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Abstract—This paper presents a new direct Fourier-based algo-
rithm for performing image-to-image registration to subpixel accu-
racy, where the image differences are restricted to translations and
uniform changes of illumination. The algorithm detects the Fourier
components that have become unreliable estimators of shift due to
aliasing, and removes them from the shift-estimate computation.
In the presence of aliasing, the average precision of the registra-
tion is a few hundredths of a pixel.

Experimental data presented here show that the new algorithm
yields superior registration precision in the presence of aliasing
when compared to several earlier methods and has comparable
precision to the iterative method of Thévenazet al. [21].

Index Terms—Aliasing, Fourier transform, image registration,
spline interpolation, subpixel.

I. INTRODUCTION

I MAGE registration is an important preprocessing operation
that aligns the pixels of one image to corresponding pixels of

a second image. Registration is the primary tool for comparing
two or more images to discover the differences in the images
or to fuse multiple modalities to create a composite that reveals
information not easily accessible within individual images. It is
used in the remote sensing community to study satellite images
of the earth, and in the medical community to enhance the diag-
nostic capability of radiological imagery.

Registration algorithms typically assume that images differ
by some transformation from a given family, and they find the
transform within that family that optimizes a particular crite-
rion. Transformation families include rigid transforms (trans-
lation, rotation, and rescaling), linear and affine (skewed and
perspective transforms), and nonlinear warping. Optimization
criteria include minimizing the sum of squares of pixel differ-
ences, maximizing the normalized correlation coefficient and
maximizing the mutual information of the joint pixel-distribu-
tions of two images. For this paper, we assume that two observed
sampled images represent the same scene sampled on identical
grids but offset from each other by an unknown translational
shift, as well as differing by a uniform change of intensity, per-
haps also disturbed by independent additive noise.
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Townshendet al. [1] make a case for subpixel accuracy of
registration in their studies of vegetation changes because the
changes that they are trying to measure are on the order of the
errors introduced by misregistration by less than a pixel. The lit-
erature contains image-to-image registration algorithms of var-
ious precision that operate in the pixel (signal) domain [2]–[22]
and in the Fourier domain [2], [5], [23]–[36].

Among the authors who report subpixel registration preci-
sion, Shekarforoushet al. [34] describes an algorithm that uses
the cross-power spectrum of the Fourier transforms (FTs) of
two ideally bandlimited images. The Fourier inverse of the
cross-power spectrum is a sinc function displaced from the
origin by the amount of the translation. Abdou [2] describes
three algorithms that use various interpolation schemes to find
the translational difference between images. Kim and Su [30]
present a Fourier-based algorithm that estimates translation
changes by modifying the phase of one FT to make it as similar
as possible to a second FT. The phase change corresponds
to the translational difference. To eliminate aliasing effects
their algorithm relies on the low frequency components of the
transforms. Thévenazet al. [21] report an elegant pixel-based
iterative algorithm that is able to register to high precision,
and can deal with rotation, translation, changes of scale, and
illumination changes. Of the schemes mentioned here, it is the
most general.

Algorithms reported to have subpixel image-to-image regis-
tration precision for ideally bandlimited images typically have
reduced precision in the presence of aliasing. Kim and Su’s al-
gorithm [30] treats aliasing explicitly, but [2], [21], [34] do not.

The main result of this paper is the development of a direct al-
gorithm for image-to-image registration that achieves high pre-
cision in the presence of small amounts of aliasing. This paper
models the aliased frequency components of the two images
and predicts how this aliasing affects the phase relationships be-
tween their FTs. Aliasing causes some frequency components
of the scene to be unreliable, and the new algorithm masks
them out of the registration process. The new algorithm resem-
bles [30] because it eliminates certain frequency components
from the calculations, but it eliminates more than do Kim and
Su. For our experimental data, the frequency-masking algorithm
achieves a worst-case registration precision of a few hundredths
of a pixel, and an average registration precision of less than a
hundredth of a pixel for a broad range of nonideal prefilters.
The iterative algorithm of [21] achieves comparable precision
experimentally, even though the algorithm does not deal with
aliasing explicitly. All other algorithms compared in this paper
have poorer registration precision.

0196–2892/01$10.00 © 2001 IEEE
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Section II reviews theoretical issues related to aliasing and
its effect on Fourier spectra, particularly on the phase of FTs.
Section III describes the new algorithm, and how it deals with
aliasing. The ground-truth model and experimental results ap-
pear in Section IV. A summary appears in the final section.

