
Multiway SLCA-based Keyword Search in XML Data

Chong Sun
School of Computing
National University of

Singapore

sunchong@soe.ucsc.edu

Chee-Yong Chan
School of Computing
National University of

Singapore

chancy@comp.nus.edu.sg

Amit K. Goenka
School of Computing
National University of

Singapore

amitkuma@comp.nus.edu.sg

ABSTRACT
Keyword search for smallest lowest common ancestors (SLCAs)
in XML data has recently been proposed as a meaningful
way to identify interesting data nodes in XML data where
their subtrees contain an input set of keywords. In this pa-
per, we generalize this useful search paradigm to support
keyword search beyond the traditional AND semantics to
include both AND and OR boolean operators as well. We
first analyze properties of the LCA computation and pro-
pose improved algorithms to solve the traditional keyword
search problem (with only AND semantics). We then ex-
tend our approach to handle general keyword search involv-
ing combinations of AND and OR boolean operators. The
effectiveness of our new algorithms is demonstrated with a
comprehensive experimental performance study.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing, texture databases

General Terms
Algorithms

Keywords
keyword search query, smallest lowest common ancestor,
XML

1. INTRODUCTION
Keyword search is a convenient and widely-used approach

to retrieve information from both unstructured and struc-
tured data [1, 4, 7, 10, 11]. Its appeal stems from the fact
that keyword queries can be easily posed without requiring
to use a query language and knowing the schema or struc-
ture of the data being searched. For XML data, where the
data is viewed as a hierarchically-structured rooted tree, a
natural keyword search semantics is to return all the nodes
in XML tree that contain all the keywords in their subtrees.
However, this simple search semantics can result in return-
ing too many data nodes, many of which are only remotely
linked to the nodes containing the keywords.

A recent direction to improve the effectiveness of keyword
search in XML data is based on the notion of smallest lowest

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

x1

x2

x3

x4

d1 e1 x5

b1 a1 c1

d2

e2

b2

c2

a2

a1

b1

b2

b3

...

bn−1

bn

a2

(a) T1 (b) T2

Figure 1: Example XML Trees T1 and T2

common ancestor (SLCA) semantics [14]. A keyword search
using the SLCA semantics returns nodes in the XML data
that satisfy the following two conditions: (1) the subtrees
rooted at the nodes contain all the keywords, and (2) the
nodes do not have any proper descendant node that satisfies
condition (1). The set of returned data nodes are referred
to as the SLCAs of the keyword search query. Another re-
cent work on keyword search based on the meaningful LCA
(MLCA) semantics also shares the similar principle as SLCA
[12].

The following example illustrates the difference between
the SLCA-based keyword search and the conventional LCA-
based keyword search.

Example 1.1 Consider the XML tree T1 shown in Fig-
ure 1(a), where the keyword nodes are annotated with sub-
scripts for ease of reference. Consider a keyword search using
the keywords {a, b, c, d, e} on T1. If the search is based on
the conventional LCA semantics, then the result is given by
{x1, x2, x3, x4} as x1 is the LCA of {a2, b2, c2, d2, e2}, x2 is
the LCA of {a1, b1, c2, d1, e1}, x3 is the LCA of {a1, b1, c1,
d2, e1}, and x4 is the LCA of {a1, b1, c1, d1, e1}. However, if
the search is based on the SLCA semantics, then the result
is given by {x4}. Observe that each of x1, x2, and x3 is
not a SLCA because it has a descendant node x4 that is a
SLCA. �

The state-of-the-art algorithms for keyword search us-
ing SLCA semantics are the Scan Eager (SE) and Indexed
Lookup Eager (ILE) algorithms [14], which were shown to
be more efficient than stack-based algorithms [8, 12]. The

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1043

ILE algorithm is the algorithm of choice when the keyword
search involves at least one low frequency keyword, while the
SE algorithm performs better when the frequencies of the
keywords in the query do not vary significantly. We clas-
sify both these algorithms as binary-SLCA approach (BS)
as they are both based on the same principle of comput-
ing the SLCAs for a query with k keywords in terms of a
sequence of k − 1 intermediate SLCA computations, where
each SLCA computation takes a pair of data node lists as
inputs and outputs another data node list. Specifically, con-
sider a search query with k keywords w1, · · · , wk. Let Si

denote the list of XML data nodes that are labeled with key-
word ki, i ∈ [1, k]; and let Li denote the SLCAs for a query
with the first i keywords, i ∈ [1, k]. The binary-SLCA algo-
rithms compute the SLCAs for w1, · · · , wk by computing the
sequence L2, L3, · · · , Lk, where each Li is computed by find-
ing the SLCAs of Li−1 and Si (with L1 = S1). An important
observation exploited in the binary-SLCA algorithms is that
the result size is bounded by min{|S1|, · · · , |Sk|}; therefore,
by choosing the keyword with the lowest frequency as k1

(i.e., |S1| ≤ |Si| for i ∈ [1, k]), the algorithms can guarantee
that each |Li| ≤ |S1|, for i ∈ [2, k].

r1

x1

a1 · · · · · ·a100 b1

x2

a101· · · · · ·a200 b2

· · · · · · x10

a901· · · · · ·a1000 b10

b11 · · · b1001

Figure 2: Example XML Tree T3

However, a drawback of the binary-SLCA approach is that
by computing the SLCAs in terms of a series of intermediate
SLCA computations, it can often incur many unnecessary
SLCA intermediate computations even when the result size
is small as the following example illustrates.

Example 1.2 Consider the XML tree T3 in Figure 2. The
SLCAs for the keywords {a, b} in T3 are {x1, x2, · · · , x10}.
Since |Sa| < |Sb|, the BS approach will enumerate each of
the “a” nodes in Sa to compute a potential SLCA with it.
Clearly, this approach results in many redundant computa-
tions; for example, the SLCA of ai and b1 gives the same
result x1 for i ∈ [1, 100]. In fact, the BS approach will incur
a total of 1000 SLCA computations to produce a result of
size 10. �

Our first contribution in this paper (Section 3) is the pro-
posal of a novel approach for processing SLCA-based key-
word search queries called multiway-SLCA approach (MS).
In contrast to the BS approach, our MS approach computes
each potential SLCA by taking one data node from each key-
word list Si in a single step instead of breaking the SLCA
computation into a series of intermediate binary SLCA com-
putations. Conceptually, each potential SLCA computed by
the BS approach can be thought of as being driven by some
node from S1 (i.e., the keyword list with the lowest fre-
quency); on the other hand, our MS approach picks an “an-
chor” node from among the k keyword data lists to drive the
multiway SLCA computation. By doing so, our approach is
able to optimize the selection of the anchor node (not nec-
essarily from S1) to maximize the skipping of redundant

computations. The following example provides an idea of
the skipping optimization of our MS approach.

