is some selection predicate on J(G). The attributes B1, · · · ,
Bk, A1, · · · , Am are from J(G) such that each

Bi ∈ Cover(Ci), i ∈ [1, k]; and each Fi, i ∈ [1,m] is

ALGORITHM 3: TALOS-SPJA (T,Cg, Ca, D)

1 foreach schema subgraph G that contains at least some

relation Rg , Rg .Ag ∈ Cover(Cg) do

2 Compute the join relation J(G);
3 foreach attribute Ax in J(G), Ax 6= Ag do

4 foreach aggregation function F ∈ { COUNT, SUM,

AVG, MIN, MAX } do

5 if F is applicable with Ax as aggregation

attribute then

6 Label the tuples in J(G) wrt Ax & F to

derive an IEQ Q′;

7 if Q′ exists then

8 return Q′;

9 return null;

either a COUNT, SUM, AVG, MIN, or MAX aggregation

function. We refer to each Ai as an aggregation attribute.

To simplify the following presentation, we shall assume

that T consists of exactly two columns with one non-aggregated

column and one aggregated column. Algorithm 3 shows an

overview of the heuristic used by TALOS to derive SPJA-

IEQs for an output table T (with respect to database D)

consisting of a non-aggregated output column Cg and an

aggregated output column Ca. To find candidate aggrega-

tion attributes for Ca, TALOS enumerates different schema

subgraphs G that contain at least a relation (denoted by Rg)

such that Rg has an attribute Ag that completely covers the

non-aggregated column Cg . For each such schema subgraph

G, TALOS computes the join relation J(G) by joining all

the relations in G based on the foreign-key joins among the

relations in G. Each of the attributes in J(G) (except for

Ag) will be considered as a candidate aggregation attribute.

In the following, we elaborate on how an SPJA-IEQ is de-

rived for a given candidate aggregation attribute Ax and a

candidate aggregate function F by an appropriate labeling

of the tuples in J(G) (line 6).

Suppose that T contains n tuples of the form (gi, ai),
i ∈ [1, n], where gi and ai are values of columns Cg and Ca,

respectively. J(G) can be partitioned into (n + 1) disjoint

partitions: J(G) = P0 ∪ P1 ∪ · · · ∪ Pn, where each Pi,

i > 0, is the subset of tuples in J(G) that has the value gi
for attribute Ag; i.e., Pi = {t ∈ J(G) | t.Ag = gi}. Thus,

P0 refers to the subset of tuples that do not contribute to any

of the output tuples in T ; i.e., πCg
(T ) ∩ πCg

(P0) = ∅.

The tuples in J(G) are labeled as follows. Since none

of the tuples in P0 can contribute to any output tuple in T ,

the tuples in P0 are all labeled as negative tuples and the

remaining tuples are initially labeled as free tuples. For a

candidate aggregation function F being considered for the

IEQ Q′, TALOS needs to determine a subset of tuples P ′
i ⊆

Pi for each partition Pi, i > 0, such that when the tuples

in P ′
i are labeled as positive and the tuples in Pi − P ′

i are

labeled as negative, the result of F on each P ′
i is ai. In the

following, we elaborate on how the P ′
i ’s are selected (i.e.,
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how the selection predicate p on J(G) is determined) for

each of the three aggregation functions.

For the COUNT aggregation function, it is applicable for

an aggregation attribute Ax if the values in the output col-

umn Ca are all natural numbers such that ai ∈ {0, 1, · · · , |Pi|}
for each (gi, ai) ∈ T . The semantics of the COUNT aggre-

gation function requires that |P ′
i | = ai for each partition

Pi, i > 0, which can be solved by imposing the exactly-k

constraint for labeling tuples as described in Section 5.

For the SUM and AVG aggregation functions, the prob-

lem of selecting each P ′
i ⊆ Pi such that F(P ′

i ) = ai can be

mapped to the subset-sum/subset-average problem, which is

a well-known NP-hard problem [8]. TALOS uses standard

pseudo-polynomial algorithms to solve the subset-sum and

subset-average problems with time complexities of O(Kn)

and O(Kn2), respectively [8], where K = ai and n =

|Pi|; or approximation algorithms [8] to derive approximate

IEQs with lower time complexity.

For the MIN aggregation function, for each Pi, there

must exist at least one tuple tm ∈ Pi such that tm.Ax = ai.

We further partition Pi as follows: Pi = P−
i ∪ P alos

i ∪
P free
i where P−

i = {t ∈ Pi | t.Ax < ai}, P alos
i = {t ∈

Pi | t.Ax = ai}, and P free
i = {t ∈ Pi | t.Ax > ai}.

Clearly, at least one tuple in P alos
i must be labeled positive

in order for the MIN function applying on Pi to return the

value ai. Likewise, all tuples in P−
i must be labeled nega-

tive. Otherwise, the result of the MIN function on Pi will be

smaller than ai. Finally, tuples in P free
i have the flexibility

to be assigned positive or negative. The reason is that if any

tuples in P free
i are assigned positive class labels, the MIN

function applying on Pi still returns the value ai. A similar

scheme will be applied if the aggregated function is MAX.

6 Performance Issues

In this section, we address the second challenge of TALOS

and discuss several optimization techniques to speed up the

derivation of IEQs. We first explain how TALOS adapts a

well-known decision tree classifier for performing data clas-

sification in the presence of free tuples, whose class labels

are not fixed. We then explain the performance challenges of

deriving Q′ when rel(Q′) involves multiple relations, and

present optimization techniques to address these issues. For

ease of presentation and without loss of generality, the dis-

cussion here assumes weak IEQs.

6.1 Classifying Data in TALOS

We first give an overview of SLIQ [16], a well-known deci-

sion tree classifier, that we have chosen to adapt for TALOS.

We then describe the extensions required by TALOS to han-

dle data classification in the presence of free tuples. Finally,

val row

A 1
B 2
C 3
D 4
E 5

nid cid sid

1 0 0

1 -1 1
1 -1 1

1 0 0
1 0 0
1 1 2

(a) ALname (b) CL

rM rB rT
1 1 1
2 3 1
2 4 2
3 5 3
4 6 1
5 7 3

rM SrJ

1 {1}
2 {2, 3}
3 {4}
4 {5}
5 {6}

(c) Jhub (d) MMaster

Fig. 3 Example data structures for Q4(D)

we present a non-optimized, naive variant of TALOS. It is

important to emphasize that our approach is orthogonal to

the choice of the decision tree technique.

Overview of SLIQ. SLIQ is an efficient decision tree clas-

sifier designed for handling large, disk-resident training data.

To construct a binary decision tree on a set of data records D,

SLIQ uses two key data structures.

First, a sorted attribute list, denoted by ALi, is pre-computed

for each attribute Ai in D. Each ALi can be thought of as a

two-column table (val, row), of the same cardinality as D,

that is sorted in non-descending order of val. Each record

r = (v, i) in ALi corresponds to the ith tuple t in D, and

v = t.Ai. The sorted attribute lists are used to speed up the

computation of optimal node splits. To determine the opti-

mal node split w.r.t. Ai requires a single sequential scan of

ALi.

Second, a main-memory array called class list, denoted

by CL, is maintained for D. This is a two-column table

(nid, cid) with one record per tuple in D. The ith entry in

CL, denoted by CL[i], corresponds to the ith tuple t in D,

where CL[i].nid is the identifier of leaf node N , t ∈ DN ,

and CL[i].cid refers to the class label of t. CL is used to

keep track of the tuples location (i.e., in which leaf nodes)

as leaf nodes are split.