II. M ATHEMATICAL BACKGROUND

The basic idea behind the new registration algorithm is that
the phase of the Fourier spectra of an image pair contains suffi-
cient information to determine the translation offset difference
of the images. This section reviews how this can be exploited
in the absence of aliasing, as described by [34], and then shows
why aliasing causes problems that reduce the registration preci-
sion of this method.

Given a two-dimensional (2-D) image and a trans-
lated version of the image , we
wish to find an efficient algorithm that gives the displacement
vector . In the remainder of the discussion, we reduce
the problem to one dimension and note that all the results gen-
eralize to two-dimensions straightforwardly.

Let denote a continuous function with FT . The
FT of the shifted function is

. This is the key relationship for all Fourier-based
image-registration algorithms. In the ideal case of continuous
transforms of noiseless images, for anythe Fourier compo-
nents and provide a perfect estimate of , to
within an integer multiple of .

Now consider digital images, which are sampled versions of
continuous images. Assume that is continuous and peri-
odic, and for . Sampled versions of this
image are and , where
is a sampling interval and is an arbitrary real-valued displace-
ment with a magnitude less than . Let be the number of
samples per period of , so that .

In this formulation, the value of is the residual that re-
mains after registering images to the nearest pixel by using any
one of the several algorithms reviewed in [5]. Our goal is to find

. (Because , we eliminate a phase ambiguity of
in ratios of Fourier components in the algorithm devel-

oped later in this section.)
If the sampling interval is less than , then the Sam-

pling Theorem [37] states that

(1)

for any and for integer values of . Recall that
The registration method of [34] uses discrete

FTs of finite sampled images for which the reconstruction of
(1) is approximated by the finite sum

Dirichlet (2)

The Dirichlet function is a periodic approximation to , and
is defined to be Dirichlet for

not a multiple of , and is otherwise. It is the
inverse discrete FT of a sampled window in the Fourier domain,

(a)

(b)

Fig. 1. (a) Spectrum of image after prefiltering. (b) Downsampling and
resulting aliasing of prefiltered image.

and is the function obtained from the algorithm of [34]. Equa-
tions (1) and (2) differ in their summation limits and in the sub-
stitution of Dirichlet for . [A reviewer noted
that (1) converges with equality to (2) for odd, but not for
even.]

The periodicity of implies that its FT is discrete,
which we represent as for integers ,

. Let , , and be the respective discrete
FTs of , , and Dirichlet . Then the convolu-
tion in (2) corresponds to

(3)

This explains why the inverse FT of the spectral ratio
, which is called thecross-power spectrum, is ap-

proximately a function displaced from the origin by an
amount [34]. If is sampled below its Nyquist rate then
its continuous transform has energy in frequencies higher than

, in which case (2) is not guaranteed to be a good approxima-
tion because the perfect reconstruction of (1) no longer holds.

To estimate the phase of an aliased cross-power spectrum
when is sampled below its Nyquist rate, we assume that
the optical prefilter is not an ideal low-pass filter, and that the
spectral leakage is most likely to be in the frequencies just
above the sampling cutoff frequency. Also, the attenuation
increases strongly with frequencies higher than sampling
cutoff, with essentially no energy at frequencies above twice
the sampling cutoff. Fig. 1(a) illustrates this situation. The
figure shows a Fourier spectrum plotted against normalized
continuous frequency , which represents
the spectrum in a one-dimensional image after prefiltering
according to our assumptions. Sampling the image at one half
the Nyquist rate with an interval of produces the spectral
values shown in Fig. 1(b). The spectra for and in
Fig. 1(b) are sums of phase-shifted components of frequencies

in Fig. 1(a). For integer in the interval
we have

(4)
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Fig. 2. Vector illustration of aliasing.

For in the interval , replace by
in the second term of (4).

The aliasing terms in (4) create and such that the
vector ratio is not equal to , as required
for (1) and (2). A graphic illustration of this situation appears in
Fig. 2. The complex vector is shown to be the sum of two
complex components of . The complex vector is the
complex sum of those same components, one of which is rotated
by , and the other is rotated by . The
vector is not a rotation of by because of
the excess phase of in the second component of the sum. In
general, the aliasing caused by the excess rotational phase leaves

with an amplitude different from that of whereas
bandlimited images experience no change of amplitude in the
frequency domain after translation.

Our problem is to estimate the phase as a function
of from observations of the vector sums shown in Fig. 2. The
components of are not directly observable. The next section
shows how we can eliminate badly aliased frequency compo-
nents from further consideration, and thereby estimatefrom
frequency components whose phases yield accurate estimates
of .