Example 1.3 Consider the processing of the SLCA-based
keyword search with keywords {a, b} on T3 in Figure 2 using
our MS approach. MS will first consider the first data nodes
in all the keyword lists and selects the node that occurs the
latest in T3 as the anchor node. Thus, between a1 ∈ Sa

and b1 ∈ Sb, b1 will be selected as the anchor node (the
property behind this optimization will be explained later in
the paper). Next, using b1 as anchor, our approach will se-
lect the closest data nodes from the other keyword lists to
compute a potential SLCA. Thus, the first SLCA is com-
puted for the set {b1, a100}. After the first potential SLCA
is computed, our approach will consider the first nodes in
the keyword lists that occur after b1 for the next computa-
tion (i.e., nodes a101 and b2). The next anchor node selected
is b2, and the next SLCA computation involves b2 and a200.
Clearly, the MS approach is able to skip many unnecessary
computations. �

In addition to introducing the notion of anchor nodes that
we alluded to for minimizing redundant computations, we
also develop several optimizations to further maximize the
skipping of data nodes in the keyword list without compro-
mising correctnesses of query results.

Our second contribution in this paper (Section 4) is the
generalization of the SLCA-based approach to handle more
general keyword search queries beyond the implicit AND-
semantics to support any combinations of AND and OR
semantics. This enables more flexible and expressive key-
word search queries such as “(a OR b) AND c AND (d or
E)” to be specified. We extend our MS approach to evaluate
general keyword search queries involving both AND and OR
operators.

Finally, our third contribution in this paper (Section 5) is
a comprehensive experimental performance evaluation which
demonstrates that our proposed multiway-SLCA approach
outperforms the previous binary-SLCA approach for both
traditional keyword search queries as well as generalized key-
word search queries.

2. PRELIMINARIES
Let K = {w1, · · · , wk} denote an input set of k keywords,

where each keyword wi is associated with a set Si of nodes
in an XML document T (sorted in document order1). A set
of nodes S = {v1, · · · , vk} is defined to be a match for K if
|S| = |K| and each vi ∈ Si for i ∈ [1, k]. We use Si to denote
the data node list (sorted in document order) associated
with the keyword wi. For simplicity and without loss of
generality, we assume w1 to be the lowest frequency keyword
among the keywords in K; i.e., |S1| ≤ |Si| for i ∈ [1, k].

A node v in T is a lowest common ancestor (or LCA) for
K if v is the lowest common ancestor node of some match
S. Moreover, v is also a smallest lowest common ancestor
(or SLCA) for K if each descendant of v in T is not a LCA
for K.

Given two nodes v and w in a document tree T , v ≺p w
denotes that v precedes w (or w succeeds v) in document

order in T ; and v �p w denotes that v ≺p w or v = w.
More generally, given two matches V = {v1, · · · , vk} and

1Document order corresponds to a preorder traversal of doc-
ument nodes.

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1044

W = {w1, · · · , wk}, where vi, wi ∈ Si, ∀ i ∈ [1, k], we say
that V precedes W (or W succeeds V), denoted by V ≺p W ,
if they satisfy both the following properties: (1) vi �p wi

for each i ∈ [1, k]; and (2) V �= W .
We use v ≺a w to denote that v is a proper ancestor of

w in T , and v �a w to denote that v = w or v ≺a w.
Consider a node v and a set of nodes S. The function

first(S) returns the “first” node v′ ∈ S such that v′ �p vi

for each vi ∈ S. Similarly, the function last(S) returns the
“last” node v′ ∈ S such that vi �p v′ for each vi ∈ S. Both
functions return null if any of its input argument values is
null.

The function out(v, S) returns the “first” node v′ ∈ S
such that v ≺p v′ and v′ is not a descendant of v or equal to
v; i.e., out(v, S) = first({v′ ∈ S | v ≺p v′, v ��a v′}). The
function returns null if no such node exists or if v is null.

The function next(v, S) returns the first node in S that
succeeds v if it exists; otherwise, it returns null. The func-
tion pred(v, S) returns the predecessor of v in S, that is,
the last node in S that precedes v if it exists; otherwise, it
returns null.

The function closest(v, S) computes the closest node in S
to v as follows:

closest(v, S) =

��
�

pred(v, S) if lca(v, next(v, S)) ≺a

lca(v, pred(v, S)),
next(v, S) otherwise.

However, closest(v, S) returns null if both pred(v, S) and
next(v, S) are null; and it returns the non-null value if ex-
actly one of pred(v, S) and next(v, S) is null.

The function lca(S) computes the lowest common ances-
tor (or LCA) of the set of nodes S and returns null if any of
its arguments is null.

For notational convenience, we assume that the root node
of the data tree T has a virtual parent node, denoted by
droot, such that droot is a proper ancestor node of every
node in T .

The following example illustrates our definitions.

Example 2.1 Consider the XML document tree T1 shown
in Figure 1(a) and the keyword search query K = {a, b, c}.
Note that {a1, b1, c2} is a match for K; but neither {a1, c2}
nor {x1, b2, c1} is a match for K. We have e1 ≺p b2 but e2 �≺p

x4. Moreover, {a1, b1, c1} ≺p {a2, b2, c2}. We have x2 �a e1

and x3 ��a c2. If S = {d1, c1, d2}, then first(S) = d1,
last(S) = d2, out(x4, S) = d2, next(x4, S) = c1, next(c1, S) =
d2, next(e2, S) = null, pred(a1, S) = d1, pred(x4, S) = null,
closest(b1, S) = c1, closest(a2, S) = d2, and lca(S) = x3. �

3. OUR APPROACH
In this section, we present our new approach of process-

ing SLCA-based keyword search queries called the multiway-
SLCA approach (MS).

As alluded in the introduction, the key motivation behind
our MS approach is to avoid the unnecessary overhead of
the BS approach where SLCAs are computed in terms of
intermediate SLCA computations by enumerating each data
node in the lowest-frequency keyword list. As Example 1.2
demonstrates, by rigidly driving the SLCA computations
from the lowest-frequency keyword list can result in many
redundant computations particularly when the size of the
results is small.