Class List Extension. In order to support data classification

with free tuples where their class labels are assigned dynam-

ically, we need to extend SLIQ with the following modifi-

cations. The class list table CL(nid, cid, sid) is extended

with an additional column “sid”, which represents a subset

identifier, to indicate which subset (i.e., Pi) a tuple belongs

to. This additional information is needed to determine the

optimal Gini index values as discussed in the previous sec-

tion. Consider a tuple t that is the ith tuple in D, the cid and

sid values in CL are maintained as follows. If t belongs to

Jout, then CL[i].cid = 0 and CL[i].sid = 0. If t is a bound

tuple in Pj , then CL[i].cid = 1 and CL[i].sid = j. Oth-

erwise, if t is a free tuple in Pj , then CL[i].cid = −1 and

CL[i].sid = j.
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Example 7 Figure 3 illustrates the two data structures cre-

ated to compute IEQs for Q4(D) in Example 4. Figure 3(a)

shows the attribute list created for attribute Master .name,

and Figure 3(b) shows the initial class list created for the re-

lation J = Master ⊲⊳pID Batting, where all the records are

in a single leaf node (with nid value of 1). �

Naive TALOS (TALOS−). Before presenting the optimiza-

tions for TALOS in the next section, let us first describe a

non-optimized, naive variant of TALOS (denoted by TALOS−).

Suppose that we are considering an IEQ Q′ where rel(Q′) =

{R1, · · · , Rn}, n > 1, that is derived from some schema

subgraph G. First, TALOS− joins all the relations in rel(Q′)

(based on the foreign-key joins represented in G) to obtain

a single relation J . Next, TALOS− computes attribute lists

for the attributes in J and a class list for J . TALOS− is

now ready to construct a decision tree DT to derive the IEQ

Q′ with these structures. The decision tree DT is initialized

with a single leaf node consisting of the records in J , which

is then refined iteratively by splitting the leaf nodes in DT .

TALOS
− terminates the splitting of a leaf node when (1)

its tuples are either all labeled positive or all labeled neg-

ative; or (2) its tuples have the same attribute values w.r.t.

all the splitting attributes. Finally, TALOS− classifies each

leaf node in DT as positive or negative as follows: a leaf

node is classified as positive if and only if the ratio of the

number of its negative tuples to the number of its positive

tuples is no greater than a threshold value given by τ . 6 The

selection condition of the IEQ Q′ is then derived from the

collection of positive leaf nodes in DT as follows. Each in-

ternal node in DT corresponds to a selection predicate on

some attribute of J , and each root-to-positive-leaf path Pj in

DT corresponds to a conjunctive predicate Cj on J . Thus,

each decision tree enumerated for G yields a selection pred-

icate for Q′ of the form C1 or C2 · · · or Cℓ. In the event

that all the leaf nodes in DT are classified as negative, the

computation of Q′ is not successful (i.e., there is no IEQ for

rel(Q′)), and we refer to Q′ as a pruned IEQ.

6.2 Optimizations

The naive TALOS described in the previous section suffers

from two drawbacks. First, the overhead of computing J

can be high; especially if there are many large relations in

rel(Q′). Second, since the cardinality of J can be much

larger than the cardinality of each of the relations in rel(Q′),

building decision trees directly using J entails the compu-

tation and scanning of correspondingly large attribute lists,

which further increases the computation cost. In the rest of

this section, we present the optimization techniques used by

TALOS to address the above performance issues.

6 To generate only precise IEQs, τ = 0. In our experiments, we set

τ = 1 to derive a reasonable number of approximate IEQs.

Join Indices & Hub Table. To avoid the overhead of com-

puting J from rel(Q′), TALOS exploits pre-computed join

indices [30], which is a well-known technique for optimiz-

ing joins. For each pair of relations, R and R′, in the database

schema that are related by a foreign-key join, its join index,

denoted by IR,R′ , is a set of pairs of row identifiers refer-

ring to a record in each of R and R′ that are related by the

foreign-key join.

Based on the foreign-key join relationships represented

in the schema subgraph G, TALOS computes the join of all

the appropriate join indices for rel(Q′) to derive a relation,

called the hub table, denoted by Jhub. Computing Jhub is

much more efficient than computing J , since there are fewer

number of join operations (i.e., number of relevant join in-

dices) and each join attribute is a single integer-valued col-

umn.

Example 8 Consider again query Q4 introduced in Exam-

ple 4. Suppose that we are computing IEQ Q′
4 with rel(Q′

4)
= {Master, Batting, Team}. Figure 3(c) shows the hub table,

Jhub, produced by joining two join indices: one for Master

⊲⊳pID Batting , and the other for Batting ⊲⊳team,year Team .

Here, rM , rB , and rT refer to the row identifiers for Master,

Batting, and Team relations, respectively. �

Mapping Tables. Instead of computing and operating on

large attribute lists (each with cardinality equal to |J |) as

in the naive approach, TALOS operates over the smaller pre-

computed attribute lists ALi for the base relations in rel(Q′)

together with small mapping tables to link the pre-computed

attribute lists to the hub table. In this way, TALOS only needs

to pre-compute once the attribute lists for all the base re-

lations, thereby avoiding the overhead of computing many

large attribute lists for different rel(Q′) considered.

Each mapping table, denoted by Mi, is created for each

Ri ∈ rel(Q′) that links each record r in Ri to the set of

records in Jhub that are related to r. Specifically, for each

record r in Ri, there is one record in Mi of the form (j, S),
where j is the row identifier of r, and S is a set of row iden-

tifiers representing the set of records in Jhub that are created

from r.

Example 9 Figure 3(d) shows the mapping table MMaster

that links the Master relation in Figure 1 and Jhub in Fig-

ure 3(b). The record (2, {2, 3}) in MMaster indicates that

the second tuple in Master relation (with pID of P2), con-

tributed two tuples, located in the second and third rows, in

Jhub. �

Computing Class List. We now explain how TALOS can

efficiently compute the class list CL for J (without having

explicitly computed J) by using the attribute lists, hub table,

and mapping tables. The key task in computing CL is to

partition the records in J into subsets (J0, P1, P2, etc.), as

described in the previous section.
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For simplicity and without loss of generality, assume

that the schema of Q(D) has n attributes A1, · · · , An, where

each Ai is an attribute of relation Ri. TALOS first initial-

izes CL with one entry for each record in Jhub with the

following default values: nid = 1, cid = 0, and sid = 0.

For each record rk that is accessed by a sequential scan of

Q(D), TALOS examines the value vi of each attribute Ai of

rk. For each vi, TALOS first retrieves the set of row identi-

fiers RIvi
of records in Ri that have a value of vi for attribute

Ri.Ai by performing a binary search on the attribute list for

Ri.Ai. With this set of row identifiers RIvi
, TALOS probes

the mapping table Mi to retrieve the set of row identifiers

JIvi
of the records in Jhub that are related to the records

referenced by RIvi
. The intersection of the JIvi

’s for all the

attribute values of rk, denoted by Pk, represents the set of

records in J that can generate rk. TALOS updates the entries

in CL corresponding to the row identifiers in Pk as follows:

(1) the sid value of each entry is set to k (i.e., all the entries

belong to the same subset corresponding to record rk), and

(2) the cid value of each entry is set to 1 (i.e., tuple is labeled

positive) if |Pk| = 1; otherwise, it is set to −1 (i.e., it is a

free tuple).

Example 10 We illustrate how TALOS creates CL for query

Q4, which is shown in Figure 3(b). Initially, each row in

CL is initialized with sid = 0 and cid = 0. TALOS then

accesses each record of Q4(D) sequentially. For the first

record (with name = “B’), TALOS searches ALname and

obtains RIB = {2}. It then probes MMaster with the row

identifier in RIB , and obtains JIB = {2, 3}. Since Q4(D)

contains only one attribute, we have P1 = {2, 3}. The sec-

ond and the third rows in CL are then updated with sid = 1
and cid = −1. Similarly, for the second record in Q4(D)

(with name = “E”), TALOS searches ALname and obtains

RIE = {5}, and derives JIE = {6} and P2 = {6}. The

sixth row in CL is then updated with sid = 2 and cid = 1.