III. FREQUENCYMASKING SUBPIXEL SHIFT ESTIMATION

Examination of Fig. 2 shows that the observed relative phase
of for a specific value of is likely to be a good es-
timate of if the magnitude of the alias component

is small compared to the magnitude of the in-band
component . Fig. 1(b) shows that this is likely to
occur under our assumptions at frequencies near the origin be-
cause of the attenuation of aliasing magnitude with increasing
frequency by the prefilter. Hence, we should limit the frequency
range to frequencies near the origin [30].

But this is not sufficient to attain high precision in registra-
tion, as indicated by the experimental data later in the paper.
There usually exist highly aliased frequency components near
the origin. Using these frequencies greatly reduces the precision
of the estimate of . The frequencies that are most likely to be
corrupted are those for which the spectral magnitude is small.
Therefore, the algorithm masks out contributions from spectral
components whose magnitudes are small relative to the rest of
the magnitudes, regardless of whether they occur at low or high
frequencies.

The full algorithm for 2-D data is very simple and consists of
these major steps.

1) Use any image registration algorithm to find a translation
that registers the two images to the nearest integral pixel
coordinates.

2) Apply a Blackman or Blackman–Harris window in the
pixel domain to eliminate image-boundary effects in the
Fourier domain [38].

3) Calculate the discrete FTs of and .
4) Mask out spectral components that lie outside a radius of

from the central peak. A suitable value ofis
where is the minimum of the number of samples in the

and dimensions.
5) Mask out spectral components for which either

or have magnitudes less than a specified
threshold .

6) Using the frequencies that remain after masking, find a
least-squares estimate of .

The windowing operation is well known and eliminates the
spurious introduction of high-frequency spectral energy due
to edge effects. We found that a separable Blackman window
(as well as a separable Blackman–Harris window) worked
quite well [38]. We also tested a radially symmetric Blackman
window and several other windows that are flatter than the
Blackman window in the middle of the image. The radially
symmetric window gave results comparable to the separable
window, but is more complex to create. The flatter windows
use more information from the center of the image, but they
tend to be less effective in eliminating spurious high frequency
energy from the edges of the images. The separable Blackman
and Blackman–Harris windows yielded the best results for the
least computation.

The use of radius constrains the frequencies
to be close to the origin. Under the assumption that the under-
lying spectrum has most of its energy in the low frequencies as
shown in Fig. 1(a), aliasing effects are smaller in this region as
indicated in Fig. 1(b). We found empirically that the constant
factor 0.6 can be as small as 0.5 or as large as 0.7 without ma-
terially affecting the algorithm.

The choice of threshold warrants a brief discussion. The
algorithm sorts the frequencies by magnitude and retains the
largest in the spectrum, for some value of. In the absence
of other information, a good way to choose is to vary
over a range of values, and observe the estimated translation
as a function of . Experimental data in the next section show
that there is a region where the estimated translation is virtually
independent of . The displacement estimate produced by
in this region is the one to use. This approach works very well,
so we did not pursue other possible approaches.

To estimate translation displacements from the Fourier
spectra, let denote the set of frequency coordinate pairs

that survive the masking operations. Let
be the phase of the complex ratio at point

. In the absence of aliasing, has and
slopes equal to and , respectively. The least

squares estimate of the slope of a plane that passes through the
origin is

phase phase

phase phase
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where the quantities with overbars are the means of the respec-
tive products taken over all frequency pairs that survive the
masking operation. Note that any uniform change of intensity
of the form for constants and has no effect
on the registration process becausechanges the magnitudes
of the FT by a factor of , leaving phase unchanged, whereas

changes only the spectral coefficient at the origin, leaving its
phase unchanged.

The insensitivity to uniform changes of intensity is quite pow-
erful. Artigaset al. [39] showed that by factoring out uniform
changes of illumination, a set of two cloudfree AVHRR images
of Long Island can be registered to all other cloudfree images of
Long Island, (98 images) from the same five-month period, and
thereby can be used as an image-search key for Long Island.

This completes the description of the registration algorithm.

IV. EXPERIMENTAL DATA

A. Ground Truth

In order to measure the precision of the registration algo-
rithm, we prepared ground truth using a scheme described in
[34]. The idea is to use a single high-resolution image to rep-
resent the actual scene, and to create an image pair from this
scene by filtering and downsampling the high-resolution image
in two ways. The downsampled images are shifted with respect
to each other by integer amountsand in the high-resolution
grid. After downsampling by a factor of in each dimension,
the relative shifts become fractional shifts of size and

, respectively. One downsampled image optionally has its
intensity values rescaled to new values by means of the formula

for fixed constants and . The rescaled inten-
sities allow us to investigate the effect of such rescaling on the
registration precision.