We first introduce the notion of anchor nodes in Sec-

tion 3.1 which is a central idea in our MS approach. Sec-
tion 3.2 then presents several important properties about
anchored matches. We present our first MS-based algorithm
called basic multiway-SLCA (BMS) in Section 3.3, followed
by our second improved MS-based algorithm, called incre-
mental multiway-SLCA (IMS), in Section 3.4.

3.1 Anchor Nodes
A match S = {v1, · · · , vk} is said to be anchored by a

node va ∈ S if for each vi ∈ S − {va}, vi = closest(va, Si).
We refer to va as the anchor node of S.

The concept of anchor nodes is important to our multiway-
SLCA approach as it enables us to restrict matches to those
that are anchored by some nodes as the following result
demonstrates.

Lemma 3.1. If lca(S) is an SLCA and v ∈ S, then lca(S) =
lca(S′), where S′ is the set of nodes anchored by v.

Proof. The proof is established by contradiction. Sup-
pose that lca(S) �= lca(S′). Since lca(S) is an SLCA and
v ∈ S′ ∩ S, this implies that lca(S′) is a proper ancestor of
lca(S). It follows that there must exists some Si such that
lca(S) ��a closest(v, Si). However, since S ∩ Si �= ∅, we
have a contradiction.

Thus, our MS approach only considers anchored sets for
computing potential SLCAs. The optimization potential of
the above result was illustrated earlier in Example 1.3. Re-
call that b1 is the selected anchor node for the SLCA com-
putation with a100 = closest(b1, Sa). By choosing b1 as the
anchor node (instead of using a1 as in the BS approach),
for the first SLCA computation, it follows from Lemma 3.1
that it is unnecessary to compute SLCAs for matches that
include any ai, i ∈ [1, 99] because such matches would neces-
sarily include b1 and Lemma 3.1 states that it is not possible
to generate new SLCAs with such matches.

Note in our MS approach, an anchor node can be chosen
from any of keyword data lists (i.e., S1, · · · , Sk). For nota-
tional convenience, when we denote an anchor node as vm,
we also mean that vm is selected from Sm, m ∈ [1, k].

3.2 Properties
In this section, we present several important properties

that form the basis of the optimizations in our MS-based
algorithms.

The following result states that if the LCAs of two matches
S and S′ are both distinct SLCAs, then the two matches
must necessarily be disjoint.

Lemma 3.2. If lca(S) and lca(S′) are distinct SLCAs,
then S ∩ S′ = ∅.

Proof. Suppose lca(S) and lca(S′) are two distinct SLCAs.
If both S and S′ contains some common node, then lca(S)
and lca(S′) must be related in one of three possibilities:
(a) lca(S) = lca(S′); (b) lca(S) is an ancestor of lca(S′);
or (c) lca(S) is a descendant of lca(S′). Case (a) contra-
dicts the fact that lca(S) and lca(S′) are distinct SLCAs.
Cases (b) and (c) imply that either lca(S) or lca(S′) is not
a SLCA, contradicting the fact that lca(S) and lca(S′) are
two distinct SLCAs. Thus, it follows by contradiction that
S ∩ S′ = ∅.

Lemma 3.3. Let V and W be two matches such that V ≺p

W . If lca(W) is not a descendant of lca(V), then for any

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1045

match X where W ≺p X, lca(X) is also not a descendant
of lca(V).

Proof. Let V ≺p W and lca(W) is not a descendant of
lca(V), then either (a) all the nodes in the subtree rooted at
lca(V) precede all the nodes in the subtree rooted at lca(W),
or (b) lca(W) is an ancestor of lca(V).

For case (a), if lca(X) is a descendant of lca(V), then
all the nodes in the subtree rooted at lca(X) must precede
all the nodes in the subtree rooted at lca(W) contradicting
that X succeeds W . Thus, lca(X) cannot be a descendant
of lca(V) for case (a). For case (b), W must contain some
node w such that w is not a descendant of lca(V) and w
succeeds V ; if not, lca(W) cannot be an ancestor of lca(V).
Therefore, if lca(X) is a descendant of lca(V), then this
implies that w ∈ W succeeds X, contradicting the fact that
X succeeds W . Thus, lca(X) cannot be a descendant of
lca(V) for case (b) as well.

Lemma 3.3 is a useful generalization of Lemma 2 in [14]
that is exploited in our algorithms to determine whether a
computed LCA is guaranteed to be a SLCA. Specifically, if
V ≺p W and lca(W) is not a descendant of lca(V), then
one can conclude that lca(W) is an SLCA.

Lemma 3.4. Consider two matches S and S′, where S ≺p

S′, and S is anchored by some node v. If S′ contains some
node u where u �p v, then lca(S′) is either equal to lca(S)
or an ancestor of lca(S).

Proof. Let v ∈ Si, i ∈ [1, k]. Let Si ∩ S′ = {v′}. Since
S ≺p S′, we must have v �p v′. Since {u, v′} ⊆ S′ and
u �p v �p v′, v must be a descendant of lca(S′) which
implies that lca(S′) is either equal to lca(S), a descendant
of lca(S), or an ancestor of lca(S). However, if lca(S′) is a
descendant of lca(S), it would contradict the fact that S is
anchored by v. Therefore, lca(S′) is either equal to lca(S)
or an ancestor of lca(S).

Lemma 3.4 provides a useful property to optimize the se-
lection of the next match to be considered. Specifically, if
we have considered a match S that is anchored by a node
va, then we can skip matches that contain any node v �p va

in S.

Lemma 3.5. Let S and S′ be two matches. If S′ contains
two nodes, where one is a descendant of lca(S), while the
other is not, then lca(S′) is either equal to lca(S) or an
ancestor of lca(S).

Proof. Let v, w ∈ S′, where v is a descendant of lca(S),
and w is not a descendant of lca(S). Since v is a descendant
of both lca(S) and lca(S′), either lca(S) and lca(S′) are
equal or one is an ancestor of the other. However, since w is
not a descendant of lca(S), lca(S′) cannot be a descendant
of lca(S); and the claim follows.

Lemma 3.5 provides another useful property to optimize
the selection of the next match to be considered. Specifi-
cally, if we have considered a match S and lca(S) has been
confirmed to be an SLCA, then we can skip matches S′ that
contains some node that is a descendant of lca(S) as well as
another node that is a not a descendant of lca(S).