�

7 Ranking IEQs

As a query generally has many possible IEQs, it is useful to

rank and prioritize the presentation of the derived IEQs to

the user. Since our preference for simpler and more precise

IEQs involves conflicting objectives, we present three rea-

sonable criteria for ranking IEQs: a metric based on the Min-

imum Description Length (MDL) principle [24], and two

metrics based on the F-measure [23].

7.1 Minimum Description Length

The Minimum Description Length (MDL) principle argues

that all else being equal, the best model is the one that min-

imizes the sum of the cost of describing the data given the

model and the cost of describing the model itself. If M is

a model that encodes the data D, then the total cost of the

encoding, cost(M,D), is defined as:

cost(M,D) = cost(D|M) + cost(M). Here, cost(M) is

the cost to encode the model (i.e., the decision tree in our

case), and cost(D|M) is the cost to encode the data given

the model. We can rely on succinct tree-based representa-

tions to compute cost(M). The data encoding cost, cost(D|M),
is calculated as the sum of classification errors. Thus, an

IEQ with a lower MDL encoding cost is considered to be

better. The details of the encoding computations are given

elsewhere [16].

7.2 F-measure

We now present two useful metrics based on the popular F-

measure [23] that represents the precision of the IEQs. The

first variant follows the standard definition of F-measure:

the F-measure for two IEQs Q and Q′ is defined as Fm =
2×|pa|

2×|pa|+|pb|+|pc|
, where pa = Q(D)∩Q′(D), pb = Q′(D)−

Q(D), and pc = Q(D) −Q′(D). We denote this variant as

F-measure in our experimental study. Here, an IEQ with a

higher F-measure value is considered to be a more precise

and better query.

Observe that the first variant of F-measure is useful only

for approximate IEQs, and is not able to distinguish among

precise IEQs, as this metric gives identical values for pre-

cise IEQs since pb and pc are empty. To rank precise IEQs,

we introduce a second variant, denoted by F est
m , which re-

lies on estimating pa, pb, and pc using some data probabilis-

tic models (as opposed to using the actual values from the

data set). F est
m captures how the equivalence of queries is

affected by database updates, and the IEQ with high F est
m

is preferable to another IEQ with low F est
m . For simplicity,

we use a simple independent model to estimate F est
m ; other

techniques such as the Bayesian model by Getoor and oth-

ers [10] can be applied too. The second variant has the ben-

efit that estimates, which are computed from a global distri-

bution model, may more accurately reflect the true relevance

of the IEQs than one computed directly from the data. This

of course pre-supposes that future updates follow the exist-

ing data distribution.

The details on computing the F-measure (Fm and F est
m )

of a pair of IEQs Q and Q′ are discussed in Appendix C.

8 Handling Unknown Input Query

This section considers the problem of how to derive IEQs

Q′ given only D and the query result T = Q(D) without

knowledge of the input query Q. The key challenge is how

to efficiently determine candidate core relations for T . We

first present the overall framework in Section 8.1 followed
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ALGORITHM 4: TALOS(D, T)

1 let C1, · · · , Ck be the columns in T
2 foreach column Ci in T do

3 Si ← {R.A is an attribute in D | R.A covers Ci}
4 if all Si’s are non-empty then

5 foreach Ri1 .Aj1 ∈ S1, · · · , Rik .Ajk ∈ Sk do

6 R ← {Ri1 , Ri2 , · · · , Rik}
7 Derive SPJ-IEQs using Algorithm 1 withR as the set

of core relations
8 Derive SPJU-IEQs using Algorithm 2

9 Derive SPJA-IEQs using Algorithm 3

by a discussion of an optimization technique using domain

indices in Section 8.2.

8.1 An Overview of TALOS

The overall approach of TALOS is outlined in Algorithm 4

which takes as input a database D and an input table T to

derive a set of IEQs Q′ such that Q′(D) = T . Recall from

Section 5.3 that in the default mode of TALOS, it will at-

tempt to derive IEQs starting from the simplest SPJ IEQs to

the more complex SPJU and SPJA IEQs.

To generate SPJ IEQs, TALOS first determines the set

of schema attributes Si that covers each column Ci in T

(line 3). If each Si is non-empty, TALOS then enumerates all

possible sets of core relations from S1, · · · , Sk, and invokes

Algorithm 1 to derive SPJ IEQs for each set of core relations

R (lines 4 to 7). Note that R is constructed such that each

column in T is covered by at least some attribute of some

relation in R. SPJU- and SPJA-IEQs for T are generated

using Algorithms 2 and 3, respectively (lines 8 & 9).

8.2 Optimization: Domain Indices

We now describe how TALOS uses a simple but effective

indexing technique, called domain indices, to optimize the

identification of covering attributes.

Recall that the definition of a covering attribute (in Sec-

tion 2) is based on set semantics which ignores the presence

of duplicate column values. That is, it is possible for an at-

tribute A in relation R to cover an attribute C in relation T
and yet there is some value v that occurs m times in T.C

and n times in R.A with m > n and n ≥ 1. This weaker

definition is, however, sufficient for the purpose of identify-

ing candidate core relations because after joining relation R

with other relations in the schema subgraph to compute the

join relation J , the frequency of a value v in J.A could be

higher than that in R.A. In this section, for simplicity and

without loss of generality, we assume that each column C

of T does not contain any duplicate values; otherwise, we

simply pre-process C to eliminate duplicates.

To determine whether a column A in relation R covers

a column C in T , a straightforward approach is to compute

the antijoin T ⊲T.C=R.A R. Then A covers C iff the anti-

join result is empty. Thus, all the covering attributes for C

could be identified by performing this procedure for every

database attribute that has the same domain as C. We refer

to this naive solution as TALOS−.

To avoid the cost of computing multiple antijoins, TALOS

uses a simple yet effective indexing technique called domain

indices. Unlike a conventional index which is defined on at-

tribute(s) within a single relation, a domain index is defined

on all the attributes in the database that have the same at-

tribute domain.

For each attribute domain d, TALOS maintains a three-

column mapping table Md(v, attr, countv), where v is a

value of type d in the database, attr is the schema attribute

that contains v in its column, and countv is the frequency of

v in attr’s column. This table has one composite key con-

sisting of v and attr, which is indexed by a B+-tree index,

that we refer to as the domain index for d. The countv field

is used to facilitate index maintenance: countv is updated

accordingly when database records are modified, and when

countv drops to 0, the corresponding value v is removed

from its mapping table Md and domain index.

With the mapping tables and domain indices, TALOS

identifies the covering attributes for a column C (with do-

main d) in the output table T by computing the result

γattr,count(v) πattr,v(T ⊲⊳T.C=Md.v Md). Essentially, TALOS

first joins T and Md on T.C = Md.v to find out the set of

values in T.C that are covered by each database attribute

attr that has the same domain as C, and then performs a

group-by aggregation to count the number of distinct at-

tribute values in T.C that are covered by each attr. Thus,

an attribute A covers C iff the aggregated result contains

the tuple (A, acount) and the number of distinct values of

C is equal to acount. Here, acount represents the number

of distinct attribute values in C that are covered by A. The

implementation details of TALOS− and TALOS to identify

covering attributes are discussed in Appendix D.

9 Handling Multiple Database Versions

In this section, we consider a more general setting of the

QRE problem where the input consists of multiple versions

of database instead of a single database. Specifically, we

consider the following two practical scenarios for this gen-

eralization.

9.1 Multiple Database Versions & Single Unknown Result

In data exploratory/analysis scenarios, it is typically the case

that the querying time when a user requests to reverse-engineer
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a precise query Q′ for a result table T occurs much later

than the time when T was actually produced. Thus, it may

not be meaningful or possible to derive Q′ from the cur-

rent version of the database as this could be very different

from the version that T was generated from. Specifically,

given a result table T and a sequence of database versions

< D1, D2, · · · , Dℓ >, where Di is a more recent version

than Dj if i > j, a specific goal may be to determine the

most recent database version Di, i ∈ [1, ℓ], and query Q′

such that Q′(Di) = T . Depending on the applications, other

variations of the problem (e.g., finding the earliest database

version or all versions) are also possible. In this section, we

focus on the problem of deriving IEQs with respect to the

most recent database version. The performance challenge is

how to efficiently determine both Di as well as Q′ for a

given result T .