For the detailed analysis of the frequency-masking algorithm,
we used 52 aerial photos of various urban and agricultural land-
scapes for this study. Each of the images is 10241024 pixels,
and was downsampled by a factor of in each dimen-
sion. Note that there are 64 distinct phases for a downsampled
image depending on how it is shifted inand with respect
to the origin before downsampling. Shifts of greater than eight
pixels in either coordinate direction produce the same phase as
a shift of 8 fewer pixels in the same direction. (The phases are
equal, but the images are displaced by an integral number of
low-resolution pixels.) Each of the two images was shifted by
integer amounts ranging from4 to 3 pixels in each dimen-
sion, thereby creating all 64 distinct phases of each image. Reg-
istering the two sets of 64 image-phases in all possible ways
created 4096 registration tests for each image and over 200 000
registrations overall. The Blackman window was positioned at a
fixed position, and the registration pairs varied over all possible
phase-pairs relative to that fixed position. Our results show that
the algorithm exhibits virtually no bias with respect to the posi-
tion of the Blackman window relative to the images for our data.
For the comparisons of the frequency-masking algorithm with
other algorithms, we used a single aerial photo in 4096 relative
pairs of shifts.

To control the amount of aliasing, we used a Gaussian filter
prior to downsampling. The filter was characterized by a sup-
port area and a filter half-width. Since downsampling by eight

(a)

(b)

Fig. 3. (a) Comparison of worst-case error per coordinate for six direct
subpixel registration algorithms. (b) Comparison of average error per
coordinate for the same six algorithms.

compresses an 8 8 region of pixels into a single pixel, a ban-
dlimiting filter must have a central peak at least 88 to keep
aliasing small. Our experiments changedfrom 2 to 5 in steps
of 1. The width of the central peak is approximately, so that

produces substantial aliasing and produces a very
small amount of aliasing. The support of the filter was 1717
for the data reported here. We also explored other ranges of sup-
port and to confirm that the registration algorithm behaves as
expected as we move outside the parameter region studied in
detail, and found that the results were consistent with the data
reported here.

B. Experimental Results

The first experiment is a comparison of the precision of our al-
gorithm and other algorithms as a function of. For these exper-
iments, we used a single image, and no change of illumination.
These results appear in Fig. 3 for worst-case errors over both in-
dividual coordinates and average errors per coordinate direction.
The mean-square error in two-dimensions is approximately
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(a)

(b)

Fig. 4. Aerial photograph used in the comparisons. (a) Original figure. (b)
Figure after applying frequency masking. (Courtesy of Positive Systems, Inc.)

times the average error per coordinate. Fig. 4 shows the image
used to compare the algorithms. Fig. 4(b) is the same image after
applying frequency masking to illustrate the low-pass behavior
of the operation.

The algorithm of Kim and Su is most like ours because it re-
stricts its attention to low frequencies in the Fourier domain. It
seeks a phase for which the sum of squares differences between
the spectrum of the first image and the phase-shifted spectrum
of the second image is minimal. Our implementation used a
Blackman window to eliminate spectral leakage, and affirmed
that windowing made the registration robust with respect to
boundary effects. The data in [30] were taken without a window,

although the paper did indicate that windowing should be con-
sidered. When we tried this algorithm without windowing, the
results tended to be more accurate than with windowing, but
were highly dependent on how the boundaries of the ground
truth were prepared for the experiment. Windowing removes
this dependence and removes artifacts of spectral leakage. The
frequency region to which we restricted the algorithm had a size
89 89 for a frequency domain of size 128128. We found ex-
perimentally that this size yields the most precise results for the
experiment. Our implementation of the algorithm uses iterative
hill-climbing to locate the optimal value of the Fourier phase.
All of the algorithms except Kim and Su’s produce higher reg-
istration precision as aliasing decreases.

The Shekarforoush algorithm estimates the displacements by
fitting points to a sinc function, but when the points are cor-
rupted by aliasing, the algorithm produces poor estimates. We
found a slight instability in the implementation when the ratio

became large because of a small value of ,
which we removed by artificially setting to unity at this
frequency.