Lemma 3.6. Let S be a set of nodes. Then lca(S) =
lca(first(S), last(S)).

Proof. Since {first(S), last(S)} ⊆ S, therefore, lca(S)
is either equal to or an ancestor of lca(first(S), last(S)).
Clearly, for each v ∈ S where first(S) ≺p v ≺p last(S), v
is a descendant of lca(first(S), last(S)). It follows that
lca(S) = lca(first(S), last(S)).

Lemma 3.6 states that the LCA of a set of nodes S is
equivalent to the LCA of the two extreme nodes (i.e., the
first and last nodes) in S. This property enables the LCA
computation for a set of nodes S to be improved significantly
as it suffices to compute the LCA of S in terms of only its
first and last nodes.

3.3 Basic Multiway-SLCA Algorithm (BMS)
In this section, we present our first Multiway-SLCA-based

algorithm called Basic Multiway-SLCA (BMS) for comput-
ing SLCAs for a set of keywords {w1, · · · , wk}. The details
are given in Algorithm 1 which takes k keyword data lists
S1, · · · , Sk as input and returns the SLCAs as a collection
of nodes. Each Si is the list of data nodes associated with
keyword wi.

The algorithm computes the SLCAs iteratively. At each
iteration, an anchor node vm is judiciously selected to com-
pute the match anchored by vm and its LCA (denoted by
α). If α is potentially an SLCA, it is maintained in an inter-
mediate SLCA result list given by α1, · · · , αn, n ≥ 1, where
all the LCAs αi in the list are definite SLCAs except for
the most recently computed candidate αn. To minimize the
computation of LCAs that are not SLCAs, it is important
to optimize the anchor node selected at each iteration.

Initially, step 2 initializes the first candidate SLCA α1 to
be droot (the virtual root node of data tree); if α1 remains
as droot at the end of the algorithm (step 22), then it means
that the SLCA result list is empty. The first anchor node
vm is selected in step 1. Instead of choosing the first node
v1 ∈ S1 as the anchor (as is done in the BS approach), BMS
selects the first node vm ∈ Sm, m ∈ [1, k] that is the “fur-
thest” node among all the first nodes in S1, · · · , Sk. In doing
so, all the nodes in S1 that precede u1 = closest(vm, S1) are
skipped from consideration as anchor nodes. The correct-
ness of this optimization stems from the fact that for each
v ∈ S1 that precedes u1, closest(v, Sm) must be vm; there-
fore, by Lemma 3.1, no SLCAs will be missed out by using
vm as the first anchor node.

Steps 4 to 9 further optimize the selection of the anchor
node to ensure that the total number of candidate SLCAs
computed is no more than |S1| (elaborated in Section 3.5).
Specifically, if the selected anchor node vm precedes
closest(vm, S1), then by Lemma 3.1, no SLCAs will be omit-
ted by replacing the anchor node vm with closest(vm, S1).
The usefulness of this optimization is illustrated in Exam-
ple 3.2.

After an anchor node vm has been chosen, step 10 com-
putes the match anchored by vm, and step 11 computes the
LCA α of this match in terms of only its first and last nodes
(based on Lemma 3.6). Steps 12 to 16 check whether the
newly computed LCA α can be a candidate SLCA; and if
so, whether α can be used to eliminate the previous candi-
date SLCA αn. Steps 17 to 20 optimize the selection of the
next anchor node by choosing the furthest possible node that
maximizes the number of skipped nodes: step 17 is based
on Lemma 3.4 while steps 18 to 20 are based on Lemma 3.5.

Example 3.1 Consider computing SLCAs for the set of

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1046

Algorithm 1 Basic Multiway-SLCA (S1, · · · , Sk)

1: let vm = last({first(Si) | i ∈ [1, k]}), where vm ∈ Sm

2: initialize n = 1; α1 = droot

3: while (vm �= null) do
4: if (m �= 1) then
5: v1 = closest(vm, S1)
6: if (vm ≺p v1) then
7: vm = v1

8: end if
9: end if
10: vi = closest(vm, Si) for each i ∈ [1, k], i �= m
11: α = lca(first(v1, · · · , vk), last(v1, · · · , vk))
12: if (αn �a α) then
13: αn = α
14: else if (α ��a αn) then
15: n = n + 1; αn = α
16: end if
17: vm = last({next(vm, Si) | i ∈ [1, k], vi �p vm})
18: if (vm �= null) and (αn ��a vm) then
19: vm = last({vm} ∪ {out(αn, Si) | i ∈ [1, k], i �= m})
20: end if
21: end while
22: if (α1 = droot) then return ∅ else return {α1, · · · , αn}

keywords {a, b, c, d, e} on the data tree T1 in Figure 1(a)
using the BMS algorithm. Since each keyword has the same
frequency, let S1 be the list of data nodes for keyword “a”.
The first anchor node selected is c1, and the first candidate
SLCA computed is α1 = lca(d1, e1, b1, a1, c1) = x4. The
next anchor node selected is a2, and the second candidate
SLCA computed is α = lca(d2, e2, b2, c2, a2) = x1. However,
since x1 �a x4, x1 is not a SLCA. The next anchor node
selected has a null value (due to next(a2, S1) = null), and
the algorithm terminates with x4 as the only SLCA. �

The next example illustrates the importance of the opti-
mization performed by steps 4 to 9.