The most straightforward solution is to apply the previ-

ously described solution developed for a single database ver-

sion to one database version at a time starting from the most

recent version Dℓ and work progressively “backwards” to

the next recent version and so on until an IEQ is derived (or

none is found). However, if the multiple database versions

are not stored independently but are instead organized using

a reference version (either the earliest or latest version) to-

gether with a sequence of forward/backward deltas between

successive versions (e.g., [27]), then it is possible to apply

well-known join view maintenance techniques [5,19] to op-

timize the IEQ derivations.

In this section, we assume, without loss of generality,

that the database versions are stored using the backward

delta storage organization. That is, given a sequence of database

versions D1, D2, · · · , Dℓ, the database stores the most re-

cent version Dℓ together with δℓ(ℓ−1), · · · , δ21, where each

Dj is derived from Di and δij . For simplicity, we assume

that each tuple update operation is modeled by a pair of tu-

ple delete and insert operations. Thus, each delta δij consists

of a set of tuple insert and delete operations. We use the no-

tation “X⊕δX” to denote applying the insert/delete “delta”

tuples in δX to update X where X is a database version or

a relation. In the backward delta storage organization, we

have Di = Di+1 ⊕ δ(i+1)i.

Assume that the current database version being consid-

ered is Dx; i.e., the database versions Dℓ, Dℓ−1, · · · , Dx+1

have already been considered but without any IEQs derived

from them. The task at hand is to try to derive IEQs from

Dx. An obvious approach is to first compute Dx from Dx+1

and δ(x+1)x, and then try to derive IEQs from the material-

ized Dx. This simple approach, however, does not leverage

any of the computations performed for previously consid-

ered database versions.

There are two computations for the current database ver-

sion Dx that could be optimized by exploiting the compu-

tations performed for the previous database version Dx+1.

The first one is the computation of covering attributes and

the second one is the computation of join relations. As both

optimizations are based on the same ideas, we shall focus

on the first optimization in the rest of this section and briefly

discuss the second optimization at the end of this section.

Recall from Section 8.2 that TALOS maintains a map-

ping table Md(v, attr, countv) for each attribute domain d.

The mapping table Md is used to determine the covering

attributes for a column C (with domain d) in the output

table T by computing γattr,count(v) TMd, where TMd =

πattr,v(T ⊲⊳T.C=Md.v Md). Here, TMd determines the set

of attribute values of T.C that are covered by each schema

attribute attr with the same domain as T.C.

Let M i
d and TM i

d denote the relations Md and TMd

with respect to database version Di. The goal of our op-

timized approach is to compute TMx
d from TMx+1

d and

δ(x+1)x without having to explicitly derive Dx and Mx
d . To

facilitate this, we need to extend the schema of TM i
d with an

additional attribute countv to TM i
d(attr, v, countv) where

countv indicates the number of times the value v occurs in

the database attribute attr. Thus, when we start by consid-

ering database version Dℓ, TM
ℓ
d is computed as follows:

TM ℓ
d = πattr,v,countv (T ⊲⊳T.C=Mℓ

d
.v M ℓ

d).

Subsequently, when we consider database version Dx, x <

ℓ, TMx
d is derived from TMx+1

d and δ(x+1)x, which we ex-

plain in the following.

The derivation of TMx
d , x < ℓ, consists of two steps.

In the first step, we compute δMd, which represents the

delta tuples required to derive Mx
d from Mx+1

d . Specifi-

cally, δMd, which is derived from δ(x+1)x, is a set of tu-

ples of the form (attr, v, countv) representing the net effect

of the insert/delete delta tuples in δ(x+1)x on the frequency

of occurrence (given by countv) of attribute values (indi-

cated by value v of attribute attr) that occur in the delta

tuples. For example, if δ(x+1)x consists of m insert tuples

that have a value of 10 for attribute A (with domain d) and

n delete tuples that have a value of 10 for attribute A, then

(A, 10,m− n) ∈ δMd. Tuples in δMd with a value of zero

for countv are removed. Note that it is possible to derive

Mx
d from Mx+1

d and δMd.

Finally, in the second step, we compute TMx
d from TMx+1

d

and δMd as follows:

TMx
d = σcountv>0 (πattr,v,countv=TM

x+1
d

.countv+δTMd.countv

(TMx+1
d d|><|d v,attr δTMd)), where

δTMd = πattr,v,countv (T ⊲⊳ T.C=δMd.v δMd).

δTMd represents the delta tuples required to derive TMx
d

from TMx+1
d . The full outer join between TMx+1

d and δTMd

(with equality join predicates on both attr and v attributes)

is used to combine7 the delta tuples in δTMd with TMx+1
d .

7 Note that in the SQL implementation, null count values are first

converted to zero values before being added.



18 Quoc Trung Tran et al.

Since δ(x+1)x is typically much smaller than Dx, the

presented approach to compute δMd and δTMd to derive

TMx
d is less costly than the straightforward approach to

compute Dx and Mx
d to derive TMx

d .

Another area that could benefit from a similar optimiza-

tion is the computation of the join relation J(G) correspond-

ing to a selected schema subgraph G. Let Ji(G) denote the

join relation for database version Di. The direct approach

to compute Jx(G) is to first derive Dx from δ(x+1)x and

then compute Jx(G) from Dx. However, this can be opti-

mized by instead deriving a set of delta tuples, denoted by

δJ(G), from δ(x+1)x and computing Jx(G) from δJ(G) and

the previously computed Jx+1(G). As the ideas are similar

to the first optimization, we omit the elaboration of the sec-

ond optimization.

9.2 Multiple Database and Result Versions

In the second scenario, the input to the QRE problem is

a sequence of database versions and result pairs (D1, T1),

(D2, T2), · · · (Dℓ, Tℓ); where each Ti is the result of the

same unknown query Q on database version Di (i.e., Ti =
Q(Di)). We assume that all the databases Di have the same

schema.

For example, the Ti’s could correspond to weekly re-

ports generated by the same query on weekly versions of

the database, or Q could be a continuous long standing query

that is run periodically on different snapshots of the database.

In this more general setting with multiple database and result

versions, the challenge is how to efficiently reverse-engineer

a query Q′ such that Q′(Di) = Ti for each i ∈ [1, ℓ].

The most straightforward solution to this problem is to

independently derive a set of IEQs Si for each database and

result pair (Di, Ti) and then intersect all the Si’s to compute

the set of IEQs for Q. We refer to this direct approach as

TALOS
−.

In the following, we present a more efficient solution

(denoted by TALOS) that considers all database and result

pairs collectively to derive the IEQs. The tradeoff of this

more efficient approach is that it could miss even more pre-

cise IEQs compared to TALOS−.

Similar to TALOS−, TALOS starts by identifying the set

of covering attributes (and hence candidate core relations)

for the columns in the output tables. Next, for each schema

subgraph G that contains a set of candidate core relations,

TALOS computes a join relation Ji(G) for each database

version Di by joining all the relations in Di that are in-

cluded in G based on their foreign-key joins. Note that if

the multiple database versions are not stored independently

but are instead organized using a reference version as dis-

cussed in the previous section, our previously discussed op-

timization to derive Ji(G) is applicable here as well. At this

Table # Tuples

adult 45, 222

Master 16, 639
Batting 88, 686
Pitching 37, 598
Fielding 128, 426
Salaries 18, 115
Team 2, 535
Manager 3, 099

Table # Tuples

lineitem 6000000
order 1500000
partsupp 800000
part 200000
customer 150000
supplier 10000
nation 25

(a) Adult & Baseball (b) TPC-H

Table 2 Table sizes (number of tuples)

point, TALOS has computed a collection of join relations

J1(G), · · · , Jℓ(G) wrt G. Instead of deriving IEQs indepen-

dently for each Ji(G) as in TALOS−, TALOS derives IEQs

from a single unified join relation J(G) that is generated by

combining all the join relations; i.e., J(G) =
⋃ℓ

i=1 Ji(G).