The plot shows three different algorithms proposed by Abdou
[2]. The first fits a polynomial curve through points that lie on
a correlation peak. The second fits a Gaussian through those
points, and the third linearly interpolates the spectra at integer
offsets to find the closest approximation to the observed spec-
trum. The first two algorithms are direct algorithms. The third
algorithm iterates a search over the interpolation coefficients.
Because the third algorithm operates in the Fourier domain, we
used a Blackman window on the images prior to registration. We
did not window the data when applying the first two algorithms.

Abdou’s [2] spectral interpolation algorithm required special
treatment and some modifications. This algorithm computes the
spectra of four copies of one image, each displaced relative
to the other by displacements that lie on the corners of a unit
square in the pixel-domain grid. The algorithm interpolates the
cross products of each of these with the spectrum of the second
image and finds the interpolation closest to the cross product
of the spectra of the two images. Since the central peak dom-
inates the spectral magnitudes, virtually the entire estimate of
displacement is due to interpolation of the central peaks. To
avoid this dependency, we zeroed out the central peaks in the
spectra, which is equivalent to normalizing the images to the
same average intensities. Nevertheless, the spectral magnitudes
near the central peak are very large compared to magnitudes
elsewhere in the frequency plane, so that the interpolation de-
pends on relatively few of the frequency coefficients.

The iterative algorithm of [21] was studied somewhat differ-
ently from the other algorithms. The important aspect of this al-
gorithm is that it drives toward a minimum sum of squared pixel
differences between two images by performing a sequence of
spline interpolations in the image domain. The spline interpola-
tions are very close to sinc interpolations, and therefore they
tend to affect the phase of the corresponding Fourier spectra
without changing the magnitudes. Hence, the interpolations do
not remove aliasing artifacts that may exist in one or both im-
ages as they interpolate one image into the other. For this reason,
the iterations are unlikely to be able to drive the differences in
the images to zero. In the absence of aliasing, it is clear that the
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iterations can reduce the sum of squares to near zero, and the
point at which this occurs corresponds to the subpixel transla-
tion difference of the images. In the presence of aliasing, it is
not clear that the subpixel coordinates of the minimum sum of
squared pixel differences are the same as those that minimize
the subpixel translational difference of the images.

We studied this question both analytically and experimen-
tally. The analysis shows that both the frequency masking
and sum-of-squares of pixel differences lead to approximately
equal solutions. To see this observe that in the pixel domain
one wants to find that minimizes .
By Parseval’s Theorem, this is the same as finding

, which minimizes

where is the phase angle between and . Hence,
the that minimizes the sum of squares of pixel differences
maximizes . Our algorithm
selects a set of for which both and are large relative
to other components. Because real images tend to have their
energy concentrated in the lower frequencies, the algorithm
tends to choose a set of frequencies that dominate the full sum.
By selecting a that maximizes
for these components, the algorithm tends to maximize the sum
over all components, and thus finds a that tends to be one
that minimizes the sum of squares of pixel differences.

Experiments confirmed that the minimum occurs at a registra-
tion point consistent with our ground truth. Hence, the iterative
algorithm can achieve comparable precision if it can drive inter-
polations to the minimum sum of squares value. This was tested
and confirmed by Thévenazet al.[21], who graciously ran their
code on a sample image pair supplied by the authors. The ob-
served precision for an image pair filtered withof 3.0 was
approximately 0.005 pixels, which is approximately the same
as the frequency masking algorithm on the same image pair.

We also attempted to do registration by blind matching of the
centers-of-gravity of an image pair. The process failed badly on
satellite images. The center of gravity for such images is essen-
tially unchanged by shifts when the distribution of pixel values
is similar throughout an image. The center-of-gravity algorithm
has been used successfully in the literature in contexts in which
the center of gravity of specific regions or features drive the
registration [40]–[43]. This requires region or feature identifi-
cation, which is not required by “blind” algorithms like ours.

To check the robustness of our algorithm, we tested it on a
suite of 52 images with a . In this study, two of the 52
images were outliers, and had insufficient detail in their respec-
tive centers to give good worst-case registrations. The Blackman
window weighs the center of the images very strongly, and for
these images, not enough detail was left after windowing to
yield very precise results at the subpixel level. The worst case
registrations for these two images had errors that lay between
0.1 and 0.2 pixels in at least one dimension. The remaining 50
had worst-case errors that did not exceed 0.067 pixels in ei-
ther dimension. The average error in each dimension was on the
order of 0.0055 pixels. We repeated the experiment with uni-
form changes of intensity applied to one of the images, and ob-

Fig. 5. Plot of displacement as a function of threshold variable�.