Example 3.2 Consider computing SLCAs for the set of
keywords {a, b} on the datatree T2 in Figure 1(b). Here,
S1 refers to the list of nodes for keyword “a”. Using a
non-optimized BMS algorithm that excludes steps 4 to 9,
the first anchor node is b1 and the candidate SLCA com-
puted is lca(b1, a2) = b1. Similarly, the subsequent se-
quence of anchor nodes selected is b2, b3, · · · , bn, and the
candidate SLCA computed for each of these anchor nodes
bi is lca(bi, a2) = b1. Clearly, the non-optimized BMS in-
curs many redundant SLCA computations that involve the
same a2 node. In general, the non-optimized BMS per-
forms poorly when many anchor nodes share the same clos-
est node (w.r.t. some keyword) that succeeds the anchor
nodes. The BMS algorithm avoids this problem by bound-
ing the number of computed SLCAs to be no more than
|S1| using steps 4 to 9. In this case, the first anchor node
selected is optimized to a2 and the first candidate SLCA
computed is lca(a2, b1) = b1. The next anchor node se-
lected has a null value (since next(a2, S1) = null) and the
algorithm terminates without any redundant SLCA compu-
tations. Thus, the number of candidate SLCA computations
is reduced from n to just one. �

3.4 Incremental Multiway-SLCA Algorithm
(IMS)

In this section, we present our second Multiway-SLCA-
based algorithm called Incremental Multiway-SLCA (IMS),

Algorithm 2 Incremental Multiway-SLCA (S1, · · · , Sk)

1: let vm = last({first(Si) | i ∈ [1, k]}), where vm ∈ Sm

2: initialize n = 1; α1 = droot

3: while (vm �= null) do
4: if (m �= 1) then
5: v1 = closest(vm, S1)
6: if (vm ≺p v1) then
7: vm = v1

8: end if
9: end if
10: P = {pred(vm, Si) | i ∈ [1, k], i �= m} ∪ {vm}
11: N = {next(vm, Si) | i ∈ [1, k], next(vm, Si) �= null}
12: initialize rmax = last(N); r = vm

13: repeat
14: remove � from P , where � = first(P)
15: α = lca(�, r)
16: r = last(r, v) where v ∈ N s.t. v = next(vm, Sj), � ∈ Sj

17: until (r = null) or (α ��a r) or (r = rmax)
18: if (r = null) or (α ��a r) then
19: if (αn �a α) then
20: αn = α
21: else if (α ��a αn) then
22: n = n + 1; αn = α
23: end if
24: vm = last(r, out(αn, S1), · · · , out(αn, Sk))
25: else
26: vm = r
27: end if
28: end while
29: if (α1 = droot) then return ∅ else return {α1, · · · , αn}

whose details are shown in Algorithm 2. IMS is an optimized
variant of BMS that reduces the number of LCA computa-
tions.

In BMS (Algorithm 1), each computation of α incurs at
least 2k − 1 LCA computations: each of the k − 1 calls to
closest function in step 10 requires two LCA computations,
and step 11 adds another LCA computation.

To avoid the large number of LCA computations incurred
by an explicit computation of M , the IMS algorithm deter-
mines first(M) and last(M) without actually computing
M . In the following, we analyze the properties of first(M)
and last(M), and explain how this can be achieved. By def-
inition of the match M anchored by vm, M must satisfy the
following three conditions:

1. M ⊆ {vm} ∪ P ∪ N , where P = {pred(vm, Si) | i ∈
[1, k], i �= m, pred(vm, Si) �= null} and N = {next(vm, Si)
| i ∈ [1, k], i �= m, next(vm, Si) �= null};

2. M ∩ Si �= ∅ ∀ i ∈ [1, k]; and

3. vm ∈ M .

Since M must contain vm and every node in P precedes vm,
it follows that first(M) ∈ P ∪ {vm}. Furthermore, last(M)
can be determined once first(M) is known. Let P ′ ⊆ P
denote the subset of nodes in P that precedes first(M) (i.e.,
P ′ = {v ∈ P | v ≺p first(M)}); and let N ′ ⊆ N denote the
subset of nodes in N that corresponds to P ′ that succeeds vm

(i.e., N ′ = {next(vm, Si) | i ∈ [1, k], pred(vm, Si) ∈ P ′}).
Since P ′ ∩ M = ∅, in order for M to satisfy condition (2),
it is necessary that M ⊇ N ′. Moreover, since |P ′| = |N ′|
and |M | = k, we must have M = (P − P ′) ∪ {vm} ∪ N ′

and last(M) = last(N ′).
Since there are |P | + 1 possible values for first(M), let

M1, M2, · · · , M|P |+1 denote the sequence of matches where
for each i ∈ [1, |P |+1], we have (1) vm ∈ Mi; (2) first(Mi) ∈

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1047

P ∪ {vm}; and (3) first(M1) ≺p first(M2) ≺p · · · ≺p

first(M|P |+1). In other words,

first(Mi) =

��
�

first(P ∪ {vm}) if i = 1,
first((P ∪ {vm})− otherwise.�i−1

j=1 first(Mj))
(1)

Based on the preceding analysis of first(M) and last(M),
last(Mi) can be computed incrementally as follows:

last(Mi) =

�
vm if i = 1,
last(Mi−1 ∪ otherwise.
{next(vm, Sx)})

(2)

where first(Mi−1) ∈ Sx.
It follows that

first(M1) ≺p · · · ≺p first(M|P |+1) ≺p

last(M1) �p · · · �p last(M|P |+1). (3)

Clearly, M = Mj for some j ∈ [1, |P |+1], where lca(Mi) �a

lca(Mj) for i ∈ [1, |P | + 1]. We can characterize Mj by the
following two properties:

(P1) for i ∈ [1, j), lca(Mi) �a last(Mi+1); and

(P2) if j < |P | + 1, then lca(Mj) ��a last(Mj+1).

Property (P1) implies that lca(Mi) �a lca(Mi+1) for i ∈
[1, j). Specifically, since first(Mi) ≺p first(Mi+1) ≺p last(Mi)
(by Equation (3)), it follows that lca(Mi) �a first(Mi+1);
combining this with property (P1), we have lca(Mi) �a

lca(Mi+1).
Property (P2) implies that lca(Mi) �a lca(Mj) for i ∈

(j, |P | + 1]. To see this, note that lca(Mj) �a first(Mi)
for i ∈ (j, |P | + 1] (by Equation (3)). Furthermore, since
lca(Mj) ��a last(Mj+1) (property (P2)) and last(Mj+1) �p

last(Mi) for i ∈ (j + 1, |P |+ 1] (by Equation (3)), it follows
that lca(Mj) ��a last(Mi) for i ∈ (j, |P | + 1]. Thus, for
i ∈ (j, |P | + 1], we have Mj ≺p Mi, lca(Mj) �a first(Mi)
and lca(Mj) ��a last(Mi); it follows from Lemma 3.5 that
lca(Mi) �a lca(Mj).