For convenience, let T denote the combined result table;

i.e., T =
⋃ℓ

i=1 Ti. For each tuple tj ∈ T , let X(tj) =

{i ∈ [1, ℓ]|tj ∈ Ti}, and let Pi,j denote the maximal subset

of tuples in Ji(G) that form tj when they are projected on

proj(Q). Note that each Pi,j ⊆ J(G) since each Ji(G) ⊆
J(G).

The tuples in J(G) are labeled as follows. The tuples

that do not contribute to any result tuples in T

(i.e., J(G)−
⋃

tj∈T,i∈[1,ℓ] Pi,j) are labeled negative and the

remaining tuples in J(G) are labeled free. To guarantee that

tj ∈ Q′(Di) for each tj ∈ T and i ∈ X(tj), we need to

ensure that at least one free tuple in each Pi,j will be even-

tually labeled positive for the decision tree constructed with

respect to J(G). This can be achieved by imposing the at-

least-one-semantics on the set
⋂

i∈X(tj)
Pi,j−

⋃

i∈[1,ℓ],i6∈X(tj)
Pi,j

for the decision tree construction.

In case we need to derive an SPJA-IEQ, the same idea

can be applied. For instance, to derive an SPJA-IEQ with

SUM/AVG aggregation function, instead of applying the at-

least-one semantics on the corresponding subset,

i.e.,
⋂

i∈X(tj)
Pi,j −

⋃

i∈[1,ℓ],i6∈X(tj)
Pi,j , we solve a subset-

sum/subset-average problem defined on this set of tuples and

label the tuples accordingly.

10 Experimental Study

This section presents our experimental study to evaluate the

performance of our proposed approach, TALOS, for com-

puting IEQs. We first examine its effectiveness in handling

at-least-one semantics (Section 10.2) and generating IEQs

(Section 10.3) and then evaluate the efficiency of its opti-

mizations (Sections 10.4 & 10.5).
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10.1 Methodology

Algorithms. To evaluate the effectiveness of TALOS in dy-

namically assigning the class labels for free tuples, we com-

pare TALOS against two static class labeling techniques, de-

noted by NI and RD. Recall that NI labels all the free tuples

as positive, while RD labels a random number of at least one

tuple from each subset of free tuples as positive.

We also examine the effectiveness of our proposed opti-

mizations by comparing against a non-optimized naive vari-

ant of TALOS (denoted by TALOS−).

Data sets and Queries. We used two real and one syn-

thetic data sets of different sizes for our experiments: Adult,

Baseball, and TPC-H with a scale factor of 1.0. The sizes of

these data sets are shown in Table 2 and the test queries are

given in Table 3 with the cardinality of their results shown

in the last column. We also run experiments on three addi-

tional data sets: basket ball data set8, a single-relation data

set containing information about laptops that are crawled

from ebay9, and TPC-H with a scale factor of 5.0. The re-

sults for these additional data sets are given in Appendix F.

The Adult data set, from the UCI Machine Learning Repos-

itory, is a single-relation data set that has been used in many

classification works. We use this data set to illustrate the util-

ity of IEQs for the simple case where both the input query

Q as well as the output IEQ Q′ involve only one relation.

There are five queries (A1 - A5) on this data set.10

The baseball data set is a more complex, multi-relation

database that contains Batting, Pitching, and Fielding statis-

tics for Major League Baseball from 1871 through 2006 cre-

ated by Sean Lahman. The queries used for this data set

(B1 - B6) are common queries that mainly relate to base-

ball players’ performance.

The TPC-H data set is a widely used benchmark. We

use the TPC-H data set with a size of 1GB, and seven test

queries T1 - T7.

Queries A5, B5, B6, T5, T6, T7 are examples of queries

in more expressive fragments (SPJU, SPJA), while the re-

maining queries are examples of SPJ queries.

Control Knobs. In our experiments, we set the following

two control knobs: (K1) the number of relations in the from-

clause of the IEQs, and (K2) the number of selection pred-

icates in each conjunction of sel(Q′). Table 4 shows the

range of values set for these knobs for the queries in Adult,

Baseball and TPC-H data sets; these values are chosen to

ensure that the generated IEQs are not too complicated.

8 http://www.basketballreference.com/.
9 http://www.ebay.com/.

10 We use gain, ms, edu, loss, nc, hpw, and rs, respectively, as

abbreviations for capital-gain, marital-status, number of years of edu-

cation, capital-loss, native-country, hours-per-week, and relationship.
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Fig. 4 Comparison of TALOS, NI and RD (Adult data set)

Control Knob Adult Baseball TPC-H

(K1) # relations in the from-clause [1, 1] [2, 4] [2, 3]
(K2) # selection predicates in each con-

junction of the where-clause

[0, 5] [0, 5] [0, 5]

Table 4 The control knob values

Testing Platforms. Our experiments were conducted on a

machine running 64-bit Ubuntu OS with four-core Intel(R)

Core(TM) i7 CPU Q820 @1.73GHz CPU and 4GB RAM.

All the algorithms were coded in C++ and compiled and op-

timized with gcc; and data is managed using MySQL Server

5.0.51. Each experimental timing reported is an average tim-

ing over 5 different runs.

10.2 Effectiveness of At-Least-One Semantics

We compare TALOS against the two static class-labeling

schemes, NI and RD, in terms of their efficiency as well as

the quality of the generated IEQs. Recall that NI labels all

the free tuples as positive, while RD labels a random num-

ber of at least one tuple from each subset of free tuples as

positive. The comparison focuses on SPJ test queries for the

Adult and Baseball datasets.11

For the Adult data set, only weak IEQs are considered

as all the labeling schemes would have produced the same

11 As all the class-labeling schemes are based on the same framework

to derive SPJU-IEQs which differ only in how they label free tuples to

derive SPJ-IEQs that form the subqueries for SPJU-IEQs, we do not

consider SPJU queries here. For SPJA queries, since the free tuples are

assigned fixed class labels to satisfy the aggregation conditions before

being classified, all the three schemes would have returned the same

results for SPJA-IEQs; therefore, SPJA queries are not considered. For

the TPC-H queries, it turns out that all the free tuples are bound and

therefore all the three schemes return the same set of IEQs; therefore,

we do not report results for TPC-H datasets.
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Query |Q(D)|
A1 πnc σocc=“Armed-Force” (adult) 1
A2 πedu,occ (σms=“Never-married”∧64≤age≤68∧race=“White”∧gain>500∧sex=“F” adult) 4
A3 πnc,gain (σms=“Never married” adult) 137
A4 πid (σSKY -LINE(gain MAX,age MIN) adult) 4
A5 πage,AV G(hpw)σnc=“US”(adult) 1

B1 πM.name (σteam=“ARI”∧year=2006∧HR>10 (Master ⊲⊳ Batting)) 7
B2 πM.name (σsum(HR)>600 (Master ⊲⊳ Batting)) 4
B3 πM.name (σSKY -LINE(HR MAX,SO MIN) (Master ⊲⊳ Batting)) 35
B4 πM.name,T.year,T.rank (σteam=“CIN”∧1982<year<1988 (Manager ⊲⊳ Team)) 6
B5 πMaster.name,Manager.ID(Master ⊲⊳ Manager)⋃

πMaster.name,B.teamID σyear=2006 (Master ⊲⊳ Batting) 583
B6 πname,SUM(salary) (Master ⊲⊳ Salaries) 3540