Fig. 6. Plot of displacement as a function of SNR for additive white Gaussian
noise.

tained essentially the same results. Hence, the algorithm is in-
sensitive to such changes of intensity, as the theory suggests it
should be.

To deal with the question of how to set thethreshold, Fig. 5
plots the displacement estimate as a function ofthreshold
for the registration of a specific image for one offset withs
of 2 and 3. The figure verifies that there is a region of the
threshold parameter space for which the displacement is almost
independent of threshold. In this case, we thresholded magni-
tudes by eliminating frequency components whose magnitudes
fell below , where is the RMS magnitude of this
spectrum at frequencies that lie in a 55 region around the
central peak (any threshold function that orders the magnitudes
and accepts the largest can be substituted here).

The algorithm also performs well in the presence of noise.
Fig. 6 plots the precision of the algorithm for an image filtered
with in the presence of additive white Gaussian noise
for various SNRs. The horizontal lines in the plot indicate the
precision in the absence of noise. The performance is excellent
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TABLE I
COMPLEXITY OF REGISTRATION ALGORITHMS

for both the average and worst-case errors. This performance is
comparable to the performance reported for the iterative algo-
rithm in [21].

We also applied the algorithm to examples of multispectral
images to measure its ability to register satellite images taken in
different spectra. URLs of the sample images are [44]–[46]. To
test the algorithm we registered the three color planes to each
other in pairs. The expected result is that
where is the measured displacement between color planes

and . We found that this equation was satisfied to within
a few hundredths of a pixel when the common features of all
image planes were plentiful and accounted for most features
present, and is not satisfied when the registration fails because
of the absence of common features. The algorithm is sensitive to
edges, and is not very sensitive to actual intensity values. How-
ever, mutlispectral images do not always share features across
spectra. For images in which there were significant differences
in features among the color planes, the algorithm failed to yield
consistent pairwise registrations. We do not recommend the use
of the algorithm in such cases.

C. Computational Complexity Comparisons

Table I contains a summary of the computational complexity
of each of the algorithms studied as a function of, the number
of pixels in one image. The table also shows whether the algo-
rithm is iterative or direct. For direct algorithms the complexity
shown is total complexity. For iterative algorithms, the com-
plexity given is the complexity per iteration.

FT complexity of O( ) dominates the cost for
Abdou’s [2] correlation-based algorithms, Shekarforoush’s
algorithm and our Frequency Masking algorithm. It also is
present in the initialization of Abdou’s [2] iterative algorithm
and of Kim and Su’s algorithm. Only the iterative algorithm of
Thévenazet al. [21] does not incur this directly.

Measures of relative time depend on the number of iterations
and on constant factors, both of which are image and implemen-
tation dependent. An upper bound on the number of iterations
for the algorithm of Thévenazet al. [21] is O( ) because
the sum of independently distributed random residuals has a
variance that grows with , and thus the number of bits in the
sum that have to be eliminated tends to grow as . The Mar-
quardt–Levenberg strategy used in [21] has slow convergence at
first, and then becomes quadratic near the end. In the region of
linear convergence, the number of iterations required to reduce

bits may grow as . As convergence changes from

linear to quadratic, the number of required iterations remaining
falls very quickly, and is essentially a constant in practice. The
complexity of the full registration algorithm thus may be as high
as O( ) or as low as O( ) depending on whether the
number of iterations grows as or is constant. We do not
have data on which to base fair estimates of the constant factors
and relative running times for efficient implementations of the
various algorithms.

V. SUMMARY AND CONCLUSIONS

The subpixel registration algorithm presented here enjoys
very high precision in the presence of aliasing. It is concep-
tually simple to implement and is very efficient because its
complexity is essentially that of two FTs. Also the algorithm
uses only the frequencies in the central quadrant, and it is
possible to speed the computation by producing only those
frequencies when computing the FT. The new algorithm is
competitive with the algorithm of [21] in registration precision.
Relative computation times are difficult to compare because
our algorithm is direct and the other algorithm is iterative.

Our algorithm can be adapted to deal with rotations and scale
changes by using Fourier–Mellin invariants as described in [33],
but to do so requires interpolations either in the Fourier or in the
image domain. The algorithm becomes iterative in that setting
rather than direct.

The new algorithm is useful in applications in which illumi-
nation and translational differences between images have to be
discovered accurately and efficiently. It also may have applica-
tions to multispectral registration when image pairs from dif-
ferent spectra have many edge features in common.
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