The IMS algorithm (Algorithm 2) shares many similarities
with the BMS algorithm in the previous section. The key
difference lies in steps 10 to 17 which determines lca(M) for
a match M anchored by a node vm without actually comput-
ing M . The repeat loop enumerates a sequence of matches
M1,M2,· · · to compute first(M) and last(M) and hence
lca(M). In the ith iteration of the repeat loop (steps 13 to
17), first(Mi) is computed in step 14 as �, and αi is com-
puted in step 15 (with r representing last(Mi)). Step 16
determines last(Mi+1) for the next iteration. The search
for M is terminated when any one of the three conditions
in step 17 is met. Firstly, if r = null, then it means that
next(vm, Sj) = null and there are no further matches in
the data; therefore, α = lca(M) and the next anchor node
is correctly set to null by step 24. Secondly, if α ��a r,
then α = lca(M) and Lemma 3.5 is applied to optimize
the selection of the next anchor node in step 24. Finally,
if r = last(N), then it means that all the matches Mi

subsequently enumerated within the repeat loop must have
last(Mi) = last(N) as well; therefore, M must correspond
to the very last match in the enumeration. To quickly skip
to this last match without continuing with the enumeration,
step 26 applies Lemma 3.1 to update the next anchor node
to be r.

Note that the number of LCA computations incurred by
IMS for each candidate SLCA computation is at least one
(one iteration of repeat loop) and at most k + 1 (k − 1 it-
erations of repeat loop and one call to closest function). In
contrast, BMS requires between 2k − 1 and 2k + 1 LCA
computations.

Example 3.3 Consider again computing SLCAs for the set
of keywords {a, b, c, d, e} on the data tree T1 in Figure 1(a),
where S1 is associated with keyword “a”. Using the IMS al-
gorithm, the first anchor node selected is c1, P = {d1, e1, b1,
a1, c1}, and N = {d2, e2, b2, c2, a2}. In the first iteration of
the repeat loop, α = lca(d1, c1) = x4. r is then updated to
d2 and the repeat loop terminates since x4 ��a d2. Therefore,
the first candidate SLCA computed is α1 = x4. The next an-
chor node selected is a2, P = {d2, e2, b2, c2, a2}, and N = {}.
In the first iteration of the repeat loop, α = lca(d2, a2) = x1.
r is then updated to null and the repeat loop terminates.
Therefore, since α �a α1, α is definitely not a SLCA. The
next anchor node has a null value and the algorithm ter-
minates with x4 as the only SLCA. The number of LCA
computations incurred by the IMS algorithm is only two. In
contrast, the BMS algorithm incurs 18 LCA computations
(Example 3.1). �

3.5 Analysis
In this section, we analyze the time complexity of our new

algorithms. We begin by establishing an upper bound on the
number of candidate SLCAs computed by each of the BMS
and IMS algorithms.

Lemma 3.7. The number of candidate SLCAs computed
by each of the BMS and IMS algorithms is no more than
|S1|.

Proof. We prove the claim for BMS; the proof for IMS
follows similarly. The upper bound is established by showing
that for any two candidate SLCAs computed by BMS, their
corresponding matches do not contain the same node from
S1. By step 1, the first anchor node selected either succeeds
or is equal to first(S1). Let vm be the anchor node used to
compute a candidate SLCA lca(M). By the optimization in
steps 4 to 9, vm �p closest(vm, S1). Moreover, by step 17,
if M ∩ S1 = {v1}, then the next anchor node selected either
succeeds or is equal to next(v1, S1). Thus, since no two
matches computed by BMS share the same node from S1,
the claim is established for BMS.

We now consider the costs of the various functions. Let
d denote the height of the XML data tree, and let S denote
the data node list with the highest frequency; i.e. |Si| ≤ |S|
for i ∈ [1, k]. As in [14], we assume that each data node is
stored together with its Dewey label which enables the lca
function to be computed efficiently in O(d) time. The cost
of first(v1, · · · , vk) and last(v1, · · · , vk) is each O(k). The
cost of pred(v, Si), next(v, Si), out(v, Si), and closest(v, Si)
is each O(d log(|Si|)) based on a binary search of Si and
comparing nodes using their Dewey labels.

For the BMS algorithm, the cost to compute a candidate
SLCA is O(kd log(|S|)) (due to step 10). Since there are at
most |S1| candidate SLCAs (by Lemma 3.7), the time com-
plexity of BMS algorithm is O(kd|S1| log(|S|)). For the IMS
algorithm, the cost to compute a candidate SLCA is also
O(kd log(|S|)) (due to steps 10 and 11); thus the time com-
plexity of IMS algorithm is also O(kd|S1| log(|S|)). However,

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1048

Algorithm 3 Simple AND-OR-SLCA (Q)

1: let Q = C1 ∨ C2 ∨ · · · ∨ Ck, where each
Ci = wi,1 ∧ wi,2 ∧ · · · ∧ wi,ni

, ni ≥ 1
2: initialize R to be empty
3: for i = 1 to k do
4: let T = result of evaluating Ci using some AND-algorithm
5: for each node v ∈ T do
6: initialize toDeleteV = false
7: for each node v′ ∈ R do
8: if (v �a v′) then
9: toDeleteV = true
10: exit inner for-loop
11: else if (v′ �a v) then
12: remove v′ from R
13: end if
14: end for
15: if (toDeleteV) then
16: delete v from T
17: end if
18: end for
19: R = R ∪ T
20: end for
21: return R

our experimental results show that IMS outperforms BMS
as the number of candidate SLCAs computed by IMS is less
than that by BMS (by up to a factor of 30).

In comparison, the time complexities of SE and ILE are,
respectively, O(kd|S|) and O(|S1|kd log(|S|) + |S1|2) [14].

4. AND-OR KEYWORD SEARCH
In this section, we examine how to process more gen-

eral SLCA-based keyword search queries that go beyond
the AND-semantics in conventional queries to support any
combination of AND and OR boolean operators. We con-
sider AND-OR keyword search queries of the form: Q =
(Q) | Q and Q | Q or Q | w, where w denotes some keyword.

In the following, we consider two approaches to process
SLCA-based AND-OR keyword search queries. The first
approach is a straightforward application of the algorithms
presented in the preceding section for processing conven-
tional SLCA-based AND-keyword search queries by express-
ing the general AND-OR queries in disjunctive normal form
(DNF). The second approach is an extension of our Multiway-
SLCA approach (MS).

4.1 Simple AND-OR Algorithm (SA)
A straightforward approach to process a general AND-

OR query Q is to rewrite Q in DNF and evaluate it in two
stages: first, evaluate each disjunct in Q using an exist-
ing AND-query evaluation algorithm; next, the results of
the individual evaluations are combined by eliminating in-
termediate SLCAs that are ancestor nodes of some other
intermediate SLCAs. The algorithm, referred to as Simple
AND-OR (SA) is shown in Algorithm 3.