T1 πS.name,N.name σS.acctbal>4000∧N.regionkey<4 (supplier ⊲⊳ nation) 4383
T2 πC.name,N.name σC.acctbal>3000 (customer ⊲⊳ nation) 95264
T3 πP.name,S.name σPS.avaiqty>3000∧S.acctbal>9500 (part ⊲⊳ partsupp ⊲⊳ supplier) 24672
T4 πO.clerk,L.extendedprice σL.quantity<2∧orderstatus=“P” (lineitem ⊲⊳ order) 3719
T5 πC.name,N.name σmktsegment=“BUILDING”∧C.acctbal>100 (customer ⊲⊳ nation)⋃

πS.name,N.name σS.acctbal>4000 (supplier ⊲⊳ nation) 32554
T6 πP.name,SUM(PS.supplycost)GP.name σPS.retailprice>2000 (part ⊲⊳ partsupp) 4950
T7 πC.name,SUM(O.totalprice)GC.name σC.acctbal>3000 (order ⊲⊳ customer) 63533

Table 3 Test queries for Adult (A1 - A5), Baseball (B1 - B6) & TPC-H (T1 - T7)

Average height Average size

Query NI RD TALOS NI RD TALOS

A1 14.9 19.8 2.1 5304 9360 4.7
A2 16.1 21.8 6.5 3224 2970 19.2
A3 16 20 12 4386 8103 334

Table 5 Comparison of decision trees for NI, RD, and TALOS

strong IEQs due to the absence of free tuples in a single-

relation database for computing strong IEQs.

Figure 4(a) compares the number of the three types of

IEQs (precise, approximate, pruned) generated for Adult data

set. As the number of decision trees considered is the same

for all the schemes, the total number of IEQs generated by

the schemes are the same. Observe that the number of pre-

cise IEQs from TALOS is consistently larger than that from

NI and RD. The better quality IEQs from TALOS is due to

its flexible dynamic class label assignment scheme for free

tuples which provides more opportunities to derive precise

IEQs. We note that it happens that all the tuples are bound

for query A4; hence, the performance results are the same

for all three labeling schemes.

Figure 4(b) compares the running time performance of

the three schemes for Adult data set. The results show that

TALOS is also more efficient than NI and RD. The rea-

son is due to the flexibility of TALOS’s dynamic labeling

scheme for free tuples, which results in decision trees that

are smaller than those constructed by NI and RD. Table 5

compares the decision trees constructed by TALOS, NI, and

RD in terms of their average height and average size (i.e.,

number of nodes). Observe that the decision trees constructed

by TALOS are significantly more compact than those built

by NI and RD.

Figures 4(c) and (d) compare the quality of the IEQs

generated for Adult data set using the MDL and F-measure

metrics, respectively. The results show that TALOS produces

much better quality IEQs than both NI and RD. For the

MDL metric (smaller value means better quality), the av-

erage value of the MDL metric for TALOS is low (under

700) while the values of both NI and RD are in the range of

[4000, 22000]. For the F-measure metric (larger value means

better quality), the average value for TALOS is no smaller

than 0.7, whereas the values for NI and RD are only around

0.4.

Figure 5 shows the comparison results for the Baseball

data set for strong IEQs. (The strong and weak IEQs for the

queries B1 to B4 happen to be the same.) The results also

demonstrate similar trends with TALOS outperforming NI

and RD in both the running time as well as the number and

the quality of IEQs generated for queries B1-B3. It happens

that all the tuples are bound for query B4; hence, the perfor-

mance results are the same for all three algorithms.

We observe that the benefit of TALOS over NI and RD

is higher for queries A1-A3 in Adult data set compared with

that for queries B1-B3 in Baseball data set. For example,

TALOS runs 3 - 10 times faster than NI and RD for queries

A1 - A3, whereas TALOS runs 2 times faster than NI and RD

for queries B1 - B3. As another example, the MDLs of the

IEQs for A1 - A3 returned by TALOS are 10 - 1000 times

lower than those of NI (and RD); whereas the MDLs of the

IEQs for B1 - B3 returned by TALOS are 2 times lower than

those of NI (and RD). The reason is that the number of free

tuples per partition for queries on Baseball data set is smaller

(in the order of 10) compared with that for queries on Adult

data set (in the order of 100). The flexibility for TALOS,

therefore, reduces in queries B1-B3; however, TALOS still

produces higher quality IEQs than NI and RD.

10.3 Discussion on Generated IEQs

In this section, we discuss some of the interesting IEQs gen-

erated by TALOS on the running data sets, as shown in Ta-
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ble 9. Discussions for other queries are given in Appendix E.

We use Xi,j to denote an IEQ for the query Xi in Table 3,

where X ∈ {A,B, T}. For each IEQ, we also show its value

for the F-measure metric (i.e., F est
m ) given in terms of their

|pa|, |pb| and |pc| values; recall that an IEQ is precise iff

|pb| = 0 and |pc| = 0.

Adult. In query A2, we want to find the occupation and edu-

cation of white females who are never married and with age

in the range [64, 68] and with a capital gain greater than 500.

The IEQ A2,1 provides additional insight about the query

result: those who are in the age range [64, 66] are highly ed-

ucated, whereas the rest (i.e., those in the age range [67, 68])

have high capital gains.

Query A4 is a skyline query looking for people with

maximal capital gain and minimal age. Interestingly, the pre-

cise IEQ A4,1 provides a simplification of A4: the people se-

lected by this skyline query are either (1) very young (age ≤
17) and have capital gain in the range 1055 − 27828, or (2)

have very high capital gain (> 27828), work in the protec-

tive service, and whose race is not classified as “others”.

Query A5 is an SPJA query looking for the average num-

ber of working hours per week of each age group of people

who have native country as “US”. The precise IEQ A5,1 re-

ports the number of working hours per week of a particular

person in this group. Note that although A5 and A5,1 use dif-

ferent aggregated functions (SUM vs. AVG), these queries

are still considered to be equivalent. The reason is that the

difference between the aggregated values of the correspond-

ing tuples in A5(D) and A5,1(D) is less than one, and is

considered to be the same based on the similarity function

that is used.

Baseball. In query B2, we want to find the set of high per-

formance players who have very high total home runs (>
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600). The IEQ B2,1 indicates that one player in this group is

highly paid with a left throwing hand.

Query B4 is an interesting query that involves multiple

core relations. This query asks for the managers of team

“CIN” from 1983 to 1988, the year they managed the team

as well as the rank gained by the team. In this query, we

note that TALOS found alternative join-paths to link the two

core relations, Manager and Team. The first alternative join-

path (shown by B4,1) involves Manager, Master, Batting,

and Team. The second alternative join-path (not shown) in-

volves Manager, Master, Fielding, and Team. The IEQ B4,1

reveals the interesting observation that there is one manager

who was also a player in the same year that he managed the

team with some additional information about this manager-

player.

Queries B5 and B6 are examples of SPJU and SPJA

queries. TALOS returns one IEQ for each of these two queries,

and the IEQ is exactly the same as the original one. In other

words, TALOS is able to reverse-engineer the original queries

that are used to derive B5(D) and B6(D).

TPC-H. Query T1 retrieves the names of suppliers whose

acctbal is greater than 4000 and regionkey is smaller than

4. T1,1 is an approximate IEQ of T1 that does not include the

selection condition on acctbal attribute.

Query T3 retrieves the name of suppliers and parts, where

the acctbal of the supplier is greater than 9500 and the availqty

of the part is greater than 3000. T3,1 is an approximate IEQ

that provides details of one tuple in T3(D), i.e., the tuple has

availqty = 3001 and retailprice ≤ 953.

Queries T5−T7 are examples of SPJU and SPJA queries.

TALOS returns one IEQ for each of these queries, and the

IEQ is exactly the same as the original one. In other words,

TALOS is able to reverse-engineer the original queries that

are used to derive T5(D), T6(D) and T7(D).