4.2 AND-OR Multiway-SLCA (AOMS)
In this section, we show how our Multiway-SLCA ap-

proach for processing conventional AND-keyword search queries
can be easily generalized to process AND-OR keyword search
queries. The extended algorithm, called AND-OR Multiway-
SLCA (AOMS), is shown in Algorithm 4.

Our approach requires a general AND-OR query Q to be
expressed in conjunctive normal form (CNF), C1 ∧ · · · ∧Cn,

Algorithm 4 AND-OR Multiway-SLCA

1: initialize x = 1; α1 = droot

2: let vm = last({first(Ci) | i ∈ [1, n]}), where vm = first(Cm)
3: while (vm �= null) do
4: if (m �= 1) then
5: v1 = closest(vm, C1)
6: if (vm ≺p v1) then
7: vm = v1

8: end if
9: end if
10: P = {pred(vm, Ci) | i ∈ [1, n], i �= m} ∪ {vm}
11: N = {next(vm, Ci) | i ∈ [1, n], next(vm, Ci) �= null}
12: initialize rmax = last(N); r = vm

13: repeat
14: remove � from P , where � = first(P)
15: α = lca(�, r)
16: r = last(r, v) where v ∈ N s.t. v = next(vm, Ci), � ∈

Si,j

17: until (r = null) or (α ��a r) or (r = rmax)
18: if (r = null) or (α ��a r) then
19: if (αx �a α) then
20: αx = α
21: else if (α ��a αx) then
22: x = x + 1; αx = α
23: end if
24: vm = last(r, out(αx, C1), · · · , out(αx, Cn))
25: else
26: vm = r
27: end if
28: end while
29: if (α1 = droot) then return ∅ else return {α1, · · · , αx}

where each conjunct Ci = wi,1 ∨ · · · ∨wi,ni . is a disjunction
of ni keywords, ni ≥ 1. We use Si,j to denote the list of
data nodes associated with each keyword wi,j , i ∈ [1, n], j ∈
[1, ni].

Note that AOMS algorithm is almost equivalent to IMS
algorithm except that the six functions first, last, pred,
next, closest, and out now involve a conjunct Ci instead of
a keyword list Si. These mildly generalized versions of the
definitions from Section 2 are extended as follows:

• first(Ci) = first({first(Si,j) | j ∈ [1, ni], first(Si,j) �=
null}).

• last(Ci) = last({last(Si,j) | j ∈ [1, ni], last(Si,j) �=
null}).

• pred(v,Ci) = last({pred(v, Si,j) | j ∈ [1, ni], pred(v, Si,j)
�= null})

• next(v,Ci) = first({next(v, Si,j) | j ∈ [1, ni], next(v, Si,j)
�= null})

• closest(v,Ci) = pred(v,Ci) if lca(v, next(v,Ci)) ≺a

lca(v, pred(v,Ci)); otherwise, closest(v, Ci) = next(v,Ci).

• out(v, Ci) = first({out(v, Si,j) | j ∈ [1, ni], out(v, Si,j)
�= null})

For simplicity and without loss of generality, we assume
that |C1| ≤ |Ci| for i ∈ [1, n] where |Ci| =

�ni
j=1 |Si,j |.

5. EXPERIMENTAL STUDY
To verify the effectiveness of our proposed algorithms, we

conducted extensive experiments to compare their perfor-
mance against existing approaches for evaluating both AND
as well as AND-OR keyword search queries.

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1049

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

SE IMS ILE IIMS

(a) k2-1000-1000

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

SE IMS ILE IIMS

(b) k4-1000-1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

SE IMS ILE IIMS

(c) k2-100-1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

SE IMS ILE IIMS

(d) k4-100-1000

 0

 50

 100

 150

 200

 250

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

SE IMS ILE IIMS

(e) k2-10-10000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

E
va

lu
at

io
n

T
im

e
(m

s)

Query

SE IMS ILE IIMS

(f) k4-10-10000

Figure 3: Comparison for AND queries

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1050

5.1 Experimental Setup
Similar to what was done in [14], where there is both

a non-indexed version of the algorithm (i.e., SE) as well
as an indexed version of the algorithm (i.e., ILE), we also
created two versions for each of our proposed algorithms.
We use IBMS, IIMS, and IAOMS, respectively, to refer to
the indexed versions of BMS, IMS, and AOMS. As in [14], in
the non-indexed algorithms, all the data nodes are organized
using a B-tree where the B-tree keys are the keywords of the
data nodes and the B-tree data associated with each B-tree
key is a list of Dewey labels of the data nodes having that
key as keyword. In the indexed algorithms, all the data
nodes are organized using a B-tree where each B-tree key is
a composite key consisting of a keyword (as primary key)
and a Dewey number (as secondary key). No data values
are associated with this composite-key organization.

For the simple approach of evaluating AND-OR queries
(Section 4.1), we have six variants of the algorithm denoted
by SA-SE, SA-BMS, SA-IMS, SA-ILE, SA-IBMS, and SA-
IIMS; where SA-X denotes the variant using algorithm X
to evaluate the AND-subqueries of the AND-OR query.

The evaluation of the algorithms was carried out by using
different classes of queries. Each class of AND queries is
denoted by kN-L-H, where N ,L, and H are three positive
integer values: N represents the number of keywords, and
L and H , with L ≤ H , represent two keyword frequencies
such that one of the N keywords has the low frequency L
while each of the remaining N − 1 keywords has the high
frequency H ; thus, L = |S1|. Each class of AND-OR queries
(in CNF) is denoted by cM-kN-L-H, where M represents the
number of conjuncts in a query, N represents the number
of keywords in each conjunct, L represents the frequency
of each keyword in one conjunct, and H (with L ≤ H)
represents the frequency of each keyword in the remaining
M − 1 conjuncts. For each class of queries, a set of 10
random queries were generated and each query was executed
six times and its average execution time over the last five
runs was computed. All the experiments were conducted
using a DBLP dataset [6] with two million data nodes.

Our implementation used BerkeleyDB (Java Edition) [3]
to store the keyword data lists similar to what was done in
[14]. The BerkeleyDB database was configured using a page
size of 8KB and a cache size of 1GB. All the experiments
were conducted on a 3GHz dual-core desktop PC with 1GB
of RAM.

5.2 AND Keyword Search Queries
Figure 3 shows the comparison of the two binary-SLCA

algorithms (SE and ILE) against our multiway-SLCA algo-
rithms IMS and IIMS. To avoid cluttering the graphs, we
have omitted the BMS and IBMS algorithms as they were
outperformed by the IMS and IIMS algorithms (by up to an
order of magnitude), respectively. Compared to the BMS
variants, the IMS variants not only incur fewer number of
candidate SLCA computations but they are also more effi-
cient in SLCA computations.

Each graph in Figure 3 shows the performance compar-
ison for a different query class. For each query class, the
ten random queries shown (Q1 to Q10) are ordered in non-
descending order of the number of candidate SLCA compu-
tations incurred by the IMS algorithm. Figures 3(a) and
3(b) show the results for the case where the low and high
frequencies are the same. Comparing IMS and IIMS, we

observe that IIMS generally performs better than IMS only
when the number of candidate SLCA computations is small.
For the binary-SLCA algorithms, our results are consistent
with [14] with SE outperforming ILE. Overall, IMS generally
performs the best for both k2-1000-1000 and k4-1000-1000

with IIMS performing better than IMS for some cases.
Figures 3(c) and 3(d) show the results for the case where

the low and high frequencies differ by a factor of 10. In
this case, the non-indexed methods generally perform bet-
ter than the indexed methods. For k2-100-1000, IMS has
an edge over SE. For k4-100-1000, IIMS performs the best
when the number of its candidate SLCA computations is
small; otherwise, SE generally has the best performance.
Figures 3(e) and 3(f) show the results for the case where
the low and high frequencies differ by a factor of 100. In
this case, the indexed methods perform better than the non-
indexed methods. IIMS and ILE are comparable when the
number of candidate SLCA computations by IIMS is small;
otherwise, ILE gives better performance.

5.3 AND-OR Keyword Search Queries
Figure 4 compares the performance of algorithms SA-SE,

SA-IMS, AOMS, SA-ILE, SA-IIMS, and IAOMS for AND-
OR queries; algorithms SA-BMS and SA-IBMS have been
omitted as they are outperformed by the IMS variants. The
evaluation times shown in Figure 4 are average evaluation
times of ten queries. Figures 4(a) and 4(b) show the re-
sults for the case where the low and high frequencies are
the same, while Figures 4(c) and 4(d) show the results
for the case where the low and high frequencies differ by
a factor of 10 and 100, respectively. In all these cases,
the non-indexed methods outperform their indexed coun-
terparts, with AOMS giving the best performance.

6. RELATED WORK
Efficient algorithms for computing LCAs on trees have

been carefully studied by a number of early work [2, 9].
However, the algorithms designed there are meant for main-
memory resident data. Schmidt et al. [13] propose the
meet operator for querying XML document by computing
the LCAs of nodes in XML trees. XRANK [8] proposes a
stack-based keyword search algorithm and the results are
ranked by a Page-Rank hyperlink metric extended to XML.
Their ranking techniques are orthogonal to the retrieval and
could be easily incorporated into our work. Another work
XSEarch [5], which is an extension of information-retrieval
techniques, is mainly focused on the semantics and ranking
of query results.

The research work in [14, 12] is the most closely related to
our current work, and both work adopt the idea of smallest
LCA (SLCA) or Meaningful LCA (MLCA), which are simi-
lar ideas. Li et al. [12] propose a novel schema-free way to in-
corporate keyword search in XQuery. They also develop an
efficient stack-based MLCA searching algorithm. XKSearch
[14] focuses on finding the smallest LCA of keywords in XML
documents, and it proposes several algorithms, which we
compared against in this paper.

More recently, there has also been a lot of interest on
keyword search in relational database systems [1, 4, 7, 10,
11] where the emphasis is mainly on optimizing join queries
to generate tree tuples.

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1051

7. CONCLUSIONS
In this paper, we examined the problem of processing

SLCA-based keyword search queries for XML data. We have
presented a novel approach called multiway-SLCA approach
that is more efficient than the state-of-the-art binary-SLCA
approach for evaluating SLCA-based keyword queries. In
addition, we have also extended our approach to process
more general keyword search queries that go beyond the
traditional AND semantics to support any combination of
AND and OR boolean operators. Our experimental perfor-
mance evaluation using real XML datasets demonstrate the
efficiency of our new algorithms compared to previous algo-
rithms. As part of our future work, we intend to extend our
approach to handle complex keyword search queries with
any combination of AND, OR, and NOT operators.

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational
databases. In ICDE, 2002.

[2] M. Bender and M. F.Colton. The LCA problem
revisited. In Latin American Theoretical Informatics,
2000.

[3] Berkeley DB. http://www.sleepycat.com.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
datrabases using BANKS. In ICDE, 2002.

[5] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
VLDB, 2003.

[6] DBLP. http://www.informatik.uni-trier.de/∼ley/db/.

[7] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
and H. Garcia-Molina. Proximity Search in Databases.
In VLDB, 1998.

[8] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In SIGMOD, 2003.

[9] D. Harel and R. E. Tarjan. Fast algorithm for finding
nearest common ancestors. In SIAM Journal on
Computing, 1984.

[10] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In VLDB,
2002.

[11] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs. In ICDE,
2003.

[12] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free
XQuery. In VLDB, 2004.

[13] A. Schmidt, M. Kersten, and M. Windhouwer.
Querying XML Document Made Easy:Nearest
Concept Queries. In ICDE, 2001.

[14] Y. Xu and Y. Papakonstantinou. Efficient Keyword
Search for Smallest LCAs in XML Database. In
SIGMOD, 2005.

 0

 200

 400

 600

 800

c4-k2c2-k4c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

(a) cM-kN-100-100

 0

 1000

 2000

 3000

 4000

 5000

c4-k2c2-k4c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

(b) cM-kN-1000-1000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

c4-k2c2-k4c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class
(c) cM-kN-10-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

c4-k2c2-k4c2-k2

E
va

lu
at

io
n

T
im

e
(m

s)

Query Class

SA-SE
SA-IMS

AOMS
SA-ILE

SA-IIMS
IAOMS

(d) cM-kN-10-1000

Figure 4: Comparison for AND-OR queries

WWW 2007 / Track: XML and Web Data Session: Querying and Transforming XML

1052