So far, we have studied the effectiveness of TALOS in

generating IEQs. In the following, we study the efficiency

of the proposed optimizations of TALOS. Our discussion fo-

cuses on TPC-H data set and the corresponding queries, as

other data sets (Adult and Baseball) have small size, and the

optimizations have little effect for those cases.
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IEQ |pa| |pb| |pc|

A2,1: σp1∨p2
(adult) 5 0 0

p1 : 63 < age ≤ 66 ∧ edu > 15 ∧ ms = “NM”; p2 : 66 < age ≤ 68 ∧ ms = “NM” ∧ gain > 2993
A4,1: σp1∨p2

(adult) 4 0 0
p1 : 1055 < gain ≤ 27828 ∧ age ≤ 17; p2 : gain > 27828 ∧ occ = P ∧ race 6= O

A5,1: πage,SUM(hpw) σage=53∧edu=“Bachelor”∧occ=“Prof-specialty”(adult) 1 0 0

B2,1: σsalary>21680700∧throws=“L” (Master ⊲⊳ Salaries) 1 0 3
B4,1: σ21<L≤22∧SB≤0∧67<W≤70 (Mananger ⊲⊳ Master ⊲⊳ Batting ⊲⊳ Team) 1 0 5

T1,1: σregionkey≤3(supplier ⊲⊳ nation) 4383 3598 0

T3,1: σ3000<availqty≤3001∧retailprice≤953 (part ⊲⊳ partsupp ⊲⊳ supplier) 1 0 24671

Table 6 Examples of IEQs generated by TALOS

10.4 Effectiveness of Optimizations for One Database

Version

We now consider the case of applying TALOS to generate

IEQs given one database version.

Effectiveness of Join Indices. First, we evaluate the effec-

tiveness of using join indices to compute the join relation

for the decision tree classifier by comparing TALOS (which

uses join indices) against TALOS− (without join indices) for

deriving IEQs.

Figure 6 shows the running time comparison of TALOS

and TALOS−. Note that the number and quality of IEQs pro-

duced by TALOS and TALOS− are the same, as these qual-

ities are independent of the optimizations. The results show

that TALOS is up to two times faster than TALOS−. The rea-

son is that the computation of Jhub by TALOS using join in-

dices is more efficient than the computation of join relation

J by joining relations directly in TALOS−. In addition, the

attribute lists accessed by TALOS, which correspond to the

base relations, are smaller than the attribute lists accessed by

TALOS
−, which are based on J .

To illustrate these observations above, we show the run-

ning time comparison of TALOS and TALOS
− to derive

IEQs for queries T3 and T4 with respect to the three main

steps of each algorithm: (1) deriving the join relation, (2)

computing attribute lists, and (3) building decision trees.

The results in Table 7 clearly demonstrate the effectiveness

of TALOS over TALOS− in these steps. For instance, the

step to derive the join relation for T3 by TALOS is 1.5 times

faster than that of TALOS−, since TALOS only needs to

join the corresponding join indices of part-partsupp and

partsupp-supplier consisting of integer-valued columns.

In contrast, TALOS− needs to perform the join between

partsupp, part, and supplier relations. In another example,

the step to derive join relation for T4 by TALOS is 3.5 times

faster than that of TALOS−, since TALOS only needs to read

the corresponding join index (lineitem-order); whereas

TALOS
− needs to perform the join between lineitem and

order relations.

The attribute lists used by TALOS are also more compact

than those used by TALOS−. For instance, the attribute list

constructed by TALOS− for attribute “part.retailprice” for

query T3 is 4 times larger than that constructed by TALOS.

Thus the steps to derive attribute lists and building decision

trees run more efficiently in TALOS than in TALOS−.

Effectiveness of Domain Indices. We evaluate the effec-

tiveness of using domain indices to identify covering at-

tributes by comparing TALOS (which uses domain indices)

against TALOS−(without domain indices) for deriving IEQs

where the input query is unknown.

For each test query Ti, we first compute its answer Ti(D)

on the TPC-H data set D and then use Ti(D) and D as inputs

to derive IEQs; thus, each input query for this experiment is

actually Ti(D) and not Ti. For each query Ti(D), we mea-

sured the time to derive the IEQs for Qi(D). We present

each timing in terms of two components: the time taken to

compute the covering attributes (denoted by CA) and the

remaining time taken to derive the IEQs after the covering

attributes have been computed (denoted by DT ).

Figure 7 shows the comparison of TALOS and TALOS−

for the TPC-H queries. The results show that TALOS is more

efficient than TALOS
− for computing covering attributes

(i.e., CA component) with TALOS taking a few seconds

compared to 10 seconds incurred by TALOS−.

For TPC-H dataset with SF=5.0 (Appendix F), TALOS

took 30 minutes to return three IEQs for query T4 which in-

volved the two largest relations lineitem (30M tuples) and

orders (7.5M tuples). Thus, further research is needed to

scale the classification-based approach for very large data.

Storage Overhead. The storage overhead of TALOS con-

sists of pre-computed join indices built for pairs of relations

that have foreign-key relationships and the domain indices.

For join indices, basically, for every pair of relations R

and S that have foreign-key relationship, TALOS builds a

join index relation IR,S(rR, rS) consisting of k pairs of in-

tegers, where k is the number of tuples in the join result of

R and S. In addition, TALOS also builds two B+-indices on

rR and rS column of IR,S to speed up the joins of using

join indices. In our experiments, the pre-computed join in-

dices built for TPC-H data set consist of 450MB versus 1GB

of the whole database.

For the domain indices, the size of domain indices was

272MB for the 1GB TPC-H database. 12

12 We remove the comment attributes from each relation in TPC-H

database.
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T3 T4

Step TALOS TALOS− TALOS TALOS−

Join relation 25 36 20 70
Attribute list 1.6 3 36 63
Decision tree 61 63 52 91

Table 7 Detailed running times of TALOS and TALOS−
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10.5 Effectiveness of Optimizations for Multiple Database

Versions

In the last set of experiments, we evaluate the effectiveness

of the optimizations proposed to derive IEQs for the two

contexts with multiple database versions using the TPC-H

data set and four queries (T1 to T4).

We created two database versions, D1 and D2, where D1

was the original TPC-H database and D2 was created from

D1 by combining with a set of delta tuples generated from

four relations (supplier, customer, partsupp, orders)13 as

follows. For each of the four relations R, we randomly se-

lected a subset of k tuples for deletion and also randomly

generated a set of k new tuples for insertion to R, where k is

equal to 5% of the cardinality of R. For each test query Ti,

we run Ti on D1 and D2 to obtain two output tables Ti(D1)
and Ti(D2).

The performance timings presented in this section con-

sist of two components: the time to compute the covering

attributes (denoted by CA), and the remaining time to de-

rive the IEQs (denoted by DT ).

Multiple Database & Result Versions. Given the inputs

(D1, Ti(D1)) and (D2, Ti(D2)), we compare the performance

of two algorithms, TALOS− and TALOS, to derive the IEQs

for Ti.

The performance results in Figure 8 show that TALOS

outperforms TALOS− by a factor of 1.4 times. While both

TALOS
− and TALOS incur the same time for computing

covering attributes, TALOS− spends significantly more time

for deriving the IEQs because it needs to derive one set of

IEQs for each (Dj , Ti(Dj)) and combine them to obtain the

final result. In contrast, TALOS only needs to derive one

set of IEQs using a more efficient approach. For all the test

queries, both TALOS− and TALOSwere able to successfully

reverse-engineer the original test queries.

13 These four relations are chosen because they appeared in the test

queries T1 to T4.

Multiple Database Versions & Single Unknown Result.

Given the input Ti(D1), we compare the performance of

two algorithms, TALOS− and TALOS, to derive the most re-

cent database version Dj and IEQs Q′
i such that Q′

i(Dj) =

Ti(D1).

The performance results in Figure 9 show that TALOS

is on average 1.5 times faster than TALOS
−. The reason

is that TALOS− incurs a lot of time on computing cover-

ing attributes compared to TALOS. CA is in the order of

10 seconds in TALOS versus 60 seconds in TALOS
−. To

further study the usefulness of the optimization techniques

used in TALOS, we present the details of the data structures

to derive the covering attributes for T2 as an example. Recall

from Section 9.1 that in order to compute the covering at-

tributes which are categorical attributes in this case, TALOS

first derives δTMd as the join between T2 containing 95k tu-

ples and δMd containing 600k tuples. The resulting δTMd

contains 15k tuples. Lastly, TALOS performs an outer-join

between δTMd and TM2
d containing 100k. This process is

much cheaper then TALOS
−, which first updates the table

M2
d containing 4000k by adding 600k tuples from δMd and

then joins the resulting M1
d with T2.

11 Related Work

The related work can be broadly classified into three areas:

work on deriving instance equivalent queries, data mining

techniques for related problems, and work on reverse query

processing.

11.1 Instance Equivalent Queries

To the best of our knowledge, our work [29] was the first

data-driven approach to generate instance equivalent queries

from an input query and its result on a database. In this pa-

per, we have extended the work to handle an unknown input

query, support more expressive IEQs, and handle multiple

database versions.

[25] examined a related problem called View Definitions

Problem (VDP) which derives a view definition Q given an

input database D and a materialized view V . As the focus

there is on analyzing the complexity of variants of the VDP

problem, it assumes a very basic setting where D consists

of a single relation R and V has the same schema as R.

Consequently, the derivation of Q consists of determining

the selection predicates on R to generate V , and the paper

examines the complexity of the problem for different query

fragments in terms of the number of equality/range pred-

icates and whether disjunctions are permitted. In contrast

to the theoretical treatment in [25], the setting in our work

is more general and focuses on a novel data classification-

based approach and optimization techniques to derive IEQs.
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An area that is related and complementary to our data-

driven approach for QRE is intensional query answering (IQA)

or cooperative answering. For a given query Q, the goal

of IQA is to augment the query’s answer Q(D) with addi-

tional intensional information in the form of a semantically

equivalent query14 that is derived from integrity constraints

on the data [9, 18]. While semantic equivalence is stronger

than instance equivalence and can be computed in a data-

independent manner using only integrity constraints (ICs),

there are several advantages of adopting instance equiva-

lence for QRE. First, in practice, many data semantics are

not explicitly captured using ICs in the database for various

reasons [11]. Hence, the effectiveness of IQA could be lim-

ited for QRE. Second, even when the ICs in the database

are complete, it can be very difficult to derive semantically

equivalent queries for complex queries (e.g., skyline queries

that select dominant objects). Third, as IQA requires the in-

put query Q to be known, IQA cannot be applied to QRE ap-

plications where only Q(D) (but not Q) is available. Thus,

we view IQA and our proposed data-driven approach to com-

pute IEQs as complementary techniques for QRE.

11.2 Data Mining Techniques

A related technique to our approach of classifying tuples in a

join relation is the CrossMine approach for multi-relational

classification [33]. Given a target relation R with tuples that

have fixed class labels (i.e., either positive or negative), Cross-

Mine builds a decision tree classifier for tuples in R using

the attributes in R as well as the attributes from other re-

lations that have primary-foreign key relationships with R.

Our data classification in TALOS differs from CrossMine

in two key ways. First, TALOS has the notion of free tu-

ples that are dynamically assigned positive or negative class

labels with respect to constraints that are imposed by IEQ

derivation problem (i.e., at-least-one semantics, exactly-k

semantics, and aggregation constraints). In contrast, Cross-

Mine has the same setting as conventional data classification

where all tuples have fixed class labels. Second, whereas

CrossMine uses a greedy heuristic to compute node splits

in the construction of decision trees, TALOS introduces a

novel and efficient technique to compute optimal node splits

by exploiting the flexibility enabled by the presence of free

tuples.

A somewhat related problem to ours is the problem of re-

description mining introduced in [22]. The goal in redescrip-

tion mining is to find different subsets of data that afford

multiple descriptions across multiple vocabularies covering

the same data set. At an abstract level, our work is different

from these methods in several ways. First, we are concerned

14 Two queries Q and Q′ are semantically equivalent if for every

valid database D, Q(D) = Q′(D).

with a fixed subset of the data (the output of the query).

Second, none of the approaches for redescription mining

accounts for structural (relational) information in the data

(something we explicitly address). Third, redescription min-

ing requires multiple independent vocabulary descriptions

to be identified. We do not have this requirement as we are

concerned with deriving IEQs within an SQL context.

11.3 Reverse Query Processing

There are two recent directions that share the same broad

principle of “reverse query processing” as QRE but differ

completely in the problem objectives and techniques.

The first direction addresses the problem of generating

databases to satisfy a set of constraints given an input set of

queries and their results. [3] introduced the Reverse Query

Processing problem, which given an input query Q and a de-

sired result R, generates a database D such that Q(D) = R.

[4] introduced the QAGen problem, which given an input

query Q and a set of target cardinality constraints on the

intermediate subexpressions in Q’s evaluation plan P , gen-

erates a test database such that the execution of P on D sat-

isfies the given cardinality constraints. The QAGen problem

was generalized in [14] to consider a workload of queries

with the objective of generating a minimal set of database

instances such that the results of the workload queries on the

database instances satisfy the given cardinality constraints.

A more recent work [2] proposed probabilistically approxi-

mate algorithms for the QAGen problem. Unlike these works

on generating databases, our work on QRE is to generate

instance-equivalent queries.

The second direction addresses the problem of Targeted

Query Generation (TQGen) which aims to generate test queries

to meet a given set of cardinality constraints [7, 17]. Specif-

ically, given a query Q, a database D, and a set of target

cardinality constraints on the intermediate subexpressions

in Q’s evaluation plan, the objective of TQGen is to gen-

erate a modified query Q′ (by modifying the constant val-

ues in Q’s selection predicates) such that the evaluation plan

of Q′ on D satisfies the given cardinality constraints. Dif-

ferent from the TQGen problem that focuses on cardinality

constraints, our work on QRE aims to generate instance-

equivalent queries that satisfy the “content” constraints of

the query results. In addition, unlike the TQGen problem,

the input query may be unknown in our QRE problem and

the IEQs generated could be very different from the input

query (beyond modifications to selection predicate constants).

More broadly, there has also been work on reverse engi-

neering various aspects of database systems: extracting data

models from databases (e.g., [15, 20]), and mining database

structural information that spans from data dependencies and

constraints (e.g., [6, 26]) to higher-level semantic structures
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(e.g., [1, 31]) to support browsing of databases with large,

complex schemas and data integration applications.

12 Conclusion

In this paper, we have introduced the Query Reverse En-

gineering (QRE) problem to derive an instance-equivalent

query that produces the same result as a given input result

table. The QRE problem has useful applications in database

usability, data analysis, and data security. We have proposed

a data-driven approach, TALOS, that is based on a novel dy-

namic data classification formulation and extended the ap-

proach to efficiently support the three key dimensions of the

QRE problem: whether the input query is known/unknown,

supporting different IEQ fragments, and supporting multiple

database versions.

There are several directions for further work on the QRE

problem. With respect to our proposed method TALOS, one

challenging issue that requires further study is the scalabil-

ity of the approach for very large data sets; in particular,

the computation and processing of the hub table could be

a bottleneck when the relations involved are very large. It

is also interesting to extend TALOS to derive more com-

plex IEQs (e.g., queries with arithmetic expressions, top-k

queries). An interesting direction to explore beyond TALOS

is a hybrid approach that includes an offline phase to mine

for soft constraints in the database and an online phase that

exploits both the database contents as well as mined con-

straints. Finally, a more general direction to explore is how

to apply the idea of query reverse engineering for querying

web data.
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